23
24
25
26
27
28
29

39
40
41
42
43
44

SemNFT: A Semantically Enhanced Decentralized Middleware for
Digital Asset Immortality

Anonymous Author(s)*

ABSTRACT

Non-Fungible Tokens (NFTs) have emerged as a pivotal digital asset,
offering authenticated ownership of unique digital content. Despite
it has gained remarkable traction, yet face pressing storage and ver-
ification challenges stemming from blockchain’s permanent data
costs. Existing off-chain or centralized storage solutions, while be-
ing alternatives, also introduce notable security vulnerabilities. We
present SemNFT, an innovative decentralized framework integrated
with blockchain oracle middleware services, addressing these per-
sistent NFT dilemmas. Our approach compresses NFT source data
into compact embeddings encapsulating semantic essence. These
arrays are stored on-chain, while facilitating reliable decentralized
image reconstruction and ownership verification. We implemented
ERC721-compliant smart contracts with supplementary function-
alities, demonstrating SemNFT’s seamless integrative capabilities
within the ecosystem. Extensive evaluations evidence marked stor-
age optimizations and preservation of requisite visual fidelity by
comparison with existing solutions. The proposed SemNFT frame-
work marks a significant advancement in holistically confronting
rising NFT storage and verification challenges without compro-
mising decentralization. It substantively propels the meaningful
evolution of NFT infrastructure to achieve digital asset immortality.

CCS CONCEPTS

« Computing methodologies — Image compression; Neural
networks; « Security and privacy — Digital rights manage-
ment; - Applied computing — Media arts.

KEYWORDS

Blockchain, Decentralized System, Middleware, Autoencoder, Non-
Fungible Token, Deep Learning, Smart Contract

ACM Reference Format:

Anonymous Author(s). 2024. SemNFT: A Semantically Enhanced Decen-
tralized Middleware for Digital Asset Immortality. In Proceedings of the
32nd ACM International Conference on Multimedia (MM °24), October 28-
November 1, 2024, Melbourne, VIC, AustraliaProceedings of the 32nd ACM
International Conference on Multimedia (MM’24), October 28-November 1,
2024, Melbourne, Australia. ACM, New York, NY, USA, 9 pages. https://doi.
org/10.1145/3664647.3681114

Unpublished working draft. Not for distribution.

1 INTRODUCTION

Non-Fungible Tokens (NFTs) [1, 21, 39] are a type of virtual token
that utilizes blockchain [12] technology to authenticate decentral-
ized digital asset ownership. NFTs can represent any unique digital
asset, such as images, music, videos, in-game items, domain names,
collectibles, and more. One of the key advantages of NFTs is their
ability to ensure the authenticity, ownership, and transferability
of digital assets, while also reflecting the asset’s scarcity and cul-
tural value [15, 44]. The market for NFTs has experienced explosive
growth in recent years; according to data from Forbes, the total
transaction volume for NFTs exceeded $23 billion in 2021 [4]. Fur-
thermore, the NFT market has become the most gas-consuming
Ethereum contract. For instance, popular NFT trading platforms
like Opensea! rank among the top in Etherscan?, consuming 20%
of the entire Ethereum network’s gas fees.

The surge in the number of NFTs has raised concerns about
their secure and reliable storage [19, 46]. The high costs associated
with data storage on public blockchains like Ethereum [12] are well
recognized. The inherent design makes permanent data storage
on Ethereum particularly cost-inefficient due to substantial gas
fees, which also contribute to the blockchain’s load. As per existing
metrics, to store 1 KB of data on Ethereum, around 640,000 gas is
needed. Taking an earlier gas price of 12 Gwei [22] into account,
this translates to approximately $24 USD, going by recent exchange
rates. This cost escalates drastically when it comes to storing larger
files such as images or webpages, with expenses potentially rising
to thousands of dollars. Therefore, how to reliably store these files
on a high-cost public chain is a topic worthy of research.

According to data from [26], approximately 9% of NFTs are stored
on blockchain, another 55% are stored on private servers, and the
remaining 36% are stored on the InterPlanetary File System (IPFS)
[6]. For NFTs stored on-chain, these are generally generative art
pieces, such as those from Art Blocks®, where the generating script
is stored on the blockchain. However, more than 90% of NFTs re-
quire the storage of their own metadata. The 40% of NFT-related
artworks stored on off-chain or centralized private servers pose
significant security risks and reliability concerns. If the server shuts
down, the NFT will no longer point to the artwork or file but to
a broken link that cannot be accessed. Therefore, decentralized
storage protocols like IPFS and Arweave [48] are the current solu-
tions for most NFT projects. These solutions offer more affordable,
reliable, and flexible decentralized storage services and can also
interoperate with Ethereum. However, this storage method still has
a high likelihood of causing users to lose their NFT ownership. For
example, if no one pays to pin an image on IPFS, the system will
eventually delete it during routine cleanups to reduce redundant
data. However, most artists or collectors do not use paid services to

Uhttps://opensea.io/
Zhttps://etherscan.io/
Shttps://www.artblocks.io/

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116

https://doi.org/10.1145/3664647.3681114
https://doi.org/10.1145/3664647.3681114
https://doi.org/10.1145/3664647.3681114

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia

pin artworks, considering the technical barriers and financial costs.
Between June and December 2021, "3.91% of assets and 9.04% of
metadata records hosted on IPFS" disappeared [19]. Failed metadata
and assets subsequently cannot be matched and verified with the
user’s wallet address. The loss of ownership also renders the digital
assets valueless, resulting in significant losses for consumers.
Motivation. The crux of the challenge in the NFT landscape
lies in addressing current storage inefficiencies and trust dilemmas.
There’s a pressing need to employ a more advanced compression
technique that enables storing image data on the blockchain with
minimized space and gas costs. Concurrently, a clear shift is dis-
cernible within the community: it’s essential to shift towards a
more decentralized verification process, diminishing the heavy re-
liance on and trust issues with private servers or IPFS. Furthermore,
it’s imperative that any innovative framework developed is com-
patible and can easily merge with the prevailing NFT protocols or
standards, ensuring the holistic advancement of the NFT ecosystem.
Approach. In light of these challenges, drawing from the realms
of deep learning, blockchain, and cryptography, we propose a de-
centralized NFT storage and verification framework grounded in
autoencoder and oracle middleware, denoted as SemNFT. While our
primary focus in this paper is on image-based NFTs, we postulate
that the core tenets of our framework can be extended to any types
of NFTs storage and verification context. Initially, our approach cap-
italizes on self-supervised learning to distill the semantic essence of
NFT images, striving for embeddings that encapsulate core features
while balancing storage costs and reconstruction fidelity. With the
image semantics inscribed on the blockchain, the onus of NFT
ownership verification shifts to the compact autoencoder model,
circumventing the bulky image data. This model, distributable and
storable across diverse locations, aligns its verification with the im-
age reconstructure on the blockchain oracle or the hash value of the
smart contract, sidestepping the problems of IPFS or private server
dependencies. Conclusively, our SemNFT framework is architec-
turally congruent with established NFT protocols, such as ERC721
[21], and introduces supplementary functionalities, underpinning
its seamless integration into the prevailing ecosystem.
Contributions.Our contributions can be concluded as follows:

e Framework. We introduce a novel NFT storage framework
that foregrounds efficiency, decentralization, and compatibil-
ity, striving to achieve digital asset immortality. This frame-
work establishes a robust connection between user wallets
and NFT assets, effectively addressing concerns from both
users and the broader community regarding NFT ownership.

