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ABSTRACT

Directed acyclic graphs (DAGs) are often assumed in causal discovery, however,
accurately identifying these DAGs necessitates various assumptions, particularly
in latent causal models, which can be challenging to validate in real-world appli-
cations. This raises a critical question: Are DAG assumptions truly necessary for
certain applications? In this work, we introduce a novel latent partial causal model
for multimodal data, which features two latent coupled variables, connected by
an undirected edge, effectively representing transferable knowledge across differ-
ent modalities. We focus on a prominent learning framework, e.g., multimodal
contrastive learning, and demonstrate that, with certain statistical assumptions,
multimodal contrastive learning successfully identifies the latent coupled variables
up to trivial transformation. This finding enhances our understanding of the mecha-
nisms driving the success of multimodal contrastive learning. Furthermore, this
finding reveals a unique potential for disentanglement in multimodal contrastive
representation learning, improving the utility of pre-trained models like CLIP that
are trained using this approach. Through experiments with synthetic data, we
demonstrate the robustness of our findings, even in the presence of violated as-
sumptions. In addition, we validate the disentanglement capabilities of pre-trained
CLIP in learning disentangled representations, facilitating few-shot learning and
improving domain generalization across a diverse range of real-world datasets.

1 INTRODUCTION

The assumption of directed acyclic graphs (DAGs) in causality generally serves as a foundational
principle that simplifies the representation and analysis of causal relationships, enhancing our
understanding and estimation of causal effects across various domains (Pearl} |2000; Spirtes et al.|
2001). To identify such DAGs, several assumptions are necessary to enforce the asymmetry between
cause and effect nodes, as a result, making it possible to determine a unique causal direction.
Typically, for causal discovery in observed space, these include constraints on the function class,
such as the linear non-Gaussian assumption (Shimizu et al.||2006) or additive noise models (Hoyer
et al., 2008; |Peters et al., | 2014). However, given the unknown and complex nature of real-world
applications, it is challenging to justify these restricted function classes. This challenge is especially
pronounced in latent space, such as in causal representation learning (Scholkopf et al., [2021), one of
the most prominent subfields of causality. It seeks to uncover high-level latent causal variables and
their corresponding DAGs using only observational data. To identify causal representations and the
associated DAGs, most existing works require sufficient changes in the latent causal variables to ensure
data availability resulting from interventions on all latent variables (Brehmer et al., 2022} Buchholz
et al., [2023; |Varici et al., [2023; |Ahuja et al., 2023} Seigal et al., 2022; Liu et al., [2022; [2024bja).
However, acquiring such interventional data with sufficient changes can be quite challenging. This
raises a natural question: Are DAG assumptions truly necessary for certain applications?

To address the question mentioned above, we focus on the multimodal data generative process, as
it is in general difficult to determine, at first glance, which modality, such as text or image, serves
as the cause and which as the effect. To formulate the causal generative process, we adopt a causal
representation learning perspective by focusing on high-level latent causal factors, rather than low-
level observed data such as image pixels or text words. Specifically, we propose a novel latent partial
causal model for the generative process of multimodal data, as illustrated in Figure E Rather than
relying on the traditional DAG assumption, this framework introduce a couple of latent variables (i.e.,
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latent coupled variables), connected by an undirected edge. This structure provides greater flexibility
for modeling transferable knowledge across modalities, as it allows for multiple possibilities, as
illustrated in depicted by Figure 2. For instance, it can adapt to models by enforcing an identical
mapping on the undirected edge between the latent coupled variables, or it can accommodate a
latent confounder influencing both coupled variables. Additionally, the proposed model incorporates
modality-specific latent variables to capture unique information within each modality and employs
distinct mappings from the latent space to the observed space to generate data for different modalities.

Given the proposed latent coupled model to model generative process, we analyze it within the widely-
used multimodal contrastive learning (e.g., inference) paradigm (Zhang et al.,[2022bj Radford et al.|
2021), which has demonstrated significant potential across various downstream tasks. Specifically,
we parameterize the proposed latent causal generative model according to two distinct types of
latent spaces: hypersphere and convex bodies, respectively. Our analysis show that multimodal
contrastive learning can identify latent coupled variables up to a trivial linear transformation in
hypersphere space, and up to permutation transformation in convex bodies, respectively. These
results demonstrate that the learned representations by multimodal contrastive learning capture
essential latent coupled variables within the data, while suppressing irrelevant variant part, e.g.,
modality-specific latent variables. Consequently, our theoretical findings provide a solid foundation
for the success of multimodal contrastive learning. Beyond understanding the success of multimodal
contrastive learning, our theoretical results also unlock their disentanglement potential. Importantly,
the emergence of the disentanglement ability holds significant potential for promoting the utilization
of pre-trained models, such as CLIP (Radford et al., 2021), trained by multimodal contrastive
learning. guided by the identifiability result in hypersphere space that indicates the existence of a
linear transformation, we can leverage linear independent component analysis (ICA) (Hyvéarinen
et al., 2001)) to unlock the benefits of CLIP-like models across various downstream tasks, including
but not limited to: learning disentangled representations, enhancing few-shot learning, and improving
domain generalization. We validate our theoretical findings under ideal conditions and demonstrate
their robustness even with partial violations of assumptions. Experiments on real datasets show that
coupling with ICA effectively enhances the potential of pre-trained CLIP-based methods for various
downstream tasks.

In summary, our contributions are as follows:

* We propose a novel latent partial causal model for the generative process, specifically de-
signed for multimodal data. Instead of DAGs, our model introduces latent coupled variables,
connected by undirected edges, to capture transferable knowledge across modalities.

* Our analysis shows that multimodal contrastive learning can identify latent coupled variables
within the proposed model, providing a solid foundation for its success.

* Beyond explaining the success of multimodal contrastive learning, to the best of our knowl-
edge, this is the first work to provide guarantee for the potential for disentanglement, pushing
the boundaries of how pre-trained models, e.g., CLIP, can be utilized (Radford et al., 2021).

* We validate our theoretical findings under ideal conditions and demonstrate their robustness
even when some assumptions are partially violated. Extensive experiments across various
tasks, including few-shot learning, domain generalization, and disentangled representation
learning on over 16 real-world datasets, support the effectiveness of latent coupled models.

2 RELATED WORK

Multimodal contrastive representation learning Multi-modal contrastive representation learning,
driven by underlying transferable knowledge across modalities, aims to coalesce inputs from these
diverse sources into a cohesive representation space. This is typically achieved using a symmetric
version of the standard contrastive loss (Oord et al.,|2018; |(Gutmann and Hyvérinen, |2010), a method
designed to align accurate pairings while distinguishing incorrect ones (He and Peng|[2017; Radford
et al.,[2021). Although this approach has proven successful in a range of downstream tasks (Radford
et al.,2021; Zhou et al., 2022a;b; |Liiddecke and Ecker, 2022; Ban and Dong, 2022), there remains a
gap in our comprehensive theoretical and empirical understanding of the representations it learns.
Recently, there has been a growing interest in exploring multi-modal contrastive learning from various
perspectives. For instance, the study by [Liang et al.|(2022) provides insights into the modality gap
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inherent in multi-modal contrastive learning. Similarly, the research presented by Nakada et al.|(2023)
establishes a link between general multimodal contrastive loss and SVD analysis. Additionally,
Huang et al. (2021) posits that learning with multiple modalities can lead to a reduced population risk
compared to using a subset of these modalities. Diverging from these approaches, our work delves
into multi-modal contrastive representation learning by examining its connection with generative
models.

Past research has sought to comprehend the representations derived from standard single-modality
contrastive learning, examining them through the lens of alignment and uniformity (Wang and Isola|
2020), showing guarantees on the performance of the learned representations on the average classifi-
cation task (Saunshi et al.;|2019), or in terms of the identifiability of latent variables (Zimmermann
et al.,|2021; Von Kiigelgen et al., |2021). Building on these foundations, our work takes a foreword
step. We demonstrate that multi-modal contrastive learning can identify latent coupled variables,
extending the insights from previous studies into the realm of multi-modality.

Very recently, several studies have emerged, focusing on multi-modal settings (Daunhawer et al.,[2023;
Yao et al.||2023). A clear distinction is that: the proposed model captures transferable knowledge
across modalities by an undirected edge between latent coupled variables, while previous works often
achieve it by introducing shared variables (Daunhawer et al.,[2023;Yao et al.,2023). Notably, our
modeling approach is more general, as it can be reduced to the shared variables used in previous
works (Daunhawer et al., 2023} |Yao et al.,[2023) by enforcing an identical mapping on the undirected
edge between latent coupled variables. Some of these works have only achieved partial identifiability
of coupled variables (Daunhawer et al., 2023} Yao et al.| [2023), specifically identifying latent content
variables but not latent style variables. In contrast, our work achieves comprehensive identifiability
results for all latent coupled variables, offering a deeper level of understanding. Our research also
diverges from the approach taken in (Gresele et al.| (2020) in two key ways: Firstly, we model
ransferable knowledge across modalities using conditional distributions, whereas the latter utilizes
identical variables for this purpose. Secondly, while |Gresele et al.| (2020) relies on the premise that
the mapping from the latent space to observations must be constrained by component-wise corrupters
to ensure identifiability, our findings do not necessitate such constraints.

