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Abstract

Curriculum learning is a training paradigm where
machine learning models are trained in a mean-
ingful order, inspired by the way humans learn
curricula. Due to its capability to improve model
generalization and convergence, curriculum learn-
ing has gained considerable attention and has
been widely applied to various research domains.
Nevertheless, as new curriculum learning meth-
ods continue to emerge, it remains an open is-
sue to benchmark them fairly. Therefore, we de-
velop CurBench, the first benchmark that supports
systematic evaluations for curriculum learning.
Specifically, it consists of 15 datasets spanning 3
research domains: computer vision, natural lan-
guage processing, and graph machine learning,
along with 3 settings: standard, noise, and im-
balance. To facilitate a comprehensive compar-
ison, we establish the evaluation from 2 dimen-
sions: performance and complexity. CurBench
also provides a unified toolkit that plugs auto-
matic curricula into general machine learning pro-
cesses, enabling the implementation of 15 core
curriculum learning methods. On the basis of this
benchmark, we conduct comparative experiments
and make empirical analyses of existing methods.
CurBench is open-source and publicly available
at https://github.com/THUMNLab/CurBench.

1. Introduction

Throughout the development of machine learning, a large
number of works have been greatly influenced by human
learning. Curriculum learning is such a research topic within
machine learning that draws inspiration from a remarkable
aspect of human learning: curriculum, i.e., learning in a pur-
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poseful and meaningful order (Wang et al., 2021a; Soviany
et al., 2022). In contrast to conventional machine learn-
ing methods where training examples are randomly input,
curriculum learning aims to facilitate learning by gradu-
ally increasing the difficulty of data or tasks experienced
by the model (Bengio et al., 2009). Since this easy-to-hard
training paradigm is verified to bring the advantage of en-
hancing model generalization and accelerating convergence
speed (Gong et al., 2016; Weinshall et al., 2018), it has
aroused widespread interest among researchers in harness-
ing its potential across diverse application domains, such as
computer vision (CV) (Guo et al., 2018; Soviany et al., 2020;
Gui et al., 2017), natural language processing (NLP) (Pla-
tanios et al., 2019; Tay et al., 2019; Liu et al., 2018), graph
machine learning (Li et al., 2023; Wang et al., 2021b; Wei
et al., 2023; Qin et al., 2024; Yao et al., 2024), multimodal
learning (Lan et al., 2023; Chen et al., 2023; Zhou et al.,
2023), recommender systems (Chen et al., 2021b;a; Wu
et al., 2023; Wang et al., 2023a), reinforcement learning
(RL) (Florensa et al., 2017; Narvekar et al., 2017; Ren et al.,
2018b), and others (Zhang et al., 2022; Zhou et al., 2022b).

Despite the significant progress and the wide application
of curriculum learning, the increasing number of works
has posed challenges in terms of their comparison and
evaluation, mainly due to the differences in their experi-
mental setups including datasets, backbone models, and
settings. For instance, DCL (Saxena et al., 2019) and
DDS (Wang et al., 2020) use the same WideResNet-28-
10 model (Zagoruyko & Komodakis, 2016), but perform
experiments on different datasets: CIFAR-100 and CIFAR-
10 (Krizhevsky et al., 2009) respectively. Similarly, DI-
HCL (Zhou et al., 2020) and CBS (Sinha et al., 2020) lever-
age the same ImageNet (Deng et al., 2009) dataset, but
employ distinct models: ResNet-50 and ResNet-18 (He
et al., 2016) respectively. Furthermore, while MCL (Zhou
& Bilmes, 2018) and LRE (Ren et al., 2018a) utilize the
same MNIST dataset and LeNet model (LeCun et al., 1998),
they adopt different settings: standard and imbalanced la-
bels respectively. Consequently, their experimental results
cannot be compared directly, which makes it challenging
to conduct a fair evaluation. The absence of a standardized
evaluation not only hinders researchers from accurately as-
sessing their own contributions when they propose a new
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Figure 1. CurBench includes 15 datasets spanning 3 research domains, 9 backbone models, 3 training settings, and 2 evaluation dimensions,
providing a comprehensive benchmark for existing curriculum learning methods.

method but also poses batriers for users when they seek a
suitable method for their specific tasks.

To deal with this issue, researchers have made notable ef-
forts to evaluate and summarize existing works. From a
theoretical perspective, there have been surveys covering
general curriculum learning (Wang et al., 2021a; Soviany
et al., 2022) as well as specific ones for graph (Li et al.,
2023) and RL (Narvekar et al., 2020; Portelas et al., 2020),
all of which manage to formulate and categorize relevant
methods comprehensively. Although they offer valuable
theoretical insights, current surveys do not incorporate any
practical implementation or experimental results. From an
empirical perspective, there has been an open-source library
on curriculum learning (Zhou et al., 2022a), which repro-
duces multiple related methods through a unified framework.
Although it provides empirical results of the implemented
methods, this library only supports the classification task on
CIFAR-10, limited in experimental setups. In conclusion,
the related works fail to address the open issue of evaluating
and comparing curriculum learning methods completely.

In order to address the absence of benchmarks in this field,
we propose CurBench, the first benchmark for systematic
evaluations of curriculum learning, as shown in Figure 1.
Concretely, it encompasses 15 prevalent datasets, spanning
3 research domains including CV, NLP, and graph to en-
sure the reliability of evaluation. These datasets are further
preprocessed into 3 settings including standard, noise, and
imbalance to reveal the capability of methods to enhance
model generalization and robustness. Without loss of gen-
erality, a total of 9 prevalent backbone models of varying
types and scales adapted to the above datasets are employed
in an appropriate manner, incorporating corresponding hy-
perparameters, optimizers, and so on. Most of the datasets,
settings, and models are commonly used in previous re-

lated works, while the rest are supplemented in this work
to investigate how these methods can adapt to the tasks in
other domains. For ease of use, this benchmark also pro-
vides a unified toolkit that plugs automatic curricula into
general machine learning processes and reproduces a collec-
tion of 15 core curriculum learning approaches. Based on
these implementations in CurBench, we further perform a
comprehensive evaluation from 2 dimensions including per-
formance and complexity, presenting the improvements the
methods bring and the additional resources they consume.

Furthermore, we delve into our benchmark, organize exper-
imental outcomes, conduct in-depth analyses, and obtain
some intriguing findings. First, there has been no such
method that outperforms others all the time, and the effec-
tiveness depends on specific scenarios. Second, curriculum
learning brings more significant improvements in noise set-
tings than in standard and imbalance ones. Third, methods
by teacher transferring have edges in noise settings, while
methods by reweighting perform relatively well in imbal-
ance settings. Lastly, methods involving gradient calculation
and extra learnable networks generally have higher time and
space complexity.

Our contributions are summarized as follows:

* We propose CurBench, the first benchmark on curricu-
lum learning to the best of our knowledge.

* We conduct extensive experiments to impartially eval-
uate and compare the performance and complexity of
existing curriculum learning methods under various
experimental setups.

* We make in-depth analyses and demonstrate intriguing
observations on curriculum learning based on empirical
results derived from CurBench.
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Domain Dataset Setting Training  Validation Test Class Metrics
CIFAR-10 Standard / Noise-0.4 45,000 5,000 10,000 10 Accuracy
Imbalance-50 12,536 5,000 10,000 10 Accuracy
Standard / Noise-0.4 45,000 5,000 10,000 100  Accuracy
cv CIFAR-100 Imbalance-50 12,536 5,000 10,000 100  Accuracy
Tiny-TmageNet Standard / Noise-0.4 90,000 10,000 10,000 200  Accuracy
Imbalance-50 22,700 10,000 10,000 200  Accuracy
RTE Standard / Noise-0.4 2,490 277 - 2 Accuracy
MRPC Standard / Noise-0.4 3,668 408 - 2 F1 Score
STS-B Standard / Noise-0.4 5,749 1,500 - 6  Spearman
NLP CoLA Standard / Noise-0.4 8,551 1,043 - 2 Matthews
SST-2 Standard / Noise-0.4 67,349 872 - 2 Accuracy
QNLI Standard / Noise-0.4 104,743 5,463 - 2 Accuracy
QQP Standard / Noise-0.4 363,846 40,430 - 2 F1 Score
MNLI-(m/mm) Standard / Noise-0.4 392,702 9,815/9,832 - 3 Accuracy
MUTAG Standard / Noise-0.4 150 19 19 2 Accuracy
PROTEINS Standard / Noise-0.4 890 111 112 2 Accuracy
Graph NCI1 Standard / Noise-0.4 3,288 411 411 2 Accuracy
ogbg-molhiv Standard / Noise-0.4 32,901 4,113 4,113 2 ROC-AUC

Table 1. The statistics of 15 datasets adopted in CurBench, which covers a wide range of scales across 3 research domains in 3 settings.
“Spearman” and “Matthews” refers to the correlation coefficient. “Noise-0.4"" means 40% data samples are independently attached with
random incorrect labels. “Imbalance-50" means a ratio of 50 between the number of samples in the largest class and that in the smallest
class in a long-tailed dataset where the number of samples for each class follows a geometric sequence. The imbalance setting is not

applied to NLP and graph datasets, which are imbalanced originally.

