
Published as a Tiny Paper at ICLR 2024

COMBINATORIAL CNNS FOR WORDS

Karen Sargsyan
Institute of Chemistry, Academia Sinica, Taipei, Taiwan
{karen.sarkisyan}@gmail.com

ABSTRACT

This paper illustrates the difficulties that deep learning models encounter in de-
tecting and exploiting patterns that remain consistent through one-to-one transfor-
mations, which we define as ”combinatorial patterns.” We contend that providing
neural networks with detailed representations of these combinatorial patterns is
crucial to effectively addressing prediction problems that depend only on such
patterns. To substantiate our proposition, we unveil a new Combinatorial Con-
volutional Neural Network tailored for word classification. This demonstrates the
potential of integrating combinatorial pattern recognition into deep learning archi-
tectures.

1 INTRODUCTION

Neural networks may not prioritize combinatorial patterns—those features that remain unchanged
under bijective transformations of the input—when selecting features for prediction tasks where
outcomes remain invariant to those transformations. This is partly because the training data for
these networks is usually unbalanced and does not encompass all potential bijective transformations
for each element. For example, in a task of distinguishing cats from dogs, datasets often focus on
natural colors and settings found in typical photographs. This approach may not equip the model
to identify these animals in images with unusual color schemes caused by bijective transformations.
These issues are recognized in domain generalization and adaptation researchZhou et al. (2022).

Certain prediction tasks depend substantially on the recognition of combinatorial patterns. For in-
stance, studies have indicated that similarities in nucleotide patterns within the genomes of viruses
and their hosts can reveal insights beyond the mere encoding of amino acids, which may aid in fore-
casting the emergence of new pathogens (Babayan et al. (2018); Iuchi & et al. (2023)). Likewise,
the frequency and placement of certain words within a text can suggest whether those words are key
terms (Ortuño & et al. (2002); Najafi & Darooneh (2015)). In the context of RNA, the arrangement
of nucleotide sequences can indicate whether they form critical motifs within the RNA structure
(Sargsyan & Carmay (2010)). Moreover, to assess the significance of combinatorial patterns for a
given predictive task, one might develop a model trained to recognize these patterns, which would
complement more traditional predictive approaches.

Recognizing the value of prediction based on combinatorial patterns, one could suggest augmenting
the dataset by applying all possible transformations to its elements. Yet, the sheer volume of po-
tential transformations is typically overwhelming if one aims to achieve firm guarantees that only
combinatorial patterns are learned. We propose presenting the neural network with data encompass-
ing the full spectrum of combinatorial patterns in the input and allowing the network to determine
the most critical combinatorial factors for making predictions. In this paper, we introduce a specific
methodology for processing text data in this way.

2 WORDS AND COMBINATORICS

Using notation from Morita & Terui (2009); Morita (2010), α is a word over some alphabet, and
Ω(α) denotes the set of distinct letters appearing in α. We define S(α) as the set of all subwords(i.e.
contiguous substrings) of α. By adding an additional empty subword / letter ε to S(α) we construct
a new set W (α) = {ε} ∪ S(α).

1



Published as a Tiny Paper at ICLR 2024

For any two subwords of α, λ = Y1Y2...Ys and µ = Z1Z2...Zt, we make the matrix (mij),
where mij = Yi if Yi = Zj and mij = ε otherwise. Using it, we construct the associated
graph, whose vertices are (i, j) for all 1 ⩽ i ⩽ s and 1 ⩽ j ⩽ t and edges (i, j) → (k, l) if
k = i + 1, l = j + 1,mij ̸= ε,mkl ̸= ε. For every connected component of the graph, we con-
struct the corresponding subword α using the values of (mij) along the graph path starting from
the vertex with the lowest index in a given connected component. We further define combinatorics
for α, denoted by M(α)ν(λ, µ), as the multiplicity of the subword α being observed in connected
components of the graph. With an extra set of rules:

M(α)ν(λ, ε) = δν,ε ∗ s,M(α)ν(ε, µ) = δν,ε ∗ t,M(α)ν(ε, ε) = δν,ε, (1)

we obtain a map:

M(α) : W (α)×W (α)×W (α) → Z⩾0, (λ, µ, ν) 7−→ M(α)ν(λ, µ). (2)

To demonstrate that two words a and b have the same patterns one has to provide bijection φ from
Ω(a) to Ω(b) such that a = X1X2...Xr and b = φ(X1)φ(X2)...φ(Xr). Based on theorems proven
in Morita & Terui (2009), we may compare combinatorics M(α) instead.

3 COMBINATORIAL CNNS

We propose to use M(α) as a 3D tensor input for convolutional neural networks (CNN) for an
input word α. To demonstrate the feasibility of such an approach, we present two examples of
a classification task where only combinatorial patterns matter. In addition, we show that modern
neural networks may learn more than just patterns required.

