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Abstract: Visuomotor policies for manipulation have demonstrated remarkable
potential in modeling complex robotic behaviors, yet minor alterations in the
robot’s initial configuration and unseen obstacles easily lead to out-of-distribution
observations. Without extensive data collection effort, these result in catas-
trophic execution failures. In this work, we introduce an effective data augmen-
tation framework that generates visually realistic fisheye image sequences and
corresponding physically feasible action trajectories from real-world eye-in-hand
demonstrations, captured with a portable parallel gripper with a single fisheye
camera. We introduce a novel Gaussian Splatting formulation, adapted to wide
FoV fisheye cameras, to reconstruct and edit the 3D scene with unseen objects. We
utilize trajectory optimization to generate smooth, collision-free, view-rendering-
friendly action trajectories and render visual observations from corresponding
novel views. Comprehensive experiments in simulation and the real world show
that our augmentation framework improves the success rate for various manipula-
tion tasks in both the same scene and the augmented scene with obstacles requiring

collision avoidance.

1 Introduction

Visuomotor policies trained
through imitation learn-
ing [1, 2, 3] enable complex
robot behaviors but often remain
brittle: minor changes in the
robot’s initial configuration or
the objects in the scene may
yield out-of-distribution (OOD)
observations, cascading into
OOD states, and resulting in
compounded execution errors
that cause task failures, hinder-
ing robot performance [4, 5, 6].
To improve policies’ spatial ro-
bustness, human demonstrators
have to repeatedly demonstrate
the same skill on identical

Generated Obstacles Avoidance

Fig. 1: 1001 DEMOS. From a single human demonstration (e.g.,
picking up the blue mug), our approach generates valid training
trajectories with large spatial variance and augmented obstacles,
while respecting action-view consistency, 3D collision and con-
tact dynamics constraints.

objects numerous times under different spatial configurations [7]. While effective, this manual

process is tedious and costly.

We address this by introducing an effective data augmentation

framework that improves the spatial robustness of visuomotor policies by automatically generating
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additional real-world robot trajectory data from existing human demonstrations, thereby expanding
data spatial coverage, without exhaustive manual collection.

While data augmentation is a standard procedure in other domains, such as computer vision [8],
augmenting real-world robot manipulation data presents a set of unique challenges:

* Maintaining Action-View Consistency. Robot policy learning requires paired observation and
action as data. Hence, the data argumentation algorithm need to increase both visual and action
diversity and critically maintain the consistency between these two.

* Respecting Physical Constraints of Actions. The augmented action data needs to obey physical
constraints, including both 3D collision constraints and object contact dynamics.

* Maximizing Visual Coverage from Limited Demonstrations. Real-world robot demonstration
data is limited in terms of view coverage. Therefore, to make effective data argumentation possi-
ble, we need to make every collected trajectory demo count by maximizing their visual coverage
from the same number of views during data collection.

To address these challenges, we propose 1001 DEMOS; a data augmentation technique featuring
the following key designs:

» To generate spatially consistent observation-action pairs, we propose a trajectory-level ac-
tion—view augmentation algorithm that first reconstructs the scene, then generates physically fea-
sible, collision-free action trajectories via trajectory optimization, to finally render the spatially
matching observations via (editable) 3D Gaussian Splatting (3DGS); yielding spatially consistent,
visually realistic, and physically feasible observation—action demonstration trajectory episodes.

* To obey the 3D collision constraints in 3DGS scenes with edited obstacles, we propose a collision-
aware action generation module that uses trajectory optimization to create smooth, collision-free,
and diverse action trajectories beyond the demonstrated action distribution, allowing the resulting
visuomotor policies to learn collision-avoidance behaviors. To obey object contact dynamics, we
propose a contact-aware augmentation for automatic contact event detection, which only perform
augmentation before contact events, preserving the contact dynamics in the original demo.

» To maximize visual coverage during data collection, our system uses an ultra-wide fish-eye cam-
era. However, while this drastically increases the field-of-view of the observations, this non-
standard camera configuration requires us to extend the 3D Gaussian Splatting formulation by
introducing a fisheye ray sampler in the rendering step.

