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ABSTRACT

Non-Fungible Tokens (NFTs) have emerged as a pivotal digital asset,
offering authenticated ownership of unique digital content. Despite
it has gained remarkable traction, yet face pressing storage and ver-
ification challenges stemming from blockchain’s permanent data
costs. Existing off-chain or centralized storage solutions, while be-
ing alternatives, also introduce notable security vulnerabilities. We
present SemNFT, an innovative decentralized framework integrated
with blockchain oracle middleware services, addressing these per-
sistent NFT dilemmas. Our approach compresses NFT source data
into compact embeddings encapsulating semantic essence. These
arrays are stored on-chain, while facilitating reliable decentralized
image reconstruction and ownership verification. We implemented
ERC721-compliant smart contracts with supplementary function-
alities, demonstrating SemNFT’s seamless integrative capabilities
within the ecosystem. Extensive evaluations evidence marked stor-
age optimizations and preservation of requisite visual fidelity by
comparison with existing solutions. The proposed SemNFT frame-
work marks a significant advancement in holistically confronting
rising NFT storage and verification challenges without compro-
mising decentralization. It substantively propels the meaningful
evolution of NFT infrastructure to achieve digital asset immortality.
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1 INTRODUCTION

Non-Fungible Tokens (NFTs) [1, 21, 39] are a type of virtual token
that utilizes blockchain [12] technology to authenticate decentral-
ized digital asset ownership. NFTs can represent any unique digital
asset, such as images, music, videos, in-game items, domain names,
collectibles, and more. One of the key advantages of NFTs is their
ability to ensure the authenticity, ownership, and transferability
of digital assets, while also reflecting the asset’s scarcity and cul-
tural value [15, 44]. The market for NFTs has experienced explosive
growth in recent years; according to data from Forbes, the total
transaction volume for NFTs exceeded $23 billion in 2021 [4]. Fur-
thermore, the NFT market has become the most gas-consuming
Ethereum contract. For instance, popular NFT trading platforms
like Opensea! rank among the top in Etherscan?, consuming 20%
of the entire Ethereum network’s gas fees.

The surge in the number of NFTs has raised concerns about
their secure and reliable storage [19, 46]. The high costs associated
with data storage on public blockchains like Ethereum [12] are well
recognized. The inherent design makes permanent data storage
on Ethereum particularly cost-inefficient due to substantial gas
fees, which also contribute to the blockchain’s load. As per existing
metrics, to store 1 KB of data on Ethereum, around 640,000 gas is
needed. Taking an earlier gas price of 12 Gwei [22] into account,
this translates to approximately $24 USD, going by recent exchange
rates. This cost escalates drastically when it comes to storing larger
files such as images or webpages, with expenses potentially rising
to thousands of dollars. Therefore, how to reliably store these files
on a high-cost public chain is a topic worthy of research.

According to data from [26], approximately 9% of NFTs are stored
on blockchain, another 55% are stored on private servers, and the
remaining 36% are stored on the InterPlanetary File System (IPFS)
[6]. For NFTs stored on-chain, these are generally generative art
pieces, such as those from Art Blocks®, where the generating script
is stored on the blockchain. However, more than 90% of NFTs re-
quire the storage of their own metadata. The 40% of NFT-related
artworks stored on off-chain or centralized private servers pose
significant security risks and reliability concerns. If the server shuts
down, the NFT will no longer point to the artwork or file but to
a broken link that cannot be accessed. Therefore, decentralized
storage protocols like IPFS and Arweave [48] are the current solu-
tions for most NFT projects. These solutions offer more affordable,
reliable, and flexible decentralized storage services and can also
interoperate with Ethereum. However, this storage method still has
a high likelihood of causing users to lose their NFT ownership. For
example, if no one pays to pin an image on IPFS, the system will
eventually delete it during routine cleanups to reduce redundant
data. However, most artists or collectors do not use paid services to

