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ABSTRACT

We present 3DiM, a diffusion model for 3D novel view synthesis, which is able
to translate a single input view into consistent and sharp completions across many
views. The core component of 3DiM is a pose-conditional image-to-image dif-
fusion model, which is trained to take a source view and its pose as inputs, and
generates a novel view for a target pose as output. 3DiM can then generate mul-
tiple views that are approximately 3D consistent using a novel technique called
stochastic conditioning. At inference time, the output views are generated autore-
gressively. When generating each novel view, one selects a random condition-
ing view from the set of previously generated views at each denoising step. We
demonstrate that stochastic conditioning significantly improves 3D consistency
compared to a naı̈ve sampler for an image-to-image diffusion model, which in-
volves conditioning on a single fixed view. We compare 3DiM to prior work on the
SRN ShapeNet dataset, demonstrating that 3DiM’s generated completions from a
single view achieve much higher fidelity, while being approximately 3D consis-
tent. We also introduce a new evaluation methodology, 3D consistency scoring, to
quantify the 3D consistency of a generated object by training a neural field on the
model’s output views. 3DiM is geometry free, does not rely on hyper-networks
or test-time optimization for novel view synthesis, and allows a single model to
easily scale to a large number of scenes.

︸ ︷︷ ︸
Input view

︸ ︷︷ ︸
3DiM outputs conditioned on different poses

Figure 1: Given a single input image on the left, 3DiM performs novel view synthesis and generates the
four views on the right. We trained a single ∼471M parameter 3DiM on all of ShapeNet (without class-
conditioning) and sample frames with 256 steps (512 score function evaluations with classifier-free guidance).
See the Supplementary Website (https://3d-diffusion.github.io/) for video outputs.

1 INTRODUCTION

Diffusion Probabilistic Models (DPMs) (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho
et al., 2020), also known as simply diffusion models, have recently emerged as a powerful family
of generative models, achieving state-of-the-art performance on audio and image synthesis (Chen
et al., 2020; Dhariwal & Nichol, 2021), while admitting better training stability over adversarial
approaches (Goodfellow et al., 2014), as well as likelihood computation, which enables further ap-
plications such as compression and density estimation (Song et al., 2021; Kingma et al., 2021).
Diffusion models have achieved impressive empirical results in a variety of image-to-image trans-
lation tasks not limited to text-to-image, super-resolution, inpainting, colorization, uncropping, and
artifact removal (Song et al., 2020; Saharia et al., 2021a; Ramesh et al., 2022; Saharia et al., 2022).
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One particular image-to-image translation problem where diffusion models have not been investi-
gated is novel view synthesis, where, given a set of images of a given 3D scene, the task is to infer
how the scene looks from novel viewpoints. Before the recent emergence of Scene Representation
Networks (SRN) (Sitzmann et al., 2019) and Neural Radiance Fields (NeRF) (Mildenhall et al.,
2020), state-of-the-art approaches to novel view synthesis were typically built on generative mod-
els (Sun et al., 2018) or more classical techniques on interpolation or disparity estimation (Park et al.,
2017; Zhou et al., 2018). Today, these models have been outperformed by NeRF-class models (Yu
et al., 2021; Niemeyer et al., 2021; Jang & Agapito, 2021), where 3D consistency is guaranteed by
construction, as images are generated by volume rendering of a single underlying 3D representation
(a.k.a. “geometry-aware” models).

Still, these approaches feature different limitations. Heavily regularized NeRFs for novel view syn-
thesis with few images such as RegNeRF (Niemeyer et al., 2021) produce undesired artifacts when
given very few images, and fail to leverage knowledge from multiple scenes (recall NeRFs are
trained on a single scene, i.e., one model per scene), and given one or very few views of a novel
scene, a reasonable model must extrapolate to complete the occluded parts of the scene. Pixel-
NeRF (Yu et al., 2021) and VisionNeRF (Lin et al., 2022) address this by training NeRF-like models
conditioned on feature maps that encode the novel input view(s). However, these approaches are
regressive rather than generative, and as a result, they cannot yield different plausible modes and
are prone to blurriness. This type of failure has also been previously observed in regression-based
models (Saharia et al., 2021b). Other works such as CodeNeRF (Jang & Agapito, 2021) and LoL-
NeRF (Rebain et al., 2021) instead employ test-time optimization to handle novel scenes, but still
have issues with sample quality.

In recent literature, geometry-free approaches (i.e., methods without explicit geometric inductive
biases like those introduced by volume rendering) such as Light Field Networks (LFN) (Sitzmann
et al., 2021) and Scene Representation Transformers (SRT) (Sajjadi et al., 2021) have achieved re-
sults competitive with 3D-aware methods in the “few-shot” setting, where the number of condition-
ing views is limited (i.e., 1-10 images vs. dozens of images as in the usual NeRF setting). Similarly
to our approach, EG3D (Chan et al., 2022) provides approximate 3D consistency by leveraging
generative models. EG3D employs a StyleGAN (Karras et al., 2019) with volumetric rendering,
followed by generative super-resolution (the latter being responsible for the approximation). In
comparison to this complex setup, we do not only provide a significantly simpler architecture, but
also a simpler hyper-parameter tuning experience compared GANs, which are well-known to be
notoriously difficult to tune (Mescheder et al., 2018).

Motivated by these observations and the success of diffusion models in image-to-image tasks, we
introduce 3D Diffusion Models (3DiMs). 3DiMs are image-to-image diffusion models trained on
pairs of images of the same scene, where we assume the poses of the two images are known. Draw-
ing inspiration from Scene Representation Transformers (Sajjadi et al., 2021), 3DiMs are trained to
build a conditional generative model of one view given another view and their poses. Our key dis-
covery is that we can turn this image-to-image model into a model that can produce an entire set of
3D-consistent frames through autoregressive generation, which we enable with our novel stochastic
conditioning sampling algorithm. We cover stochastic conditioning in more detail in Section 2.2 and
provide an illustration in Figure 3. Compared to prior work, 3DiMs are generative (vs. regressive)
geometry free models, they allow training to scale to a large number of scenes, and offer a simple
end-to-end approach.