Our experiments in simulation and the real world validate the effectiveness of our action-view data
augmentation approach. We show that the proposed free-space data augmentation improves the
manipulation policies’ performance in simulation on the RoboMimic [9] benchmark. Moreover, the
proposed collision-aware data augmentation improves real-world manipulation policies robustness
against unseen obstacles in pick-and-place and non-prehensile tasks, leading to an improved success
rate when compared to policies that are trained without 1001 DEMOS.

2 Related Work

Image Augmentation for Visual Invariance. Robustness to visual variation — appearance, illumi-
nation, viewpoint — has been extensively studied [8]. Common augmentations include color jitter-
ing [1], image filtering [10], and cropping [11, 12]. Image editing using generative models further
enables object-level modifications [13, 14, 15], embodiment swapping [16], and viewpoint inter-
polation with embodiment transfer [17]. Yet, such approaches are not able to augment the desired
robot trajectory accordingly, and are thus limited to global appearance, background object, or minor
viewpoint changes. By contrast, our method synthesizes visually realistic, multi-view observations
via 3DGS and produces physically feasible action trajectories through trajectory optimization.

State-based Data Augmentation. State-based augmentation disentangles raw visual inputs from
policy observations by varying scene configurations and adjusting trajectories. For example, Flo-



rence et al. [18] inject noise into keypoint-based state representations to mitigate cascading errors.
Learned-dynamics methods with continuity constraints guide policies back to expert states [19, 20].
Simulation environments further ensure the validity of such augmentations [21]. However, these
methods defer visual invariance to state estimation and rely on a dynamics model — simulated or
learned — to ensure physical consistency. Instead, our approach jointly augments visual inputs and
action trajectories in a realistic manner, producing diverse, obstacle-avoiding demonstrations that
yield policies robust to out-of-distribution viewpoints and capable of obstacle avoidance.

Visual-Action Augmentation. Augmenting visual observations and actions enables joint variation
of scene configurations and robot behaviors. Prior work generates third-person pinhole augmen-
tations, either in simulation [22, 23], via novel-view synthesis in the real world [24, 25], or adapt
egocentric pinhole observations via NeRF/3DGS and MPC [26, 27]. Zhou et al. [28] (using NeRF)
and Zhang et al. [29] (using diffusion) focus on single-step pinhole image-action pairs but can nei-
ther handle wide FoV nor produce trajectory-level, obstacle-avoiding data. MimicGen [22] and
follow-ups [30, 23, 31] augment third-person demonstrations but rely on costly on-robot rollouts to
obtain in-domain visuals for real-world deployment. Concurrent work [32, 33] enable trajectory-
level visual-action augmentation, but both are restricted to demonstrations from static, third-person,
pinhole cameras. Yang et al. use 3DGS to edit robot, object, and background appearances but does
not allow obstacle avoidance augmentation; Xue et al. focus on visuomotor policies with point cloud
inputs, using point cloud editing to produce obstacle-aware augmentations. In contrast, we inte-
grate a fisheye ray sampler into 3DGS to elegantly handle fisheye images — preserving 3DGS’ speed
and editability while enabling trajectory-level, obstacle-avoiding for eye-in-hand observation-action
demonstrations; creating robust visuomotor policies across diverse camera viewpoints and obstacle
avoidance behaviours.

3 The 1001 Demos Framework

We introduce 1001 DEMOS, an offline data augmentation framework for visuomotor policies.
From a single real-worldtask demonstration, using a portable manipulation-data collection device
equipped with a fisheye camera, our augmentation technique generates 1001 DEMOS of visually
realistic image sequences for physically feasible action trajectories.
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Fig. 2: 1001 DEMOS Overview. From an initial mapping run, we reconstruct the 3D scene
point cloud for easy trajectory planning and a fisheye 3DGS scene for fast novel view rendering
(§3.1). Given a single demonstration video (green), we optimize additional physically feasible ac-
tion trajectories (§3.2) and render the corresponding visually consistent fisheye-image observations
(§3.3), thereby generating thousands of diverse action-view demonstrations from a single real-world
demonstration.