Nonlinear ICA Nonlinear Independent Component Analysis (ICA) aims to unravel latent indepen-
dent variables from observational data that has been subject to a nonlinear mixture of these latent
factors. However, as pointed out in the seminal work by Hyvérinen and Pajunen| (1999), solving this
problem is generally infeasible without specific underlying assumptions. A prominent direction in
contemporary research leverages the concept of distributional changes in latent variables, which leads
to the creation of multi-domain observational data. This approach has been extensively explored and
developed in a series of studies (Hyvarinen and Morioka| |[2016;2017; |Hyvarinen et al., 2019; |Khe-
makhem et al.|[2020), each contributing to a deeper understanding and more refined methodologies
in the field of Nonlinear ICA. We build upon this body of research by incorporating co-occurrence
patterns observed across multiple modalities. It is important to note the distinct difference between
multi-domain and multi-modal approaches. The former typically implies a consistent mapping from
the latent space to the observational space across all domains, whereas the latter accommodates
different mappings for each modality. Additionally, while multi-domain approaches generally assume
a totally shared latent variables across all domains, multi-modal methods allow for the existence of
modality-specific latent variables.

3 THE PROPOSED LATENT PARTIAL CAUSAL MODELS AND INTUITION

In this section, we introduce a novel latent partial causal model to represent the generative process
for multimodal data. Unlike traditional DAG assumptions, our model allows for an undirected edge
between two variables to capture transferable knowledge across modalities as depicted by Figure
[Tl This undirected structure allows for the representation of multiple DAG assumptions as depicted
by Figure [2, enhancing flexibility in modeling transferable knowledge. Consequently, it enables
the extraction of common knowledge that summarizes the underlying principles behind various
DAG assumptions. Building on this, we offer preliminary insights within the multimodal contrastive
learning framework, demonstrating that it provides two fundamental factors for solving inverse
problems: prior matching and information preservation.
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3.1 THE PROPOSED LATENT PARTIAL CAUSAL MODELS

Figure I illustrates the proposed latent partial causal
model. In this model, the whole latent space is par-

titioned into two parts, each representing a different ! N & )
modality, e.g., image and text. More specifically, to \ / \ /
model transferable knowledge across modalities, an 2L AL
undirected edge is established between latent coupled

variables, z,, and z,. The rationale behind this modeling

approach is grounded in the recognition that real-world Figure 1: The proposed latent partial causal
multimodal data is often complex, noisy, and multi- model, where z, and z; denote latent cou-
faceted. On one hand, the assertion ‘a picture is worth pled variables, and m, and m; denote
a thousand words’ is well-supported in literature (Grop] modality-specific latent variables. The ob-
perl, [1963; [Hum et al., 2011), emphasizing the rich servations x (e.g., images) and t (e.g., text)
detail and information that images can convey com- are generated by two distinct generative pro-
pared to text. Conversely, this notion is not universally ~cesses, respectively.

applicable as argued by Reinert|(1976), which suggests

that sometimes textual information can be more informative than visual data. This perspective is
further echoed by Fidler et al. (2013) in their assertion that ‘a sentence is worth a thousand pixels’,
highlighting the potential of text in conveying complex ideas succinctly. In addition, we introduce m,,
and m; modality-specific latent variables, each tailored to capture the unique characteristics of their
respective domains. For example, m, could encode information focusing on aspects like the presence
of background noise or other visual artifacts that contribute to the overall composition of an image.
On the other hand, m, could encode information about sentence structure or linguistic patterns that
are characteristic of the grammar in textual content. Finally, the observations are associated with
two distinct generative processes. Specifically, x (e.g., images) are generated through the process
g.(m,, z,), while observation t (e.g., text) come into existence through the process g;(m;, z).

\xu—‘(:o—»ZIw ) z<—.b~—zt m,) wz—>b—>\t}

\/ ” \/ \/ \/ \/ \/

Figure 2: Illustrative DAGs behind the proposed partial causal model. From left to right, a latent
confounder influences both z, and z;. In the second structure, z; leads to an intermediate mediator
node b, which in turn influences z,. Here, mediator b plays a bottleneck role in determining
transferable knowledge. The inverse relationship is illustrated symmetrically in the right DAG.

Possible DAGs Behind the Proposed Model Figure |2 depicts potential DAGs underlying the
proposed latent coupled models. Note that this representation does not cover all possible DAG
configurations. For the left DAG in Figure 2} the latent confounder ¢ could be understood as a hidden
variable that influences both z, and z;, In other words, c is a shared source of variation between
two modalities. This confounder could represent some underlying concept or context that ties the
image and text together. For instance, if both the image and text are about "sports," the confounder
might capture the general topic of sports. For the middle DAG, In this context, b could represent
the transferable knowledge between the two modalities (e.g., text and image). It may capture a more
general or abstract concept that is derived from the latent variables z; and is used to inform the image
latent space z,. Moreover, considering z; as a ancestor node of z, is illustrated in the context of
text-to-image retrieval generalization. In this scenario, the text query z; determines the features of
the images, e.g., z,.. For the right subfigure, it can be conceptualized as an image captioning task.
In this context, z, represents the latent features of the image, while z; corresponds to the latent
representation of the generated caption. Here, again, b serves as the bridge between the visual and
textual modalities, encapsulating the transferable knowledge necessary to accurately convey the
image’s content in words.

In general, when considering the assumptions of any of these DAGs mentioned above, we often
require various additional assumptions to fully identify the latent variables and their corresponding
structures. For instance, many existing assumptions dictate that all latent variables must exhibit
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sufficient variability, related to interventional data (Brehmer et al.,|2022; Buchholz et al.| [2023} Varici
et al., 2023;|Ahuja et al.| 2023} Seigal et al.||2022; |[Liu et al., 2022;[2024bza). However, validating
this approach in real-world applications can be quite challenging. Acquiring such diverse data from
different environments presents significant difficulties. Given this, we do not focus on the traditional
problem setting in causal representation learning, which often assumes a directed acyclic graph (DAG)
structure. Instead, we turn our attention to investigating the question: Can we derive advantages from
non-DAG assumptions for certain applications, such as the proposed latent partial causal models?

3.2 INTUITION: PRIOR MATCHING AND INFORMATION PRESERVATION

Given the proposed latent coupled generative models, we consider an inference framework, multi-
modal contrastive learning, to provide further analysis, as recent progress in this field indicate that
representations learned through a multimodal contrastive learning are highly effective in various
downstream tasks (Radford et al.;2021). The contrastive loss function is designed to maximize the
similarity in the embedding space between modalities for real pairs, while minimizing the similarity
for incorrect pairs. Formally, the optimization objective is as follows (Zhang et al.,2022b; Radford
et al.,[2021):

N 7d(f’x(xi)7ft(ti))/7— N 7d(fz(xi),ft(ti))/7'
EZ_%ZIOg . —%Zbg - )
i=1 Z;V:l e_d<fz(xi)7ft(tj)>/7' Pl Z;\f:1 e—d(fm(xj),ft(t,i))/T

where d denotes a distance metric, e.g., cosine similarity on hypersphere or L1 norm on convex
bodies, 7 is a learnable temperature parameter, N denotes the sample size, which means that we
have N positive pairs and N2 — N negative pairs, f, denote the encoder on one modality x, e.g.,
image, similarly, f; denote the encoder on another t, e.g., text. To further understand the multimodal
contrastive loss, we begin by investigating its asymptotics:

Theorem 3.1 (Asymptotics of L). For fixed T > 0, as the sample size N — oo, the (normalized)
multimodal contrastive loss converges to|'

[d(f.(x).f:(t) /7] + E

lim £ —2log N =2 [log
N—o0 (x,t)~p(x,t) x~p(x) t~p(t)

[efd(fl.(x),ft(t)) /TH
2

)

+ E |log E [e—d(fw(xxft(t))/fﬂ
)

tp(t x~p(x)
See Appendix for proof.

Intuition Our primary insight is that the loss function in Eq. is intricately linked to two
fundamental elements that are crucial for solving inverse problem, i.e., identifying latent independent
variables from observed data in nonlinear ICA:

* Prior Matching: The solution space is constrained by prior knowledge, which helps mitigate
issues of non-uniqueness in identifying latent variables.

* Information Preservation: This ensures that the solution space can capture the full range
and complexity of the latent variables derived from observed data.

To detail this, we first provide the following analysis:

Prior Matching To clarify this point, let us focus on the first term at the right-hand side of Eq. (2).
In a multi-model setting, one modality plays a crucial role as a supervised signal for another modality.
This implies that one modality can serve as potential prior knowledge. By minimizing the first term,
which reduces the distance between features obtained by encoders for real pairs, we essentially ensure
the features generated by one encoder, e.g., on the image modality, closely approximate the prior
knowledge provided by another modality, e.g., text.