We now summarize our core contributions:

1. We introduce 3DiM, a geometry-free image-to-image diffusion model for novel view synthesis.
2. We introduce the stochastic conditioning sampling algorithm, which encourages 3DiM to gener-

ate 3D-consistent outputs.
3. We introduce X-UNet, a new UNet architecture (Ronneberger et al., 2015) variant for 3D novel

view synthesis, demonstrating that changes in architecture are critical for high fidelity results.
4. We introduce an evaluation scheme for geometry-free view synthesis models, 3D consistency

scoring, that can numerically capture 3D consistency by training neural fields on model outputs.
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Figure 2: Pose-conditional image-to-image training – Example training inputs and outputs for
pose-conditional image-to-image diffusion models, presented in Section 2.1. Given two frames
from a common scene and their poses (R, t), the training task is to undo the noise added to one of
the two frames. (*) In practice, our neural network is trained to predict the Gaussian noise ε used to
corrupt the original view – the predicted view is still just a linear combination of the noisy input and
the predicted ε.

2 POSE-CONDITIONAL DIFFUSION MODELS

To motivate 3DiMs, let us consider the problem of novel view synthesis given few images from a
probabilistic perspective. Given a complete description of a 3D scene S, for any pose p, the view
x(p) at pose p is fully determined from S, i.e., views are conditionally independent given S. How-
ever, we are interested in modeling distributions of the form q(x1, ...,xm|xm+1, ...,xn) without S,
where views are no longer conditionally independent. A concrete example is the following: given
the back of a person’s head, there are multiple plausible views for the front. An image-to-image
model sampling front views given only the back should indeed yield different outputs for each front
view – with no guarantees that they will be consistent with each other – especially if it learns the
data distribution perfectly. Similarly, given a single view of an object that appears small, there is
ambiguity on the pose itself: is it small and close, or simply far away? Thus, given the inherent
ambiguity in the few-shot setting, we need a sampling scheme where generated views can depend
on each other in order to achieve 3D consistency. This contrasts NeRF approaches, where query
rays are conditionally independent given a 3D representation S – an even stronger condition than
imposing conditional independence among frames. Such approaches try to learn the richest possible
representation for a single scene S , while 3DiM avoids the difficulty of learning a generative model
for S altogether.

2.1 IMAGE-TO-IMAGE DIFFUSION MODELS WITH POSE CONDITIONING

Given a data distribution q(x1,x2) of pairs of views from a common scene at poses p1,p2 ∈ SE(3),
we define an isotropic Gaussian process that adds increasing amounts of noise to data samples as
the signal-to-noise-ratio λ decreases, following Salimans & Ho (2022):

q(z
(λ)
k |xk) := N (z

(λ)
k ;σ(λ)

1
2xk, σ(−λ)I) (1)

where σ(·) is the sigmoid function. We can apply the reparametrization trick (Kingma & Welling,
2013) and sample from these marginal distributions via

z
(λ)
k = σ(λ)

1
2xk + σ(−λ) 1

2 ε, ε ∼ N (0, I) (2)

Then, given a pair of views, we learn to reverse this process in one of the two frames by minimizing
the objective proposed by Ho et al. (2020), which has been shown to yield much better sample
quality than maximizing the true evidence lower bound (ELBO):

L(θ) = Eq(x1,x2) Eλ,ε ‖εθ(z(λ)2 ,x1, λ,p1,p2)− ε‖22 (3)

where εθ is a neural network whose task is to denoise the frame z(λ)2 given a different (clean) frame
x1, and λ is the log signal-to-noise-ratio. To make our notation more legible, we slightly abuse
notation and from now on we will simply write εθ(z

(λ)
2 ,x1). We illustrate training in Figure 2.
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Figure 3: Stochastic conditioning sampler – We illustrate our proposed inference procedure for
3DiM, outlined in Section 2.2. There are two main components to our sampling procedure: (1) the
autoregressive generation of multiple frames (illustrated vertically as “step 1”, “step 2”, etc.), and (2)
the denoising process to generate each individual frame (illustrated horizontally). When generating
a new frame, we select a previous frame as the conditioning frame randomly at each denoising step
(illustrated with the dice). Note that this is not part of 3DiM training; also, we omit the pose inputs
in the diagram to avoid overloading the figure.

2.2 3D CONSISTENCY VIA STOCHASTIC CONDITIONING

Motivation. We begin this section by motivating the need of our stochastic conditioning sampler.
In the ideal situation, we would model our 3D scene frames using the chain rule decomposition:

p(x) =
∏
i

p(xi|x<i) (4)

This factorization is ideal, as it models the distribution exactly without making any conditional in-
dependence assumptions. Each frame is generated autoregressively, conditioned on all the previous
frames. However, we found this solution to perform poorly. Due to memory limitations, we can
only condition on a limited number of frames in practice, (i.e., a k-Markovian model). We also find
that, as we increase the maximum number of input frames k, the worse the sample quality becomes.
In order to achieve the best possible sample quality, we thus opt for the bare minimum of k = 2 (i.e.,
an image-to-image model). Our key discovery is that, with k = 2, we can still achieve approximate
3D consistency. Instead of using a sampler that is Markovian over frames, we leverage the iterative
nature of diffusion sampling by varying the conditioning frame at each denoising step.

Stochastic Conditioning. We now detail our novel stochastic conditioning sampling procedure that
allows us to generate 3D-consistent samples from a 3DiM. We start with a set of conditioning views
X = {x1, ...,xk} of a static scene, where typically k = 1 or is very small. We then generate a new
frame by running a modified version of the standard denoising diffusion reverse process for steps
λmin = λT < λT−1 < ... < λ0 = λmax:

x̂k+1 =
1

σ(λt)
1
2

(
z
(λt)
k+1 − σ(−λt)

1
2 εθ(z

(λt)
k+1,xi)

)
(5)

z
(λt−1)
k+1 ∼ q

(
z
(λt−1)
k+1 |z(λt)k+1, x̂k+1

)
(6)

where, crucially, i ∼ Uniform({1, ..., k}) is re-sampled at each denoising step. In other words, each
individual denoising step is conditioned on a different random view from X (the set that contains the
input view(s) and the previously generated samples). Once we finish running this sampling chain
and produce a final xk+1, we simply add it to X and repeat this procedure if we want to sample
more frames. Given sufficient denoising steps, stochastic conditioning allows each generated frame
to be guided by all previous frames. See Figure 3 for an illustration. In practice, we use 256
denoising steps, which we find to be sufficient to achieve both high sample quality and approximate
3D consistency. As usual in the literature, the first (noisiest sample) is just a Gaussian, i.e., z(λT )i ∼
N (0, I), and at the last step λ0, we sample noiselessly.