As illustrated in Fig. 2, given a fisheye video pair — from scene scanning and task demonstration,
1001 DEMOS is able to generate (1) demonstrations with vastly different initial configurations
and (2) collision-avoiding demonstrations with obstacles added through scene editing. 1001 DE-
MOS achieves this via three modules. First, we use fisheye image sequences to reconstruct a 3D
scene point cloud for motion planning and a fisheye 3D Gaussians representation of the scene for



novel view rendering (§3.1). Second, given the extracted scene point cloud and the original demon-
stration trajectory, we generate smooth and collision-free trajectories in the same scene, starting
from different initial camera poses (§3.2) and render the corresponding novel observations (§3.3).
Finally, with the generated free-space and obstacle-avoiding demonstrations, we train visuomotor
policies on the original expert-collected demonstration and the generated demonstrations. (§3.4),
enabling downstream robot policies that gracefully handle unseen initial configurations and avoid
novel obstacles in the scene.

3.1 3D Scene Reconstruction from Eye-in-Hand Fisheye Video

We use UMI [7] and its demonstration dataset format for hand-held data collection, and Diffusion
Policy [1] for policy learning. Specifically, we assume that each dataset D = {d}xy consists of
N data episodes. Each episode d = (0, a) is composed of a sequence of visual observations 0 =
{ofisn} as eye-in-hand fisheye RGB images, oy;s,, and a sequence of action, a £ {Gee; agp}.
Where each action a is composed of a 6D end-effector pose, a.. € SE(3), and a gripper-opening
width, a4, € R. Given a video pair, collected during scene scanning and task demonstration, we use
these fisheye image sequences for 3D reconstruction to produce a 3D scene point cloud for motion
planning and a Fisheye 3D Gaussian representation of the scene for novel view rendering.

Scene Point Cloud Reconstruction & Contact Detection. We leverage COLMAP [34] to re-
construct high-fidelity 3D point clouds from the fisheye image sequences captured during scene
scanning. We then split each demonstration into pre-contact and post-contact phases by finding the
first frame where the gripper exceeds a collision threshold with the reconstructed point cloud.

Fisheye 3D Gaussians. A critical design choice en-

abling fast rasterization, 3DGS [35] tiles pinhole image . Pinhole Image

into 16 x 16 pixel patches and uses 256-thread cuda blocks :

per tile, one thread per pinhole ray. To elegantly han- %
dle fisheye images, we replace the original ray sampler 4 '
with a KB8-based [36] fisheye ray sampler. As shown in
Fig.3, for each fisheye pixel (u,v), compute its ray di-
rection g = KB8(u,v) [36], then project r4 through
the camera intrinsics K to obtain the pinhole coordinates
(up,v,) = K 74, thus associating each fisheye ray with "
its 3D-Gaussian splat location on the 2D image plane. Flg 3: Fisheye. 3DGS. We propose
We redistribute tile assignments from pinhole to fisheye Fisheye-3DGS, using a ray sampler that
rays, partition fisheye rays into the original 256-ray-per- a?.c our(llts fgr ﬁsc?eye dlStO.m(])I;‘ ng-
tile layout to preserve the CUDA block-thread structure El;gcgatiﬁzsg};ri ;g’;: ttg tﬁlexima(;ceatclgr?:
f(?r fasF rasterlzat{on. while accurately mod'ehng ﬁshgye ter than the periphery for better rasteri-
distortion. We optimize the fisheye 3DGS with pixel-wise

zation quality.
losses from [35] between rendered and ground-truth fisheye images.

# rays sampled

Td (up,vp)

3.2 Action Generation via Trajectory Optimization

Utilizing the extracted 3D scene point cloud from Sec 3.1 and the input demonstration trajectory, we
employ trajectory optimization to generate two types of novel trajectories: (1) free space demonstra-
tion trajectories in the same scene with different starting poses, sampled randomly in the free space
of the scene; (2) obstacle-avoiding demonstration trajectories that are planned around the added
obstacle point cloud in the scene.