2. Related Work

2.1. Curriculum Learning

Curriculum learning, much like many other topics in ma-
chine learning, draws inspiration from human learning. It
refers to a training strategy where models learn from input
data in a meaningful order, imitating the way humans learn
from curricula. The emergence of this idea could at least
be traced back to Elman’s work (Elman, 1993) in 1993,
which advocated the importance of starting small. In 2009,
Bengio et al. (Bengio et al., 2009) first introduced a formal
definition of curriculum learning and explored when, why,
and how a curriculum could benefit machine learning. In
the early stages, curricula for models were entirely prede-
fined by humans, and the most typical method was named
Baby Step (Spitkovsky et al., 2010). However, this type
of predefined approach is not flexible and general enough
for widespread applications. In 2010, Kumar et al. (Kumar
et al., 2010) proposed self-paced learning (SPL), enabling
automatic curriculum scheduling by ordering data according
to their training loss. Subsequently, a variety of automatic
curriculum learning methods have continued to emerge. For
example, transfer learning methods (Weinshall et al., 2018;
Hacohen & Weinshall, 2019) employ teacher models to of-
fer student models curricula. Reinforcement learning meth-
ods (Graves et al., 2017; Matiisen et al., 2019; Zhao et al.,
2020) allow teacher models to adapt curriculum based on

the feedback from student models. In addition, there are
other ones based on Bayesian optimization (Tsvetkov et al.,
2016), meta-learning (Ren et al., 2018a; Shu et al., 2019),
and adversarial learning (Zhang et al., 2020) for implement-
ing automatic curriculum learning.

2.2. Summative Work on Curriculum Learning

To the best of our knowledge, CurBench is the first bench-
mark on curriculum learning. Despite no related bench-
marks, there have been numerous efforts to investigate and
summarize the curriculum learning methods from different
perspectives. For example, Wang et al. (Wang et al., 2021a)
survey curriculum learning and propose a general frame-
work to cover the related methods by abstracting them into
two key components, i.e., a difficulty measurer to tell what
data or task is easy or hard to learn and a learning scheduler
to decide when to learn the easier or harder part, and further
categorize the methods according to the implementation of
these two components. Soviany et al. (Soviany et al., 2022)
also survey curriculum learning and propose a generic al-
gorithm for it based on the definition of machine learning,
i.e., data, modal, and task, and organize the methods ac-
cording to their application domains and tasks. Narvekar
et al. (Narvekar et al., 2020) survey the relevant methods
applied to RL and abstract them into three steps, i.e., task
generation, sequencing, and transfer learning. Portelas et
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al. (Portelas et al., 2020) also focus on curriculum learning
for RL, and classify the methods based on three questions,
i.e., why, what control, and what optimize. Li et al. (Li et al.,
2023) review the tailored methods for graph, and group
them according to the tasks, i.e., node-level, link-level, and
graph-level. However, these works only summarize and an-
alyze the methods from the theoretical aspect. On the other
hand, Zhou et al. (Zhou et al., 2022a) develop CurML, a
code library for curriculum learning, which designs a unified
framework for the reproduction and comparison of existing
methods from the empirical aspect. Nevertheless, it can
only conduct experiments on a single task within a specific
domain, significantly limiting its generality and reliability.
Therefore, it is necessary to develop a benchmark across di-
verse experimental setups for a fair, reliable, and systematic
study on curriculum learning.

3. Curriculum Learning Benchmark

In this section, we describe our design for the benchmark
in detail. First, we clarify the scope of this benchmark
in Section 3.1. Then, we introduce the adopted datasets
in Section 3.2, followed by the corresponding settings in
Section 3.3 and the backbone models in Section 3.4. Lastly,
we elaborate on the evaluation dimensions in Section 3.5.

3.1. Benchmark Scope

CurBench focuses on benchmarking existing prevalent cur-
riculum learning methods for supervised tasks in CV, NLP,
and graph domains. This is because CV and NLP are
representative research domains in machine learning, with
datasets in these areas frequently used to validate the perfor-
mance of curriculum learning methods, as shown in Table 6.
Graph data, being structured, differs from the unstructured
data of images and text, contributing to the diversity of
CurBench, and curriculum learning in the graph domain has
gained significant attention recently. Besides, the main chal-
lenge of the tasks included in CurBench lies in designing
appropriate curricula at the data level so that the models
can be guided to better cope with standard, noisy, and im-
balanced datasets. In contrast, the methods designed at the
task level and specifically targeting the RL domain are not
within the scope of this work. We plan to expand the scope
of CurBench in a future version, as stated in Section 6.

3.2. Dataset

Table 1 outlines the datasets included in CurBench, all of
which are publicly available and widely used in their respec-
tive domains. Besides, they vary in scale from hundreds of
samples to hundreds of thousands. A brief introduction to
the datasets and our preprocessing is listed as follows.

CV Domain: CIFAR-10 and CIFAR-100 (Krizhevsky et al.,

2009) consist of 32 x 32 x 3 color images in 10 and 100
classes respectively. Tiny-ImageNet (Le & Yang, 2015) is
a subset of the ILSVRC2012 version of ImageNet (Deng
et al., 2009) and consists of 64 x 64 x 3 down-sampled
images. Since the test set of Tiny-ImageNet is not released
with labels, we use the validation set as the test set. For
these 3 datasets, we split the original training set into a new
training set and a validation set with a 9:1 ratio.

NLP Domain: All 8 datasets are sourced from GLUE
(Wang et al., 2018), which is a collection of tools for evalu-
ating models across diverse natural language understanding
tasks. GLUE originally contains 9 datasets, and we fol-
low BERT (Devlin et al., 2018), excluding the problematic
WNLI set and using the remaining 8 datasets. Since the test
sets are not released with labels, we report the results on the
validation sets.

Graph Domain: The ogbg-molhiv dataset belongs to Open
Graph Benchmark (OGB) (Hu et al., 2020), a collection
of realistic, large-scale, and diverse benchmark datasets
for graphs. We strictly follow its origin split scheme, split
ratios, and metrics. The other 3 datasets come from TU-
Dataset (Morris et al., 2020), a collection that consists of
over 120 graph datasets of varying sizes from a wide range
of applications. Since there are no established training and
test set split, we randomly divide the original datasets into
training, validation, and test sets with an 8:1:1 ratio.

3.3. Setting

To robustly evaluate the curriculum learning methods, we
establish the 3 settings as follows.

Standard: After dividing the datasets into training, valida-
tion, and test sets as mentioned above, we do not perform
any further data processing.

Noise-p: We follow previous works (Zhang et al., 2016; Ren
et al., 2018a; Shu et al., 2019) and apply uniform noise by
independently changing the label of each sample in the train-
ing set to a random one with a probability of p € (0.0, 1.0].
When p = 0, it degenerates to the standard setting.

Imbalance-r: We follow previous works (Cui et al., 2019;
Shu et al., 2019) to form a long-tailed dataset by reduc-
ing the number of samples per class in the training set.
Let ¢ € {0,1,2,...,C — 1} be the class index, C be the
number of classes, n. be the number of samples in the
cth class, and then an originally balanced dataset satisfies
ng <~ ni ~ ... T no—1. We implement the imbalance
setting by requiring n. to follow the exponential function
ne = nod® where d € (0, 1) and define the imbalance factor
r = ng : nco—1 as the ratio between the number of samples
in the largest class and that in the smallest class. When
r = 1, it degenerates to the standard setting.
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Domain Model Mechanism  Parameters
LeNet Convolution ~ 0.07M
CvV ResNet-18  Convolution ~ 11.2M
ViT Attention ~ 9.6M
LSTM Recurrent ~ 10.4M
NLP BERT Attention ~ 109M
GPT2 Attention ~ 124M
GCN Convolution ~ 0.01M
Graph GAT Attention ~ 0.14M
GIN Isomorphism ~ 0.01M

Table 2. The statistics of 9 backbone models adopted in CurBench,

which covers various mechanisms and scales. “~” signifies an
approximation, and “M” represents million.