e Implementation. We have created a demonstration for this
NFT framework, showcasing its seamless integration capa-
bilities with existing NFT protocols, thereby highlighting
the protocol’s ease of use and scalability.

e Evaluation. We conducted performance evaluations of the
proposed framework in terms of reconstruction results and
storage costs under different parameters. Compared to exist-
ing solutions, we demonstrated its feasibility and efficiency.

X .
Encoder —I-> .- —Ip| Decoder

! 1

i Localhost Q I I eee Oracle Platform
1 \ . e

i 1

|

}

1

— Train Process

—» Mint Process . 1{
i i \

— Trade Process Casting Function)

— Reconstruct

Process > [.] Marketplaces
Integer Array Off-chain
On-chain

Smart Contract Non-fungible Token

(Tt .. F~FP .. LT

Blockchain

Figure 1: The overview architecture of SemNFT

2 PRELIMINARY
2.1 NFT Infrastructure

NFT Protocols and Interfaces. In the Ethereum ecosystem, there
are currently several predominant contract protocols for imple-
menting NFTs through interfaces. Notably, ERC721 [21] enables the
minting of a single NFT, whereas ERC1155 [39] can represent vary-
ing values, depending on whether they are fungible, semi-fungible,
or non-fungible [1]. Other NFT protocols like ERC998 [37], ERC2981
[11], and ERC3525 [45] improve NFTs’ compatibility and interoper-
ability [28, 46]. As of today, digital assets embodying transferrable
rights, minted via these protocol interfaces, have proliferated across
various domains, including art, in-game items, investment markets,
collectibles, and music [2].

NFT Asset Storage. In the domain of NFT resource storage, two
primary storage methods prevail: centralized storage and decen-
tralized storage. Centralized storage is typically employed within
NFT marketplaces, such as Opensea, Nifty Gateway*, and Rarible®
[46]. By connecting to resources stored on centralized servers, this
approach facilitates faster network transmission of resources. How-
ever, it also implies that NFT owners relinquish some degree of
control over their NFTs. To ensure decentralized storage, numerous
decentralized storage systems have emerged, including IPFS [6],
Swarm [42], , and Arweave [48], as elucidated in [8, 18]. Given
that physical devices entail operational costs, file storage cannot
indefinitely provide services to users free of charge. So, the Incen-
tive Layer has surfaced above the Storage Layer, exemplified by
protocols like Filecoin [5].

2.2 Blockchain Oracles

Blockchain oracles shown in Figure 3 are introduced as middle-
ware services. The blockchain environment is considered isolated
and independent relative to the external world [43]. Consequently,
when smart contracts require Oracles to access real-world data

“https://www.niftygateway.com/
Shttps://rarible.com/

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289

290

SemNFT: A Semantically Enhanced Decentralized Middleware for Digital Asset Immortality

MM 24, October 28-November 1, 2024, Melbourne, VIC, Australia

Encoder

- —————

Conv (7+7%64)
MaxPool (3*3)
Conv (3+3%64)
Conv (3*3%64)
Conv (3+3+128)
Conv (3*3%128)
|

Conv (3+3+256)
Conv (3+3+256)
Conv (3+3%512)

Conv (3+3+512)

Input (512*512*3)

Embedding Decoder

==t

o
)
>
z
<]
5}

Linear & Reshape
Conv (3+3)
Conv (3*3+3)

GlobalAvgPool (GAP)

Output (512*512*3)

x7

Figure 2: The proposed architecture of the autoencoder

[51], particularly with the emergence of Decentralized Applica-
tions and platforms [50]. Oracle services can be categorized into
several types, including Software Oracles, Hardware Oracles, Hu-
man Oracles, Computation Oracles, Inbound/Outbound Oracles,
Contract-specific Oracles, and Consensus-based Oracles [7, 13]. The
currently prominent blockchain oracle platforms include Chain-
link [10] and API3 [9]. In this study, to address the limitations of
blockchain computational capabilities and gas limits, we adopt the
pattern of Computation Oracles to perform off-chain computations
and derive the expected results.

- - N
! Off-chain Component 1
! 1
! a2é Q i
! 1 |
I | External Information Decentralized Applications User Interface | |
\

N -

(- N
1 Middleware Component @@ &N :
I @-Oracle ode Service]

Blockchain & Smart Contracts

On-chain Component

[FEp P ——
-~ -

Figure 3: The oracle is a middleware component between
off-chain and on-chain environments.

3 RELATED WORK

Autoencoder Compression. Several studies [16, 17, 20] have ex-
plored and implemented data compression techniques for images
using various autoencoder architectures. [23, 53] has combined
recurrent structures with autoencoders to achieve data compres-
sion for videos. In addition, researchers have employed deep au-
toencoders and variational autoencoders to compress 3D models
represented as point clouds and voxels [36, 52].