Uhttps://opensea.io/
Zhttps://etherscan.io/
Shttps://www.artblocks.io/
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pin artworks, considering the technical barriers and financial costs.
Between June and December 2021, "3.91% of assets and 9.04% of
metadata records hosted on IPFS" disappeared [19]. Failed metadata
and assets subsequently cannot be matched and verified with the
user’s wallet address. The loss of ownership also renders the digital
assets valueless, resulting in significant losses for consumers.
Motivation. The crux of the challenge in the NFT landscape
lies in addressing current storage inefficiencies and trust dilemmas.
There’s a pressing need to employ a more advanced compression
technique that enables storing image data on the blockchain with
minimized space and gas costs. Concurrently, a clear shift is dis-
cernible within the community: it’s essential to shift towards a
more decentralized verification process, diminishing the heavy re-
liance on and trust issues with private servers or IPFS. Furthermore,
it’s imperative that any innovative framework developed is com-
patible and can easily merge with the prevailing NFT protocols or
standards, ensuring the holistic advancement of the NFT ecosystem.
Approach. In light of these challenges, drawing from the realms
of deep learning, blockchain, and cryptography, we propose a de-
centralized NFT storage and verification framework grounded in
autoencoder and oracle middleware, denoted as SemNFT. While our
primary focus in this paper is on image-based NFTs, we postulate
that the core tenets of our framework can be extended to any types
of NFTs storage and verification context. Initially, our approach cap-
italizes on self-supervised learning to distill the semantic essence of
NFT images, striving for embeddings that encapsulate core features
while balancing storage costs and reconstruction fidelity. With the
image semantics inscribed on the blockchain, the onus of NFT
ownership verification shifts to the compact autoencoder model,
circumventing the bulky image data. This model, distributable and
storable across diverse locations, aligns its verification with the im-
age reconstructure on the blockchain oracle or the hash value of the
smart contract, sidestepping the problems of IPFS or private server
dependencies. Conclusively, our SemNFT framework is architec-
turally congruent with established NFT protocols, such as ERC721
[21], and introduces supplementary functionalities, underpinning
its seamless integration into the prevailing ecosystem.
Contributions.Our contributions can be concluded as follows:

e Framework. We introduce a novel NFT storage framework
that foregrounds efficiency, decentralization, and compatibil-
ity, striving to achieve digital asset immortality. This frame-
work establishes a robust connection between user wallets
and NFT assets, effectively addressing concerns from both
users and the broader community regarding NFT ownership.

e Implementation. We have created a demonstration for this
NFT framework, showcasing its seamless integration capa-
bilities with existing NFT protocols, thereby highlighting
the protocol’s ease of use and scalability.

e Evaluation. We conducted performance evaluations of the
proposed framework in terms of reconstruction results and
storage costs under different parameters. Compared to exist-
ing solutions, we demonstrated its feasibility and efficiency.
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Figure 1: The overview architecture of SemNFT

2 PRELIMINARY
2.1 NFT Infrastructure

NFT Protocols and Interfaces. In the Ethereum ecosystem, there
are currently several predominant contract protocols for imple-
menting NFTs through interfaces. Notably, ERC721 [21] enables the
minting of a single NFT, whereas ERC1155 [39] can represent vary-
ing values, depending on whether they are fungible, semi-fungible,
or non-fungible [1]. Other NFT protocols like ERC998 [37], ERC2981
[11], and ERC3525 [45] improve NFTs’ compatibility and interoper-
ability [28, 46]. As of today, digital assets embodying transferrable
rights, minted via these protocol interfaces, have proliferated across
various domains, including art, in-game items, investment markets,
collectibles, and music [2].

NFT Asset Storage. In the domain of NFT resource storage, two
primary storage methods prevail: centralized storage and decen-
tralized storage. Centralized storage is typically employed within
NFT marketplaces, such as Opensea, Nifty Gateway*, and Rarible®
[46]. By connecting to resources stored on centralized servers, this
approach facilitates faster network transmission of resources. How-
ever, it also implies that NFT owners relinquish some degree of
control over their NFTs. To ensure decentralized storage, numerous
decentralized storage systems have emerged, including IPFS [6],
Swarm [42], , and Arweave [48], as elucidated in [8, 18]. Given
that physical devices entail operational costs, file storage cannot
indefinitely provide services to users free of charge. So, the Incen-
tive Layer has surfaced above the Storage Layer, exemplified by
protocols like Filecoin [5].