3.4. Backbone Model

Table 2 overviews the backbone models that we employ in
CurBench. All the values in the last column are approxima-
tions because the number of parameters varies depending
on the input sizes and output classes. All of the models are
commonly applied to the aforementioned datasets, and they
are distinct from each other in mechanism and model size.

CV Domain: LeNet (LeCun et al., 1998) is one of the ear-
liest convolutional neural networks (CNN), which is com-
posed of 3 convolution layers, two pooling layers, and some
fully-connected layers. ResNet (He et al., 2016) is a classic
CNN with residual connection designed for easier training
of deeper networks, and ResNet-18 refers to the 18-layer
version. ViT (Dosovitskiy et al., 2020) is the standard Trans-
former directly applied to images by treating image patches
as word tokens. ViT in CurBench is not pretrained because
its pretrained weights are derived from ImageNet (Deng
et al., 2009), which leads to the risk of data leakage when
evaluating its performance on Tiny-ImageNet (Le & Yang,
2015), a subset of ImageNet.

NLP Domain: LSTM (Hochreiter & Schmidhuber, 1997) is
a typical recurrent neural network (RNN), which introduces
gate functions to control what to remember and what to
forget in the face of long sequences. BERT (Devlin et al.,
2018) is a deep bidirectional Transformer pretrained by
masked language model task and it excels at semantic repre-
sentation due to its encoder-based architecture. GPT2 (Rad-
ford et al., 2019) is a decoder-based Transformer pretrained
through left-to-right language modeling objectives, and as a
result, works well on text generation. BERT and GPT2 in
CurBench are pretrained because training them from scratch
would result in poor performance, making it difficult to
maintain consistency with their suggested performance.

Graph Domain: GCN (Kipf & Welling, 2016) is a vari-
ant of CNN, designed to operate directly on graphs. Its
insight lies in the choice of convolutional architecture via

a localized first-order approximation of spectral graph con-
volutions. GAT (Veli¢kovic et al., 2017) introduces masked
self-attentional layers based on GCN to enable implicitly
specifying different weights to different nodes in a neigh-
borhood. GIN (Xu et al., 2018) is developed based on
Weisfeiler-Lehman test theory and emphasizes the impor-
tance of summation as the readout function.

3.5. Evaluation

To ensure a comprehensive analysis of existing methods, we
consider the following 2 evaluation dimensions.

Performance: We adopt the widely accepted metrics on
each dataset, such as accuracy on image, F1 score, Spear-
man Correlation, and Matthews Correlation on the GLUE
benchmark, AUC (Yang et al., 2021) on graph. To display
the results clearly, we report the average and standard devia-
tion of the metric over 5 runs for each dataset.

Complexity: It is essential to examine the time and space
complexity of each method because they always cost extra
computational time and sources to assess model compe-
tence and data difficulty for appropriate curricula design.
We record the training time and maximum memory con-
sumption on the same GPU device as the indicators of the
complexity.

4. CurBench Toolkit
4.1. Modules

To facilitate the use of our CurBench, we develop a com-
panion toolkit based on CurML (Zhou et al., 2022a) for
the entire pipeline of applying curriculum learning to vari-
ous machine learning tasks, reproducing 15 core methods.
Compared to CurML, this toolkit extends the methods to
accommodate inputs in various data formats and diverse
output evaluation metrics and provides searched hyperpa-
rameters for each method. As illustrated in Figure 2, we
summarize and abstract the whole toolkit into 5 modules:
data processing, model loading, objective fitting, curriculum
learning, and evaluation.

Data Processing: This module aims to prepare data accord-
ing to the specified dataset and setting. Given a data name in
a format like “cifar10”, “cifar100-noise-p” or “tinyimagenet-
imbalance-r”, this module can automatically parse it, split
the dataset into training, validation, and test set, and pro-
cess the training set by adding noise with probability p or
forming imbalance with factor 7.

Model Loading: This module is used to initialize the model
based on the model name and the target dataset. For instance,
CV models need to modify their input layer to accommo-
date input images and patch sizes. Similarly, graph models
require node features and edge relationships when construct-
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Dataset Setting Ratio Model Input Size  Class Epoch  Optimizer Obijective Performance

CIFAR-10 Noise 0.4 ResNet-18 (32,32) 200 Adam Cross Entropy Accuracy
Data Processing Model Loading Objective Fitting F1iScore
via Data Selection via Model Adjustment via Loss Reweighting Complexity

SPL (NeurlPS, 2010) TTCL (ICML, 2018)
MCL (ICLR, 2018)
LGL (CVPR, 2019)

CBS (NeurIPS, 2020)
DIHCL (NeurIPS, 2020)
Adaptive CL (ICCV, 2021)

C2F (arXiv) EfficientTrain (ICCV, 2023)

ScreenerNet (arXiv) LRE (ICML, 2018)
MW-Net (NeurlPS, 2019) DCL (NeurlPS, 2019)

Training Time
GPU Memory
SuperLoss (NeurlPS, 2020) DDS (ICML, 2020)

Evaluation

Figure 2. Our CurBench toolkit, which is composed of 5 modules, offers a unified and complete pipeline from initiation to evaluation,
aiming for easy implementation and reproduction of curriculum learning methods. This figure showcases an example of noisy CIFAR-10.

ing graph convolutional layers. Besides, the class number
of the dataset determines the models’ output layer.

Objective Fitting: This module handles the process where
models learn and fit datasets to accomplish target tasks. For
different research domains, we select tailored hyperparame-
ters, optimizers, loss functions, and so on. Unlike common
machine learning, the training procedure in this module is
guided by the curriculum learning module.

Curriculum Learning: This module integrates 15 core
curriculum learning methods, all of which are abstracted as a
class for easy plug-in into the objective fitting module. This
design of abstracting methods as classes ensures that the
module is extensible for new methods. Currently, we divide
the existing methods into the following 3 categories. It is
worth noting that this categorization is intended to facilitate
the implementation and extension of various methods within
a unified framework, but it does not imply that methods
within the same category necessarily share similar properties
or performance.

* via Data Selection: The primary approach to imple-
menting curriculum is through data selection so that
models can progressively learn from a subset to the en-
tire dataset in a meaningful order. The methods belong
to this category are vanilla SPL (Kumar et al., 2010),
DIHCL (Zhou et al., 2020), and so on (Weinshall et al.,
2018; Zhou & Bilmes, 2018; Cheng et al., 2019; Kong
et al., 2021; Wang et al., 2023b). Some methods select
data subsets based on sample difficulty, while others
select data based on sample class.

* via Model Adjustment: An innovative idea for design-
ing curricula is to regulate the amount of data informa-
tion the model receives by modifying its architecture.
CBS (Sinha et al., 2020), which employs a Gaussian
filter to manage information intake, is a typical one.

 via Loss Reweighting: Loss reweighting can be re-
garded as a “soft” version of data selection. Intuitively,

assigning a low weight to a data sample is almost equiv-
alent to disregarding it. A common practice to reweight
loss is through meta-learning (Finn et al., 2017), such
as LRE (Ren et al., 2018a), MW-Net (Shu et al., 2019),
and DDS (Wang et al., 2020), all of which employ a
meta-network to assess the weights of losses and opti-
mize the meta-network with the validation set. Addi-
tionally, there are other approaches, such as variants of
SPL (Fan et al., 2017; Castells et al., 2020), DCL (Sax-
ena et al., 2019), ScreenerNet (Kim & Choi, 2018),
and SuperLoss (Castells et al., 2020).

Evaluation: This module is utilized to report results from
2 aspects, i.e., performance and complexity, in order to
respectively demonstrate the effectiveness and efficiency of
different methods. The performance metrics depend on the
target datasets and tasks, and the complexity metrics include
training time and maximum GPU memory consumption.

4.2. Example Usage

Figure 3 illustrates the python-like sample code of our
CurBench toolkit, where an object of the SPLTrainer class
is instantiated given the essential parameters, including a
CIFAR-10 dataset name with the noise setting for data pro-
cessing and a ResNet-18 net name for model loading. All of
the above are put together to fit and evaluate the final result.
With only a few lines of code, a dozen curriculum learning
methods can be easily implemented and reproduced. On the
basis of this tool, we conduct a multitude of experiments,
and we will report the experimental setups and results in the
next section.

5. Experiments and Analyses

5.1. Experimental Setup

To ensure a fair and reproducible evaluation, we fix all
possible confounding factors and report the average and
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from curbench.algorithms import SPLTrainer

# Instantiate curriculum learning class
trainer = SPLTrainer(
# CIFAR-10 with 40% wrong labels
data_name='cifarl@-noise-0.4",
# ResNet-18 with 32x32 input size
net_name='resnetl8’,
# Self-Paced Learning in a linear way
start_rate=0.0,
grow_epochs=100,
grow_fn="'linear',
weight_fn="hard',
)
# Automatic, no need to specify:
# trainer._init_dataloader()
# trainer._init_model()

# Fitting and evaluating
trainer.fit()
trainer.evaluation()

Figure 3. Python-like sample code for an example of Self-Paced
Learning applied to image classification with CurBench Toolkit.

standard deviation results of 5 runs with different fixed
random seeds for each combination of datasets, backbone
models, and settings. The detailed hyperparameters for
both training processes and curriculum learning methods
are presented in the Appendix.