Compression related to blockchain. Over the last few years,
the emergence of storing and compressing data on the blockchain
has become prominent. In addition to directly compressing blockchain
blocks and optimizing the chain’s structure [54], there are other
methods and applications for data compression:

SCC [30] is storage compression consensus algorithm which com-
presses a blockchain in each device to ensure the storage capacity.
SELCOM [29] is a selective compression scheme using a checkpoint-
chain to prevent the accumulation of compression results. These

solutions address the issue of insufficient storage capacity in light-
weight Internet of Things (IoT) devices and have demonstrated
promising performance in their respective experiments. However,
they are only suitable for consortium chains utilizing consensus
algorithms such as Practical Byzantine Fault Tolerance (PBFT), and
are not applicable to public chain systems such as Ethereum or
Polygon. DVSSA [40] introduces a sequential aggregate signature
scheme with a designated verifier. By sequentially aggregating the
signatures of all participants, this approach reduces the size of the
signature stored on the blockchain to that of a single person’s sig-
nature, resulting in significant storage space savings. However, it
is important to note that this algorithm compresses only the signa-
ture information and does not store data on the blockchain itself.
Accessing the data still requires centralized cloud-based storage.
Computation Oracles. There are many implementations and
applications concerning Computation Oracles. In the realm of out-
sourced polynomial computation, [24] combined blockchain ora-
cles to propose a novel computational scheme. In the field of trust
management, [31] contributed trustless smart oracles to the Fog
Computing Platform. In the field of semantic communication, [35]
alleviates communication and storage pressures in blockchain data
exchange to prevent network latency from information overload.
What’s more, the consensus problem would happen when outputs
from nodes are slightly different. The developer can customize the
consensus mechanism by aggregating outputs and confirming the
final result. As for outliers, reputation-based oracles reduce node
reputation, and stake-based oracles impose economic penalties.

4 METHODOLOGY
4.1 Architecuture

The architecture of the protocol can be divided into two parts, the
off-chain part and the on-chain part, as shown in Figure 1. In the
off-chain, the primary focus involves two key tasks: training the au-
toencoder model and downcasting the float array. The autoencoder
model training process plays a vital role in data compression and
feature extraction, while the downcasting of the float array aims to
convert floating-point numbers to integers for subsequent opera-
tions. On the other hand, the on-chain part is primarily dedicated to
the minting of NFTs from the integer array, which are subsequently
stored and managed on the blockchain. This process enables the
unique identification and ownership tracking of individual NFTs
within the decentralized ledger system.

In this study, the diagram depicts various processes. The blue
arrows symbolize the Train Process, which involves the training
of an autoencoder model for data compression and feature extrac-
tion. The red arrows represent the Mint Process, where NFTs are

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia

generated and created from an integer array, subsequently stored
on the blockchain. The green arrows indicate the Trade Process,
illustrating user-driven activities such as trading, exchanging, and
transferring NFTs on the blockchain. The purple arrows signify the
Reconstruct Process, which involves users actively reconstructing
NFT images from the data stored on the blockchain.

Conv (3+3) Conv (3+3)
Input TransConv (3+3) Output
Batch Norm t—» Batch Norm PRelU
Batch Norm
PRelU PRelU

Figure 4: Detailed structure of the designed upsampling block

4.2 Neural Network Design

Based on the designed architecture, we can broadly utilize any neu-
ral network structure specifically tailored for image autoencoders
in SemNFT framework. The purpose of using the autoencoder is to
harness self-supervised learning to extract semantic features from
the NFT image source data, thereby enhancing storage efficiency
and ensuring restorability for ownership verification. In the pro-
posed framework, we adopted a convolutional autoencoder archi-
tecture, synthesizes the power of established convolutional neural
networks (ResNet-18)[25] and innovative deep residual upsample
blocks. The architecture presents detaily in Figure 2, formulated as
a function mapping X — X, where X and X are the original and
reconstructed images respectively, is delineated into three distinct
modules: Encoder E, Embedding, and Decoder D.

Given an input image X, the encoder module E harnesses the
ResNet-18 architecture, renowned for its resilience to vanishing
gradient issues and adept feature extraction capabilities. Mathemat-
ically, the encoder is a function

E(X) = F (X;©F))

where F represents the mapping function defined by the sequential
application of convolutional, normalization, and activation layers,
and Of represents the parameters of these layers. The outcome, Zg,
is a condensed feature representation, primed for further compres-
sion and feature abstraction in the embedding module.

In order to further investigate the impact of Embedding Size
on image reconstruction quality and on-chain gas consumption,
and to offer the NFT issuing party the flexibility to customize the
Embedding Size as a trade-off between gas cost and image recon-
struction benefits, we have introduced an Embedding Block with
configurable Embedding Size. This block is inserted between the
Encoder and Decoder and utilizes a fully connected layer (Linear)
to accommodate the Embedding Tensor. Considering that the Input
Size and Output Size of this block are both 128, it is recommended
to set the Embedding Size to a value not exceeding 128.

The decoder module D, with its deep upsampling residual blocks,
reconstructs a high resolution image X from the embedding Z.
Formally, the decoder is a function

D(Z)=1(Z;6p) @

where I represents the mapping function facilitated by the sequen-
tial application of deep upsampling residual blocks, and ®p denotes

Anon.

the parameters of the decoder. The detailed visualization of upsam-
pling residual block F is shwon in Figure 4, which mathematical
formulation can be expressed as:

F(x;0F) = P (Feonv (x; Oconv) + Fup(x§ ®up)))

where the parameters O in the residual block comprise both ©¢ony
and @yp. Consequently, the full decoder D, which is a sequence of
these residual blocks, will possess parameters ®p that embody the
collection of all © for each block in the series. P (x) is the PReLU
activation function, compared to ReLU, PReLU prevents neuron
death in the network when encountering negative values and also
improves image retrieval [16, 38]. The mathematical formula is:

P (x) = max(0, x) + & min(0, x) (4)

with « as a hyperparameter, and we use a = 0.25.

To ensure the fidelity of the reconstructed image X to the original
X, a Mean Squared Error (MSE) loss function is employed to guide
the optimization of the model parameters during training. Formally,
the loss function L is given by:

1 ¥ 2
LXX) = ; (Xi - Xi) ()
where N is the total number of pixels in the image, and X; and
Xi denote the original and reconstructed pixel values, respectively.
The minimization of L ensures the model learns to preserve critical
information through the encoding and decoding processes.

4.3 Casting

In Solidity, while the data type Fixed Point Numbers can be declared
to represent floating-point numbers, it is important to note that
Fixed Point Numbers are not fully supported in Solidity®. Although
they can be declared, they are currently not fully functional for
assignments and operations within the language. As a result, alter-
native approaches must be explored to address the limitations in
representing and working with floating-point numbers in Solidity.
Currently, this limitation in Solidity is not suitable for the storage
and subsequent operations of floating-point arrays in this study.
However, drawing inspiration from the concept of fixed-point num-
bers, we truncate the integer and fractional parts of floating-point
numbers, referring to this process as the "Casting Function." We
utilize the Int8 data type to represent the integer part of floating-
point numbers and employ one of four different data types, namely
Truncate, UInt8, Ulnt16, or UInt32, to store the fractional part.

-3.14159265

Int8

-128~127 0~4,294,967,295

Figure 5: The overview of casting methods.