IThis is a generalized version of the existing Theorem 1 in[Wang and Isola (2020), specifically adapted to the
multi-modality setting.
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Information Preservation We now focus on the last two terms on the right-hand side of Eq. (2).
Essentially, these two terms can be approximated by optimizing the following expression (a proof
can be found in Appendix [A.2):

—H (p(fz(x)), p(£e(t))) — H (p(f:(t)), p(f2(x))), (©)

Here, H(-,-) represents the cross entropy. Overall, the form of the objective function Eq. E is
symmetric between x and t. When searching for the minimum of the objective function, if p(f,,(x)
and p(f;(t) are not equal, the optimal solution may deviate, leading to an increase in the value of the
objective function. In particular, the last two terms on the right-hand side may become asymmetric.
Thus, to ensure reaching the optimal solution, the two distributions might be equal. In this context,
the cross entropy in Eq. will reduce to entropy. As a result, when both f, and f; transform x and t
into uniformly distributed random variables, respectively, Eq. (3) reaches its optimal solution. This
uniform distribution underscores our goal of finding functions f, and f; that maximize information
preservation.

Expanding-apen-the-intuition—presented; Prior works have investigated contrastive loss primarily

in the context of single modality, focusing on two main perspectives: 1) the alignment-uniformity
perspective Wang and Isola|(2020), e.g., similar to prior matching and 2) the information preservation
perspective |Oord et al. (2018). However, these insights have largely been discussed separately. In
this work, we present a novel insight that combines these two perspectives within the framework of
solving inverse problems. Consequently, we posit that multimodal contrastive representation learning
has the potential to identify latent variables in the proposed causal generative model. In the following
section, we will parameterize the proposed latent partial causal model for further exploration.

4 IDENTIFIABILITY ANALYSIS ON HYPERSPHERE AND CONVEX BODIES

In this section, we conduct an identifiability analysis for the proposed latent partial causal model
illustrated in Figure [I. Our analysis specifically focuses on two distinct types of latent spaces:
hypersphere and convex bodies, which are explored under certain defined assumptions.

4.1 IDENTIFIABILITY ANALYSIS ON HYPERSPHERE

On hypersphere, we parameterize the proposed latent partial causal generative models depicted in
Figure[T] by the following:

T
p(Zw) = |Z|_1> p(zt|zw) = Cp_le(kzt 21)7 X = gaz(zam mw)a t= gt(zta my), 4)

where Z denotes the space of latent factors z, and z;. Influenced by the commonly used feature
normalization in constrastive loss, we assume that Z is the unit hypersphere S™~1. We do not
enforce any further assumptions for m, and m,. For g, and g;, we assume them to be invertible
(i.e., injective) mapping, ensuring the information in latent space can be recovered. In addition, we
assume that p(z,) follows a uniform distribution, and p(z|z,) follows a von Mises-Fisher (vMF)
distribution, considering the constraint of unit hypersphere. Given these assumptions, our subsequent
discussion aims to establish that the minimization of the multimodal contrastive loss (as defined in
Eq. [2)) converges to a symmetric cross entropy, as follows:

Theorem 4.1. (L converges to the symmetric cross-entropy) Under the assumptions defined in Egs.
for the proposed latent partial causal model, the necessary condition f,, o g, = f; o g, denoted
as h, for the optimal normalized multimodal contrastiveloss given by Eq. leads to the following
reduction of the loss itself:

lim £ —2logN +2log|Z| =
N—o00
LB [HO@m) a@lz)] + | B [He) )], O
where H is the cross entropy, the conditional distributions qn(2+|z,) and q(z,|z:) are parameterized

by the following:
Qh(zr|zt) = Cq(zt)ile(h(ZZ)Th(Zt)/T)a Qh(zt‘zz) = Cq(zm)ile(h(Zt)Th(zz)/T)7 (6)

2Theoremis a generalization of finding outlined in Theorem 1 in/Zimmermann et al.|(2021) in the context
of multi-modal setting.
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with
C,(z) = / (bl "h(a)/7) 4y () — / () 0/ 7) g

Refer to Appendix [A73T for proof.

By addressmg various asymmetncal challenges ar1s1ng from modahty d1fferences such as modalrty-
specific variables m, and m,, as well as distinct generative processes g, and g;, we originally
develop the result in Theorem . 1] This result establishes a crucial connection that bridges multi-
modal contrastive loss with traditional single-modal contrastive loss. This connection is particularly
Valuable as it enables the transfer of prevrously developed results from srngle modal settrngs to the

Corollary 4.2. By leveraging Theorem[.1, the minimization of Eq 5) identifies the latent variables
z, (symmetrically, z;) up to a linear transformation, i.e., the recovered latent variable 7, obtained
through the minimization of Eq. (), is linearly related to the true z, as follows: z, = Az, + c,
where A represents an orthogonal matrix, and c is a constant vector.

See details in Appendix[A32!

Connection with disentanglement Corollary has shown that the minimization of Eq.
identifies the latent variables z, (symmetrically, z;) up to a linear transformation. Note that the key
difference between Eq. (5) and the multimodal contrastive loss lies in a constant term, specifically
—2log N + 2log|Z] as shown on the left-hand side of Eq. (5). Consequently, we can claim that
multimodal contrastive learning is capable of identifying the latent variables z, (symmetrically,
;) up to a linear transformation. Consequently, Corollary [4.2] suggests that models trained using
multimodal contrastive learning on hypersphere, such as CLIP, can identify the latent variables z,, up
to a linear transformation. This result highlights two key points: (1) strong support for the success of
multimodal contrastive learning, as it can recover the true high-level latent coupled variables, and (2)
the potential for disentanglement in models trained with multimodal contrastive loss, such as CLIP.
Specifically, multimodal contrastive loss enables these models to learn features that correspond to
a linear transformation of the truez,, €.g., Az,. With this, linear ICA (Hyvérinen et al.,[2001) can
be applied to reduce the linear transformation A to a permutation matrix with scaling, facilitating
component-wise recovery of z,. In our implementation, we employ the FastICA algorithm from
for this purpose. Note the geometry of the hypersphere in this context—specifically,
the unit M/ — 1-dimensional hypersphere—where the maximum number of independent dimensions
is M — 1. In other words, z, can have at most M — 1 independent components.Therefore, models
trained with multimodal contrastive loss, such as CLIP, can achieve at most M — 1 disentangled
components via linear ICA.

4.2 IDENTIFIABILITY ANALYSIS ON CONVEX BODIES

The theoretical result above requires the latent coupled variables to be a hypersphere, this somehow
limits the disentanglement ability of multimodal contrastive learning, due to the nature of the
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geometric constraints on the hypersphere. In this section, we will show a similar result for convex
bodies, e.g., the hyperrectangle [ay, b1] X ... X [aar, bas], which allows for independence among the
latent coupled variables, offering a more flexible framework. On convex bodies, we parameterize the
proposed latent partial causal generative models depicted in Figure[T|by the following:

p(z:) = |Zc\_1, p(z¢|z2) = Cp(z$)_1€_6(z“zz)//\v X =gu(2s,my), t=gi(z,my), (7)

where § is a distance metric induced by a norm. Diverging from the hypersphere space mentioned
above, here we consider a convex body in RM | denoted as Z.. In this context, we assume that
p(z,,) follows a uniform distribution, and the conditional distribution p(z;|z, ) follows an exponential
distribution. Again, we do not enforce any further assumptions for m, and m;. For g, and g;, we
assume them to be invertible mapping, ensuring information in latent space can be recovered. Given
these assumptions on a convex body, we have the following result:

Theorem 4.3. (L converges to the symmetric cross-entropy) Under the assumptions defined in Eq.
for the proposed latent partial causal model, the necessary condition f, o g, = f; o g4, denoted
as h, for the optimal normalized multimodal contrastiveloss given by Eq. leads to the following
reduction of the loss itself:

lim £ —2log N +2log|Z.| =

N—o00
B [HO@l) )] ¢ B [Hel)anEm)], 6
where H is the cross entropy, the conditional distributions qn(2+|z.) and q(z,|z:) are parameterized
by the following:

0n(22|2;) = Cq(zt)e_‘s(h(zx)’h(zt))/T, an(2¢|22) = Cq(Zx)e_é(h(zz)vh(zt))/T’ 9)
with

C,(z) = / ¢~ d(E) b @) /Ty O (7,) = / e~ 0(h(ze) B(z)) /7y

A-Bridge-on-ConvexBodies Once again, regarding convex bodies, Theorem 4.3| first introduced

in this work, is crucial for bridging multimodal contrastive loss with traditional contrastive loss by
addressing various asymmetric challenges arising from differences between modalities. Leveraging
this theorem, we can readily extend the findings of Theorem 5in (]Zlmmermann et al 2021 ) toa
multimodal context, as follows pe atly ; ’ atent variable

Corollary 4.4. By leveraging Theorem[d.3] the minimization of Eq. in theorem [{.3]identifies
the latent variables z, (symmetrically, z;) up to a permutation transformation, i.e., the recovered
latent variable Z,, obtained through the minimization of Eq. (8), is related to the true z,, as follows:
Z, = Pz, + c, where P is an permutation matrix with scaling, c is a constant vector.

For completeness, see details in Appendix[A4.2.