5.2. Performance
5.2.1. Main Results

Table 3 presents the overall performances with and without
curriculum learning under different combinations of back-
bone models, datasets, and settings. The detailed results of
each specific curriculum learning method are attached in
the Appendix, and we report the best ones among them in
this table. The imbalance setting is not applied to NLP and
graph datasets, where the number of samples in each class
is imbalanced originally.

It is observed that curriculum learning can bring consistent
improvement across domains. Compared to standard and
imbalance settings, curriculum learning benefits much more
in noise settings. This phenomenon is consistent with exist-
ing theoretical analysis, where curriculum learning is able
to denoise and guide machine learning by discarding the
difficult and possibly noisy data in the early stages of train-
ing. Besides, there is no such method that can outperform
the others all the time, and the effectiveness of curriculum
learning methods still depends on the target scenarios. For

example, ScreenerNet (Kim & Choi, 2018) exhibits superior
performance on CV datasets compared to graph datasets,
and TTCL (Weinshall et al., 2018) performs better in noise
settings than in standard and imbalance ones. Therefore,
it is essential to explore more general methods while also
researching methods tailored to specific environments.

5.2.2. Results in Noise Settings

Figure 4 demonstrates the performances of curriculum
learning methods on datasets with different noise ratios
p € {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8}. Without loss
of generality, we select a backbone model and a dataset from
each research domain. Some methods such as CBS, LGL,
C2F, and EfficientTrain are only applied to CV datasets
and not to NLP and graph datasets due to the following
reasons. CBS (Sinha et al., 2020) requires convolutional
layers in backbone models, and such models in CurBench
are only within the CV domain. LGL (Cheng et al., 2019)
and C2F (Stretcu et al., 2021) require multiple classes for
clustering, but most NLP and graph datasets in CurBench
have only two classes. EfficientTrain (Wang et al., 2023b)
is based on data augmentation techniques on images.

We can observe that TTCL (Weinshall et al., 2018), the
method by teacher transferring, obtains competitive perfor-
mances regardless of the noise ratio, thanks to the guidance
from the teacher model pretrained on the clean dataset. In
contrast, SPL (Kumar et al., 2010), which is similar to TTCL
but guides the learning by itself, performs relatively poorly.
It is because a model not fully trained is not that competent
to accurately distinguish noisy or hard data.

5.2.3. Results in Imbalance Settings

Figure 5 depicts the performances on CIFAR-10 with vary-
ing imbalance factor r € {1, 10, 20, 50, 100, 200}.

It is observed that all methods achieve similar performances
under different imbalance ratios. When the imbalance factor
r increases, the differences between the methods become ev-
ident. Relatively speaking, the methods by data reweighting,
such as DCL (Saxena et al., 2019) and SuperLoss (Castells
et al., 2020), perform well because they can mitigate the
impact of imbalanced classes by reassigning the weight of
data or even class.

Compared with noise settings, curriculum learning brings
less significant improvements and shows less variation be-
tween methods in imbalance settings. This is primarily
because most curriculum learning methods focus on the
difficulty of samples instead of classes, leading to over-
all better performances in noise settings than in imbalance
settings. Additionally, the differences in judging difficult
or noisy samples result in larger performance disparities
among methods in noise settings.
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CIFAR-10 CIFAR-100 Tiny-ImageNet
Standard Noise-0.4 Imbalance-50 | Standard Noise-0.4 Imbalance-50 | Standard Noise-0.4 Imbalance-50
LeNet 69.95100 65.02y 1> 4493 56 3546070  29.590.40 19.570.64 22.08p61  18.63043 11.65¢30
LeNet + CL 7043041 65.93) 57 45.28) 56 35.63p73  30.87).43 19.74 17 22.83044 1991 12.36¢ 47
ResNet-18 92-330.16 82.752_()(, 7549087 69.97()_27 52.140_39 42-570.68 51.41 1.74 39.420,2] 2883033
ResNet-18 + CL | 92.880,3  86.92¢ 76.43 96 7131014 58.56( ¢ 43.47 43 53.61p43 43.6407> 30.82( 3¢
ViT 7990038 64.19¢5; 52.120.81 51.05062  35.25024 26.050.52 38.16053  24.9002¢ 17.15031
ViT + CL 80.66p,7 69.83 53 52.85) 51 5193064  39.15)30 26.400 34 3892055  29.76( 34 17.47 14
RTE MRPC STS-B CoLA
Standard Noise-0.4 | Standard Noise-0.4 | Standard Noise-0.4 | Standard Noise-0.4
LSTM 5295134 5343177 | 81.43p014 8122000 | 12.73072 10.90y19 | 11.2927 3.27 68
LSTM + CL | 53.07 9 54.22,7; | 81.54¢;5 81.24p05 | 14.11,,; 11.75,4; | 12.65,; 8.55, 10
BERT 64.62333  54.22314 | 88.54045 81.89983 | 8526022 80.71101 | 57.39130 32.35079
BERT + CL 66.351_76 56.325,()4 88.69]'24 81.940_55 85.420,22 81-310'25 57'801.96 45.791'54
GPT2 65.34195 5292449 | 85.4908¢ 782317, | 764415 69.65:85 | 37.0057, 5.861 60
GPT2+CL | 66.35,19 57.40339 | 86.29)3 82.55ps3 | 80.82139 71.57,74 | 39.9556 12.54,75
SST-2 QNLI QQP MNLI-(m/mm)
Standard Noise-0.4 | Standard Noise-0.4 | Standard Noise-0.4 Standard Noise-0.4
LSTM 81.67p85 64.36112 | 50.54000 50.62016 | 75.69027 60.72079 | 61.38030/61.21045 44.4105, /44.83090
LSTM + CL | 82.8705s 78.58164 | 51.02046 50.83045 | 75.73051 66.4707, | 62.4703¢/62.33042 58.59¢54 / 58.50064
BERT 92.66028 87.2208> | 91.21924 81.2107¢ | 88.05012 76.23p48 | 83.89031/84.38029 78.65070/79.2192
BERT + CL | 92.82);5 91.25)s9 | 91.49);35 89.4504 | 88.160;3 84.500,5 | 84.2707 /84.4004, 81.73(3; / 82.25y49
GPT2 9195049 85.83p57 | 87.92p31  78.72037 | 86.00023 75.40084 | 81.53¢21/82.400, 76.56¢.15/77.690.15
GPT2+CL | 92.2504 90.34ps3 | 88.179s7 84.00070 | 86.68),s 82.16935 | 81.90,3 / 82.5935 78.36¢ 19/ 79.62)44
MUTAG PROTEINS NCI1 ogbg-molhiv
Standard Noise-0.4 | Standard Noise-0.4 | Standard Noise-0.4 | Standard Noise-0.4
GCN 73.68,11 6631714 | 7071400 63.57¢45 | 69.59123 5523351 | 75.84100 64.29455
GCN +CL | 7474304 71.58537 | 73.21441 71.6156, | 71.39,9 67.98,0; | 77.41,,5 72.81, 4
GAT 69.47614 65.26537 | 64.46596 65.71913 | 56. 74286 53.77212 | 68.07234  65.37566
GAT + CL 72.63&42 69.4710_21 69.827,13 69-113_77 59.371_59 55.674_7() 72.641_16 66.731_34
GIN 86.84790 78.9537, | 7411424 69.82173 | 79.32140 60.2439; | 74.7213¢ 63.07373
GIN+CL | 8842, 81.58,5¢ | 77.144583 73.9315, | 82.04,99 62.14647; | 76.53,97 65.53,¢;

Table 3. The empirical performances of 9 backbone models over 15 datasets in 3 settings with and without curriculum learning methods.
The rows with “+ CL” present the best performances achieved among the methods involved in this benchmark. The bold font highlights
the superior performances brought by curriculum learning. The imbalance setting is not applied to NLP and graph datasets, which are
imbalanced originally. Note: The detailed performances of each method are reported in Table 9-11 in the Appendix.
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Figure 4. The performances as a function of noise ratio p for different curriculum learning methods on datasets from 3 research domains.
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Figure 5. The performances as a function of imbalance factor r.