Trajectory Optimization Formulation. Given a sequence of 6D camera poses, Oce = {0} _| C
SE(3) — extracted from the pair of scene scanning and task demonstration —, the 3D point cloud
of the task scene, Picene € RVsceneX3 and the start and end poses specified as i, € SE(3)
and xgoa € SE(3) (chosen as the pre-contact pose here), respectively. Provided with a trajectory
initialization, X = {z* 5:1 C SE(3), we consider the following trajectory optimization problem,



argmin qunnel(Xy Oee)) + Leollision (X7 tSdf(Pscene)) + Lrender(Xa Oee) + Lsmooth (X),

{xk}}{:1

subjectto  z' = @iy, xT = Zgoal; X N convhull(Popstacte) = 0,

where P, € RNebsX3 ig the point cloud of the augmented obstacle added for obstacle-avoiding
trajectory generation (Sec 3.2). convhull(-) retrieves the convex hull from a point cloud, tsdf(-) :
R3 — R is a truncated signed distance function (TSDF) which maps a 3D coordinate to a scalar
distance. ;¢ is sampled within a 6 quaternion cone around each original viewpoint, with r as the
radius of the quaternion sphere.

Free-Space Trajectory Generation.

We preserve the original contact dynamics using a delta
funnel loss Leynner to produce trajectories that converge
consistently to the same pre-contact pose of the origi-
nal demonstration. Let R and ¢ represent the rotation
and translation components of x € SFE(3), we have
Liunnet = >, wy ||t* — tk, ;, where wy, is a temporally
dependent weight defined as, wy = Wmin + (Wmax —
wmin) : (%)37 Zk wp = 1,0 < W{max,min} < L
Novel view rendering from 3DGS suffers from floater ar-
tifacts and blurry scene reconstruction when the render-
ing viewpoint differs too much from the training view-
point distribution. To free the generated data from these 2

rendering artificats, which may have negative impact on  Fig. 4: Augmentation with Obstacle
downstream policy training, we introduce Lycnder t0 Op-  Avoidance. Top: original demo; Mid-
timize each generated pose z* to be close to the 6D dle: augmented trajectories without ob-
pose distribution of the original demonstration and scan- stacle avoidance; Bottom: augmented
ning views within a ball neighborhood N, Lrender = trajectories with obstacle avoidance.
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collisions with the environment, we incorporate a collision-loss Leoliision = — »_, tsdf (x*).

To ensure the generated trajectories are free of

In addition, to ensure smoothness of the generated trajectory, we introduce Lgpootn to penalize
velocity jerkiness. For free-space augmentation, the trajectory initialization is produced by linear
interpolation between the newly sampled z;,;; and the pre-contact demonstration pose Zgoal-

Obstacle Augmentation and Collision-Free Trajectory Generation. As shown in Fig. 4, given
an obstacle — a point cloud sampled from an Objaverse [37] object, we compute convex hull of the
object to update the scene TSDF. For obstacle-avoiding augmentation, an initial-guess trajectory is
produced using RRT* [38], sampling a trajectory that connects the new xi,;; and the pre-contact
demo pose Zgoa1, already avoiding the added obstacle in the scene. Then, we use the same trajectory
optimization formulation above, with the added collision constraint, X N convhull(Popstacte) = 0.

3.3 View Generation via Fisheye 3D Gaussian Splatting

We generate the visual observations that correspond to the augmented (action) trajectories using
Fisheye Gaussian Splatting, both in free space and in scenes with added 3D obstacles. We opti-
mize the 6D trajectories from (Sec. 3.2) to match the input video’s viewpoint distribution, yielding
collision-free paths that maintain high-fidelity Gaussian Splat renderings by keeping views within
the distributions of the training viewpoints for 3DGS.

Free-Space View Generation. We use the generated free-space trajectories that start from different
initial scene observation directions to render from the trained Fisheye 3DGS of the scene to generate
corresponding visual fisheye image observations.



Obstacle-Scene View Generation. We augment the original Fisheye 3DGS of the scene with a
trained Fisheye 3DGS of obstacles obtained from Objverse to generate unseen scene configurations.
Then, we use the generated obstacle-avoiding trajectories starting from different initial scene obser-
vation directions to render from the trained Fisheye 3DGS of the scene to generate corresponding
obstacle-avoiding visual fisheye image observations.

3.4 Action-View Augmentation for Visuomotor Policies

We train a Diffusion Policy [1] on the union of the original and augmented datasets, D U D, using a
CLIP-pretrained ViT-B/16 encoder [39, 40] with a relative action representation.