Connection with disentanglement Unlike hyperspheres, convex bodies permit all components of
the latent variables z, to be independent. Corollary .4]demonstrates that minimizing Eq. ina
convex body setting can identify these variables up to a permutation. Although CLIP was trained
on a hypersphere, differing from our convex body assumptions, it remains promising as it aligns
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correct pairs while distancing incorrect ones. The crucial factor for permutation identifiability is
the isometry of the mapping h in Corollary While a global isometry between a convex body
and an entire hypersphere is not feasible, a local isometry between a convex body and a small
region of the hypersphere is plausible. To take advantage of this, PCA can be applied to reduce
redundant information learned by CLIP, followed by FastICA to handle the orthogonal transformation
introduced by PCA, ultimately extracting the final features.

5 EXPERIMENTS

Experiments on Synthetic Data In our initial experiments, we use synthetic data to verify our main
identifiability results on hypersphere and convex bodies, and empirically demonstrate the robustness
of these results when facing substantial violations of assumptions. For detailed information regarding
the generation of synthetic data, please refer to Appendix We examine p(z, ) under conditions
that align with our theoretical assumptions (using uniform distributions), and under conditions that
deviate from our assumptions (using non-uniform distributions). Furthermore, we construct real
pairs by sampling from the conditional distribution p(z;|z.). This process is conducted in two
distinct settings: one aligning with our assumptions about the conditional distribution and another
that contravenes these assumptions. Beyond the hypersphere space, our experiments also encompass
the bounded space and unbounded space. We conduct each experiment three times for each setting.

Table 1: Assessing identifiability up to linear (a) and permutation (b) transformations under varying
assumptions. The first row corresponds to a setting that matches our assumptions in Theorem
[|.1] while the others show results for violated assumptions. S: Space, Sp: Sphere, U: Uniform,
v: VMF (k = 1), L: Laplace (A = 0.05), N: Normal (§ = 0.05), B: Box, Un: Unbounded, G:
GenNorm(5 = 3).

(a) Assessing identifiability up to linear. (b) Assessing identifiability up to permutation.
Generative process Model Generative process Model
S p(zz)  p(zzlze) S q(zelzi) R2 S p(za) p(zzlzt) S q(zz]z) McC
Sp U v Sp v 99.5 4+ 0.1 B U L B L 99.1 £ 0.1
Sp u L Sp v 99.4 £ 02 B U G B G 97.2£03
Sp u N Sp v 98.7£03
B U N B N 98.6+ 0.2
B u N Un N 90.5 + 0.2 B U L B N 99.14 0.1
B u L Un N 922403 B u G B L 98.4 0.1
B U L Un G 99.1 + 0.4
B U N Un G 912403 B u L Un L 95.6= 0.2
B U G Un G 96.4+ 0.2
Sp N@ =1 L Sp v 963+ 03
Sp N@ =1 N Sp v 95.9 +0.2
Un LO=1 N Un N 88.5 + 0.3
Un N@=1 N Un N 89.2 402

To test for identifiability up to linear transformations formalized by FheoremCorollary f.2] we
fit a linear regression model between the ground-truth z, and recovered Z, and report the coeffi-
cient of determination (R2). Further, to test for identifiability up to permutations formalized by
FheoremCorollary f.4] we employ the mean correlation coefficient (MCC). The first row in Table
[T (a) and the first two rows in Table [I (b), corresponding to the setting where the assumptions
are satisfied, verify the identifiability results on hypersphere and convex bodies, respectively. Our
empirical investigations have yielded a critical insight: discrepancies in the assumptions concerning
marginal and conditional distributions, as well as the nature of the spaces (hypersphere and convex
body), do not significantly impact performance. This robustness is demonstrated by the results
detailed in Table[T] (a) for the hypersphere space and TableT] (b) for convex bodies. This observation
is similar to reports from studies conducted in the context of single-model context (Zimmermann
et al.;2021). This observation might be attributed to the fact that the loss function described in Eq.
[2 predominantly relies on the computation of expectations, inherently allowing for a wide range
of approximations. If we can approximate the expectation calculations consistently across various
distributions and spaces, it is reasonable to expect that the identifiability results remain well within
acceptable bounds.

Disentangled representations for CelebA data Informed by our identifiability results and the
empirical evidence presented earlier, we have grounds to claim that the pre-trained CLIP model
possesses disentanglement ability. To substantiate this, we first extract features from the pre-trained
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Figure 3: Disentangled Representations learned by combining pre-train CLIP and FastICA. The
proposed method obtains 16 disentangled representations, refer to Appendix [A.6|for more results.

CLIP model and then apply FastICA to these features to achieve final representations. We expect
these final representations to exhibit clear signs of disentanglement. To validate this, we proceed
to train a decoder that reconstructs observational data using these extracted representations. We
implement the above process on the CelebA face dataset (Liu et al., 2015), which has been explored
by previous studies to learn disentangled representations (Kim and Mnih||2018; |Chen et al., 2018)).

Figure [3 illustrates the effectiveness of our method through latent space traversals. Specifically, it
visualizes changes in reconstructions as we traverse one dimension of the latent space at a time,
showcasing 4 out of 16 attributes uncovered by our approach. Our method yields competitive
results when compared with specialized techniques for learning disentangled representations, such
as FactorVAE (Kim and Mnih|, 2018) and S-TCVAE (Chen et al.,[2018). As reported, FactorVAE
identified 8 disentangled attributes and S-TCVAE reported 15, our method successfully discerns
16 distinct disentangled representations. Additional results are available in Appendix This
achievement not only underscores the effectiveness of our method and validates our identifiability
results, but also offers new perspectives into learning disentangled representations by CLIP.

Few-shot learning and domain gener-
alization Broadly, the objective of dis-

entangled representations is to learn fea- Table 2: Quantitative results for 2-shot learning and

tures that lend themselves to be easily
and robustly transferred to downstream
tasks. This implies that disentangled rep-

domain generalization by different methods. @: Linear
Probe, @: @ with FastICA, and ®: @ with PCA and
FastICA.

resentations should inherently possess a

. o SOURCE TARGET (IMAGENET-)

satisfactory capability for few-shot learn-
ing and demonstrate robustness against ENCODERS METHODS IMAGENET V2 SKETCH R A AvG.
distribution shifts. Therefore, we fo- rnso @ 31.95 2648 8.41 2074 7.44 1577
cus on tasks involving few-shot learning @ 34.06 28.74  8.37  21.72 10.15 17.25
. S . ® 3412 28.68 11.55 25.57 10.15 18.99

and domain generalization, to validate
our identifiability results and the efficacy ~ RN101 @ 37.64 31.45 13.71 31.09 11.85 20.03
f th d hods. T hi ® 39.58  33.15 13.49 30.29 14.77 22.93
of the proposed methods. 1o achieve ® 39.86  33.58 17.93 35.48 14.20 25.29

hi fir in representations of

t. S, we st obtain representatio Sola Vs @ 38.23  32.00 16.17 33.67 12.88 23.68
limited set of labeled samples. This is @ 40.21 33.97 16.54 34.79 15.72 25.26
done either by utilizing the pre-trained ® 39.34  33.44 19.02 36.98 14.69 26.03
CLIP model followed by FastICA (la- vitie o) 44.97  38.11 22.06 43.86 25.99 32.51
beled as Linear Probe Wlth FastICA’ ap_ &) 45.52 39.38 22.55 45.33 30.47 34.43
® 46.57  40.66 26.67 49.69 31.48 37.13

plied within the hypersphere space) or
by employing the pre-trained CLIP model in conjunction with PCA and FastICA (labeled as Linear
Probe with PCA and FastICA, aligning with convex bodies). These extracted representations, along
with their labels, are used to train a linear classifier. We train the proposed methods on ImageNet
(Deng et al., [2009) with limited samples to evaluate their performance for few-shot learning, and
also conduct evaluations on ImageNet-V2 (Recht et al.,2019), ImageNet-Sketch (Wang et al.|[2019),
ImageNet-R (Hendrycks et al.,2021a), and ImageNet-A (Hendrycks et al., 2021b) for demonstrating
the robustness to distribution shift.

Table [2 present the performance metrics of the proposed methods in few-shot learning scenarios
(as shown in the ‘SOURCE’ column) and in the context of distribution shift (as indicated in the
‘TARGET’ columns). An analysis of the data for the ‘SOURCE’ column in these tables reveals

10
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that the proposed methods outperform the baseline approach of training a linear classifier with
features directly obtained from pre-trained CLIP, known as Linear Probe. This superior performance
underscores the enhanced adaptability of our proposed methods, particularly in tasks requiring rapid
learning from limited data. Furthermore, observations from the ‘TARGET’ column demonstrate that
our proposed methods also surpass the Linear Probe approach in terms of distribution shift, which
affirms the robustness of our methods. See Appendix [A.7]for more results.