5.3. Complexity

Figure 6 shows the time and space complexity of each
method in the case of ResNet-18 and CIFAR-10, measured
by GPU training time (Hour) and maximum GPU memory
consumption (GB).

The whole figure can be divided into 3 parts. The first is the
upper right corner, which contains the methods requiring
gradient calculation and meta-network training, resulting in
high time and space complexity. The second is the middle
part with the point of ScreenerNet, which also introduces
an extra network but only requires once backward, leading
to less complexity. The third is the lower left corner, which
includes most of the methods consuming similarly small
amounts of training time and GPU memory because they
measure data difficulty and schedule curriculum in a rela-
tively intuitive way and do not demand a learnable network
with a large number of parameters.
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Figure 6. Time and space complexity of different methods in the
case of ResNet-18 and CIFAR-10. Note: The numerical results of
3 different cases are reported in Table 8 in the Appendix.

6. Conclusion

In this paper, we propose CurBench, the first benchmark
for curriculum learning. It covers a broad range of research
domains, datasets, backbone models, settings, and evalu-
ation dimensions, ensuring a fair, reliable, and systematic
evaluation of existing curriculum learning methods. For
convenient utilization, it is complemented by a toolkit that
implements essential related works in a unified pipeline and
applies them to various machine learning tasks. Through em-
pirical results and theoretical analyses, we provide valuable
findings on curriculum learning. In conclusion, CurBench
holds the potential to benefit future research and suggest
promising directions.

Limitations: Despite the benefits of our CurBench, we
also recognize the following limitations in this version and
intend to refine them in future expansions.

» CurBench mainly covers supervised learning in CV,
NLP, and graph domains, but has not incorporated
the datasets, backbone models, and tasks related to
other domains such as audio processing, multimodal
learning, recommender systems, and robotics. Ad-
ditionally, CurBench has not involved unsupervised,
semi-supervised, and reinforcement learning. Given
the importance of these topics in the context of curricu-
lum learning applications, they will be integrated as a
significant part of future versions.

e CurBench currently employs publicly available
datasets that are commonly used in their respective
domains. However, CurBench has not yet introduced
any new datasets. Designing specialized datasets for
curriculum learning is essential because these datasets
can better align with the unique requirements and ob-
jectives of curriculum learning methodologies. We
recognize the importance of this task and intend to
undertake it in the future.

CurBench has not evaluated the performance of curricu-
lum learning on large models, which deserves in-depth
exploration in this era of large models. Considering
that large models often encounter vast amounts of data
with varying quality when learning, it is suitable to
utilize curriculum learning for guidance and denoising.
We plan to include the prevalent large-scale language
and multimodal models in our future work.
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A. Appendix Abstract

In this appendix, we first list the essential information of
the datasets in Section B and backbone models in Section C.
Then we summarize the curriculum methods implemented
in this work in Section D to present how these methods were
evaluated when they were proposed. After providing the
training hyperparameters in Section E and method hyperpa-
rameters in Section F, we report the detailed performance
and complexity of each method in various experimental
setups in Section G.

B. Datasets

All the datasets included in CurBench are publicly available
for research. To eliminate the risk of ethical or license issues,
we list the essential information of the datasets, such as their
home pages, common download links, and licenses.

Domain Home Page Download Link License
v CIFAR PyTorch MIT
Tiny-ImageNet CS231n MIT
NLP GLUE Hugging Face Various
Graph TUDataset PyTorch Geometric ~ Various
OGB OGB Dataset MIT

Table 4. The home pages, download links, and licenses of datasets.

Concretely, in this work, we download CIFAR via PyTorch
API, GLUE via Hugging Face API, TUDataset via PyTorch
Geometric (PyG) API, and OGB dataset via OGB API. For
Tiny-ImageNet, we download the zip file from CS231n,
and adjust its file structure to the same form as CIFAR for
easier loading with the help of the tool code from Github:
lromor/tinyimagenet.py.

C. Backbone Models

For the standardization and reliability of CurBench, we
implement all backbone models by referencing highly rec-
ognized code repositories as shown in Table 5.

Domain Model Reference
cv LeNet, ResNet-18  pytorch-cifar
ViT vit-pytorch
NLP LSTM Istm-gru-pytorch
BERT, GPT2 Hugging Face
Graph GCN, GAT, GIN PyTorch Geometric

Table 5. The implementation references of backbone models.

Among these models, BERT and GPT2 are initiated with
the pretrained parameters from Hugging Face and finetuned
in this work, while others are trained from scratch.
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D. Curriculum Learning Methods

When designing CurBench, we are inclined to the datasets
and models used in previous works for evaluation. There-
fore, we have surveyed what datasets and models are com-
monly employed and completed the Table 6.

It can be obviously found that when researchers propose a
curriculum learning method, they always conduct experi-
ments on image classification tasks for performance evalua-
tion. Only a few authors will try to apply their methods to
the datasets for object detection or neural machine transla-
tion. Besides, not all works take different settings, such as
noise or imbalance, into consideration.

Therefore, as stated in the main text, we not only select the
datasets and models in the CV domain, which are commonly
used in previous related works, but also supplement those in
the NLP and graph domains to investigate how the methods
can adapt to various scenarios.

E. Training Hyperparameters

To ensure a fair evaluation, we run 5 times with fixed differ-
ent random seeds s € {42, 666, 777,888,999}, and report
the average and standard deviation results. Besides, we
strictly set the training hyperparameters as follows:

LeNet, ResNet-18, ViT: We choose a batch size of 50, and
use an Adam optimizer to train the model with a constant
learning rate of 0.0001 for 200 epochs.

LSTM: We choose a batch size of 50, and use a SGD op-
timizer to train the model with a cosine annealing learning
rate of 0.00001~1 for 10 epochs.

BERT, GPT2: We choose a batch size of 50, and use an
AdamW optimizer to train the model with a constant learn-
ing rate of 0.00002 for 3 epochs.

GCN, GAT, GIN: We choose a batch size of 50, and use
an Adam optimizer to train the model for 200 epochs with
learning rates of 0.01 for TUDataset and 0.001 for OGB.

F. Method Hyperparameters

For a reproducible evaluation, we demonstrate the hyper-
parameters that we select for curriculum learning methods
in Table 7. It should be noted that this table includes the
hyperparameters for the experiments with 200 epochs. For
text domain tasks trained for 3 or 10 epochs, we sightly ad-
just some epoch-related hyperparameters to adapt the tasks,
such as grow_epochs, warm_epochs, and schedule_epochs.

G. Detailed Complexity and Performance

Tables from 8 to 11 report complexity and performance.


https://www.cs.toronto.edu/~kriz/cifar.html
https://pytorch.org/vision/stable/datasets.html
https://www.kaggle.com/c/tiny-imagenet
http://cs231n.stanford.edu/tiny-imagenet-200.zip
https://gluebenchmark.com/
https://huggingface.co/datasets/glue
https://chrsmrrs.github.io/datasets/docs/datasets/
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
https://ogb.stanford.edu/
https://ogb.stanford.edu/docs/dataset_overview/
http://cs231n.stanford.edu/tiny-imagenet-200.zip
https://gist.github.com/lromor/bcfc69dcf31b2f3244358aea10b7a11b
https://github.com/kuangliu/pytorch-cifar
https://github.com/lucidrains/vit-pytorch
https://github.com/emadRad/lstm-gru-pytorch
https://huggingface.co/transformers/v3.0.2/model_doc/auto.html
https://colab.research.google.com/drive/1I8a0DfQ3fI7Njc62__mVXUlcAleUclnb?usp=sharing
https://huggingface.co/models