We can interpret stochastic conditioning as a naı̈ve approximation to true autoregressive sampling
that works well in practice. True autoregressive sampling would require a score model of the form
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Figure 4: X-UNet Architecture – We modify the typical UNet architecture used by recent work on
diffusion models to accomodate 3D novel view synthesis. We share the same UNet weights among
the two input frames, the clean conditioning view and the denoising target view. We add cross
attention layers to mix information between the input and output view, illustrated in yellow.

∇
z
(λ)
k+1

log q(z
(λ)
k+1|x1, ...,xk), but this would strictly require multi-view training data, while we are

ultimately interested in enabling novel view synthesis with as few as two training views per scene.

2.3 X-UNET

The 3DiM model needs a neural network architecture that takes both the conditioning frame and
the noisy frame as inputs. One natural way to do this is simply to concatenate the two images
along the channel dimensions, and use the standard UNet architecture (Ronneberger et al., 2015; Ho
et al., 2020). This “Concat-UNet” has found significant success in prior work of image-to-image
diffusion models (Saharia et al., 2021b;a). However, in our early experiments, we found that the
Concat-UNet yields very poor results – there were severe 3D inconsistencies and lack of alignment
to the conditioning image. We hypothesize that, given limited model capacity and training data, it is
difficult to learn complex, nonlinear image transformations that only rely on self-attention. We thus
introduce our X-UNet, whose core changes are (1) sharing parameters to process each of the two
views, and (2) using cross attention between the two views. We find our X-UNet architecture to be
very effective for 3D novel view synthesis.

We now describe X-UNet in detail. We follow Ho et al. (2020); Song et al. (2020), and use the
UNet (Ronneberger et al., 2015) with residual blocks and self-attention.We also take inspiration
from Video Diffusion Models (Ho et al., 2022) by sharing weights over the two input frames for all
the convolutional and self-attention layers, but with several key differences:

1. We let each frame have its own noise level (recall that the inputs to a DDPM residual block are
feature maps as well as a positional encoding for the noise level). We use a positional encoding
of λmax for the clean frame. Ho et al. (2022) conversely denoise multiple frames simultaneously,
each at the same noise level.

2. Alike Ho et al. (2020), we modulate each UNet block via FiLM (Dumoulin et al., 2018), but we
use the sum of pose and noise-level positional encodings, as opposed to the noise-level embed-
ding alone. Our pose encoding additionally differs in that they are of the same dimensionality as
frames– they are camera rays, identical to those used by Sajjadi et al. (2021).

3. Instead of attending over “time” after each self-attention layer like Ho et al. (2022), which in
our case would entail only two attention weights, we define a cross-attention layer and let each
frame’s feature maps call this layer to query the other frame’s feature maps.

For more details on our proposed architecture, we refer the reader to the Supplementary Mate-
rial (Sec.6). We also provide a comparison to the “Concat-UNet” architecture in Section 3.2.
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Input View SRN PixelNeRF VisionNeRF 3DiM (ours) Ground Truth

Figure 5: State-of-the-art comparisons – Example input and output views of a 3DiM trained on the
SRN cars dataset at the 128x128 resolution, compared to existing geometry-aware methods. Results
are best appreciated in the Supplementary Website (https://3d-diffusion.github.io/).

SRN cars SRN chairs

PSNR (↑) SSIM (↑) FID (↓) PSNR (↑) SSIM (↑) FID (↓)
Geometry-aware

SRN 22.25 0.88 41.21 22.89 0.89 26.51
PixelNeRF 23.17 0.89 59.24 23.72 0.90 38.49
VisionNeRF 22.88 0.90 21.31 24.48 0.92 10.05
CodeNeRF 23.80 *0.91 – 23.66 *0.90 –

Geometry-free
LFN 22.42 *0.89 – 22.26 *0.90 –
ENR 22.26 – – 22.83 – –
3DiM (ours) 21.01 0.57 8.99 17.05 0.53 6.57

Table 2: State-of-the-art comparisons – Results on the SRN ShapeNet benchmark comparing
3DiMs to prior work on novel view synthesis from a single image. (*) SSIM scores may not nec-
essarily be computed with a Gaussian kernel following Wang et al. (2004) – in practice we observe
this can lead to differences of up to 0.02. We report these marked numbers directly from prior work.

3 EXPERIMENTS

We benchmark 3DiMs on the SRN ShapeNet dataset (Sitzmann et al., 2019) to allow comparisons
with prior work on novel view synthesis from a single image. This dataset consists of views and
poses of car and chair ShapeNet (Chang et al., 2015) assets, rendered at the 128x128 resolution.

We compare 3DiMs with Light Field Networks (LFN) (Sitzmann et al., 2021) and Equivariant
Neural Rendering (ENR) (Dupont et al., 2020), two competitive geometry-free approaches, as
well as geometry-aware approaches including Scene Representation Networks (SRN) (Sitzmann
et al., 2019), PixelNeRF (Yu et al., 2021), CodeNeRF (Jang & Agapito, 2021) and the recent Vi-
sionNeRF (Lin et al., 2022). We include standard metrics in the literature: peak signal-to-noise-
ratio (PSNR), structural similarity (SSIM) (Wang et al., 2004), and the Fréchet Inception Distance
(FID) (Heusel et al., 2017). To remain consistent with prior work, we evaluate over all scenes in the
held-out dataset (each has 251 views), conditioning our models on a single view (view #64) to pro-
duce all other 250 views via a single call to our sampler outlined in Section 2.2, and then report the
average PSNR and SSIM. Importantly, FID scores were computed with this same number of views,
comparing the set of all generated views against the set of all the ground truth views. Because prior
work did not include FID scores, we acquire the evaluation image outputs of SRN, PixelNeRF and
VisionNeRF and compute the scores ourselves. We reproduce PSNR scores, and carefully note that
some of the models do not follow Wang et al. (2004) on their SSIM computation (they use a uniform
rather than Gaussian kernel), so we also recompute SSIM scores following (Wang et al., 2004). For
more details, including hyperparameter choices, see Supplementary Material (Sec.7).