Action-View Data Compilation. = We collect these original demonstrations D on a modified
UMI [7] with an iPhone. ARKit VIO provides metric 6D end-effector poses ae., removing the
need for an extra AprilTag SLAM mapping round. The gripper-opening width a4, is measured via
fiducial markers. For augmented data D, each fisheye observation ogg, is segmented by SAM?2 [41]
and we overlay the gripper onto rendered images, yielding oggp,. We assign trajectory-optimized 6D
poses (Sec. 3.2) as .. and retain the original gripper-opening width as agp,.

4 Experiments

Our experiments in real-world and simulated environments aim to answer the following key ques-
tions: 1) Does action-view augmentation help imbue policies with improved robustness against un-
seen initial configurations and obstacles(§4.1)? 2) How should augmentation be performed (§4.2)?
and 3) How much augmentation is beneficial (§4.3).

Simulation Evaluation. For evaluation in simulation, we use the RoboMimic [9] “square” task
to evaluate the performance gain afforded by 1001 DEMOS in free-space augmentation, com-
pared to no augmentation, augmentation with ground truth novel-view rendering (obtainable in Mu-
JoCo [42]), and representative baselines — Aug Action Only [18], and SPARTN [28](§4.2). We
used the 200 expert-collected task demonstrations provided in RoboMimic as the base dataset. The
RoboMimic “square” task is a peg-in-hole task that requires a Franka Emika Panda robot to pick
a square nut and insert it onto a rod. To follow the same data format as in §3.1, we convert the
pinhole image observations from the wrist camera into Fisheye images using intrinsic & distortion
parameters of a GoPro Fisheye lens with a 155° FoV. To study the effects of different methods of
augmentation, we keep the augmentation scheme constant — for each base demonstration episode,
we generate 20 free-space augmentation episodes. The initial camera pose is sampled within a
f quaternion cone around the initial camera pose of each base demonstration, with 0.15m as the
scaled radius of the quaternion sphere, and the initial camera viewing direction defined as the zero
quaternion. For quantitative comparison, shown in Fig. 5(b), we found # = 50° to strike a balance
between novel-view rendering quality and policy performance, as detailed in §4.3. All the compared
methods are used to train a Diffusion Policy [1] on subsets of {30, 50, 100, 150,200} of the expert
dataset, respectively, and tested on a fixed set of 1000 initial robot configurations. These are sampled
with the end-effector poses within a quaternion cone of 50° and 0.15m radius with respect to the
base RoboMimic dataset, while keeping the test object configurations unaltered. The distributions
of training and testing initial states are shown in Fig.5(a), with the resulting policy success rates
reported in Fig.5(b).

Real-world Evaluation. In our real-world evaluation, we aim to determine the effectiveness of
1001 DEMOS for enabling visuomotor policies to handle out-of-distribution (OOD) scenarios with
respect to our UMI-collected training data distribution on the following two axes: (a) OOD robot
and object initial states; (b) unseen obstacles in the scene. We report evaluation results on a cup
serving task. This task requires the robot to pick a cup with its handle to the left and place it on the
pink serving plate, as shown in Fig. 6. We define the task as successfully completed when the cup
is placed upright on the serving plate with its handle within +10° towards the left of the table. The
base dataset includes 89 demonstration episodes, collected by a single demonstrator using UMI [7].
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Fig. 5: Simulation Evaluation. (a) Initial state distribution for training data highlighted in blue
overlay over custom test data. (b) Task success rate with action-view augmentation, compared to no
augmentation, oracle action-view augmentation and other augmentation baselines.
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Fig. 6: Real-world Evaluation. We report task performance for two versions of our augmented poli-
cies — trained with free-space augmentation (FreeSpace Aug), and free-space & obstacle-distractor
augmentation (Obstacle Aug) — against a vanilla policy trained with no augmentation (No Aug).
Initial states for a subset of all evaluation episodes for (a) OOD camera view test case, (b) OOD
obstacle distractor test case shown. (c) Success rates, averaged over 20 evaluation episodes.

All demonstrations were collected in obstacle-free scenes, with all initial camera views in an upright
overhead orientation (Fig. 1).