CurBench: Curriculum Learning Benchmark

Method Conference Datasets Models Settings
Std  Noi
SPL MUC6, UniProbe,
(Kumar et al., 2010) NIPS, 2010 MNIST, Mammals SSVM v
TTCL
(Weinshall et al., 2018) ICML, 2018 CIFAR-100, STL-10 CNN v
MCL News-20, MNIST,
(Zhou & Bilmes, 2018) ICLR, 2018 CIFAR-10, STL-10, LeNet5, CNN v
7 SVHN, Fashion
ScreenerNet Cart-pole-v0,
(Kim & Choi, 2018) ArXiv, 2018 CIFAR-10, MNIST, DDQN, CNN v
i Pascal VOC
LRE MNIST, CIFAR-10, LeNet, ResNet-32,
(Ren et al., 2018a) ICML, 2018 CIFAR-100 WideResNet-28-10 v
MW-Net CIFAR-10, CIFAR-100, ResNet-32, ResNet-50,
(Shu et al., 2019) NIPS, 2019 o thing 1M WideResNet-28-10 o
DCL CIFAR-10, CIFAR-100, VGG-16, SSDNet,
S tal., 2019) NIPS, 2019 ImageNet, WebVision, ResNet-18, Ve Ve
axena et ak, KITTI WideResNet-28-10
LGL CIFAR-10, CIFAR-100,
(Cheng et al., 2019) CVPR, 2019 ImageNet VGG-16, ResNet-50 v
DDS CIFAR-10, ImageNet, LSTM, ResNet-50,
(Wang et al., 2020) ICML, 2020 gy WideResNet-28-10 v
CIFAR-10, CIFAR-100,
ImageNet, Food-101, ResNet-50,
DIHCL FGVC Aircraft, WideResNet-16-8,
(Zhou et al., 2020) NIPS, 2020 Stanford Cars, WideResNet-28-10, v
v Birdsnap, FMNIST, ResNeXt50-32x4d,
KMNIST, STL10, PreActResNet34
SVHN
MNIST, UTKFace, ﬁ::g::'ig’lReSNet's 0,
SuperLoss CIFAR-10, CIFAR-100, AN
(Castells etal, 2020) TIPS, 2020 o) Vision, Pascal vOC, WY deResNet-28-10, o
.. . Faster R-CNN,
Revisited Oxford and Paris .
RetinaNet
CIFAR-10, CIFAR-100, VGG-16, ResNet-18,
CBS ImageNet, SVHN, Wide-ResNet-50,
(Sinha et al., 2020) NIPS, 2020 CelebA, Pascal VOC, ResNeXt-50, v
MNIST, USPS VAE, 3-VAE
C2F ArXiv. 2021 CIFAR-10, CIFAR-100, Resnet-18, Resnet-50, v
(Stretcu et al., 2021) v Shapes, Tiny-ImageNet WideResnet-28-10
. MLP, HNN,
‘(ﬁj‘ft‘: ;L 2021) ICCV, 2021 (S:illj?eljz)lfol’n?;l:g\ll;mo, VGG-16, ResNet-18 v/
getal £ ResNet-v1-14
EfficientTrain ImageNet-1K/22K, ResNet, ConvNeXt,
(Wang et al., 2023b) ICCV, 2023  MS COCO, Flowers-102, DeiT, PVT, v
g v CIFAR, Stanford Dogs Swin, CSWin

Table 6. Summary of the methods reproduced in CurBench, where we overview the datasets and models involved in the related works.

“Std” stands for the standard setting, “Noi” for noise, and “Imb” for imbalance.
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Method Hyerparameter Value
start_ratio 0.0
SPL grow_epochs 1.00
grow_fn linear
weight_fn hard
start_ratio 0.0
TTCL grow_epochs 1.00
grow_fn linear
weight_fn hard
schedule_epochs 20
warm_epochs 5
lam 1
minlam 0.2
MCL gamma 0.1
fe_alpha 2
fe_beta 0.75
fe_gamma 0.9
fe_lambda 0.9
ScreenerNet M 1.0
LRE meta_split 0.1
meta_split 0.1
MW-Net VNet [1, 100, 1]
init_class_param 0.0
Ir_class_param 0.1
wd_class_param 0.0
DCL init_data_param 1.0
Ir_data_param 0.1
wd_data_param 0.0
start_ratio 0.1
grow_ratio 0.3
LGL grow _interval 20
strategy random
meta_split 0.1
DDS eps 0.001
warm_epochs 50
discount_factor 0.9
decay _rate 0.9
DIHCL bottom_size 0.5
type loss
sample_type random
tau 0.0
SuperLoss lam 1.0
fac 0.9
kernel_size 3
start_std 1.0
CBS grow _factor 0.9
grow _interval 5
C2F cluster_K 3
pace_p 0.1
pace_q 2.5
pace_r 15
Adaptive CL inv 20
alpha 0.7
gamma 0.1
bottom_gamma 0.1
epochs {120, 160, 200}
EfficientTrain crop-size {160, 192, 224}
rand_aug 0—9

Table 7. The default hyperparameters we set for each method when

the number of training epochs is 200.
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Training Time GPU Memory
(Minute) (MB)
SPL 175 420
TTCL 111 464
MCL 106 422
ScreenerNet 291 825
LRE 665 1241
MW-Net 728 1241
DCL 158 422
LGL 149 421
DDS 632 1411
DIHCL 107 421
SuperLoss 156 421
CBS 155 538
C2F 159 464
Adaptive CL 132 468
EfficientTrain 214 421
(a) ResNet-18 on CIFAR-10
Training Time GPU Memory
(Minute) (MB)
SPL 1.28 6615
TTCL 1.12 7036
MCL 2.12 6615
ScreenerNet 2.05 13114
LRE 3.27 22989
MW-Net 4.23 22989
DCL 1.18 6615
DDS 4.02 23997
DIHCL 1.05 6615
SuperLoss 1.10 6615
Adaptive CL 0.68 7036
(b) BERT on RTE
Training Time GPU Memory
(Minute) (MB)
SPL 4.75 6.12
TTCL 3.50 5.76
MCL 3.03 5.82
ScreenerNet 6.25 7.46
LRE 7.77 105.41
MW-Net 8.65 24.79
DCL 3.87 5.79
DDS 11.62 20.50
DIHCL 2.12 5.71
SuperLoss 3.90 5.76
AdaptiveCL 3.53 5.46
(c) GCN on NCI1