Out-of-distribution poses on SRN chairs. We note that the test split of the SRN ShapeNet chairs
was unintentionally released with out-of-distribution poses compared to the train split: most test
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︸ ︷︷ ︸
OOD input view

︸ ︷︷ ︸
3DiM outputs conditioned on different relative poses

Figure 6: 3DiM samples on OOD synthetic images – We qualitatively demonstrate the text-to-3D
capabilities of 3DiM by synthethizing an input view with Imagen, a text-to-image model, and then
create more views with 3DiM.

views are at a much larger distance to the object than those in the training dataset; we confirmed this
via correspondence with the authors of Sitzmann et al. (2019). Because 3DiMs are geometry-free,
we (unsurprisingly) observe that they do not perform well on this out-of-distribution evaluation task,
as all the poses used at test-time are of scale never seen during training. However, simply merging,
shuffling, and re-splitting the dataset completely fixes the issue. To maintain comparability with
prior work, results on SRN chairs in Table 2 are those on the original dataset, and we denote the
re-split dataset as “SRN chairs*” (note the *) in all subsequent tables to avoid confusion.

State-of-the-art comparisons. While 3DiM does not necessarily achieve superior reconstruction
errors (PSNR and SSIM, see Table 2), qualitatively, we find that the fidelity of our generated videos
can be strikingly better. We include an example in Figure 5. The use of diffusion models allows
us to produce sharp samples, as opposed to regression models that are well-known to be prone to
blurriness (Saharia et al., 2021b) in spite of high PSNR and SSIM scores. This is why we introduce
and evaluate FID scores. In fact, we do not expect to achieve very low reconstruction errors due to
the inherent ambiguity of novel view synthesis with a single image: constructing a consistent object
with the given frame(s) is acceptable, but will still be punished by said reconstruction metrics if it
differs from the ground truth views (even if achieving consistency). We additionally refer the reader
to Section 3.1, where we include simple ablations demonstrating how worse models can improve the
different standardized metrics in the literature. E.g., we show that with regression models, similarly
to the baseline samples, PSNR and SSIM do not capture sharp modes well – they scores these
models as much better despite the samples looking significantly more blurry (with PixelNeRF, which
qualitatively seems the blurriest, achieving the best scores).

Results on out-of-distribution images.. We additionally show qualitative results attempting to lift
single images in the wild (without known poses) into 3D. To this end, we train a 471M parameter
3DiM on all of ShapeNet (except for 10 objects per class which we leave out for testing). This
model has identical parameters to the 3DiM used for SRN cars. However, it differs in that we poses
with relative camera extrinsics (i.e., the camera position and rotation corresponding to the noisy
input frame is always the same) as we do not know the poses of images in the wild. Our qualitative
results on single-image-to-3D generation include:

1. ShapeNet objects held out from the training data
2. Images in the wild we directly took from the internet (with a white background, minimal shadow,

and corresponding to any ShapeNet class)
3. Images synthesized by Imagen (Saharia et al., 2022), a text-to-image diffusion model

In order to make Imagen synthesize objects with white backgrounds and minimal shadows at the
128x128 resolution, in addition to natural language prompting, we inpaint a 5px white border at each
denoising step when generating a 64x64 image, and then upsample it using the second model on the
Imagen cascade, i.e., a text-conditional super-resolution model. We find that this strategy is much
more reliable than only relying on prompt engineering to create images with white backgrounds: this
leads the text-to-image model to make the rest of background consistent with the fully white border,
so the generated image results in an out-of-distribution object while maintaining an in-distribution
background. We present example novel views given a ShapeNet test object in Figure 1, and given
a synthetic image from Imagen in Figure 6. We include several video samples for all the cases
described above in the Supplementary Website (https://3d-diffusion.github.io/).
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SRN cars SRN chairs*

PSNR (↑) SSIM (↑) FID (↓) PSNR (↑) SSIM (↑) FID (↓)
3DiM 21.01 0.57 8.99 14.29 0.48 3.30

+ no stochastic conditioning 23.82 0.59 1.87 15.73 0.51 1.05
+ regression 22.55 0.85 17.45 16.85 0.76 20.70

Table 3: Ablation – study removing stochastic conditioning and diffusion altogether from 3DiM.
Results are included for novel view synthesis from a single image on the SRN ShapeNet benchmark.
(*) Re-split chairs dataset as detailed in Section 3 – not comparable to numbers in Table 2.

Input view 3DiM Image-to-Image Concat-UNet Regression

Figure 7: Ablations – Example input and output views of 3DiM ablations on the SRN chairs dataset
at the 128x128 resolution. The second “Image-to-Image” column corresponds to removing our
stochastic conditioning sampler from Section 2.2. The third “Concat-UNet” column corresponds to
removing our proposed architecture in Section 2.3, resorting to a UNet that concatenates both images
along the channel axis instead of weight sharing over frames. The fourth “Regression” column is
one-step diffusion model trained from scratch.

3.1 ABLATION STUDIES

We now present some ablation studies on 3DiM. First, we remove our proposed sampler and use
a naı̈ve image-to-image model as discussed at the start of Section 2.2. We additionally remove the
use of a diffusion process altogether, i.e., a regression model that generates samples via a single
denoising step. Naturally, the regression models are trained separately, but we can still use an
identical architecture, always feeding white noise for one frame, along with its corresponding noise
level λmin. Results are included in Table 3 and samples are included in Figure 7.

Unsurprisingly, we find that both of these components are crucial to achieve good results. The use
of many diffusion steps allows sampling sharp images that achieve much better (lower) FID scores
than both prior work and the regression models, where in both cases, reconstructions appear blurry.
Notably, the regression models achieve better PSNR and SSIM scores than 3DiM despite the severe
blurriness, suggesting that these standardized metrics fail to meaningfully capture sample quality
for geometry-free models, at least when comparing them to geometry-aware or non-stochastic re-
construction approaches. Similarly, FID also has a failure mode: naı̈ve image-to-image sampling
improves (decreases) FID scores significantly, but severely worsens shape and texture inconsisten-
cies between sampled frames. These findings suggest that none of these standardized metrics are
sufficient to effectively evaluate geometry-free models for view synthesis; nevertheless, we observe
that said metrics do correlate well with sample quality across 3DiMs and can still be useful indicators
for hyperparameter tuning despite their individual failures.
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cars chairs*
PSNR (↑) SSIM (↑) FID (↓) PSNR (↑) SSIM (↑) FID (↓)

Concat-UNet 17.21 0.52 21.54 12.36 0.44 5.15
X-UNet 21.01 0.57 8.99 14.29 0.48 3.30

Table 5: Architecture comparison – study comparing the X-UNet and Concat-UNet neural archi-
tectures. Results are included for novel view synthesis from a single image on the SRN ShapeNet
benchmark, with the re-split chairs as detailed in Section 3. (*) Re-split chairs dataset as detailed in
Section 3 – these numbers are not comparable to those in Table 2.