2.2 Blockchain Oracles

Blockchain oracles shown in Figure 3 are introduced as middle-
ware services. The blockchain environment is considered isolated
and independent relative to the external world [43]. Consequently,
when smart contracts require Oracles to access real-world data

“https://www.niftygateway.com/
Shttps://rarible.com/
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Figure 2: The proposed architecture of the autoencoder

[51], particularly with the emergence of Decentralized Applica-
tions and platforms [50]. Oracle services can be categorized into
several types, including Software Oracles, Hardware Oracles, Hu-
man Oracles, Computation Oracles, Inbound/Outbound Oracles,
Contract-specific Oracles, and Consensus-based Oracles [7, 13]. The
currently prominent blockchain oracle platforms include Chain-
link [10] and API3 [9]. In this study, to address the limitations of
blockchain computational capabilities and gas limits, we adopt the
pattern of Computation Oracles to perform off-chain computations
and derive the expected results.
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Figure 3: The oracle is a middleware component between
off-chain and on-chain environments.

3 RELATED WORK

Autoencoder Compression. Several studies [16, 17, 20] have ex-
plored and implemented data compression techniques for images
using various autoencoder architectures. [23, 53] has combined
recurrent structures with autoencoders to achieve data compres-
sion for videos. In addition, researchers have employed deep au-
toencoders and variational autoencoders to compress 3D models
represented as point clouds and voxels [36, 52].

Compression related to blockchain. Over the last few years,
the emergence of storing and compressing data on the blockchain
has become prominent. In addition to directly compressing blockchain
blocks and optimizing the chain’s structure [54], there are other
methods and applications for data compression:

SCC [30] is storage compression consensus algorithm which com-
presses a blockchain in each device to ensure the storage capacity.
SELCOM [29] is a selective compression scheme using a checkpoint-
chain to prevent the accumulation of compression results. These

solutions address the issue of insufficient storage capacity in light-
weight Internet of Things (IoT) devices and have demonstrated
promising performance in their respective experiments. However,
they are only suitable for consortium chains utilizing consensus
algorithms such as Practical Byzantine Fault Tolerance (PBFT), and
are not applicable to public chain systems such as Ethereum or
Polygon. DVSSA [40] introduces a sequential aggregate signature
scheme with a designated verifier. By sequentially aggregating the
signatures of all participants, this approach reduces the size of the
signature stored on the blockchain to that of a single person’s sig-
nature, resulting in significant storage space savings. However, it
is important to note that this algorithm compresses only the signa-
ture information and does not store data on the blockchain itself.
Accessing the data still requires centralized cloud-based storage.
Computation Oracles. There are many implementations and
applications concerning Computation Oracles. In the realm of out-
sourced polynomial computation, [24] combined blockchain ora-
cles to propose a novel computational scheme. In the field of trust
management, [31] contributed trustless smart oracles to the Fog
Computing Platform. In the field of semantic communication, [35]
alleviates communication and storage pressures in blockchain data
exchange to prevent network latency from information overload.
What’s more, the consensus problem would happen when outputs
from nodes are slightly different. The developer can customize the
consensus mechanism by aggregating outputs and confirming the
final result. As for outliers, reputation-based oracles reduce node
reputation, and stake-based oracles impose economic penalties.

4 METHODOLOGY
4.1 Architecuture

The architecture of the protocol can be divided into two parts, the
off-chain part and the on-chain part, as shown in Figure 1. In the
off-chain, the primary focus involves two key tasks: training the au-
toencoder model and downcasting the float array. The autoencoder
model training process plays a vital role in data compression and
feature extraction, while the downcasting of the float array aims to
convert floating-point numbers to integers for subsequent opera-
tions. On the other hand, the on-chain part is primarily dedicated to
the minting of NFTs from the integer array, which are subsequently
stored and managed on the blockchain. This process enables the
unique identification and ownership tracking of individual NFTs
within the decentralized ledger system.

In this study, the diagram depicts various processes. The blue
arrows symbolize the Train Process, which involves the training
of an autoencoder model for data compression and feature extrac-
tion. The red arrows represent the Mint Process, where NFTs are
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generated and created from an integer array, subsequently stored
on the blockchain. The green arrows indicate the Trade Process,
illustrating user-driven activities such as trading, exchanging, and
transferring NFTs on the blockchain. The purple arrows signify the
Reconstruct Process, which involves users actively reconstructing
NFT images from the data stored on the blockchain.