FastICA as a plug-and-play Tool for Few-Shot Learning Recent progress has demonstrated
that even with a few of labeled training samples, CLIP’s adaptability can be significantly enhanced.
The key of leveraging pre-trained CLIP for few-shot learning lies in effectively harnessing the
features extracted from CLIP on the limited labeled training samples. As previously mentioned,
disentangled representations should inherently possess a satisfactory capability for few-shot learning.
With this understanding, rather than directly utilizing

CLIP’s features, we can employ FastICA on the orig- 80

inal CLIP’s features to obtain disentangled ones, sub-

sequently deploying them for few-shot learning tasks. 75

This offers a plug-and-play integration of FastICA, re- 701

sulting in performance improvements for existing meth- < 65 -

ods. To verify this, following the experimental setup § //
outlined in [Zhang et al. (2022a), we incorporate Fas- 601 o rimer

tICA after the original CLIP features, while preserving 55 { &7 TivAdopters wrastca

other components unchanged. Figure[d]show the results 5 L8 ToAdepterw Fesica .
obtained by different few-shot CLIP adaptation meth- 12 4 8 16
ods over 11 datasets, including ImageNet (Deng et al.| Number of labeled training examples per class

2009), Caltech101 (Fei-Fei et al., 2004), FGVCAircraft

(Maji et al., [2013), UCF101 (Soomro et al., 2012), Eu-  pioyre 4: A comparison of accuracy (%)
10SAT (Helber et al.,[2019), Flowers102 (Nilsback and]  optained by different few-shot CLIP adap-
Zisserman, |2008), StanfordCars (Krause et al.,[2013), tation methods over 11 datasets.

DTD (Cimpot et al.l [2014), Food101 (Bossard et al.,

2014), OxfordPets (Parkhi et al., 2012), and, SUN397 (Xiao et al.,|2010). A clear improvement
over the original methods in|Zhang et al. (2022a), including Tip-Adapter and Tip-Adapter-F, can be
observed by incorporating FastICA. See Appendix [A.8]for more details.

6 CONCLUSION

Instead of relying on traditional latent DAGs, we recognize that fully identifying latent causal models
often requires various assumptions, which can be difficult to satisfy in real-world applications.
This work explores latent partial causal models, where latent coupled variables—connected by an
undirected edge—are used to model transferable knowledge across multimodal data. Our analysis
reveals that the multimodal contrastive learning paradigm effectively identifies these latent coupled
variables, which are critical for transferring knowledge between modalities. We also uncover
a significant potential for disentanglement within multimodal contrastive learning, offering new
insights and practical benefits for pre-trained models like CLIP. Our extensive experiments validate
the robustness of these findings and demonstrate their practical implications for few-shot learning and
domain generalization. Building on our findings, future work could explore applying our latent partial
causal model to other multimodal learning paradigms, more importantly, unlocking new possibilities
for the discovery of partial causal models.
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A APPENDIX

A.1 THE PROOF OF THEOREM [3.1]

Theorem 2.1. (The asymptotics of L) For fixed T > 0, as the sample size N — 0o, the (normalized) multimodal
contrastiveloss converges to

lim £—2logN =2 E d(f.(x 1+ E [10
N—oo & <x,c>~p<x,t>“ (), £:(8)) /7] sep) L 08 tmp(t)

+ E [log E [e_d(f“(x)’f*(t))h]].
)

tropl(t x~p(x)

I:e—d(fm(x)ﬁft(t))/T}} (10

Proof. This proof is done by mainly depending on the Continuous Mapping Theorem and the law of large
numbers.
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A.2 RELATION WITH RECOVERING ALL INFORMATION

In this section, we proof

e (8 C0.) /T” L E [10 E [e-d(ttotm) /T”
trp(t) x~p(x)
~ — H (p(f:(x)), p(f:(t))) — H (p(£:(t)), p(£x (x))).
Considering the symmetry evident in both the left and right sides of the equation, let us focus our attention on
the initial term on the left and its corresponding counterpart on the right.
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Transitioning from Eq. to Eq. (12), we employ kernel density estimation, wherein the choice of kernel is
influenced by the distance metric used. For instance, on a hypersphere, a von Mises-Fisher kernel is suitable,
whereas on convex bodies, a Laplace kernel aligns well with the L1 norm. In this context, log Zkpg represents
the normalization constant associated with the kernel. The inherent symmetry in this setup allows us to
logically deduce the equation. Note that since here the bandwidth 7 can be optimized in multimodel contrastive
representation learning, if true distribution is the same as the chosen kernel, Eq. is equal to Eq. (TI), i.e., ~
in Eq. can be =. Under certain conditions the kernel density estimation will converge to the real distbution,
in that case ~ in Eq. can also be =.

A.3 THE PROOF OF IDENTIFIABILITY ON HYPERSPHERE

A.3.1 THE PROOF OF THEOREM [4.1]

Theorem 3.1. (L converges to the symmetric cross-entropy) Under the assumptions defined in Eq. (@) for the
proposed latent partial causal model, the necessary condition £, o g, = £ o g4, denoted as h, for the optimal
normalized multimodal contrastiveloss given by Eq. leads to the following reduction of the loss itself:

Jim L—2logN = E [H(P(Zt\zw),%(zﬂzx))]+Z E [H(p(2zz|2t), an(2zz|ze))]  (14)

~p(zz) ~p(zt)

where H is the cross entropy, the conditional distributions qn(zt|z) and q(z.|z.) are parameterized by the
following:

qn(2z|2t) = Cq(zt)—lgh(zz)Th(zt)/T)7 (15)
(2] 22) = Cy(2,) LeP=0) RE2)/T) (16)
with

Cy(ze) = /e<h(zI>Th(zt>/f)dzz,

Co(20) = /e<h<zz>Th<zn/T>dZt_

To proof Theorem §.1| we first introduce the following Lemma.

Lemma 4.1. Consider the unit hypersphere space, given uniform prior p(zz), p(z.) = | Z|~* where Z C RM
denotes the space of 2., and conditional distribution p(z:|2.) = Cp(k) exp (k2L 2t), p(z:) follows a uniform
distribution.

Proof. By Bayesian theorem, p(z:) = [ p(z|2.)p(2z2)dze = |Z]7' [p(zi|z2)dz. =
|Z|7'Cp(k) [ exp (kz}z¢)dz., then due to the unit hypersphere space, we have [ exp (kzlz:)dz, =
Cp(k)™1. As aresult, we obtain p(z;) = |Z| ™ . O

Lemma 5.1. The normalized multimodal contrastive loss in Eq. has an optimal global solution of 0, which
can be attained under the following conditions:

e h,(mgy,2z,) = he(my, z:) almost surely, for pair ((mz,zm), (mt,zt)), (Cl),
* h, and hy map (mg, z,) and (my, z.), respectively, to uniform variables on hypersphere, (C2),
Proof. First, it is well known that traditional contrastive loss in single modality has an optimal global solution

of log N (Oord et al.,[2018; |Tian et al.|[2020), as a result, the multimodal contrastive loss Eq. has an optimal
global solution of 2log N. For completeness, let us focus on the first term in Eq.

N 7d(fz(xi),ft(ti>)/7
1 e
- E log
N i=1

) a7
TN (et fuen) /7

j=1

Under optimal contrastive learning conditions, the distance for positive pairs satisfies: eid(fw(xi)’ft “”)) /m=1,

for negative pairs (x;,x;) where i # j: (fd(f””("i)‘ft(tj))/'r = ¢, where € is a small value. As a result, for
each ¢, the denominator can be expressed as: 1 + (N — 1)e. Therefore, the first term in Eq. mreduces to:

—% f\’: 1 log m Clearly, when N is large, the first term in Eq. equals to log V. Given that the

second term is symmetric, we conclude that Eq. has an optimal global solution of 21log N. Therefore, Eq.
achieves a global optimal solution of 0. To reach the global minimum of 0, we observe that the first term in
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Eq. [10]is minimized if and only if h, (m,, z,) = h(my, z;) almost surely, for real pair ((ma, zz), (My, z¢)),
(marked as (C1)). Thus, we obtain a minimum solution of 0 for the first term. Next, considering the remaining
two terms in Eq.gS as detailed in Appendix[A.2] we see an equivalent expression: —H (p(fz (x), p(f:(t))) —
H(p(fy(x),p(fi(t)))+2log Zxpe. When both h,, and hy map (m,, z,) and (m¢, z; ), respectively, to uniform
variables on hypersphere (marked as (C2)), it reduces to —2H (p(fz(x)) + 2 log Zxpe. Note that the entropy of

a uniform distribution on the hypersphere S ! is log(ﬁ("TM//;)), where I is the gamma function. Together with
the fact that the normalization constant of uniform distribution on hypersphere is log(%) (i.e., log ZkpE),
we arrive at the optimal solution of O for the last two terms. O

Proof sketch The proof of Theorem@hinges on demonstrating the equality between the right-hand side of
Eq. and Eq. . Let us define h, = f; o g, and hy = f; o g;. In Step I, using Lemma @, we show that
(1) f 0o gz = f; 0 g4, and (2) they are independent of the modality-specific variables m, and m;. In Step II, by
defining h = f, o g, = f; o g and applying both the generative model from Eq. (@) and the inference model
from Egs. (I5)-(L6), we establish the theorem.