Casting Function

®https://docs.soliditylang.org/en/latest/types.html#fixed-point-numbers on 2023-09-23

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

446

459
460
461
462
463

464

465
466
467
468
469
470
471
472
473
474

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495

SemNFT: A Semantically Enhanced Decentralized Middleware for Digital Asset Immortality

In the subsequent experiments, we utilize the aforementioned
four casting functions to process the fractional part of floating-
point numbers. The processing procedure is illustrated in Figure
5. Subsequently, we will conduct a comparative analysis of image
quality among the reconstructed images from raw floating-point
numbers, Truncate, Ulnt8, Ulnt16, and Ulnt32 embeddings.

Due to the static typing nature of Solidity, it is unable to store
elements of mixed types. Consequently, we store the integer and
fractional parts of embeddings in two separate mapping arrays.
Subsequently, we reconstruct the original floating-point numbers
by employing token ID-based lookup procedures.

This design benefits from the characteristics of Solidity packing’,
where we arrange variables of the same type consecutively in three
arrays. This allows Solidity to efficiently pack the variables, leading
to significant savings in on-chain data storage and gas consumption.

4.4 Contract Design

In this protocol, smart contracts serve as the definitive entities for
determining NFT ownership, initiating NFT transfers, storing NFT
image embeddings, and validating the model. We will utilize the
ERC721 module® from the OpenZeppelin library® for secure smart
contract development to assist in the contract design of SemNFT.
By inheriting the features of OpenZeppelin’s ERC721 module, the
contract design and development for SemNFT become streamlined.
This approach enables NFT issuers to focus solely on the embedding-
related logic of SemNFT, alleviating the need to be concerned with
designing fundamental NFT functionalities.

Contract SemNFT is ERC721

ERC721 values;

uint8 public emb_size;

string public model_hash;

mapping(uint256 => int8[]) public int_map;
mapping(uint256 => uint16[]) public decimal_map;
address public oracle_address;

string public oracle_job_id;

ERC721 functions;
function setEmb;

function getEmb;

function checkModelHash;
function requestOracle;

Figure 6: The brief view of the smart contract with Ulnt16
decimal casting.

The design of data structures and functions for smart contracts
is depicted in Figure 6. This contract inherits from the ERC721
module, thus inheriting the state and methods from ERC721.

7In contracts, state variables are efficiently stored in storage, often in a
compact manner, where multiple values might share the same storage slot.
https://docs.soliditylang.org/en/v0.8.16/internals/layout_in_storage.html
8https://docs.openzeppelin.com/contracts/4.x/erc721
https://www.openzeppelin.com

MM 24, October 28-November 1, 2024, Melbourne, VIC, Australia

4.5 Compression Ratio

In this work, as the dataset of images is divided into two compo-
nents, namely model parameters and on-chain storage, when model
parameters, embedding size, and casting precision are fixed, the
total space required for the project remains constant and does not
vary with the size of the image dataset. In PyTorch models, parame-
ters are typically represented using the float32 data type, with each
float32 occupying 4 bytes.

Therefore, using D to represent the size of the original dataset, D’
as the size of the compressed dataset, N as the number of images, p
as the number of model parameters, 0 as the embedding size, and C
as the size occupied by a numerical value representing the fractional
part’s casting precision, we can derive the following formulae.

D’ =4 X p+ (int8 + C)ON (6)

The value of parameter C is the size of one integer number
occupied in EVM determined by the integer type such as Ulnt8,
UlInt16 and UInt32. Therefore, when the other parameters in the
formula are determined, the compression ratio () is determined by
the size of the original dataset as the following equation:

=7 o)

For instance, if a 1GB NFT image dataset comprises 10,000 images,
the trained model occupies 100MB, and an embedding size of 50
with Ulnt16 is selected, then after computation, the total file size
amounts to 101.5MB, resulting in a compression ratio of 9.85:1. Due
to the additional data compression applied to arrays by the EVM,

the actual compression ratio is expected to further increase.

4.6 NFT Verification

Figure 7 illustrates the NFT ownership verification process of Sem-
NFT in comparison to existing NFTs. Under the current NFT storage
scheme, if we need to verify an NFT image with unknown own-
ership, we must seek the NFT owned by the user in the contract
through their wallet address. Subsequently, we retrieve the NFT
resource’s metadata through the link recorded in the contract and
then request the image link in the metadata to obtain and verify
the NFT image. If a disconnection occurs during the link request
process, the verification process will be interrupted. Even if users
store their NFT image source data off-chain, it cannot be matched
and verified with assets in the smart contract.

In contrast, within the SemNFT framework, the intrinsic features
containing user NFT image semantic information are stored on the
blockchain and can be reconstructed into NFT images through the
decoder in the autoencoder model, completing ownership verifi-
cation. The autoencoder model can be regarded as a specialized,
customized image decoding protocol, and its accuracy can be veri-
fied by the model hash value stored in the smart contract. Therefore,
this autoencoder model and reconstructure process can be in the
trusted blockchain oracle as the middleware service. Consequently,
issues of consumer and community trust and dependece on IPFS or
private servers are resolved.

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568

569

595

596

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

Comparison

A& s
- Link

e User Wallet Contract \ Metadata

——> Existing NFT
— NeuroNFT = []
s Embeddings

Contract
Figure 7: Ownership verification in existing NFT & SemNFT

verified Ownership

NFT Image

|

Reconstruct

5 IMPLEMENTATION

This section will simulate the implementation of data preparation,
model training, contract deployment, and embedding on-chain for
SemNFT, based on the aforementioned protocol design.

5.1 Target Datasets

To validate the universality and applicability of this protocol, we
conducted verification using three distinct styles of NFT datasets
available on the HuggingNFT dataset collection'® on HuggingFace:
Cryptopunks'!, Boredapeyachtclub (BAYC)'? , and Azuki'®. Elabo-
rated details of these datasets are presented in Table 1. It can be
observed that the envisioned difficulty in feature extraction and
reconstruction increases sequentially across these three datasets.

Table 1: Target Datasets

Dataset Cryptopunks BAYC Azuki
Amount 10,000 9,999 10,000
Image Size™® 312x312 631x631 2000x2000
File Size 12.1 MB 1.2 GB 1.11 GB
Details Low Relatively High High

5.2 Model Training

Training Equipment. The primary device used for training the
neural network model is a host with a single GeForce RTX 3090
graphics card, an Intel 19-10900K CPU, a 64 GB memory, and run-
ning the Ubuntu 18.04 LTS Bionic Beaver operating system.
Training Settings. The training process employs the Adam opti-
mizer with a learning rate set to 0.0001. Additionally, EarlyStopping
is implemented with a patience of 10 epochs, allowing for early
termination if the validation performance does not improve.