Conv (3+3) Conv (3+3)
Input TransConv (3+3) Output
Batch Norm t—»  Batch Norm PRelU
Batch Norm
PRelU PRelU

Figure 4: Detailed structure of the designed upsampling block

4.2 Neural Network Design

Based on the designed architecture, we can broadly utilize any neu-
ral network structure specifically tailored for image autoencoders
in SemNFT framework. The purpose of using the autoencoder is to
harness self-supervised learning to extract semantic features from
the NFT image source data, thereby enhancing storage efficiency
and ensuring restorability for ownership verification. In the pro-
posed framework, we adopted a convolutional autoencoder archi-
tecture, synthesizes the power of established convolutional neural
networks (ResNet-18)[25] and innovative deep residual upsample
blocks. The architecture presents detaily in Figure 2, formulated as
a function mapping X — X, where X and X are the original and
reconstructed images respectively, is delineated into three distinct
modules: Encoder E, Embedding, and Decoder D.

Given an input image X, the encoder module E harnesses the
ResNet-18 architecture, renowned for its resilience to vanishing
gradient issues and adept feature extraction capabilities. Mathemat-
ically, the encoder is a function

E(X) = F (X;©F) )

where F represents the mapping function defined by the sequential
application of convolutional, normalization, and activation layers,
and Of represents the parameters of these layers. The outcome, Zg,
is a condensed feature representation, primed for further compres-
sion and feature abstraction in the embedding module.

In order to further investigate the impact of Embedding Size
on image reconstruction quality and on-chain gas consumption,
and to offer the NFT issuing party the flexibility to customize the
Embedding Size as a trade-off between gas cost and image recon-
struction benefits, we have introduced an Embedding Block with
configurable Embedding Size. This block is inserted between the
Encoder and Decoder and utilizes a fully connected layer (Linear)
to accommodate the Embedding Tensor. Considering that the Input
Size and Output Size of this block are both 128, it is recommended
to set the Embedding Size to a value not exceeding 128.

The decoder module D, with its deep upsampling residual blocks,
reconstructs a high resolution image X from the embedding Z.
Formally, the decoder is a function

D(Z)=1(Z;6p) @

where I represents the mapping function facilitated by the sequen-
tial application of deep upsampling residual blocks, and ®p denotes

Anon.

the parameters of the decoder. The detailed visualization of upsam-
pling residual block F is shwon in Figure 4, which mathematical
formulation can be expressed as:

F(x;0F) = P (Feonv (x; Oconv) + Fup(x§ ®up)) )

where the parameters O in the residual block comprise both ©¢ony
and @yp. Consequently, the full decoder D, which is a sequence of
these residual blocks, will possess parameters ®p that embody the
collection of all © for each block in the series. P (x) is the PReLU
activation function, compared to ReLU, PReLU prevents neuron
death in the network when encountering negative values and also
improves image retrieval [16, 38]. The mathematical formula is:

P (x) = max(0, x) + & min(0, x) (4)

with « as a hyperparameter, and we use a = 0.25.

To ensure the fidelity of the reconstructed image X to the original
X, a Mean Squared Error (MSE) loss function is employed to guide
the optimization of the model parameters during training. Formally,
the loss function L is given by:

1 ¥ 2
LXX) = ; (Xi - Xi) ()
where N is the total number of pixels in the image, and X; and
Xi denote the original and reconstructed pixel values, respectively.
The minimization of L ensures the model learns to preserve critical
information through the encoding and decoding processes.

4.3 Casting

In Solidity, while the data type Fixed Point Numbers can be declared
to represent floating-point numbers, it is important to note that
Fixed Point Numbers are not fully supported in Solidity®. Although
they can be declared, they are currently not fully functional for
assignments and operations within the language. As a result, alter-
native approaches must be explored to address the limitations in
representing and working with floating-point numbers in Solidity.
Currently, this limitation in Solidity is not suitable for the storage
and subsequent operations of floating-point arrays in this study.
However, drawing inspiration from the concept of fixed-point num-
bers, we truncate the integer and fractional parts of floating-point
numbers, referring to this process as the "Casting Function." We
utilize the Int8 data type to represent the integer part of floating-
point numbers and employ one of four different data types, namely
Truncate, UInt8, Ulnt16, or UInt32, to store the fractional part.

-3.14159265

Int8

-128~127 0~4,294,967,295

Figure 5: The overview of casting methods.

Casting Function

®https://docs.soliditylang.org/en/latest/types.html#fixed-point-numbers on 2023-09-23
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In the subsequent experiments, we utilize the aforementioned
four casting functions to process the fractional part of floating-
point numbers. The processing procedure is illustrated in Figure
5. Subsequently, we will conduct a comparative analysis of image
quality among the reconstructed images from raw floating-point
numbers, Truncate, Ulnt8, Ulnt16, and Ulnt32 embeddings.