We manually select 50 episodes that produce the best novel-view rendering results for both free-
space and obstacle augmentation. From these, we generate 7245 free-space augmented episodes
by sampling initial camera orientations within a 45° quaternion cone around each original view-
point, with the Euclidean distance between the initial demonstration start pose and the pre-contact
pose as the radius of the quaternion sphere. For obstacle augmentation, we select 50 objects from
Objaverse [37], render 256 orbit views for each to train a fisheye-3DGS per obstacle. Then, by in-
tegrating each obstacle into the original demonstrations’ 3DGS scenes, we generate 5000 obstacle-
aware episodes in total. We train Diffusion Policy [1], following UMI’s policy interface protocols,
to obtain a No Aug policy with the original human-collected data, a FreeSpace Aug policy with
the original data and additionally generated free-space augmentation data, and an Obstacle Aug
policy with the original data and additionally generated obstacle augmentation data. Policy success
rates are averaged over 20 evaluation episodes for two test scenarios: (a) OOD camera-view and (b)
OOD obstacle initialization, are shown in Fig. 6, with a subset of the init distributions shown. We
further evaluated the three policies in a harder obstacle setup with more challenging placements and
larger, more complex shapes, as shown in A.2.

4.1 Does Action-View Augmentation help?

Action-view augmentation helps in improving sample efficiency. To investigate how much im-
provement our augmentation scheme provides compared to no augmentation, we evaluate visuomo-
tor policies trained solely on the converted fisheye RoboMimic expert dataset, totaling 200 episodes,
without any augmentation. Conversely, to establish an upper bound for our action-view augmenta-
tion scheme if it would provide perfect novel-view synthesis, we train a policy using the union
of fisheye RoboMimic expert demonstrations and free-space augmentation demonstrations gener-



ated using 1001 DEMOS with ground-truth rendering (which is only possible in simulation). This
produces an oracle policy to provide an upper bound for our action-view augmentation scheme.
Figure 5(b) shows that, with the same amount of original expert demonstrations, action-view
augmentation closely tracks the perfect GT-rendering upper bound, with a performance gap of 8%
in the low-data regime and 11% in the high-data regime. Compared to policies trained without aug-
mentation, our free space augmentation provides an average of 56% task success rate improvement.
In the real-world experiment shown in Fig 6, we find that, with the same amount of human demon-
strations, our free space augmentation provides a performance boost of 55% over policies trained
without augmentation.

Action-view augmentation helps in obstacle avoidance. In the real-world experiment, shown
in Fig. 6, we find that, by augmenting obstacle-free demos with our generated obstacle-avoiding
demos, our action-view augmentation equips the visuomotor policy to robustly complete the task
while avoiding obstacles — behaviors not shown in the original human demonstrations. We find
that our full Obstalce Aug is able to complete the task with a 100% success rate, significantly
outperforming FreeSpace Aug with 10% and No Aug with 5% success rates, respectively.

4.2 How to Augment?

Comparison to action-only augmentation. One simple and effective augmentation for local feed-
back stabilization is Aug Action Only [18], which slightly perturbs proprioceptive and gripper ac-
tion data while leaving visual data unchanged. While effective for small, local robot state variations
under third-person views, it breaks down with eye-in-hand observations, where minor end-effector
pose changes produce drastic visual shifts. We replicate this baseline by applying free-space aug-
mentation in the end-effector and gripper actions, but using the original visual observations. As
Fig. 5 shows, Aug Action Only boosts the average success rate by 29% over No Aug — peaking at
56%. In turn, Ours outperforms Aug Action Only by up to 35%, especially in high-data regimes.

Comparison to single-step augmentation. In this experiment, we compare our proposed method,
which augments both visual and action data for the whole trajectory, with prior work SPARTN [28],
which augments visual and action data for a single step and uses NeRF to reconstruct the visual
scene. Single-step action-view augmentation using SPARTN improves policies’ performance for
OOD camera views, as shown in Fig. 5 with a performance gain of 41% over No Aug. However,
SPARTN’s single-step augmentation cannot produce smooth, trajectory-level collision-avoidance
behaviors, more easily causing policies to enter unseen configurations for which no recovery behav-
iors exist in the training data. By comparison, 1001 DEMOS performs trajectory-level action-view
augmentation. We observe that Ours thereby is able to outperform SPARTN, boosting the average
success rate by 15% — peaking at an improvement of 18%. more easily end up in unseen configura-
tions for which no recovery behavior is present in the training data.