3.2 UNET ARCHITECTURE COMPARISONS

In order to demonstrate the benefit of our proposed modifications, we additionally compare our
proposed X-UNet architecture from Section 2.3 to the simpler UNet architecture following Saharia
et al. (2021b;a) (which we simply call “Concat-UNet”). The Concat-UNet architecture, unlike ours,
does not share weights across frames; instead, it simply concatenates the conditioning image to the
noisy input image along the channel axis. To do this comparison, we train 3DiMs on the Concat-
UNet architecture with the same number of hidden channels, and keep all other hyperparameters
identical. Because our architecture has the additional cross-attention layer at the coarse-resolution
blocks, our architecture has a slightly larger number of parameters than the Concat-UNet (∼471M
v.s. ∼421M). Results are included in Table 5 and Figure 7.

While the Concat-UNet architecture is able to sample frames that resemble the data distribution,
we find that 3DiMs trained with our proposed X-UNet architecture suffer much less from 3D in-
consistency and alignment to the conditioning frame. Moreover, while the metrics should be taken
with a grain of salt as previously discussed, we find that all the metrics significantly worsen with
the Concat-UNet. We hypothesize that our X-UNet architecture better exploits symmetries between
frames and poses due to our proposed weight-sharing mechanism, and that the cross-attention helps
significantly to align with the content of the conditioning view.

4 EVALUATING 3D CONSISTENCY IN GEOMETRY-FREE VIEW SYNTHESIS

As we demonstrate in Sections 3.1 and 3.2, the standardized metrics in the literature have failure
modes when specifically applied to geometry-free novel view synthesis models, e.g., their inability
to successfully measure 3D consistency, and the possibility of improving them with worse models.
Leveraging the fact that volumetric rendering of colored density fields are 3D-consistent by design,
we thus propose an additional evaluation scheme called “3D consistency scoring”. Our metrics
should satisfy the following desiderata:

1. The metric must penalize outputs that are not 3D consistent.
2. The metric must not penalize outputs that are 3D consistent but deviate from the ground truth.
3. The metric must penalize outputs that do not align with the conditioning view(s).

In order to satisfy the second requirement, we cannot compare output renders to ground-truth views.
Thus, one straightforward way to satisfy all desiderata is to sample many views from the geometry-
free model given a single view, train a NeRF-like neural field (Mildenhall et al., 2020) on a fraction
of these views, and compute a set of metrics that compare neural field renders on the remaining
views. This way, if the geometry-free model outputs inconsistent views, the training of neural field
will be hindered and classical image evaluation metrics should clearly reflect this. Additionally, to
enforce the third requirement, we simply include the conditioning view(s) that were used to generate
the rest as part of the training data. We report PSNR, SSIM and FID on the held-out views, although
one could use other metrics under our proposed evaluation scheme.

We evaluate 3DiMs on the SRN benchmark, and for comparison, we additionally include metrics for
models trained on (1) the real test views and (2) on image-to-image samples from the 3DiMs, i.e.,
without our proposed sampler like we reported in Section 3. To maintain comparability, we sample
the same number of views from the different 3DiMs we evaluate in this section, all at the same poses
and conditioned on the same single views. We leave out 10% of the test views (25 out of 251) from
neural field training, picking 25 random indices once and maintaining this choice of indices for all
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Training view source SRN cars SRN chairs*
PSNR (↑) SSIM (↑) FID (↓) PSNR (↑) SSIM (↑) FID (↓)

Original data (3D consistent) 28.21 0.96 10.57 24.87 0.93 17.05
3DiM (∼1.3B params) 28.48 0.96 29.55 22.90 0.86 58.61
3DiM (∼471M params) 28.53 0.96 22.09 18.84 0.79 98.78

+ no stochastic conditioning 25.78 0.94 30.51 17.61 0.75 116.16

Table 6: 3D consistency scores – For neural fields trained with different view sources, we compare
renders to held-out views from the same sources.

subsequent evaluations. We also train models with more parameters (∼1.3B) in order to investi-
gate whether increasing model capacity can further improve 3D consistency. See Supplementary
Material (Sec.7) for more details on the neural fields we chose and their hyperparameters.

We find that our proposed evaluation scheme clearly punishes 3D inconsistency as desired – the
neural fields trained on image-to-image 3DiM samples have worse scores across all metrics com-
pared to neural fields trained on 3DiM outputs sampled via our stochastic conditioning. This helps
quantify the value of our proposed sampler, and also prevents the metrics from punishing reasonable
outputs that are coherent with the input view(s) but do not match the target views – a desirable prop-
erty due to the stochasticity of generative models. Moreover, we qualitatively find that the smaller
model reported in the rest of the paper is comparable in quality to the ∼1.3B parameter model on
cars, though on chairs, we do observe a significant improvement on 3D consistency in our samples.
Importantly, 3D consistency scoring agrees with our qualitative observations.

5 CONCLUSION AND FUTURE WORK

We propose 3DiM, a diffusion model for 3D novel view synthesis. Combining improvements in our
X-UNet neural architecture (Section 2.3), with our novel stochastic conditioning sampling strategy
that enables autoregressive generation over frames (Section 2.2), we show that from as few as a
single image we can generate approximately 3D consistent views with very sharp sample quality.
We additionally introduce 3D consistency scoring to evaluate the 3D consistency of geometry-free
generative models by training neural fields on model output views, as their performance will be
hindered increasingly with inconsistent training data (Section 4). We thus show, both quantitatively
and visually, that 3DiMs with stochastic conditioning can achieve approximate 3D consistency and
high sample quality simultaneously, and how classical metrics fail to capture both sharp modes and
3D inconsistency.

A noteworthy limitation of 3DiM is that, due to the geometry-free setup, it can only handle distri-
butions of poses that it is exposed to durining training. In particular, further study is required where
more variations to the poses are introduced. For example, varying focal lengths, sensor widths,
making the camera not look exactly at the objects, and varying the distances from the camera to the
objects more aggressively. Our use of stochastic conditioning might also exacerbate the need for
many denoising steps. While we believe that finding effective architectures that allow conditioning
on sets of images remains an important open problem, stochastic conditioning unlocks the ability
to train on examples that only have two views and helps overcome memory-intensive neural archi-
tectures. Similar approaches using randomized, sparse conditioning are already being explored in
follow-up work on video generation (Davtyan et al., 2022) in order to enable efficient training when
modeling the joint distribution is computationally prohibitive.