Step I Consider C1 in Lemma e.g, hy(mg,z,) = h¢(me,z;) almost surely, for pair
((mz, Zz), (my, zt)), by differentiating it with respect to m,, we have:

Oh,(mg,z,)  Ohy(my,z)
om, - om,

=0, (18)

, due to the independence between m, and (my, z:). Similarly, by differentiating it with respect to m., we
have:

Ohi(m;,z:)  Ohy(mg,z.)
(’9mt B 8mt
Based on Egs. and (19), we conclude that both h, and h; are independent of the modality-specific
variables m, and my, respectively, i.e., h, (mg, z;) = h,(2,) and h¢(m¢, z;) = h,(z:). As a result, we have
h,(z.) = h¢(z:), for all real pairs (2., z:) sampled from the conditional distribution p(z¢|z.) defined in Eq.
(). Note that this expression also holds true for z; = z, (e.g., when z, is sampled with the same value as z),
which implies h;(z;) = h¢(z.). As a result, we can obtain: h, = h;.

=0. (19)

Step II  According to the results above: h, (mg, z,) = he(2z.), hi(my, z¢) = hy(z,), and h, = h, from
Step I, by defining h & h, = h; , we can rewrite Eq. as:

[d(h(zz),h(z)) /7] + E [log E [efd(h(z””)’h(zt))ﬁ”

(2 20) ~p (2 21) serplEe e
. [1 e —d(h(zs)h(z0)) /7 ] ‘ 20
+ zi~p(zt) o8 Za ~p(Za) [e } ( )

We then connect the right-hand side of Eq. with Eq. (20). To this end, since the two terms in
the right-hand side of Eq. are symmetrical, we focus on one of the two terms for convenience, e.g.,
[H (p(2t|22)), qn(z¢|2=))]. Based on LemmaE, it can be shown that:

Zg~p(Za2)

B [Hpm]z). an(mlz.)] ay
= ) [zwp](Ezuzm)[_ log gn(z:|2.)]] 22)
= o B oy [ () B(z0) /7 + 108 Cy (2)] 23)
Zy 2t )~P(Zg,2Z¢
= E [~ h(z.)"h(z:)/7] + E  [logCq(za)] 24)

(za,2¢)~P (22 ,2¢) (za)~p(zz)

= E [ — h(Zz)Th(Zt)/T} + ( )E( )[log/e(h(zm)Th(zt)/T)dzz} (25)
2y )~p(zz

(2a,2¢)~P(22,2¢)
Since p(z.) = |Z|7', and p(z;) = | Z|~* by Lemmalﬂ, Eq. simplifies to:
— E [(h(z)"h(z)/7] + E [log E [e(h<2w>Th<Zf«>)/T]] +log|Z| (26)
(za,2¢)~P(22,2¢) zg~p(2z) z¢~p(zt)

On hypersphere space with radius , due to ||h(z;) — h(z;)|| = 2r — 2h(z,)"h(z:), Eq. simpliﬁes to:

_ B [d(h(zz), h(zt))/T] n E [log E [efd(h(zI)h(ztD/"'H 27

(22,2t)~p(2z,2t) 2y ~p(2z) zi~p(zt)
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Similarly, for the second term in the right-hand side of Eq. (14), we can proof that:

[H (p(2z2:)), n(22]2))] = [d(h(zz), h(z:)) /7]

(22,2¢)~P(Za,Zt)

+ E flog E [e*d(h@z%h(zw)/q]+1og|z\. (28)

zi~p(zt) Zy~p(2a)

E
(zt)~p(z¢)

By combining Eq. and Eq. (28), we can conclude the proof.

A.3.2 IDENTIFIABILITY RESULT ON HYPERSPHERE

Theorem [4.1|represents a adaptation of Theorem 1 from (Zimmermann et al.| [2021) in the context of multi-modal
setting. Specifically, within the confines of a single-modal framework, Theorem |4.1]is consistent with the
findings presented in Theorem 1 in (Zimmermann et al., [2021). Consequently, this alignment allows us to
employ Propositions 1 and 2 from (Zimmermann et al.,[2021) to demonstrate that the global minimization of the
objective outlined in Eq. (B), as specified in Theorem 4.1, identifies the latent variables z,, as well as z,, up to
linear transformations. For completeness, a brief proof is provided herein, with comprehensive details available
in the original work. Clearly, the global minimum of the cross-entropy between two distributions is reached if
they match by value and have the same support. Therefore, for the optimal solution of the objective loss Eq.
in Theorem[4.1] we have:

P(2t|22) = qn(ze|22), (29)

This expression also holds true for z; = z,; additionally using that h maps from a unit hypersphere to one with
radius v/ 7k, we have:

Oy le® ) = Oy (z,) M=) Ble)/m)
&Cp = Cy(22) (30)
As the normalization constants are identical we get for all z,, z;,
kzlz, = h(z,) h(z,) /T, (€20

here we can see that h maintains the dot product, which implies that h must be an orthogonal linear transformation
by using Proposition 2 in (Zimmermann et al.|[2021). As a result, Theorem4.1]is capable of identifying the latent
variables z, and z; up to an orthogonal linear transformation, i.e., the recovered latent variable Z, obtained
through the minimization of Eq. @), is linearly related to the true z, as follows: z, = Az, + c, where A
represents an orthogonal matrix, and c is a constant vector.

A.4 THE PROOF OF IDENTIFIABILITY ON CONVEX BODIES

A.4.1 THE PROOF OF THEOREM [4.3]

Theorem 3.2. (L converges to the symmetric cross-entropy) Under the assumptions defined in Eqs. {I)-{) for
the proposed latent partial causal model, the necessary condition £, o g, = fi o gy, denoted as h, for the optimal
normalized multimodal contrastiveloss given by Eq. leads to the following reduction of the loss itself:

Jim £-210gN = B [H(ulz)a(zlz)] + B [HpElz) (@) 6D

~p(2z) (zt)~p(zt)

where H is the cross entropy, the conditional distributions qn (2|2 ) and q(z|z.) are parameterized by the
following:

an(2z|21) = Cy(ze) e PRl R=)/T (33)
@ (2t|22) = Cy(zs) e PP R/, (34)

with
Cylz) = /e—6<h<zm>,h<zt>>/7dzx7

Cq(ze) = /eié(h(zm)’h(zt))hdzt,
Similar to the proof|A.3.1] we first introduce the following Lemma.
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Lemma 4.2. For random variables z, € Z. and z; = Z., assume that p(z,) = 1/|2.| if z» € Z. and
0 otherwise, and assume that conditional distribution p(z|z.) = C(2z) exp ( — 6(2«,2¢)/)), where § is a
symmetric metric induced by a norm, then p(z:) converges to uniform distribution on Z. as A — 0.

Proof. The proof can be done by the fact that as A — 0, the condition distribution p(z¢|z) converges to a
delta distribution, resulting that p(z:) = p(z). More specifically, as we will let A — 0 in the procedure, it
is notable that the normalize C(z.) actually depend on )\ and should be write as C'(zz, A) in a more formal
way. With simple integration trick, it would be straightforward to show that C'(z5, \) can be decomposed as
C(22,\) = $C'(22).

By definition we have

plzi) = / _ plae)plalz)iz,

1.
:AEEZC P(Zz)XC’ (Zz) exp ( - 6(Zz7 Zt)/)\)dzz (35)

N
= lim Z %C'(z%) exp (= 0(2x,;,2t)/N), Vi, 22, ~ p(2s)
=1

N—+oco

then obviously we have that

N
lim p(z;) = lim lim Z%C'(zmi)exp(—6(z$i,zt)/)\)

A—04 A—=04 N—+oo

i=1
N (36)

= lim lim Z%C'exp(—ﬁ(zmi,zt)/)\),

A—=04 N—+oo £ 1
i=

where C' = [ fooo exp ( — (0, zt))dzt. It is obvious that can be viewed as a Kernel Density Estimation

over samples z; ~ p(zz), and obviously lim o, p(z:) will converge to p(z, ) (which is uniform distribution)
under quite mild condition (for details of the convergence we refer to (Jiang}, 2017)). O

Proof sketch Similar to hypersphere, the proof of Theorem can be done by demonstrating that the
right-hand side of Eq. is equal to the right-hand side of Eq. (10) on convex bodies. To achieve this, using
Lemma we show that f,, o g, = f; o g, and they are independent of the modality-specific variables m, and
my, respectively. Finally, by defining h = f;, o g, = f; o g, and using the inference model and (34), we
obtain our result.

Step I On convex bodies, and define h, = f, o g, and hy = f; o g;. Consider C1 in Lemma|5.1} e.g.
h, (m.,z.) = h;(m¢, z;) almost surely, for pair ((m,,z.), (m¢, z;)). Similar to Step I in Appendix[A.3.1,
by differentiating it with respect to m, and m;, respectively, we can conclude that both h, and h; are
independent of the modality-specific variables m, and my, respectively, i.e., h;(m,,z,) = h;(z,) and
h:(m¢,z:) = h¢(z:). Further, since h,(z,) = h(z:) hold, for all real pairs (z,2z:) sampled from the
conditional distribution p(z:|z.) defined in Eq. (7), this expression also holds true for z, = z,, which implies
h.(z:) = h¢(zz). As aresult, we can obtain: h, = hy.