Our first task is to classify 20-letter words into palindromes and non-palindromes. 1. The validation
accuracy for the classification task, obtained using our approach, is 98.8%. As an alternative, we
randomly split palindrome dataset for training/testing parts and trained LSTM, GRU, CNN and
Transformer to predict palindromes, achieving average validation accuracies of 90%, 89%, 93% and
74% respectively. To check how well conventional neural networks learn combinatorial patterns,
we changed the letter A into Å (symbol present in encoding and absent in the training data) in
each palindrome in the test set. This change resulted, on average, in a modification of 6% letters
in the test dataset. We observed statistically significant drops in accuracy of 0.34%/0.6%/1.5% for
LSTM/CNN/Transformer on the modified test set. Additionally, introducing an extra letter change
to the test set led to drops in accuracy of 0.62%/1.6%/3% compared to the original test dataset.
There were no statistically significant changes for GRU.

In the second task, we attempt to distinguish between weak and strong passwords based on combi-
natorial patterns. We generated 15-character passwords and assessed their strength using the ’pass-
word strength’ Python package, considering passwords with scores above 0.7 on a [0,1] complexity
scale as strong. The password strength is defined using entropy, making it a variety and pattern
problem. Applying the same combinatorial CNN as in the previous task, we achieved 99% accuracy
on the validation set. However, the same LSTM/GRU/CNN/Transformer as above exhibited fast
overfitting, with both achieving validation accuracies of approximately 50%. After modifying the
test set by replacing a letter in passwords with a previously unseen character, we did not observe a
significant change, possibly due to the low validation accuracy achieved.

4 CONCLUSION

We have demonstrated that neural networks, in general, fail to learn from combinatorial patterns
alone, especially when trained on a small dataset. To tackle this issue in the context of predicting
combinatorial properties of words, we propose the use of combinatorics as an input to CNNs.

ACKNOWLEDGEMENTS

The author would like to thank Jun Morita for pointing out works on the combinatorial description
of words and for providing valuable clarifications.

1The complete code and datasets are available at https://github.com/karsar/wordsCCNN.

2



Published as a Tiny Paper at ICLR 2024

URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2024 Tiny Papers Track.

REFERENCES

Simon A. Babayan, Richard J. Orton, and Daniel G. Streicker. Predicting reservoir hosts and arthro-
pod vectors from evolutionary signatures in RNA virus genomes. Science, 362(6414):577–580,
2018.

Hitoshi Iuchi and et al. Bioinformatics approaches for unveiling virus-host interactions. Computa-
tional and Structural Biotechnology Journal, 21:1774–1784, 2023.

Jun Morita. Tilings, Lie theory and combinatorics. Contemporary Mathematics, 506:173–185,
2010.

Jun Morita and Akira Terui. Words, tilings and combinatorial spectra. Hiroshima Math. J., 39:
37–60, 2009.

Elham Najafi and Amir H. Darooneh. The fractal patterns of words in a text: A method for automatic
keyword extraction. PLoS One, 10(6):e0130617, 2015.

Miguel Ortuño and et al. Keyword detection in natural languages and DNA. Europhys. Lett., 57:
759–764, 2002.

Karen Sargsyan and Lim Carmay. Arrangement of 3D structural motifs in ribosomal RNA. Nucleic
Acids Research, 38:3512–3522, 2010.

Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generalization: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022.

A APPENDIX

DEFINITION OF BIJECTIVE MAPPING APPLIED TO A DATASET

To define a bijective mapping, or one-to-one, applied to a dataset, consider a set of data entries
in the dataset, denoted X1, X2, . . . , Xn, and a bijective (one-to-one) function, f , with its inputs
and outputs being permissible entries in the dataset (potentially unobserved). A bijective mapping
applied to a dataset will produce a new one: f(X1), f(X2), . . . , f(Xn). With a bijective function,
there exists another function that can restore the original dataset when applied after f .

In this paper, we explore bijective mappings in the context of words, where a one-to-one mapping
function replaces each letter in a word with another permissible letter, whether or not it has been
observed before.

DATA GENERATION AND TRAINING DETAILS

In our study of a straightforward classification task, we employ basic configurations of the LSTM,
GRU, CNN and lightweight Transformer models, as shown in the code, without optimizing for
maximum performance. Each model is trained for 100 epochs, and this process is repeated 200 times
with various data splits to ensure statistically significant results. Training and validation accuracies
plateau by the end of each training cycle. The complete code is provided for reference.

We generate palindromes by first creating random strings and then converting them into palindromes,
resulting in a set that might not represent all possible palindromes equally. For non-palindromes, we
selected random strings after verifying that they are not palindromes. Both the dataset generation
code and the dataset itself are available.

We created the password dataset by generating random words and assessing their strength as pass-
words using the ’password strength’ Python tool. We maintained an equal number of weak and
strong passwords for the experiment. The dataset generation code and the dataset itself are avail-
able.

3


	Introduction
	Words and Combinatorics
	Combinatorial CNNs
	Conclusion
	Appendix