We are most excited about the possibility of applying 3DiM, which can model entire datasets with
a single model, to the largest 3D datasets from the real world – though more research is required to
handle noisy poses (due to the need for pose estimation) and other challenges present in this context.
Developing end-to-end approaches for high-quality generation that are 3D consistent by design like
more recent work (Müller et al., 2022) and that also yield high-quality 3D meshes remain important
research problems. Another potentially significant application of 3DiM is its use as a prior in order
to achieve 3D consistent generation via approaches that operate exclusively at sampling time (Poole
et al., 2022; Zhou & Tulsiani, 2022; Xu et al., 2022) in order to enable wide adoption of similar,
disruptive technologies on the 3D design industry.
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Novel View Synthesis with Diffusion Models
Supplementary Material

6 ARCHITECTURE DETAILS

In order to maximize the reproducibility of our results, we provide code in JAX (Bradbury et al.,
2018) for our proposed X-UNet neural architecture from Section 2.3. Assuming we have an input
batch with elements each containing

{
"z", # noisy input image (HxWx3 tensor)
"x", # conditioning view (HxWx3 tensor)
"logsnr", # log signal-to-noise ratio of noisy image (scalar)
"t", # camera positions (two 3d vectors)
"R", # camera rotations (two 3x3 matrices)
"K", # camera intrinsics (a.k.a. calibration matrix) (3x3 matrix)

}

our neural network module is as follows:

from typing import Optional

import flax.linen as nn
import jax.numpy as jnp
import numpy as onp
import visu3d as v3d

nonlinearity = nn.swish

def out_init_scale():
"""Zeros initializer."""
return nn.initializers.variance_scaling(0.0, 'fan_in', 'truncated_normal')

def nearest_neighbor_upsample(h: jnp.ndarray):
"""Nearest neighbor upsampling for multiple frames."""
B, F, H, W, C = h.shape
h = h.reshape(B, F, H, 1, W, 1, C)
h = jnp.broadcast_to(h, (B, F, H, 2, W, 2, C))
return h.reshape(B, F, H * 2, W * 2, C)

def avgpool_downsample(h: jnp.ndarray, k: int = 2):
"""Average pooling downsampling for multiple frames."""
return nn.avg_pool(h, (1, k, k), (1, k, k))

def posenc_ddpm(timesteps: jnp.ndarray, emb_ch: int, max_time: int = 1000.0):
"""Positional encodings for noise levels, following DDPM."""
# 1000 is the magic number from DDPM. With different timesteps, we
# normalize by the number of steps but still multiply by 1000.
timesteps *= 1000.0 / max_time
half_dim = emb_ch // 2
# 10000 is the magic number from transformers.
emb = onp.log(10000) / (half_dim - 1)
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emb = jnp.exp(jnp.arange(half_dim, dtype=timesteps.dtype) * -emb)
emb = emb.reshape(*([1] * (timesteps.ndim - 1)), emb.shape[-1])
emb = timesteps[..., None] * emb
emb = jnp.concatenate([jnp.sin(emb), jnp.cos(emb)], axis=-1)
return emb

def posenc_nerf(x: jnp.ndarray, min_deg: int = 0, max_deg: int = 15):
"""Concatenate x and its positional encodings, following NeRF."""
if min_deg == max_deg:

return x
scales = jnp.array([2**i for i in range(min_deg, max_deg)])
xb = jnp.reshape(

(x[..., None, :] * scales[:, None]), list(x.shape[:-1]) + [-1]
)
emb = jnp.sin(jnp.concatenate([xb, xb + onp.pi / 2.0], axis=-1))
return jnp.concatenate([x, emb], axis=-1)

class GroupNorm(nn.Module):
"""Group normalization, applied over frames."""

@nn.compact
def __call__(self, h: jnp.ndarray):

B, _, H, W, C = h.shape
h = nn.GroupNorm(num_groups=32)(h.reshape(B * 2, 2, H, W, C))
return h.reshape(B, 2, H, W, C)

class FiLM(nn.Module):
"""Feature-wise linear modulation."""

features: int

@nn.compact
def __call__(self, h: jnp.ndarray, emb: jnp.ndarray):

emb = nn.Dense(2 * self.features)(nonlinearity(emb))
scale, shift = jnp.split(emb, 2, axis=-1)
return h * (1.0 + scale) + shift

class ResnetBlock(nn.Module):
"""BigGAN-style residual block, applied over frames."""

features: Optional[int] = None
dropout: float = 0.0
resample: Optional[str] = None

@nn.compact
def __call__(self, h_in: jnp.ndarray, emb: jnp.ndarray, *, train: bool):
_, _, _, _, C = h_in.shape
features = C if self.features is None else self.features

h = nonlinearity(GroupNorm()(h_in))
if self.resample is not None:
updown = {

'up': nearest_neighbor_upsample,
'down': avgpool_downsample,

}[self.resample]
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h = updown(h)
h_in = updown(h_in)

h = nn.Conv(features, kernel_size=(1, 3, 3), strides=(1, 1, 1))(h)
h = FiLM(features=features)(GroupNorm()(h), emb)
h = nonlinearity(h)
h = nn.Dropout(rate=self.dropout)(h, deterministic=not train)
h = nn.Conv(

features,
kernel_size=(1, 3, 3),
strides=(1, 1, 1),
kernel_init=out_init_scale(),

)(h)

if C != features:
h_in = nn.Dense(features)(h_in)

return (h + h_in) / onp.sqrt(2)

class AttnLayer(nn.Module):
"""Attention layer usable for self and cross attention."""

attn_heads: int = 4

@nn.compact
def __call__(self, *, q: jnp.ndarray, kv: jnp.ndarray):

C = q.shape[-1]
head_dim = C // self.attn_heads
q = nn.DenseGeneral((self.attn_heads, head_dim))(q)
k = nn.DenseGeneral((self.attn_heads, head_dim))(kv)
v = nn.DenseGeneral((self.attn_heads, head_dim))(kv)
return nn.dot_product_attention(q, k, v)

class AttnBlock(nn.Module):
"""Attention block with skip connection."""

attn_type: str
attn_heads: int = 4

@nn.compact
def __call__(self, h_in: jnp.ndarray):