Step II  According to the results above: h,(m,,z;) = h,(z.), hi(m¢, z:) = he(z:), and h, = hy, by
defining h ©e o g. = f; o g , we can rewrite Eq. as:

[d(h(z.),h(z:)) /7] + E [bg E [e—d(mzw),h(m)/fﬂ

(22,2t) ~p(22,2t) Zg~p(22) zt~p(zt)
+ E fiog B [ertlenme)m) gy
z¢~p(z¢) Zg~p(zz)

We then connect the right-hand side of Eq. with Eq. (37). To this end, since the two terms in
the right-hand side of Eq. are symmetrical, we focus on one of the two terms for convenience, e.g.,
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[H (p(2t|22)), qn(z¢|22))]. It can be shown that:

Zy~p(2z)
B [Hp(az:)), an(ze2:))] (38)
= E E [—log qh(zt|zz)ﬂ (39
Zzy~p(2z)  Zt~D(2t|22)
— - )iEp(z o [6(h(zz)7h(zt))/7' + log Cq(zm)] (40)
= E [6(h(z:), h(ze)) /7] + E  [logCy(z)] (41)

(za,2¢)~p(22,2¢) (zz)~p(zz)

= E [6(h(z2), h(ze))/7] * o E )[log/e<_6<h(z””)’h(zt))/7)dzz] (42)
2y )~pP(Zz

(22,2t )~P(Zz,2t)

Since p(z.) = |Z|7', and p(z;) = | Z|~* by Lemma@, Eq. is equal to:

- E §(h(z.),h(z:))/7] + E )[log E [6*5(h<2w>vh<2t>)/f]]+1og|zc\ (43)

(22,2¢)~p(Zz,2¢) zg~p (2 zt~p(zt)

Similarly, for the second term in the right-hand side of Eq. (32)), we can proof that:

[H (p(2z2:)), n(22]20))] = E [0(h(zz), h(z)) /7] (44)

(zt)~p(zt) (22,2¢)~P(Za,Zt)

+ E flog E [6*5(h<%>vh<u>)/f]}+1og|zc\. (45)
z¢~p(zt) Zg~p(Zz)

By combining Eq. and Eq. (3), we can conclude the proof.

A.4.2 IDENTIFIABILITY RESULT ON CONVEX BODIES

Theoremrepresents a symmetrical adaptation of Theorem 3 from (Zimmermann et al.;|2021). This alignment
allows us to employ Propositions 4, Lemma 1 and Lemma A from (Zimmermann et al.,[2021) to demonstrate
that the global minimization of the objective outlined in Eq. (32), as specified in Theorem identifies the
latent variables z., as well as z., up to linear transformations. For completeness, a brief proof is provided herein,
with comprehensive details available in the original work. Clearly, the global minimum of the cross-entropy
between two distributions is reached if they match by value and have the same support. Therefore, for the
optimal solution of the objective loss Eq. in Theorem 4.3, we have:

p(2t|22) = qn(2t|22), (46)
This expression also holds true for z; = z,, we have:

Cp(2g) Le 000 )/ = O () L O(m) )/

I

SCp(22) = Cq(2z2) 47
As the normalization constants are identical we get for all z;, z;,
0(2z,2¢) = Ao(h(zz), h(zt))/T. (48)

Then, by limiting 6§ be an L metric for « > 1, @ # 2 or the a-th power of such an L metric, using the
Theorem 5 in (Zimmermann et al., 2021), Theorem can identify the latent variables z, and z; up to an
permutation transformation, i.e., the recovered latent variable Z., obtained through the minimization of Eq. ,
is related to the true z,, as follows: Z, = Pz, + c, where P represents an permutation matrix with scaling, and
c is a constant vector.

A.5 DIFFERENCES WITH PREVIOUS WORKS IN IDENTIFIABILITY RESULT

The differences in formulating the causal generative model naturally results in differences in identifiability
results. The identifiability results obtained in this work diverge from those found in previous works (Daunhawer
et al.,2023;|Yao et al., |2023), both in terms of breadth and depth of identifiability, due to the introduction of
the undirected edge between z, and z;. a) Breadth of Identifiability: Unlike earlier works that often achieve
only partial identifiability of latent coupled variables z, and z, e.g., latent content variables but not latent
style variables (Daunhawer et al., |2023; |Yao et al., 2023), our model extends this scope to ensure complete
identifiability of latent coupled variables z, and z;. b) Depth of Identifiability: In terms of depth, this work
identifies latent coupled variables z, and z; up to linear or permutation transformations. This level of precision
offers an enhancement over the block identifiability result in previous studies (Daunhawer et al.,[2023;|Yao et al.,
2023). The differences above in both breadth and depth of identifiability results enable us, for the first time, to
unveil the disentanglement capabilities of multimodal contrastive representation learning.
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A.6 MORE RESULTS ON CELEBA
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Figure 5: Disentangled Representations learned by combining pre-train CLIP and FastICA.
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Figure 6: Disentangled Representations learned by combining pre-train CLIP and FastICA.
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Figure 7: Disentangled Representations learned by combining pre-train CLIP and FastICA.
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A.7 MORE RESULTS ON IMAGENET-TYPE DATA

Table 3: Quantitative results for 16-shot transfer learning and domain generalization by different
methods. Lin. P. (Linear Probe).

SOURCE TARGET (IMAGENET-)

ENCODERS METHODS IMAGENET V2 SKETCH R A AVG.
RN50 LIN. P. 55.36 45.45 18.22 34.09 12.52  27.77
LIN. P. W/ FASTICA 57.82 47.78 19.77 38.05 13.15 29.69

LIN. P. w/ PCA AND FASTICA 57.37 47.67 20.39 38.76 12.89 29.93

RN101 LIN. P. 60.98 50.36 25.80 46.61 18.64 35.35
LIN. P. w/ FASTICA 61.86 51.85 27.29 49.29 19.89 37.08

LIN. P. w/ PCA AND FASTICA 61.58 51.44 28.86 50.32 19.97 37.64

VIT32 LIN. P. 60.76 50.92 28.81 49.18 19.72 37.15
LIN. P. w/ FASTICA 61.94 51.95 30.30 51.82 20.81 38.72

LIN. P. w/ PCA AND FASTICA 62.00 52.39 30.39 51.61 20.96 38.84

VIT16 LIN. P. 67.17 57.01 35.43 60.96 35.41 47.20
LIN. P. w/ PCA AND FASTICA 68.12 58.45 38.41 63.89 37.17 49.48

LIN. P. W/ FASTICA 67.96 58.38 38.75 65.45 38.28 50.22

Table 4: Quantitative results for 8-shot transfer learning and domain generalization by different
methods. Lin. P. (Linear Probe).

SOURCE TARGET (IMAGENET-)

ENCODERS METHODS IMAGENET V2 SKETCH R A AVG.
RN50 LIN. P. 49.33 40.83 15.06 31.23 10.99  24.53
LIN. P. w/ FASTICA 51.99 43.58 15.47 34.35 12.85 26.56

LIN. P. W/ PCA AND FASTICA 51.42 42.93 17.28 35.53 12.33 27.02

RNI101 LIN. P. 55.41 46.04 23.38 43.26 16.88 32.39
LIN. P. W/ FASTICA 56.59 47.47 22.09 44.59 18.39 33.14

LIN. P. w/ PCA AND FASTICA 55.84 46.59 23.68 44.94 18.25 33.37

VIT32 LIN. P. 55.17 46.11 25.53 45.32 18.35 33.83
LIN. P. w/ FASTICA 56.90 47.96 27.62 49.13 20.31 36.26

LIN. P. w/ PCA AND FASTICA 55.83 46.55 26.54 46.77 18.80 34.67

VIT16 LIN. P. 61.82 52.34 32.26 55.93 32.63 43.29
LIN. P. w/ FASTICA 63.55 54.81 34.21 61.54 38.21 47.29

LIN. P. wW/PCA AND FASTICA 63.47 54.32 35.83 61.88 37.35 47.36

Table 5: Quantitative results for 4-shot transfer learning and domain generalization by different
methods. Lin. P. (Linear Probe).

SOURCE TARGET (IMAGENET-)

ENCODERS METHODS IMAGENET V2 SKETCH R A AVG.
RN50 LIN. P. 41.34 33.67 11.55 26.27 9.67 20.29
LIN. P. W/ FASTICA 44.10 36.07 12.75 30.15 11.64 22.65

LIN. P. w/ PCA AND FASTICA 42.86 35.38 12.29 28.81 9.79 21.57

RN101 LIN. P. 48.23 39.53 18.80 38.10 1432 27.69
LIN. P. w/ FASTICA 49.43 41.02 17.49 39.33 15.25 28.27

LIN. P. w/ PCA AND FASTICA 49.01 40.25 19.26 39.71 14.75 28.49

VIT32 LIN. P. 47.82 39.53 21.51 40.94 1599 2949
LIN. P. w/ FASTICA 49.43 40.66 22.66 41.78 16.41 30.38

LIN. P. w/ PCA AND FASTICA 49.48 41.09 23.72 43.48 16.77 31.27

VIT16 LIN. P. 54.30 46.06 27.58 50.76 29.24 38.41
LIN. P. W/ FASTICA 56.65 48.18 28.27 55.50 33.39  41.33

LIN. P. W/ PCA AND FASTICA 56.16 47.46 30.21 55.49 31.71 41.22
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Table 6: Quantitative results for 1-shot transfer learning and domain generalization by different
methods. Lin. P. (Linear Probe).