Table 8. Time and space complexity, measured by training time
and GPU memory usage on NVIDIA V100 GPU.
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CIFAR-10 CIFAR-100 Tiny-ImageNet
Standard Noise-0.4 Imbalance-50 Standard Noise-0.4 Imbalance-50 Standard Noise-0.4 Imbalance-50
SPL 69.08p78  63.68 01 4234090 3470072 26.09.69 18.150.63 21.53025  15.5963 10.17¢.12
TTCL 68.87060 64.63100 44.030 54 34.195s5  28.83096 18.399 42 22.08045 18.840s 11.17934
MCL 65.860_31 62.501_01 34.590_90 32.600_75 27.090_34 15.900_31 20.990_37 17.06()_37 9.820_35
ScreenerNet 70.43()_41 65.450_92 45.280_56 35.63()‘78 29~720.69 19.740_17 22.83()_44 18.54()‘29 1 1.77019
LRE 64.52036¢  59.880.49 36.24, 17 29.29973 2337934 14.520.19 18.86066  14.9702: 8.230.13
MW-Net 69.13044  63.92908 4517052 3540054  28.0966 18.95032 22.16036  17.88025 10.970.30
DCL 67.23049  64.77059 39.16¢ 87 34.09s1  30.0205> 18.130.42 22.01ps5  19.65020 10.95¢.20
LGL 69.870,7] 65.090'73 44.94].25 35040.84 29.560,54 19.280,64 22.550.30 18.400'05 11.250'43
DDS 65.65,81 63.451 g4 41,5145, 3511100 28.49947 19.050.40 22294 17.03119 10.30; 3
DIHCL 66.46053  58.4273 40.89 2 28.49959  27.87923 15. 77962 1772950  14.74043 8.16033
SuperLoss 70~290.68 65.930,57 43, 130_51 34910‘68 30.87048 18.57()‘17 22.270‘29 19.91026 1 1.23031
CBS 69.79%.36 6347096 44.60, 77 3517063  28.14074 18.870.60 21.870ss  17.78pss 11.100.43
C2F 69493 6435079  43740ss  35.5loa0 2992055 192405 22440 187802 11693
Adaptive CL 69.250 43 63.93¢.97 42.870.47 34.58051 28.360.43 18.599.26 22.62030 18.09¢.37 10.980.20
EfficientTrain  70.34p44  62.96¢34 43.92; 01 35.5%.66  28.04971 18.780.62 22.31p42  18.05¢.17 12.36¢ .47
(a) LeNet
CIFAR-10 CIFAR-100 Tiny-ImageNet
Standard Noise-0.4 Imbalance-50 Standard Noise-0.4 Imbalance-50 Standard Noise-0.4 Imbalance-50
SPL 9l~540.26 70.682.25 74.710_74 68.130'47 34.090439 39.800493 48.99().41 22.490,4I 26.040'93
TTCL 92.350_]3 86.920_2() 75~590.56 67.520_46 58.560_6() 38.400_97 48.50()_34 41.8 1()_67 25.320_45
MCL 91.76015  77.84033 73.7103s 68.68037  45.95053 40.490.67 51.46016  34.3966 28.080.23
ScreenerNet 92.740.20 81.630‘70 75370.56 71.31()‘14 51 .96()‘5(, 43.47()‘43 53.610‘43 39.22057 30.82()‘36
LRE 90.80022  80.35¢50 73.71036 66.9924  50.31p38s 40.690.69 49.86037 36.40033 27.490 41
MW-Net 91.79%.26  79.770.44 74.86¢.59 69.0925 49.8793> 40.990.438 50.93036  37.79.43 27.96¢ 55
DCL 92.410.25 82440.66 76.30().33 69.800,47 54.010457 423 10,4] 52.250.43 40.670.42 28.830'63
LGL 92.190.20 73.42¢ 41 74.870.40 69.08.15 39.93)58 41.07¢3; 50.32 33 27.35032 2721921
DDS 90.94,06  78.7437 70.24¢ 53 68.87017 46.87172 379371 50.84030 37.54037 26.961 29
DIHCL 91.87021 77.380.42 7431060 67.360.33 44.19¢ 37 39.510.75 50.590.32 32.700.38 26.360.34
SuperLoss 92.270.22 84.540'40 76.430.96 69.53()‘43 57.5 10‘45 42.43101 52.380‘53 43.64()‘72 28.85()‘38
CBS 90.94027  75.79.79 72.900 66 63.67037 41.14¢39 36.190.91 45.67025 3042953 24.19¢34
C2F 91.98p17  80.27¢52 75.261 16 69.86017  50.48 3> 42.470.79 51.96045  38.04043 28.900.39
Adaptive CL 91.910,03 74.300.79 73.18].37 66.040,4| 38-130,88 36.300449 46.470,24 27.750,34 23.310'5|
EfficientTrain 92.880_23 79.910_23 74.581_34 69.400_20 50.520_32 39.910_62 51.760_42 38.330_24 28‘150_52
(b) ResNet-18
CIFAR-10 CIFAR-100 Tiny-ImageNet
Standard Noise-0.4 Imbalance-50 Standard Noise-0.4 Imbalance-50 Standard Noise-0.4 Imbalance-50
SPL 78.101_29 60.820_92 49.81 1.29 47.66()_40 28.42[_21 24.390_78 33-710.63 17.30()_87 15.090_39
TTCL 77.36034  69.83)53 50.820.79 4535059  39.15¢ 30 24.15¢.25 35.61p15  29.76034 15.830.38
MCL 77.85055 61.61065 49.680.79 4990053  31.46¢ 59 25.02062 36.66075  21.50055 16.300.43
ScreenerNet 80.450.53 64.200'50 51 ~341.08 51-93064 34.770‘21 26.320‘23 38. 14()'30 24.900(49 17.470‘14
LRE 75.81p52  61.11595 46.132.60 455964 30.91029 24.000.51 34.10071  21.4293 13.980.44
MW-Net 77.39:30  63.01p60 51.191 25 4946044  33.99033 24.860.47 3716029  23.49033 16.13¢.49
DCL 80.660_27 66.000,07 5 1.731_25 51 .230'52 37.010_35 26-400,34 38.920.53 26. 17()'37 17.200'34
LGL 79.52038  63.19909; 52.141 18 50.39063 31.34416 26.099 51 36.25047 20.22p5 16.430.43
DDS 77.54213  63.460 22 51.12073 49.67066  33.790.45 24.81¢38 36.60046 23.47042 16.180.61
DIHCL 78.09073  63.3994i 50.780.72 49.80034  33.64022 25.490 32 37.89.4s 22.36057 16.29¢.32
SuperLoss 79.420.25 66.1 30'49 51 .860.60 49.25037 37.840‘39 25.720‘27 38.250'42 28.040.39 1 6.930‘26
CBS 79.85037  64.07¢65 52.85¢51 51.05062  35.25024 26.05¢.52 3828071  24.88027 17.15¢ 31
C2F 79.63()'65 61.97] 38 52.00]_|4 50. 160,74 32.580467 25.280,32 38.5 10.21 25.220,77 17020.68
Adaptive CL  78.85060  62.55078 51.60; 49 4830065 31.730ss 24.81¢56 3394045  20.120.43 15.270.40
EfficientTrain 79.67()_47 62.620_37 50.71 1.53 50.980_50 34.560_22 25.470_52 38.21 1.06 25.080_33 16.20()_17
(c) ViT

Table 9. The performances of each curriculum learning method in the CV research domain.
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RTE MRPC STS-B CoLA
Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4
SPL 5242084 53.360s53 80.64057 80.46;17 11.04;13 87626 9.96,.17 3.69: 53
TTCL 5278014  53.79181 81.54015 81.22p00 141135, 1110225 124455  8.55;10
MCL 52.85029 52.640s53  81.22000 80.950s54 12.95;23  10.55;3  10.13;36  4.16192
ScreenerNet 52.850.18 53.720_35 81.40011 81.240'()5 13220.96 10.991.4| 12.33]_0[ 3‘512_|5
DCL 53.07129 54.22177 81.46¢15 8122900 12.67979 11.62159 11.061¢s 2.50, 89
DDS 5271000 53.14042 8137008 81.23003 1254128 11.27573  12.65,2; 351226
DIHCL 5271000 53.72077  81.370104 81.22000 13.99126  9.89%30 11.69200  3.41269
SuperLoss 52.710»00 53.43]_|0 81‘390.I4 81.220_00 12.361_65 11'751.6I 1082193 3‘59I.65
Adaptive CL 52.061'30 53.000.27 81.390‘17 81.220400 12-911.16 10.320.91 9-820.68 4.382.36
SST-2 QNLI QQP MNLI-(m) MNLI-(mm)
Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4
SPL 81 .90()_(,2 63.230_76 51.020.46 50.740_19 74.390_35 59.630_79 60.620_30 36.580_97 60.450_36 36.360_99
TTCL 82.13p91  78.58164 50.650220 50.73p1s  75.14016 6647070 6247036 58.590s4 62.33042  58.500 64
MCL 82.52099  63.10208 50.54000 50.72020 75.10015  59.29939  60.92p42 45.55191 60.82024 46.32508
ScreenerNet 82.070,43 64.420'85 50~550402 50.720.23 74270 19 6133030 61 .380'37 42436|449 60.710.25 43.03 1.60
DCL 82.02076 64.36108 50.54000 50.62015 75.58031 60.77970 61.61p34 44.13074 61.21041 45.04¢77
DDS 82.480'58 62‘16]_36 50.540'0() 50.77()'27 74920 14 60-950,42 60‘750,42 42460,89 60.430'19 42.850_98
DIHCL 82.0908s 6243090  50.54p00 50.83p45 74.09%.10 59.7110s 58.84p39 37.17p60 58.84074  36.6503i
SuperLoss 82.870_88 65.480_62 50.590_]0 50.760_18 75.730_21 59.830_19 60.640_33 47~081.68 60.910_53 47.631_52
Adaptive CL 82.740.75 64.222'23 50.54()‘0() 50.70()'23 74.850.45 60.051430 61.390'34 41.43 1.69 60.650.45 42. 101.32
(a) LSTM
RTE MRPC STS-B CoLA
Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4
SPL 61.37363 51.34343 87.21200 80.57161 85.07049 8091pe3 56.07404  15.0864;
TTCL 6635176 5632501 88.63155 81.79057 8491pes 80.74166 5726057 45.79; 64
MCL 66.35,00 55.09220 88.69;4 7894559 854200 7921p6s 5624237  30.205094
ScreenerNet 64.691'62 52.495.0() 87.780‘99 79.04422 84.9]()‘45 80.690'97 56.371'62 33~253.26
LRE 5894134 5336104 81.73034 80.9006s 81.08176 75.52,07 51.56212 26.9233
MW-Net 6628051 53.86273 88.0961 80.89067 84.9900 79.16110 5634219  30.80; s
DCL 6621558  53.79420 88.53113 81.94ps5 85.09s51 80.9912 5747191 32.66366
DDS 64.55103 55453830 87.32;11 794143 84.38pss  78.00197 56.12;123  27.49;5
DIHCL 64.4812 54.80244 86.85112 8147039 85.05027 81.31pns 52.34149  30.4949s
SuperLoss 66.061_98 53.794_35 88.050_95 81.820_65 84.580_68 79.781_35 57.352_10 31.812_97
Adaptive CL 65.85].]3 54.804.51 87.540,61 81.640,64 854270'35 79-720.64 57.80].96 31.583.|3
SST-2 QNLI QQP MNLI-(m) MNLI-(mm)
Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4
SPL 91.49,75 8513260  90.28p62  80.98129 8730034 76.17130 83.87061 77.63063 84.25061  78.59%71
TTCL 92.48041 91.25ps59 9137016 89.45044 87.45046 84.50025 83.99031 81.73p31 84.34p45  82.25040
MCL 92.41020 84.33p01  91.24p23 80.71;08 88.16053 74.19102 83.86042 76.85079 84.1lp2e  77.92979
ScreenerNet 92.480'27 87.750_96 91.18011 81.871'40 87.53022 75.851'26 83.830,42 78.590452 8413044 79'160,61
LRE 92.18p33 86.611s4 8932047 80.37083 84.56032 7230002 82.21p29 75.63051 82.58p20  76.40¢ 53
MW-Net 92.62041 87.06006 9128020 8127140 8744010 7548061 84.01023 7835065 84.39%35  78.96062
DCL 92.82)16 86.67223 91.49¢;3 81.41,95 88.03021 7526095 84.24027 7855046 84.40042  79.39039
DDS 92.41p28 86.199s¢ 91.14014 81.88071 87.50025 76.040s57 83.89012 78.51p37 84.38015  78.85025
DIHCL 92.52931  87.75081 91.23p1; 83.03109 86.74035 76.75043 83.28032 78.51p73 83.57p32 79.42s6
SuperLoss 92.69()‘41 87.571‘45 91.18()‘14 82.33051 87.790.20 75.90055 84.270‘07 77.68()‘65 84.36022 78.710.67
Adaptive CL 92.32()'32 8589]43 91.240427 80.581'9| 87.60040 76.271'02 84.1 10.50 78.790435 84.390'45 79.350,59