Ohttps://huggingface.co/huggingnft

https://cryptopunks.app/

2https://boredapeyachtclub.com/

Bhttps://www.azuki.com/

14The image size is the same as that of the image origins in the HuggingFace dataset,
and does not represent the actual dimensions of the project images. The actual pixel
dimensions for Cryptopunks are 24x24, and they are in SVG format with the basic
Solidity data structure without ERC721 or ERC1155.

Anon.

5.3 Test Chain Deployment

In the realm of Ethereum, there exist numerous test networks,
including Ropsten15 , Kovan!®, Goerli!’, and Sepolialg, each distin-
guished by varying Gas Prices and blockchain consensus algorithms.
Furthermore, it is noteworthy that some of these test networks may
be rendered obsolete over time. In contrast, Polygon’s'® array of
test networks currently consists of only one, namely Mumbai®’,
characterized by its singularity and commendable stability. There-
fore, we have opted to deploy a portion of our smart contracts
on Polygon’s Mumbai test network. Given that these contracts
are authored in Solidity, they are universally compatible with any
blockchain supporting the EVM [3].

In the forthcoming experiments, we intend to deploy four dif-
ferent contracts, Truncate, Ulnt8, Ulnt16, Ulnt32, each varying in
decimal precision. Furthermore, We will employ the MetaMask
browser plugin to interact with these contracts [32], evaluating
functionalities, as well as assessing the cost associated with NFT
SafeMint and reading embedded data.

6 EVALUATION
6.1 Embedding Size Factor

We utilized two algorithmic metrics, the Structural Similarity Index
(SSIM) and the Peak Signal-to-Noise Ratio (PSNR) [27], to compare
the quality of the reconstructed images without using the casting
function across different datasets and embedding sizes. In Figure 8,
the horizontal axis represents the size of the embedding, while the
vertical axis displays the values of the algorithmic metrics.

From the graph, it becomes evident that the Cryptopunks dataset,
which contains the least amount of detail, consistently exhibits the
highest SSIM and PSNR values. Conversely, the Azuki dataset, with
the most intricate details, generally displays lower SSIM and PSNR
values compared to the other two datasets.

Within the range of embedding sizes from 10 to 30, both SSIM and
PSNR exhibit slight improvements as the embedding size increases,
with the most notable enhancement observed in the Azuki dataset.
However, beyond an embedding size of 30, SSIM and PSNR show
fluctuations with increasing embedding size. This suggests that, at
this point, the spatial capacity of the embedding size is sufficient
for evaluating the reconstructed image quality.

6.2 Casting Precision

Initially, we conducted an assessment of images reconstructed at
various levels of precision. Using images reconstructed through the
Float method as the benchmark, we proceeded to perform statistical
t-tests to compare the SSIM and PSNR of images by all embedding
size (range from 10 to 100), and with differing precision levels,
employing the Truncate, UInt8, Ulnt16, and UInt32 methods. The
predetermined significance level was set at « = 0.05, and the p-
values are presented in Table 2 as the reconstructed stability.

Shttps://ropsten.etherscan.io/, now deprecated

Lohttps://kovan.ethplorer.io/

https://goerli.etherscan.io/

Bhttps://sepolia.etherscan.io/

Ypolygon launched as Matic Network in 2017, and rebranded to Polygon in 2021.
Zhttps://mumbai.polygonscan.com/

639
640
641
642
643
644
645
646
647
648
649

650

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

687

689
690
691
692

693

695

696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

SemNFT: A Semantically Enhanced Decentralized Middleware for Digital Asset Immortality

MM 24, October 28-November 1, 2024, Melbourne, VIC, Australia

Table 2: The comparison of P-values from t-tests, conducted for the SSIM and PSNR between reconstructed images obtained
through the Truncate, Ulnt8, Ulnt16, Uint32, with Float methods, in significance level of « = 0.05.

Method Truncate Ulnt8 Ulnt16 Ulnt32
SSIM | PSNR SSIM PSNR SSIM PSNR SSIM PSNR
Cryptopunks 0.0 0.0 0.891069 | 0.923751 | 0.999547 | 0.999815 | 0.999933 | 0.999916
BAYC 0.0 0.0 0.975591 | 0.940597 | 0.999973 | 0.999941 | 0.999998 | 0.999971
Azuki 0.0 0.0 0.925515 | 0.035697 | 0.999567 | 0.994141 | 0.999998 | 0.999932
== CryptoPunks mm Bored Ape Yocht Club_ mm Azuki might be relatively higher due to the complexity of restoring such
100 fine-grained details accurately.
0.95
0.90 300
0.85 0
0.80— - .

= 0.2
Il
a

0.1

0.0
40 0

50 6
Embedding Size

s CryptoPunks WM Bored Ape Yacht Club WS Azuki

T T Y

2104

IS
S

w
v

«

Embeding Size
Figure 8: SSIM and PSNR mean values with the embedding
size and different NFT datasets.

From the experimental results, we observe that for all three
NFT image datasets, the p-values for SSIM and PSNR when using
the Truncate method are both 0. This suggests that the Truncate
method results in significant distortion and divergence from the
original image, likely because the fractional parts of the elements in
the embedding array, preserved by the current autoencoder model,
contain crucial image information. Loss of these fractional parts
leads to substantial image distortion. In contrast, for methods other
than Truncate, the p-values for the restored images increase as the
casting function enhances the precision of float values. The Ulnt32
method, which achieves the highest precision, yields p-values very
close to 1, indicating minimal distortion and better restored stability.

The observed significant differences in the PSNR p-values for the
Azuki dataset when using the UInt8 method may indeed be influ-
enced by the dataset’s inherent characteristics. The dataset’s large
number of features, uneven distribution of feature types, and rich
feature details likely contribute to this discrepancy. For instance, in
some Azuki images, certain characters may have accessories with
intricate pattern designs. When attempting to reconstruct these
intricate details, the presence of noise peaks in the PSNR values

(a) Truncate
Figure 9: The comparison among reconstructed by Truncate,
Ulnt8, Ulnt16, UInt32 in the embedding size of 30 with origi-
nal images. The datasets, from top to bottom, represent Cryp-
topunks(#427), BAYC(#79), and Azuki(#1227).