Due to the static typing nature of Solidity, it is unable to store
elements of mixed types. Consequently, we store the integer and
fractional parts of embeddings in two separate mapping arrays.
Subsequently, we reconstruct the original floating-point numbers
by employing token ID-based lookup procedures.

This design benefits from the characteristics of Solidity packing’,
where we arrange variables of the same type consecutively in three
arrays. This allows Solidity to efficiently pack the variables, leading
to significant savings in on-chain data storage and gas consumption.

4.4 Contract Design

In this protocol, smart contracts serve as the definitive entities for
determining NFT ownership, initiating NFT transfers, storing NFT
image embeddings, and validating the model. We will utilize the
ERC721 module® from the OpenZeppelin library® for secure smart
contract development to assist in the contract design of SemNFT.
By inheriting the features of OpenZeppelin’s ERC721 module, the
contract design and development for SemNFT become streamlined.
This approach enables NFT issuers to focus solely on the embedding-
related logic of SemNFT, alleviating the need to be concerned with
designing fundamental NFT functionalities.

Contract SemNFT is ERC721

ERC721 values;

uint8 public emb_size;

string public model_hash;

mapping(uint256 => int8[]) public int_map;
mapping(uint256 => uint16[]) public decimal_map;
address public oracle_address;

string public oracle_job_id;

ERC721 functions;
function setEmb;

function getEmb;

function checkModelHash;
function requestOracle;

Figure 6: The brief view of the smart contract with Ulnt16
decimal casting.

The design of data structures and functions for smart contracts
is depicted in Figure 6. This contract inherits from the ERC721
module, thus inheriting the state and methods from ERC721.

7In contracts, state variables are efficiently stored in storage, often in a
compact manner, where multiple values might share the same storage slot.
https://docs.soliditylang.org/en/v0.8.16/internals/layout_in_storage.html
8https://docs.openzeppelin.com/contracts/4.x/erc721
https://www.openzeppelin.com
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4.5 Compression Ratio

In this work, as the dataset of images is divided into two compo-
nents, namely model parameters and on-chain storage, when model
parameters, embedding size, and casting precision are fixed, the
total space required for the project remains constant and does not
vary with the size of the image dataset. In PyTorch models, parame-
ters are typically represented using the float32 data type, with each
float32 occupying 4 bytes.

Therefore, using D to represent the size of the original dataset, D’
as the size of the compressed dataset, N as the number of images, p
as the number of model parameters, 0 as the embedding size, and C
as the size occupied by a numerical value representing the fractional
part’s casting precision, we can derive the following formulae.

D’ =4 X p+ (int8 + C)ON (6)

The value of parameter C is the size of one integer number
occupied in EVM determined by the integer type such as Ulnt8,
UlInt16 and UInt32. Therefore, when the other parameters in the
formula are determined, the compression ratio () is determined by
the size of the original dataset as the following equation:

=7 o)

For instance, if a 1GB NFT image dataset comprises 10,000 images,
the trained model occupies 100MB, and an embedding size of 50
with Ulnt16 is selected, then after computation, the total file size
amounts to 101.5MB, resulting in a compression ratio of 9.85:1. Due
to the additional data compression applied to arrays by the EVM,

the actual compression ratio is expected to further increase.

4.6 NFT Verification

Figure 7 illustrates the NFT ownership verification process of Sem-
NFT in comparison to existing NFTs. Under the current NFT storage
scheme, if we need to verify an NFT image with unknown own-
ership, we must seek the NFT owned by the user in the contract
through their wallet address. Subsequently, we retrieve the NFT
resource’s metadata through the link recorded in the contract and
then request the image link in the metadata to obtain and verify
the NFT image. If a disconnection occurs during the link request
process, the verification process will be interrupted. Even if users
store their NFT image source data off-chain, it cannot be matched
and verified with assets in the smart contract.

In contrast, within the SemNFT framework, the intrinsic features
containing user NFT image semantic information are stored on the
blockchain and can be reconstructed into NFT images through the
decoder in the autoencoder model, completing ownership verifi-
cation. The autoencoder model can be regarded as a specialized,
customized image decoding protocol, and its accuracy can be veri-
fied by the model hash value stored in the smart contract. Therefore,
this autoencoder model and reconstructure process can be in the
trusted blockchain oracle as the middleware service. Consequently,
issues of consumer and community trust and dependece on IPFS or
private servers are resolved.
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5 IMPLEMENTATION

This section will simulate the implementation of data preparation,
model training, contract deployment, and embedding on-chain for
SemNFT, based on the aforementioned protocol design.