(b) BERT
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RTE MRPC STS-B CoLA

Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4

SPL 594240 5473235  84.32100 7947226 76.66045 63.16005  30.72565  2.95070

TTCL 6455060 574033 84795 8255055 73.06474 683516 33.83310 12.54575

MCL 6621087 5495197 862903 80.26129 80.82139 71.57174 3995316 8.40:36

ScreenerNet 65.13 1.61 53.363.78 84.97054 78.58303 74.774A1 1 69.492‘69 35.897‘49 6.272.33

LRE 60.2251;  52.85254  81.98p0s  75.27339 56.41;41 65.02400 35.00;08  3.31as0

MW-Net 64.333.46 54.944.57 84.060432 77'335.87 77.112,14 65.773.44 35.245_04 3~47I,68

DCL 66.35,190 5552375 85399 77.80350 77.63176 68.68206 36.59357  6.95383

DDS 61.23339  53.79300 82.63060 74.59350 72.416as 60.72334 3187150  4.1lag

DIHCL 63.8343  55.45333  83.260s53  78.61p44 73.10353  63.71;27 33.58;90  3.66196

SuperLoss 66.210.96 53.72]_70 85.120462 79.183,14 73.654,55 6613365 37.602.98 8‘905_55

Adaptive CL 65.491'33 53.860.35 84.82()‘98 78.053447 76.583.05 66.302,02 33.613,90 6.501.55

SST-2 QNLI QQP MNLI-(m) MNLI-(mm)
Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4
SPL 91.93045 85.44149 877935 76.2%s 85293 73.761s1 81.05027 7647027 81.930s  77.480.40
TTCL 92.18066 90.34ps3  88.10022  84.00070 85.50028 82.16035 81.55027 78.36019 82.18023  79.62044
MCL 9218044 84.13133 8817067 77.80175 86.68p16 7427223 8190023 7544036 82.59935  76.92092
ScreenerNet 91-770.63 86.741'35 87.880450 77931.86 85.870.05 73.432'11 81.780'22 764290‘30 82.40().11 77.540.44
LRE 91.24050 84.44130 84.83ps3 63.25395 83.11p73 702212 7893047 72.35071  80.06051  74.050.66
MW-Net 91.56003 86.401s5 88.0003s 75.5331s 85.70027 74.64064 81.58036 75.8902s 824203 76.8101s
DCL 92.06049 86.05125 8798010 78.82064 859921 75440720 81.53027 76.60047 8241920  77.53030
DDS 9197023 8773161 84.5%04 79.88002 85.7300s 72.56221 81.4lg31 75491 82.14040  76.860.0s
DIHCL 91.88041 87.02114 86.85034 7897085 83.92041 75.070s57 80.30023 76.41p14 81.69912  77.680.12
SuperLoss 92.25()‘42 87.550_72 87.990_52 79-70()‘65 86.130_18 75.83()‘70 81.330_18 75.900_29 82.14()‘27 77.050_25
Adaptive CL 92.11924 85.7814 87.79.15 78.14166 8572021 7572057 81.38011 76.04041 82.38034 77.44037
(c) GPT2

Table 10. The performances of each curriculum learning method in the NLP research domain.
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CurBench: Curriculum Learning Benchmark

MUTAG PROTEINS NCI1 ogbg-molhiv
Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4
SPL 71.58714 6210394 69.4659; 6554645 68.42199 60.05,35 77.411;5 60.87309
TTCL 7052714 7158537  72.68763 Tl6lesy 7090201 67.98,0, 75.8%s  72.81;14
MCL 71.58714 7158355 70.54s;5s  65.0047; 68.56104 54.50285 7410149 64.26417
ScreenerNet 72.633'94 64.215.16 71 .965‘()1 67.]44‘()5 69.782‘22 56.065'14 73.710'45 61 .007.79
LRE 70.52913 61.40496 68.03617 66.61s25 5823160 51.22535 73.74148 57.92708
MW-Net 74.732_ 11 63. 164_71 70.544_55 66.794_13 68.71 1.78 56.01 137 75.571_03 62.8 15_ 19
DCL 7473,11 61.05;356 71.96345 63.5763 70.51gs 56.691ss 757813 61.26557
DDS 7474394 6421516 7321441 6411650 71.39129 58.10328 7048302  57.09480
DIHCL 71.58537 68.42744 73.03359 6322700 6740171 57.86204 7047210 61.20467
SuperLoss 71.585_37 69.476_14 72.323_44 65.893_84 70.222_00 57. 173.38 75.971_03 61 .215_12
Adaptive CL 73.683.33 66.317.38 72.684434 65.714'5] 69.882'17 58.445.29 75.49].]3 60.957,95
(a) GCN
MUTAG PROTEINS NCI1 ogbg-molhiv
Standard  Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4
SPL 64.211172 6526537  69.2993 67.14385 56.49,61 54.74410 69.69235 64.88,73
TTCL 69.47693 65261084 69.82713 64.4613  56.79140 5547273 6827204  66.73) 34
MCL 64.211124 6842351 69.64629 6696639 57.56263 55.23473  69.25306 63.20303
ScreenerNet 64.213.42 65.267‘33 65.715.25 69.113.77 54552,64 5528153 71.132‘07 65.942.61
LRE 66.311134 63.16471 6643184 66.07319 54113 5294536 66.59:45 63.7416
MW-Net 61.849490 6526714 66.78301 67.14440 57.56229 5533118 68.54376 62.39:60
DCL 67.371408 69471021 68.03739 6428381 5937150 5533170  72.64116  62.22305
DDS 6631714 6737c14 67.1453 6678060 5324151 5445535 68.5020s 62.2255s
DIHCL 72.6354 6632555 65.00651 68.57¢93 57.18173 55.67470 69.07279 66.3827s
SuperLoss 67.3713_()6 68.427_44 63.932_63 66.077_23 57‘082_27 55.132_39 70.58]_52 60.922_13
Adaptive CL 67.3710_21 66.327_14 68.393_07 64.476_37 57.612_22 55.082_02 69.71 1.84 62.982_53
(b) GAT
MUTAG PROTEINS NCI1 ogbg-molhiv
Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4
SPL 82.10537 7237654 72.86513 7286237 T7.541¢0 56.87403 76.53197  63.35:34
TTCL 8421744 8158456 7571236 7393130 80.24167 5627427 7513155 6216307
MCL 8421645  73.69527  75.72393  70.00263  75.67100 57.73411  74.20043  63.8233s
ScreenerNet 82. 107 14 75.005_74 75.71 1.82 68.394_gg 79.61 1.09 55.575_11 74.391_24 61 .072_33
LRE 789557, 8027208 72.68545 6643643 714117,  54.08,7 73493  63.30s44
MW-Net 88.42; 0 7500437 7375410 66.61gs4  79.22151  55.52478 7522930 6543270
DCL 85.26842 76.32456 T4.11304 6446439 79.6613 56.06379 7523520  61.65333
DDS 85.26394 80.26573  70.3178  65.89660 77.62358 54.89485 72.85267 63.3839
DIHCL 85.534,36 73.683_72 73.754454 71.614'28 76.551'70 53.331'23 72~43l.80 62‘235_35
SuperLoss 88.425'16 77.634.37 77'144488 71255,69 82.041'90 62.146'47 74.51 1.47 65.531.61
Adaptive CL 86.31 421 80.269.40 75.893‘79 70.36397 79.32190 62.051'67 76.1 71'4() 61.8 14.31

(c) GIN

Table 11. The performances of each curriculum learning method in the graph research domain.
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