(b) UInt8 (c) UInt16 (d) UInt32

In the t-test, when the p-value is less than the significance level,
it indicates that the difference between the datasets is statistically
significant. For the Ulnt16 and Ulnt32 precision methods, both the
SSIM and PSNR comparisons with Float yield p-values very close
to 1. It implies that these precision methods are highly similar to
the Float method. Therefore, in practical usage, it is recommended
to employ the Ulnt16 casting methods to ensure the quality of
the reconstructed images with lower storage cost, as they provide
results that are statistically comparable to those obtained with Float
precision. Besides, we use the distance equation to compute the
pixel RGB difference between the constructed and the original:

d= \/(pred - P;ed)z + (Pgreen - P;reen)z + (Pblue — P;,lue)z (8)

The visualization of the individual distance shows in Figure 9.

6.3 Transaction Fee

In the context of minting NFTs, in addition to any additional fees
that may be set by service providers, the minter is required to cover
the Transaction Fee to accommodate the Gas required by the EVM.
The concept of Gas operations is formally defined in Dr. Wood’s
Ethereum yellow paper [49]. Gas costs serve as a mechanism to
mitigate Denial-of-Service attacks in the execution of code on the
Ethereum platform [41]. The computation of both the Transaction
Fee and Gas is outlined as follows, with the Gas Price being subject
to dynamic fluctuations based on the congestion level within the

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856

858
859
860
861
862
863
864
865
866
867
868
869
870

MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia

blockchain network [47]. The Gas Used varies according to the
complexity of the invoked function and the size of stored data:

Transaction Fee = Gas Used X Gas Price 9)

Given that the Polygon chain selected for this study employs
a Proof-of-Stake (PoS) consensus algorithm, it can support a high
transaction throughput [14]. Additionally, due to the absence of
mining competition, gas price?! fluctuations are lower [33]. In the

Mumbai testnet, the gas price has remained stable at 2.5 Gwei®?.

Casting Function
7000004 --- Base: 161411
-~ Tradition: 242312
BN SemNFT: Uint32

6000001 ' SemNFT: Uint16
=1 SemNFT: Uint8
INFT: Tr
, 00000) Sem runcate .
) e
g e
g
3 -
g 400000 - -
® |
) [
300000 4 p— |
z . Rl |
200000 4
100000
0 T T T T T T T T T T
© ® S © S S ® S ® &

Embedding Size
Figure 10: Gas Usage with Different Casting Function and
Embedding Size

In each group of embedding sizes, we selected five embeddings
for the minting experiments and introduced an additional group
with an Embedding Size of 0 to serve as a Mint Baseline (without
any extra data like link string or digit) for comparisons. We em-
ployed four different casting methods for various embedding sizes.
Moreover, given the use of the same Polygon Mumbai testnet, both
works benefited from consistent and stable gas prices. We compared
the gas with the results from the Web3DP experiment [34], which
represents the existing NFT minting process (with asset link string).
The comparative results are illustrated in Figure 10.

We observe that as the Embedding Size increases, the required
gas usage also gradually increases. However, it is worth noting that
due to the EVM’s optimized ability to compress array storage, the
gas used related to Embedding does not increase proportionally
with the increase in Embedding Size, particularly evident when
comparing Embedding Sizes of 10 and 100.

When comparing the gas usage for existing NFT mints, it’s im-
portant to consider that existing NFTs typically involve storing the
IPFS link string, which is approximately 80 characters in length,
on the blockchain. As a result, the gas usage for existing NFTs is
slightly higher than that for mints that don’t involve any storage.
However, the gas for existing NFTs is comparable to that of mints
with an embedding size of 40 and the Truncate casting method.

6.4 Storage Efficiency Comparison

As aresult of varying Embedding Size in storage, discrepancies exist
between the on-chain data size and the overall project’s data size.
Consequently, based on Equation 6 and 7, and without considering
EVM’s spatial optimizations and fixed model size, we have chosen

2L At 21:55 On October 12, 2023, the standard gas price on the Polygon mainnet is 120
Gwei. The price of 1 Matic (MATIC) on Coinbase is $0.7.
21 Gwei = 1077 MATIC

Anon.

Table 3: Some data sizes and ratios among the existing NFT
and SemNFT with embedding size 10 and 100.

Embedding Size Existing 10 100
Single Data Size 183KB | 30 Bytes | 300 Bytes
Model Size - 86MB 86MB
On-chain Size 0.8MB 0.3MB 3MB
Off-chain Size 1.02GB 86MB 86MB
Total Size 1.02GB 86.3MB 89MB
Compression Ratio - 11.82:1 11.46:1

the Azuki dataset and employed the Ulnt16 casting method, to
analyze the spatial variations in on-chain data size and the overall
project’s data size when different Embedding Sizes are employed.
The findings are presented in Table 3.

In our investigation, we conducted a comparative analysis be-
tween conventional NFT storage methods and scenarios involving
embedding sizes of 10 and 100. SemNFT has exhibited a significant
reduction in off-chain storage requirements. Notably, for embedding
sizes of 10 and 100, we achieved compression ratios of 11.82:1 and
11.46:1, respectively. The demonstrated autoencoder model show-
cases superior compression performance and reduces the overall
storage burden. Simultaneously, it offers customized options to
achieve better image restoration effects while slightly exceeding
the storage size of existing methods. In summary, it displays the
efficiency of SemNFT in data compression and storage.

7 CONCLUSION

This paper presented SemNFT, a decentralized framework tackling
pressing NFT storage and verification challenges. By leveraging
decentralized middleware services equipped with autoencoders,
the framework ensures not only the secure and perpetual storage
of digital assets in the form of NFTs but also maintains their in-
trinsic qualities and representations, thereby safeguarding their
essence throughout the pipeline. Our framework is also highly com-
patible with existing NFT standards, adapting well to the current
NFT community and ecosystem. To verify its feasibility, we im-
plemented the proposed framework and conducted an evaluation
Evaluations evidenced feasibility and efficiency, attaining over 10:1
data compression ratio across diverse NFT datasets with high vi-
sual fidelity. SemNFT streamlines verification by reconstructing
images on-demand, circumventing external dependencies. SemNFT
emerges as a pioneering framework, intertwining the sophisticated
capabilities of autoencoders with the immutable and decentralized
characteristics of blockchain to forge a path towards digital asset
immortality. Future research might delve deeper into optimizing
the autoencoder algorithms, exploring additional use-cases for the
framework, and evaluating the real-world impact and applications
of ensuring digital asset immortality within various industries.