5.1 Target Datasets

To validate the universality and applicability of this protocol, we
conducted verification using three distinct styles of NFT datasets
available on the HuggingNFT dataset collection'® on HuggingFace:
Cryptopunks'!, Boredapeyachtclub (BAYC)'? , and Azuki'®. Elabo-
rated details of these datasets are presented in Table 1. It can be
observed that the envisioned difficulty in feature extraction and
reconstruction increases sequentially across these three datasets.

Table 1: Target Datasets

Dataset Cryptopunks BAYC Azuki
Amount 10,000 9,999 10,000
Image Size™® 312x312 631x631 2000x2000
File Size 12.1 MB 1.2 GB 1.11 GB
Details Low Relatively High High

5.2 Model Training

Training Equipment. The primary device used for training the
neural network model is a host with a single GeForce RTX 3090
graphics card, an Intel 19-10900K CPU, a 64 GB memory, and run-
ning the Ubuntu 18.04 LTS Bionic Beaver operating system.
Training Settings. The training process employs the Adam opti-
mizer with a learning rate set to 0.0001. Additionally, EarlyStopping
is implemented with a patience of 10 epochs, allowing for early
termination if the validation performance does not improve.

Ohttps://huggingface.co/huggingnft

https://cryptopunks.app/

2https://boredapeyachtclub.com/

Bhttps://www.azuki.com/

14The image size is the same as that of the image origins in the HuggingFace dataset,
and does not represent the actual dimensions of the project images. The actual pixel
dimensions for Cryptopunks are 24x24, and they are in SVG format with the basic
Solidity data structure without ERC721 or ERC1155.

Anon.

5.3 Test Chain Deployment

In the realm of Ethereum, there exist numerous test networks,
including Ropsten15 , Kovan!®, Goerli!’, and Sepolialg, each distin-
guished by varying Gas Prices and blockchain consensus algorithms.
Furthermore, it is noteworthy that some of these test networks may
be rendered obsolete over time. In contrast, Polygon’s'® array of
test networks currently consists of only one, namely Mumbai®’,
characterized by its singularity and commendable stability. There-
fore, we have opted to deploy a portion of our smart contracts
on Polygon’s Mumbai test network. Given that these contracts
are authored in Solidity, they are universally compatible with any
blockchain supporting the EVM [3].

In the forthcoming experiments, we intend to deploy four dif-
ferent contracts, Truncate, Ulnt8, Ulnt16, Ulnt32, each varying in
decimal precision. Furthermore, We will employ the MetaMask
browser plugin to interact with these contracts [32], evaluating
functionalities, as well as assessing the cost associated with NFT
SafeMint and reading embedded data.

6 EVALUATION
6.1 Embedding Size Factor

We utilized two algorithmic metrics, the Structural Similarity Index
(SSIM) and the Peak Signal-to-Noise Ratio (PSNR) [27], to compare
the quality of the reconstructed images without using the casting
function across different datasets and embedding sizes. In Figure 8,
the horizontal axis represents the size of the embedding, while the
vertical axis displays the values of the algorithmic metrics.

From the graph, it becomes evident that the Cryptopunks dataset,
which contains the least amount of detail, consistently exhibits the
highest SSIM and PSNR values. Conversely, the Azuki dataset, with
the most intricate details, generally displays lower SSIM and PSNR
values compared to the other two datasets.

Within the range of embedding sizes from 10 to 30, both SSIM and
PSNR exhibit slight improvements as the embedding size increases,
with the most notable enhancement observed in the Azuki dataset.
However, beyond an embedding size of 30, SSIM and PSNR show
fluctuations with increasing embedding size. This suggests that, at
this point, the spatial capacity of the embedding size is sufficient
for evaluating the reconstructed image quality.

6.2 Casting Precision

Initially, we conducted an assessment of images reconstructed at
various levels of precision. Using images reconstructed through the
Float method as the benchmark, we proceeded to perform statistical
t-tests to compare the SSIM and PSNR of images by all embedding
size (range from 10 to 100), and with differing precision levels,
employing the Truncate, UInt8, Ulnt16, and UInt32 methods. The
predetermined significance level was set at « = 0.05, and the p-
values are presented in Table 2 as the reconstructed stability.