B, _, H, W, C = h_in.shape

h = GroupNorm()(h_in)
h0 = h[:, 0].reshape(B, H * W, C)
h1 = h[:, 1].reshape(B, H * W, C)
attn_layer = AttnLayer(attn_heads=self.attn_heads)

if self.attn_type == 'self':
h0 = attn_layer(q=h0, kv=h0)
h1 = attn_layer(q=h1, kv=h1)

elif self.attn_type == 'cross':
h0 = attn_layer(q=h0, kv=h1)
h1 = attn_layer(q=h1, kv=h0)

else:
raise NotImplementedError(self.attn_type)

h = jnp.stack([h0, h1], axis=1)
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h = h.reshape(B, 2, H, W, -1)
h = nn.DenseGeneral(C, axis=(-2, -1), kernel_init=out_init_scale())(h)
return (h + h_in) / onp.sqrt(2)

class XUNetBlock(nn.Module):
"""X-UNet block."""

features: int
use_attn: bool = False
attn_heads: int = 4
dropout: float = 0.0

@nn.compact
def __call__(self, x: jnp.ndarray, emb: jnp.ndarray, *, train: bool):

h = ResnetBlock(features=self.features, dropout=self.dropout)(
x, emb, train=train

)

if self.use_attn:
h = AttnBlock(attn_type='self', attn_heads=self.attn_heads)(h)
h = AttnBlock(attn_type='cross', attn_heads=self.attn_heads)(h)

return h

class ConditioningProcessor(nn.Module):
"""Process conditioning inputs into embeddings."""

emb_ch: int
num_resolutions: int
use_pos_emb: bool = True
use_ref_pose_emb: bool = True

@nn.compact
def __call__(self, batch: dict[str, jnp.ndarray], cond_mask: jnp.ndarray):

B, H, W, _ = batch['x'].shape

# Log signal-to-noise-ratio embedding.
logsnr = jnp.clip(batch['logsnr'], -20.0, 20.0)
logsnr = 2.0 * jnp.arctan(jnp.exp(-logsnr / 2.0)) / onp.pi
logsnr_emb = posenc_ddpm(logsnr, emb_ch=self.emb_ch, max_time=1.0)
logsnr_emb = nn.Dense(self.emb_ch)(logsnr_emb)
logsnr_emb = nn.Dense(self.emb_ch)(nonlinearity(logsnr_emb))

# Pose embeddings.
world_from_cam = v3d.Transform(R=batch['R'], t=batch['t'])
cam_spec = v3d.PinholeCamera(resolution=(H, W), K=batch['K'])
rays = v3d.Camera(spec=cam_spec, world_from_cam=world_from_cam).rays()

pose_emb_pos = posenc_nerf(rays.pos, min_deg=0, max_deg=15)
pose_emb_dir = posenc_nerf(rays.dir, min_deg=0, max_deg=8)
pose_emb = jnp.concatenate([pose_emb_pos, pose_emb_dir], axis=-1)

# Enable classifier-free guidance over poses.
D = pose_emb.shape[-1]
assert cond_mask.shape == (B,)
cond_mask = cond_mask[:, None, None, None, None]
pose_emb = jnp.where(cond_mask, pose_emb, jnp.zeros_like(pose_emb))
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# Learnable position embeddings over (H, W) of frames (optional).
if self.use_pos_emb:

pos_emb = self.param(
'pos_emb',
nn.initializers.normal(stddev=1.0 / onp.sqrt(D)),
(H, W, D),
pose_emb.dtype,

)
pose_emb += pos_emb[None, None]

# Binary embedding to let the model distinguish frames (optional).
if self.use_ref_pose_emb:

first_emb = self.param(
'ref_pose_emb_first',
nn.initializers.normal(stddev=1.0 / onp.sqrt(D)),
(D,),
pose_emb.dtype,

)[None, None, None, None]

other_emb = self.param(
'ref_pose_emb_other',
nn.initializers.normal(stddev=1.0 / onp.sqrt(D)),
(D,),
pose_emb.dtype,

)[None, None, None, None]

pose_emb += jnp.concatenate([first_emb, other_emb], axis=1)

# Downsample ray embeddings for each UNet resolution.
pose_embs = []
for i_level in range(self.num_resolutions):
pose_embs.append(

nn.Conv(
features=self.emb_ch,
kernel_size=(1, 3, 3),
strides=(1, 2**i_level, 2**i_level),

)(pose_emb)
)

return logsnr_emb, pose_embs

class XUNet(nn.Module):
"""Our proposed XUNet architecture."""

ch: int = 256
ch_mult: tuple[int] = (1, 2, 2, 4)
emb_ch: int = 1024
num_res_blocks: int = 3
attn_resolutions: tuple[int] = (8, 16, 32)
attn_heads: int = 4
dropout: float = 0.1
use_pos_emb: bool = True
use_ref_pose_emb: bool = True

@nn.compact
def __call__(

self,
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batch: dict[str, jnp.ndarray],
*,
cond_mask: jnp.ndarray,
train: bool,

):
_, _, _, C = batch['x'].shape
num_resolutions = len(self.ch_mult)

logsnr_emb, pose_embs = ConditioningProcessor(
emb_ch=self.emb_ch,
num_resolutions=num_resolutions,
use_pos_emb=self.use_pos_emb,
use_ref_pose_emb=self.use_ref_pose_emb,

)(batch, cond_mask)
del cond_mask

h = jnp.stack([batch['x'], batch['z']], axis=1)
h = nn.Conv(self.ch, kernel_size=(1, 3, 3), strides=(1, 1, 1))(h)

# Downsampling.
hs = [h]
for i_level in self.ch_mult:
emb = logsnr_emb[..., None, None, :] + pose_embs[i_level]

for _ in range(self.num_res_blocks):
use_attn = h.shape[2] in self.attn_resolutions
h = XUNetBlock(

features=self.ch * self.ch_mult[i_level],
dropout=self.dropout,
attn_heads=self.attn_heads,
use_attn=use_attn,

)(h, emb, train=train)
hs.append(h)

if i_level != num_resolutions - 1:
emb = logsnr_emb[..., None, None, :] + pose_embs[i_level + 1]
h = ResnetBlock(dropout=self.dropout, resample='down')(

h, emb, train=train
)
hs.append(h)

# Middle.
emb = logsnr_emb[..., None, None, :] + pose_embs[-1]
use_attn = h.shape[2] in self.attn_resolutions
h = XUNetBlock(

features=self.ch * self.ch_mult[i_level],
dropout=self.dropout,
attn_heads=self.attn_heads,
use_attn=use_attn,

)(h, emb, train=train)

# Upsampling.
for i_level in reversed(range(num_resolutions)):

emb = logsnr_emb[..., None, None, :] + pose_embs[i_level]

for _ in range(self.num_res_blocks + 1):
use_attn = hs[-1].shape[2] in self.attn_resolutions
h = jnp.concatenate([h, hs.pop()], axis=-1)
h = XUNetBlock(
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features=self.ch * self.ch_mult[i_level],
dropout=self.dropout,
attn_heads=self.attn_heads,
use_attn=use_attn,

)(h, emb, train=train)

if i_level != 0:
emb = logsnr_emb[..., None, None, :] + pose_embs[i_level]
h = ResnetBlock(dropout=self.dropout, resample='up')(

h, emb, train=train
)

# End.
assert not hs
h = nonlinearity(GroupNorm()(h))
return nn.Conv(

C,
kernel_size=(1, 3, 3),
strides=(1, 1, 1),
kernel_init=out_init_scale(),

)(h)[:, 1]
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7 HYPERPARAMETERS

We now detail hyperparameter choices across our experiments. These include choices specific to
the neural architecture, the training procedure, and also choices only relevant during inference.