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

986

SemNFT: A Semantically Enhanced Decentralized Middleware for Digital Asset Immortality

REFERENCES

(1]

(2]
(3]

(4]

(5]
(6]
(7]
(8]

(9]
[10]

[11]

=
&

(13

[14]

[15]

[16]

[17]

[18

[19]

[20]

[21]

[23]

[24]

[25]

[26
[27]

[28

Udit Agarwal, Kuldeep Singh, and Rajesh Verma. 2022. An Overview of Non-
Fungible Tokens (NFT). International Journal of Advanced Research in Science,
Communication and Technology (IJARSCT 2, 1 (2022).

Lennart Ante. 2022. The non-fungible token (NFT) market and its relationship
with Bitcoin and Ethereum. FinTech 1, 3 (2022), 216-224.

Henri Arslanian. 2022. The Emergence of New Blockchains and Crypto-Assets. In
The Book of Crypto: The Complete Guide to Understanding Bitcoin, Cryptocurrencies
and Digital Assets. Springer, 99-119.

Nina Bambysheva. 2022. NFT market generated over $23 billion in trading
volume in 2021. https://www.forbes.com/sites/ninabambysheva/2021/12/23/nfts-
generated-over-23-billion-in-trading-volume-in-2021

Davi Pedro Bauer. 2022. Filecoin. In Getting Started with Ethereum: A Step-by-Step
Guide to Becoming a Blockchain Developer. Springer, 97-101.

Juan Benet. 2014. Ipfs-content addressed, versioned, p2p file system. arXiv
preprint arXiv:1407.3561 (2014).

Abdeljalil Beniiche. 2020. A study of blockchain oracles.
arXiv:2004.07140 (2020).

Nazanin Zahed Benisi, Mehdi Aminian, and Bahman Javadi. 2020. Blockchain-
based decentralized storage networks: A survey. Journal of Network and Computer
Applications 162 (2020), 102656.

Burak Benligiray, Sasa Milic, and Heikki Vanttinen. 2020. Decentralized apis for
web 3.0. API3 Foundation Whitepaper (2020).

Lorenz Breidenbach, Christian Cachin, Benedict Chan, Alex Coventry, Steve Ellis,
Ari Juels, Farinaz Koushanfar, Andrew Miller, Brendan Magauran, Daniel Moroz,
et al. 2021. Chainlink 2.0: Next steps in the evolution of decentralized oracle
networks. Chainlink Labs 1 (2021), 1-136.

Zach Burks, James Morgan, Blaine Malone, and James Seibel. 2020. ERC-2981:
NFT Royalty Standard. https://eips.ethereum.org/EIPS/eip-2981

Vitalik Buterin et al. 2014. A next-generation smart contract and decentralized
application platform. white paper 3, 37 (2014), 2-1.

Giulio Caldarelli. 2022. Overview of blockchain oracle research. Future Internet
14, 6 (2022), 175.

Bin Cao, Zhenghui Zhang, Daquan Feng, Shengli Zhang, Lei Zhang, Mugen Peng,
and Yun Li. 2020. Performance analysis and comparison of PoW, PoS and DAG
based blockchains. Digital Communications and Networks 6, 4 (2020), 480-485.
Hongzhou Chen and Wei Cai. 2023. How Information Manipulation on Social
Media Influences the NFT Investors’ Behavior: A Case Study of Goblintown. Wtf.
IEEE Transactions on Computational Social Systems (2023).

Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. 2018. Deep
convolutional autoencoder-based lossy image compression. In 2018 Picture Coding
Symposium (PCS). IEEE, 253-257.

Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. 2019. Variable rate deep image
compression with a conditional autoencoder. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 3146-3154.

Erik Daniel and Florian Tschorsch. 2022. IPFS and friends: A qualitative com-
parison of next generation peer-to-peer data networks. IEEE Communications
Surveys & Tutorials 24, 1 (2022), 31-52.

Dipanjan Das, Priyanka Bose, Nicola Ruaro, Christopher Kruegel, and Giovanni
Vigna. 2022. Understanding security issues in the NFT ecosystem. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications Security.
667-681.

Thierry Dumas, Aline Roumy, and Christine Guillemot. 2018. Autoencoder based
image compression: can the learning be quantization independent?. In 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
1188-1192.

William Entriken, Dieter Shirley, Jacob Evans, and Nastassia Sachs. 2018. ERC-
721: Non-Fungible token standard. https://eips.ethereum.org/EIPS/eip-721
etherscan.io. 2023. Ethereum Gas Tracker | Etherscan. https://etherscan.io/
gastracker

Adam Golinski, Reza Pourreza, Yang Yang, Guillaume Sautiere, and Taco S Cohen.
2020. Feedback recurrent autoencoder for video compression. In Proceedings of
the Asian Conference on Computer Vision.

Yunguo Guan, Hui Zheng, Jun Shao, Rongxing Lu, and Guiyi Wei. 2021. Fair
outsourcing polynomial computation based on the blockchain. IEEE Transactions
on Services Computing 15, 5 (2021), 2795-2808.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Nick Hladek. 2022. YourNfts. https://yournfts.org/#stats

Alain Hore and Djemel Ziou. 2010. Image quality metrics: PSNR vs. SSIM. In
2010 20th international conference on pattern recognition. IEEE, 2366-2369.
Tatsuro Ishida, Hiroki Watanabe, Shigenori Ohashi, Shigeru Fujimura, Atsushi
Nakadaira, Kota Hidaka, and Jay Kishigami. 2019. Tokenizing and managing the
copyrights of digital content on blockchains. In 2019 IEEE 8th Global Conference
on Consumer Electronics (GCCE). IEEE, 170-172.

arXiv preprint

[29

[30

[31

[32

@
&

[34

[35

(36]

@
=

[38

[39

[40

[41

[43

[44]

[45

[46

(48]

[49]

[50

[51

o
S

[53

[54

MM 24, October 28-November 1, 2024, Melbourne, VIC, Australia

Teasung Kim, Sejong Lee, Yongseok Kwon, Jaewon Noh, Soohyeong Kim, and
Sunghyun Cho. 2020. SELCOM: Selective compression scheme for lightweight
nodes in blockchain system. IEEE Access 8 (2020), 225613-225626.

Teasung Kim, Jaewon Noh, and Sunghyun Cho. 2019. SCC: Storage compression
consensus for blockchain in lightweight IoT network. In 2019 IEEE International
Conference on Consumer Electronics (ICCE). IEEE, 1-4.

Petar Kochovski, Sandi Gec, Vlado Stankovski, Marko Bajec, and Pavel D Drobint-
sev. 2019. Trust management in a blockchain based fog computing platform with
trustless smart oracles. Future Generation Computer Systems 101 (2019), 747-759.
Wei-Meng Lee and Wei-Meng Lee. 2019. Using the metamask chrome extension.
Beginning Ethereum Smart Contracts Programming: With Examples in Python,
Solidity, and JavaScript (2019), 93-126.