SOURCE TARGET (IMAGENET-)

ENCODERS METHODS IMAGENET V2 SKETCH R A AVG.
RN50 LIN. P. 21.74 18.24 5.68 15.41 6.55 11.47
LIN. P. w/ FASTICA 23.22 19.68 6.37 13.84 7.21 11.77

LIN. P. w/ FASTICA 24.06 20.26 6.85 17.54 8.05 13.18

RN101 LIN. P. 26.05 21.48 9.90 23.85 10.17 16.35
LIN. P. w/ FASTICA 27.50 23.33 8.35 17.87 10.71 15.07

LIN. P. w/ PCA AND FASTICA 28.50 24.17 11.63 26.38 12.28 18.62

VIT32 LIN. P. 26.99 22.99 11.93 25.25 11.56 17.93
LIN. P. w/ FASTICA 29.21 24.80 9.97 21.23 12.23 17.06

LIN. P. w/ PCA AND FASTICA 29.05 24.45 12.39 27.61 12.56 19.25

VIT16 LIN. P. 32.42 27.64 16.34 34.28 21.84  25.02
LIN. P. w/ FASTICA 34.35 29.31 13.91 28.61 23.24  23.77

LIN. P. w/ PCA AND FASTICA 35.20 30.26 19.17 38.87 26.41 28.68

A.8 MORE RESULTS ON FEW-SHOT LEARNING TASK

25



Under review as a conference paper at ICLR 2025

100 80

@ Tip-AdapterF ~@~ Tip-AdapterF
98 ~@- Tip-Adapter-F w/ FasticA 75 { =@ Tip-Adapter-F w FasticA 80
~@- Tip-Adapter ~@~ Tip-Adapter
96 =@~ Tip-Adapter w/ FastiCA 70 { =@ Tip-Adapter wi FasticA 0
7
g w g6 8
° © 60 © 60
s 92 s S
“ 50 & ss g
50
50 -~ Tip-Adapter-F
88 =@~ Tip-Adapter-F w/ FastiCA
45 40 =@~ Tip-Adapter
86 =@~ Tip-Adapter w/ FastiCA
40
12 4 8 16 12 4 8 16 12 4 8 16
Number of labeled training examples per class Number of labeled training examples per class Number of labeled training examples per class

(a) Caltech101 (b) DTD (c) EuroSAT

50 80 70
@~ Tip-Adapter-F @~ Tip-Adapter-F
~®- Tip-Adapter-F w/ FastiCA 68 | ~@ Tip-AdapterF w Fastica
@~ Tip-Adapter 78 @~ Tip-Adapter
40 ~@- Tip-Adapter w/ FastiCA 66 | @ TiP-Adapter w/ Fastica
2 276 L 64
$ H H
g S 74 g 62
“ 20 @ “ 60
-~ Tip-Adapter-F
72 ~@~ Tip-Adapter-F w/ FastiCA 58
10 ~@~ Tip-Adapter
=@~ Tip-Adapter w/ FastiCA. 56
70
12 4 8 16 12 4 8 16 12 4 8 16
Number of labeled training examples per class Number of labeled training examples per class Number of labeled training examples per class
(d) FGVCAuircraft (e) Food101 (f) ImageNet
100
94 =@~ Tip-Adapter-F 75
95 =@~ Tip-Adapter-F w/ FastiCA
92 -~ Tip-Adapter
% =@~ Tip-Adapter w/ FasticA 70
~ _ 90 _
S 2 S
< 85 < <
o g 88 g%
S 80 s S
g 3 86 & 60
e @~ Tip-Adapter-F 84 =@~ Tip-Adapter-F
~®- Tip-Adapter-F w/ FastiCA 55 ~®- Tip-Adapter-F w/ FastiCA
70 -8~ Tip-Adapter 82 =0 Tip-Adapter
=@~ Tip-Adapter w/ FastiCA =@~ Tip-Adapter w/ FastiCA
65 80 50
12 4 8 16 12 4 8 16 12 4 8 16
Number of labeled training examples per class Number of labeled training examples per class Number of labeled training examples per class

(g) Oxford Flowers (h) Oxford Pets (i) Stanford Cars

75.0 80.0
725 775
70.0 ///‘ e

g 675 gns

v 65.0 v 70.0

] .
wn 62.5 wn 67.5
60.0 =@~ Tip-Adapter-F 65.0

~®- Tip-AdapterF w/ FastiCA

~@~ Tip-Adapter
=@~ Tip-Adapter-F w/ FastiCA

57.5 =@~ Tip-Adapter 62.5 @~ Tip-Adapter
=@~ Tip-Adapter w/ FastiCA =@~ Tip-Adapter w/ FastiCA
55.0 T T T T 60.0 T T
12 4 8 16 12 4 8 16
Number of labeled training examples per class Number of labeled training examples per class

(j) SUN397 (k) UCF101

Figure 8: More results on few-shot learning task: A comparison of top-1 accuracy (%) achieved by
various few-shot CLIP adaptation methods across 11 datasets. The x-axis indicates the number of
training examples per class.The incorporation of FastICA notably enhances the performance of the
original methods, Tip-Adapter and Tip-Adapter-F, proposed by Zhang et al. (2022a).
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ReLU(BN(ConvTranspose2d(512, 512, kernelsize=1, stride=1, padding=0)))
ReLU(BN(ConvTranspose2d(512, 64, kernelsize=4, stride=1, padding=0)))
ReLU(BN(ConvTranspose2d(64, 64, kernelsize=4, stride=1, padding=0)))
ReLU(BN(ConvTranspose2d(64, 32, kernelsize=4, stride=1, padding=0)))
ReLU(BN(ConvTranspose2d(32, 32, kernelsize=4, stride=1, padding=0)))
ConvTranspose2d(32, 3, kernelsize=4, stride=2, padding=1)

Table 7: Decoder for the image data.

A.9 IMPLEMENTATION DETAILS

We perform all experiments using the GPU RTX 4090, equipped with 32 GB of memory.

Synthetic Data We consider latent coupled variables z,, and z¢, each with a dimensionality of 10. Addition-
ally, we have modality-specific latent variables m, and m;, both set to a dimension of 5. The process begins
with sampling from the marginal distribution p(z. ), and the samples of modality-specific latent variables m,
and m; are obtained by sampling from Gaussian distributions with zero mean and one variance. We then create
real pairs by sampling from the conditional distribution p(z|z.). The observational data x and t are generated
using two different Multi-Layer Perceptrons (MLPs). Specifically, we utilize MLPs comprising three hidden
layers with leaky ReLU units and random weights. To ensure the invertibility of the MLP g, we carefully control
the condition number of the weight matrices. For our feature encoders concerning both z; and z,, we adopt an
MLP architecture with leaky ReL.U units.

Disentangled Representation Learning on CelebA To obtain disentangled representations for the
CelebA dataset, we initially employ the FastICA implementation available in the scikit-learn software on the
features extracted from the pretrained ViT-B/32 encoder. Subsequently, we train the decoder, as outlined in Table
[7] utilizing Mean Squared Error (MSE) loss.

Experiments of Linear Probe In our experiments with ImageNet-Type data, we utilized the PCA and
FastICA implementations provided by scikit-learn. For our proposed method, which combines PCA and ICA,
we configured the number of components to 500 for PCA, and for FastICA, we set it to 160 for 1, 2, and
4-shot learning scenarios, and 200 for 8 and 16-shot learning scenarios. When employing ICA alone, we
chose to use 300 components. For the proposed method with ICA only, we set number of components to
300. Following the setting of linear probe in CLIP, we train a logistic regression classifier using scikit-learn’s
L-BFGS implementation, with maximum 1,000 iterations. We determine the L2 regularization strength using a
hyperparameter sweep on the validation sets over the range between 10~° and 10° , with 96 logarithmically
spaced steps. To save compute required for the sweeps, we perform a parametric binary search and iteratively
halves the interval around the peak until it reaches a resolution of 8 steps per decade. The hyperparameter
sweeps are performed on a validation split of each dataset.

FastICA as a plug-and-play Tool. We incorporate FastICA in the framework proposed in|Zhang et al.
(2022a) to enhance its ability for few shot learning. The framework consists of two primary modules: one
keeps the zero-shot capabilities of pre-trained CLIP, ensuring effective utilization of prior knowledge, while
the other, the cache module, constitutes the central contribution of the work. The cache module endeavors to
transfer knowledge from labeled training samples. Given the above, we integrate FastICA into the cache module,
preserving the invaluable prior knowledge derived from the zero-shot abilities of pre-trained CLIP. For parameter
settings in FastICA, we opted for 100 components for the majority of datasets. Specifically, we assigned 350
components for the ImageNet dataset, 300 components for the OxfordPets dataset, and 50 components for the
EuroSAT dataset. A learning rate of 0.1 was employed for implementation. For the remaining parameter settings,
we adhered to the specifications outlined by |Zhang et al.|(2022a).
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