7.1 NEURAL ARCHITECTURE

For our neural architecture, our main experiments use ch=256 (∼471M params), and we also
experiment with ch=448 (∼1.3B params) in Section 4. One of our early findings that we kept
throughout all experiments in the paper is that ch_mult=(1, 2, 2, 4) (i.e., setting the lowest
UNet resolution to 8x8) was sufficient to achieve good sample quality, wheras most prior work
includes UNet resolutions up to 4x4. We sweeped over the rest of the hyperparameters with the
input and target views downsampled from their original 128x128 resolution to the 32x32, selecting
values that led to the best qualitative improvements. These values are the default values present in the
code we provide for the XUNet module in Section 6. We generally find that the best hyperparameter
choices at low-resolution experiments transfer well when applied to the higher resolutions, and thus
recommend this strategy for cheaper and more practical hyperparameter tuning.

For the ∼1.3B parameter models, we tried increasing the number of parameters of our proposed
UNet architecture through several different ways: increasing the number of blocks per resolution,
the number of attention heads, the number of cross-attention layers per block, and the base number
of hidden channels. Among all of these, we only found the last to provide noticeably better sample
quality. We thus run 3D consistency scoring for models scaled this way, with channel sizes per
UNet resolution of 448× [1, 2, 2, 4] instead of 256× [1, 2, 2, 4] (we could not fit ch=512 in TPUv4
memory without model parallelism). On cars, we find that the smaller model reported in the rest of
the paper is comparable in quality to the ∼1.3B parameter model, though on chairs, we do observe
a significant improvement on 3D consistency, both visually and quantitatively (see Table 6).

7.2 TRAINING

Following Equation 3 in the paper, our neural network attempts to model the noise ε added to a
real image in order to undo it given the noisy image. Other parameterizations are possible, e.g.,
predicting x directly rather than predicting ε, though we did not sweep over these choices. For our
noise schedule, we use a cosine-shaped log signal to noise ratio that monotonically decreases from
20 to -20. It can be implemented in JAX as follows:

def logsnr_schedule_cosine(t, *, logsnr_min=-20., logsnr_max=20.):
b = onp.arctan(onp.exp(-.5 * logsnr_max))
a = onp.arctan(onp.exp(-.5 * logsnr_min)) - b
return -2. * jnp.log(jnp.tan(a * t + b))

Additionally:

• We use a learning rate with peak value 0.0001, using linear warmup for the first 10 million exam-
ples (where one batch has batch_size examples), following Karras et al. (2022).

• We use a global batch size of 128.
• We train each batch element as an unconditional example 10% of the time to enable classifier-free

guidance. This is done by overriding the conditioning frame to be at the maximum noise level.
We note other options are possible (e.g., zeroing-out the conditioning frame), but we chose the
option which is most compatible with our neural architecture.

• We use the Adam optimizer (Kingma & Ba, 2014) with β1 = 0.9 and β2 = 0.99.
• We use EMA decay for the model parameters, with a half life of 500K examples (where one batch

has batch_size examples) following Karras et al. (2022).

7.3 SAMPLING

While Ho et al. (2020) note that their ancestral sampler can be used with any variances between
β̃t (variances of q(zs|zt,x)) and βt (variances of the underlying SDE), we simply use the former
as those correspond to their ancestral sampler. We do not observe this choice to have a significant
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effect sample quality. All our samples are generated with 256 denoising steps. As is standard in the
literature, we also clip each predicted x at each denoising step to the normalized range of the images
[−1, 1].

Classifier-free guidance. Our models use classifier-free guidance (Ho & Salimans, 2021), as we
find that small guidance weights help encourage 3D consistency further. All our models were trained
unconditionally with a probability of 10% for each minibatch element. For unconditional examples,
we zero out the (positionally encoded) pose and replace the clean frame with standard Gaussian
noise (leveraging our weight-sharing architecture, see Section 2.3). We swept over various guidance
weights, and simply picked those where 3D inconsistency was qualitatively least apparent on sam-
pled videos. For SRN cars, we use a guidance weight of 3.0, while for SRN chairs we use a weight
of 2.0.

7.4 3D CONSISTENCY SCORING

Note that traditional NeRFs (Mildenhall et al., 2020) can be 3D inconsistent as the model allows
for view-dependent radiance. We thus employ a simpler and faster to train version based on instant-
NGP (Müller et al., 2022) without view dependent components, and with additional distortion and
orientation loss terms for improved convergence (Barron et al., 2022; Verbin et al., 2022). Note
that the specific implementation details of the neural field method chosen will affect the metrics
considerably, so it is of utmost importance to apply the same method and hyperparameters for the
neural fields to make 3D consistency scores comparable across models.

We design the neural fields as simple Multi-Layer Perceptrons (MLPs) of hidden size 64 and no
skip connections. The density MLP has one hidden layer, while the MLP that predicts the color
components uses 2 hidden layers. We use a learning rate of 0.01 linearly decayed to 0.001 for the
first 100 steps. We use the Adam optimizer with weight decay set to 0.1 and clip gradients of norm
exceeding 1.0. We only apply 1000 training steps for each scene and do not optimize camera poses.
On each training step, we simply optimize over all available pixels, rather than sampling a random
subset of pixels from all the training views.

To render the neural fields after training, we set near and far bounds to tn = 3rmin
8 , tf = 3rmax

2 ,
where rmin, rmax are the minimum and maximum distances from the camera positions to the origin
(center of each object) in the corresponding dataset. All renders post-training are also performed
with differentiable volume rendering.
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