Shttps://ropsten.etherscan.io/, now deprecated

Lohttps://kovan.ethplorer.io/

https://goerli.etherscan.io/

Bhttps://sepolia.etherscan.io/

Ypolygon launched as Matic Network in 2017, and rebranded to Polygon in 2021.
Zhttps://mumbai.polygonscan.com/
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Table 2: The comparison of P-values from t-tests, conducted for the SSIM and PSNR between reconstructed images obtained
through the Truncate, Ulnt8, Ulnt16, Uint32, with Float methods, in significance level of « = 0.05.

Method Truncate Ulnt8 Ulnt16 Ulnt32
SSIM | PSNR SSIM PSNR SSIM PSNR SSIM PSNR
Cryptopunks 0.0 0.0 0.891069 | 0.923751 | 0.999547 | 0.999815 | 0.999933 | 0.999916
BAYC 0.0 0.0 0.975591 | 0.940597 | 0.999973 | 0.999941 | 0.999998 | 0.999971
Azuki 0.0 0.0 0.925515 | 0.035697 | 0.999567 | 0.994141 | 0.999998 | 0.999932
== CryptoPunks mm Bored Ape Yocht Club_ mm Azuki might be relatively higher due to the complexity of restoring such
100 fine-grained details accurately.
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Figure 8: SSIM and PSNR mean values with the embedding
size and different NFT datasets.

From the experimental results, we observe that for all three
NFT image datasets, the p-values for SSIM and PSNR when using
the Truncate method are both 0. This suggests that the Truncate
method results in significant distortion and divergence from the
original image, likely because the fractional parts of the elements in
the embedding array, preserved by the current autoencoder model,
contain crucial image information. Loss of these fractional parts
leads to substantial image distortion. In contrast, for methods other
than Truncate, the p-values for the restored images increase as the
casting function enhances the precision of float values. The Ulnt32
method, which achieves the highest precision, yields p-values very
close to 1, indicating minimal distortion and better restored stability.

The observed significant differences in the PSNR p-values for the
Azuki dataset when using the UInt8 method may indeed be influ-
enced by the dataset’s inherent characteristics. The dataset’s large
number of features, uneven distribution of feature types, and rich
feature details likely contribute to this discrepancy. For instance, in
some Azuki images, certain characters may have accessories with
intricate pattern designs. When attempting to reconstruct these
intricate details, the presence of noise peaks in the PSNR values

(a) Truncate
Figure 9: The comparison among reconstructed by Truncate,
Ulnt8, Ulnt16, UInt32 in the embedding size of 30 with origi-
nal images. The datasets, from top to bottom, represent Cryp-
topunks(#427), BAYC(#79), and Azuki(#1227).

(b) UInt8 (c) UInt16 (d) UInt32

In the t-test, when the p-value is less than the significance level,
it indicates that the difference between the datasets is statistically
significant. For the Ulnt16 and Ulnt32 precision methods, both the
SSIM and PSNR comparisons with Float yield p-values very close
to 1. It implies that these precision methods are highly similar to
the Float method. Therefore, in practical usage, it is recommended
to employ the Ulnt16 casting methods to ensure the quality of
the reconstructed images with lower storage cost, as they provide
results that are statistically comparable to those obtained with Float
precision. Besides, we use the distance equation to compute the
pixel RGB difference between the constructed and the original:

d= \/(pred - P;ed)z + (Pgreen - P;reen)z + (Pblue — P;,lue)z (8)

The visualization of the individual distance shows in Figure 9.

6.3 Transaction Fee

In the context of minting NFTs, in addition to any additional fees
that may be set by service providers, the minter is required to cover
the Transaction Fee to accommodate the Gas required by the EVM.
The concept of Gas operations is formally defined in Dr. Wood’s
Ethereum yellow paper [49]. Gas costs serve as a mechanism to
mitigate Denial-of-Service attacks in the execution of code on the
Ethereum platform [41]. The computation of both the Transaction
Fee and Gas is outlined as follows, with the Gas Price being subject
to dynamic fluctuations based on the congestion level within the

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812



813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856

858
859
860
861
862
863
864
865
866
867
868
869
870

MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia

blockchain network [47]. The Gas Used varies according to the
complexity of the invoked function and the size of stored data:

Transaction Fee = Gas Used X Gas Price 9)

Given that the Polygon chain selected for this study employs
a Proof-of-Stake (PoS) consensus algorithm, it can support a high
transaction throughput [14]. Additionally, due to the absence of
mining competition, gas price?! fluctuations are lower [33]. In the

Mumbai testnet, the gas price has remained stable at 2.5 Gwei®?.