4.3 How Much to Augment?

While larger rotation bounds increase diversity, they can harm rendering quality under limited
viewpoint coverage. To quantify this trade-off, we trained visuomotor policies on 50 RoboMimic
“square” export demonstrations (fisheye, eye-in-hand), augmenting each with rotation bounds of
{20°,30°, 40°, 50°, 60°}, generating 20 augmented episodessamples per demo. We then evaluated
on a held-outout test set shown in Fig 5. As shown in Fig A1, success rates plateaued at 50°, which
we therefore adopt for all other experiments.

5 Conclusion

We present 1001 DEMOS, an offline data-augmentation framework for visuomotor policies that
effectively endows robots with skills not demonstrated in original demo — obstacle avoidance and
robustness to novel initial robot configurations, by generating visually realistic and physically feasi-
ble trajectory-level, obstacle-avoiding, eye-in-hand, fisheye action-view demonstrations.
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6 Limitations & Future Work

With only a single eye-in-hand moving camera, the view coverage of the demonstration stage is
inadequate for dynamic scene reconstruction or for generating novel views far from the original
viewpoints. As a result, we currently restrict the 1001 DEMOS pipeline to static scenes before
or after contact. Future work could explore more advanced sensing setup, such as multi-camera
rigs or ToF sensors, or adopt advanced dynamic reconstruction methods that demand fewer training
viewpoints [43, 44].

Our novel-view generation module inherits 3DGS’s multi-view inconsistent nature, yielding float-
ing artifacts for generated viewpoints outside of the training viewpoint distribution. This could be
alleviated by adopting inherently view-consistent representations like 2DGS [45].

Similar to UMI [7], since the kinematic limits of the downstream deployment robots are unknown
at the time of data collection, the generated demonstration trajectories do not account for kinematic
limits of the downstream deployment robots. We carefully bound both, the sampling range for ini-
tial poses and the placement of obstacles, to ensure that the generated trajectories lie within the
task space of the deployment robot. Our work could be extended to incorporate the downstream
robot kinematics constraint in the trajectory optimization module, ensuring embodiment-aware tra-
jectory generation with respect to the specific deployment robot and enable kinematically feasible
and smooth action trajectory, not just in the task space as addressed by this work, but also in the
configuration space. Furthermore, this could allow retrofitting the original embodiment-agnostic
demonstrations to be kinematically feasible for the downstream robot hardware deployment, thereby
allowing an embodiment-aware policy learning framework that can transfer skills from semantically
and physically valid but hardware-infeasible actions to different robot embodiments.
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A.1 How Much to Augment?
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Fig. A1l: How much to augment? While larger augmentation range could increase the data diver-
sity, it also reduces the image rendering quality due to limited demonstration viewpoint coverage.
We found 50° as the optimal trade-off.

A.2 Real World Evaluation on Challenging Obstacles.

To further examine the capability of our policies enabling obstacle avoidance enhancement, we
additionally evaluated policy performance for the cup serving task on a set of more challenging
scenarios with more challenging obstacle placement, and obstacles of larger size and more diverse
geometric shape; we term this set of experiments Challenging Obstacles. As shown in Tab A1, we
conducted 10 trials on 10 different obstacle sets as shown in Fig. A2, on the same three policies
No Aug, FreeSpace Aug, Obstacle Aug, as tested in real world experiments for Free Space and
Obstacle as reported in manuscript, and found that ours Obstalce Aug was able to complete 10/10
trials, while No Aug and FreeSpace Aug both fail complete any trials.

Method | Task Success Rate
No Aug 0%
FreeSpace Aug (Ours) 0%
Obstacle Aug (Ours) 100%

Table Al: Real World Evaluation Results for Challenging Obstalces. Task success rate reported
over 10 trials.

Fig. A2: Challenging Obstacle Evaluation. Initial states for all 10 evaluation episodes for Chal-
lenging Obstacle experiment. Please see the accompanying video for more comparisons.
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