Cristian Lepore, Michela Ceria, Andrea Visconti, Udai Pratap Rao, Kaushal Arvin-
dbhai Shah, and Luca Zanolini. 2020. A survey on blockchain consensus with a
performance comparison of PoW, PoS and pure PoS. Mathematics 8, 10 (2020),
1782.

Lehao Lin, Haihan Duan, and Wei Cai. 2023. Web3DP: A Crowdsourcing Platform
for 3D Models Based on Web3 Infrastructure. In Proceedings of the 14th Conference
on ACM Multimedia Systems. 397-402.

Yijing Lin, Zhipeng Gao, Hongyang Du, Dusit Niyato, Jiawen Kang, Ruilong Deng,
and Xuemin Sherman Shen. 2023. A unified blockchain-semantic framework
for wireless edge intelligence enabled web 3.0. IEEE Wireless Communications
(2023).

Juncheng Liu, Steven Mills, and Brendan McCane. 2020. Variational Autoencoder
for 3D Voxel Compression. In 2020 35th International Conference on Image and
Vision Computing New Zealand (IVCNZ). IEEE, 1-6.

Matt Lockyer, Nick Mudge, Jordan Schalm, sebastian echeverry, and Zainan Zhou.
2018. ERC-998: Composable Non-Fungible Token. https://eips.ethereum.org/
EIPS/eip-998

Wei QingJie and Wang WenBin. 2017. Research on image retrieval using deep
convolutional neural network combining L1 regularization and PRelu activation
function. In IOP Conference Series: Earth and Environmental Science, Vol. 69. IOP
Publishing, 012156.

Witek Radomski, Andrew Cooke, Philippe Castonguay, James Therien, Eric
Binet, and Ronan Sandford. 2018. ERC-1155: Multi token standard. https:
//eips.ethereum.org/EIPS/eip-1155

Yongjun Ren, Yan Leng, Fujian Zhu, Jin Wang, and Hye-Jin Kim. 2019. Data
storage mechanism based on blockchain with privacy protection in wireless body
area network. Sensors 19, 10 (2019), 2395.

Christopher Signer. 2018. Gas cost analysis for ethereum smart contracts. Master’s
thesis. ETH Zurich, Department of Computer Science.

Swarm Team. 2021. SWARM-storage and communication infrastructure for a
self-Sovereign digital society.

Robert Van Molken. 2018. Blockchain across Oracle: Understand the details and im-
plications of the Blockchain for Oracle developers and customers. Packt Publishing
Ltd.

Qin Wang, Rujia Li, Qi Wang, and Shiping Chen. 2021. Non-fungible token
(NFT): Overview, evaluation, opportunities and challenges. arXiv preprint
arXiv:2105.07447 (2021).

Will Wang, Mike Meng, Yi Cai, Ryan Chow, Zhongxin Wu, and Alvis Du. 2020.
ERC-3525: Semi-Fungible Token. https://eips.ethereum.org/EIPS/eip-3525
Ziwei Wang, Jiashi Gao, and Xuetao Wei. 2023. Do NFTs’ Owners Really Possess
their Assets? A First Look at the NFT-to-Asset Connection Fragility. In Proceedings
of the ACM Web Conference 2023. 2099-2109.

Sam M Werner, Paul] Pritz, and Daniel Perez. 2020. Step on the gas? a better
approach for recommending the ethereum gas price. In Mathematical Research
for Blockchain Economy: 2nd International Conference MARBLE 2020, Vilamoura,
Portugal. Springer, 161-177.

Sam Williams, Viktor Diordiiev, Lev Berman, and Ivan Uemlianin. 2019. Arweave:
A protocol for economically sustainable information permanence. arweave. org,
Tech. Rep (2019).

Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1-32.

Kaidong Wu, Yun Ma, Gang Huang, and Xuanzhe Liu. 2021. A first look at
blockchain-based decentralized applications. Software: Practice and Experience
51, 10 (2021), 2033-2050.

Xiwei Xu, Cesare Pautasso, Liming Zhu, Vincent Gramoli, Alexander Ponomarev,
An Binh Tran, and Shiping Chen. 2016. The blockchain as a software connector.
In 2016 13th Working IEEE/IFIP Conference on Software Architecture (WICSA). IEEE,
182-191.

Wei Yan, Shan Liu, Thomas H Li, Zhu Li, Ge Li, et al. 2019. Deep
autoencoder-based lossy geometry compression for point clouds. arXiv preprint
arXiv:1905.03691 (2019).

Ren Yang, Fabian Mentzer, Luc Van Gool, and Radu Timofte. 2020. Learning for
video compression with recurrent auto-encoder and recurrent probability model.
IEEE Journal of Selected Topics in Signal Processing 15, 2 (2020), 388—401.
Qiheng Zhou, Huawei Huang, Zibin Zheng, and Jing Bian. 2020. Solutions to
scalability of blockchain: A survey. Ieee Access 8 (2020), 16440—-16455.

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044

https://www.forbes.com/sites/ninabambysheva/2021/12/23/nfts-generated-over-23-billion-in-trading-volume-in-2021
https://www.forbes.com/sites/ninabambysheva/2021/12/23/nfts-generated-over-23-billion-in-trading-volume-in-2021
https://eips.ethereum.org/EIPS/eip-2981
https://eips.ethereum.org/EIPS/eip-721
https://etherscan.io/gastracker
https://etherscan.io/gastracker
https://yournfts.org/#stats
https://eips.ethereum.org/EIPS/eip-998
https://eips.ethereum.org/EIPS/eip-998
https://eips.ethereum.org/EIPS/eip-1155
https://eips.ethereum.org/EIPS/eip-1155
https://eips.ethereum.org/EIPS/eip-3525

	Abstract
	1 Introduction
	2 Preliminary
	2.1 NFT Infrastructure
	2.2 Blockchain Oracles

	3 Related Work
	4 Methodology
	4.1 Architecuture
	4.2 Neural Network Design
	4.3 Casting
	4.4 Contract Design
	4.5 Compression Ratio
	4.6 NFT Verification

	5 Implementation
	5.1 Target Datasets
	5.2 Model Training
	5.3 Test Chain Deployment

	6 Evaluation
	6.1 Embedding Size Factor
	6.2 Casting Precision
	6.3 Transaction Fee
	6.4 Storage Efficiency Comparison

	7 Conclusion
	References