Casting Function
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Figure 10: Gas Usage with Different Casting Function and
Embedding Size

In each group of embedding sizes, we selected five embeddings
for the minting experiments and introduced an additional group
with an Embedding Size of 0 to serve as a Mint Baseline (without
any extra data like link string or digit) for comparisons. We em-
ployed four different casting methods for various embedding sizes.
Moreover, given the use of the same Polygon Mumbai testnet, both
works benefited from consistent and stable gas prices. We compared
the gas with the results from the Web3DP experiment [34], which
represents the existing NFT minting process (with asset link string).
The comparative results are illustrated in Figure 10.

We observe that as the Embedding Size increases, the required
gas usage also gradually increases. However, it is worth noting that
due to the EVM’s optimized ability to compress array storage, the
gas used related to Embedding does not increase proportionally
with the increase in Embedding Size, particularly evident when
comparing Embedding Sizes of 10 and 100.

When comparing the gas usage for existing NFT mints, it’s im-
portant to consider that existing NFTs typically involve storing the
IPFS link string, which is approximately 80 characters in length,
on the blockchain. As a result, the gas usage for existing NFTs is
slightly higher than that for mints that don’t involve any storage.
However, the gas for existing NFTs is comparable to that of mints
with an embedding size of 40 and the Truncate casting method.

6.4 Storage Efficiency Comparison

As aresult of varying Embedding Size in storage, discrepancies exist
between the on-chain data size and the overall project’s data size.
Consequently, based on Equation 6 and 7, and without considering
EVM’s spatial optimizations and fixed model size, we have chosen

2L At 21:55 On October 12, 2023, the standard gas price on the Polygon mainnet is 120
Gwei. The price of 1 Matic (MATIC) on Coinbase is $0.7.
21 Gwei = 1077 MATIC

Anon.

Table 3: Some data sizes and ratios among the existing NFT
and SemNFT with embedding size 10 and 100.

Embedding Size Existing 10 100
Single Data Size 183KB | 30 Bytes | 300 Bytes
Model Size - 86MB 86MB
On-chain Size 0.8MB 0.3MB 3MB
Off-chain Size 1.02GB 86MB 86MB
Total Size 1.02GB 86.3MB 89MB
Compression Ratio - 11.82:1 11.46:1

the Azuki dataset and employed the Ulnt16 casting method, to
analyze the spatial variations in on-chain data size and the overall
project’s data size when different Embedding Sizes are employed.
The findings are presented in Table 3.

In our investigation, we conducted a comparative analysis be-
tween conventional NFT storage methods and scenarios involving
embedding sizes of 10 and 100. SemNFT has exhibited a significant
reduction in off-chain storage requirements. Notably, for embedding
sizes of 10 and 100, we achieved compression ratios of 11.82:1 and
11.46:1, respectively. The demonstrated autoencoder model show-
cases superior compression performance and reduces the overall
storage burden. Simultaneously, it offers customized options to
achieve better image restoration effects while slightly exceeding
the storage size of existing methods. In summary, it displays the
efficiency of SemNFT in data compression and storage.

7 CONCLUSION

This paper presented SemNFT, a decentralized framework tackling
pressing NFT storage and verification challenges. By leveraging
decentralized middleware services equipped with autoencoders,
the framework ensures not only the secure and perpetual storage
of digital assets in the form of NFTs but also maintains their in-
trinsic qualities and representations, thereby safeguarding their
essence throughout the pipeline. Our framework is also highly com-
patible with existing NFT standards, adapting well to the current
NFT community and ecosystem. To verify its feasibility, we im-
plemented the proposed framework and conducted an evaluation
Evaluations evidenced feasibility and efficiency, attaining over 10:1
data compression ratio across diverse NFT datasets with high vi-
sual fidelity. SemNFT streamlines verification by reconstructing
images on-demand, circumventing external dependencies. SemNFT
emerges as a pioneering framework, intertwining the sophisticated
capabilities of autoencoders with the immutable and decentralized
characteristics of blockchain to forge a path towards digital asset
immortality. Future research might delve deeper into optimizing
the autoencoder algorithms, exploring additional use-cases for the
framework, and evaluating the real-world impact and applications
of ensuring digital asset immortality within various industries.
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