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ABSTRACT

Natural language inference (NLI) aims to determine the logical relationship be-
tween two sentences, such as Entailment, Contradiction, and Neutral. In
recent years, deep learning models have become a prevailing approach to NLI,
but they lack interpretability and explainability. In this work, we address the
explainability of NLI by weakly supervised logical reasoning, and propose an
Explainable Phrasal Reasoning (EPR) approach. Our model first detects phrases as
the semantic unit and aligns corresponding phrases in the two sentences. Then, the
model predicts the NLI label for the aligned phrases, and induces the sentence label
by fuzzy logic formulas. Our EPR is almost everywhere differentiable and thus
the system can be trained end to end. In this way, we are able to provide explicit
explanations of phrasal logical relationships in a weakly supervised manner. We
further show that such reasoning results help textual explanation generation.1

1 INTRODUCTION

Natural language inference (NLI) aims to determine the logical relationship between two sentences
(called a premise and a hypothesis), and target labels include Entailment, Contradiction, and
Neutral (Bowman et al., 2015; MacCartney & Manning, 2008). Figure 1 gives an example, where
the hypothesis contradicts the premise. NLI is important to natural language processing, because it
involves logical reasoning and is a key problem in artificial intelligence. Previous work shows that
NLI can be used in various downstream tasks, such as information retrieval (Karpukhin et al., 2020)
and text summarization (Liu & Lapata, 2019).

In recent years, deep learning has become a prevailing approach to NLI (Bowman et al., 2015; Mou
et al., 2016; Wang & Jiang, 2016; Yoon et al., 2018). Especially, pretrained language models with
the Transformer architecture (Vaswani et al., 2017) achieve state-of-the-art performance for the NLI
task (Radford et al., 2018; Zhang et al., 2020). However, such deep learning models are black-box
machinery and lack interpretability. In real applications, it is important to understand how these
models make decisions (Rudin, 2019).

Several studies have addressed the explainability of NLI models. Camburu et al. (2018) generate a
textual explanation by sequence-to-sequence supervised learning, in addition to NLI classification;
such an approach is multi-task learning of text classification and generation, which does not perform
reasoning itself. MacCartney et al. (2008) propose a scoring model to align related phrases; Parikh
et al. (2016) and Jiang et al. (2021) propose to obtain alignment by attention mechanisms. However,
they only provide correlation information, instead of logical reasoning. Other work incorporates
upward and downward monotonicity entailment reasoning for NLI (Hu et al., 2020; Chen et al.,
2021), but these approaches are based on hand-crafted rules (e.g., every downward entailing some)
and are restricted to Entailment only; they cannot handle Contradiction or Neutral.

In this work, we address the explainability for NLI by weakly supervised phrasal logical reasoning.
Our goal is to explain NLI predictions with phrasal logical relationships between the premise and

1Code and resources available at https://github.com/MANGA-UOFA/EPR
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hypothesis. Intuitively, an NLI system with an explainable reasoning mechanism should be equipped
with the following functionalities:

1. The system should be able to detect corresponding phrases and tell their logical relationship, e.g.,
several men contradicting one man, but pull in a fishing net entailing holding the net (Figure 1).

2. The system should be able to induce sentence labels from phrasal reasoning. In the example, the
two sentences are contradictory because there exists one contradictory phrase pair.

3. More importantly, such reasoning should be trained in a weakly supervised manner, i.e., the phrase-
level predictions are trained from sentence labels only. Otherwise, the reasoning mechanism
degrades to multi-task learning, which requires massive fine-grained human annotations.

Input:

Premise: Several men helping each other pull in a fishing net.

Hypothesis: There is one man holding the net.

Sentence-Level Prediction:
Entailment Contradiction Neutral

Phrase-Level Reasoning:

Entailment Contradiction Neutral Unaligned

Figure 1: The natural language inference (NLI)
task and desired phrasal reasoning.

To this end, we propose an Explainable Phrasal
Reasoning (EPR) approach to the NLI task. Our
model obtains phrases as semantic units, and
aligns corresponding phrases by embedding sim-
ilarity. Then, we predict the NLI labels (namely,
Entailment, Contradiction, and Neutral)
for the aligned phrases. Finally, we propose
to induce the sentence-level label from phrasal
labels in a fuzzy logic manner (Zadeh, 1988;
1996). Our model is differentiable, and the
phrasal reasoning component can be trained
with the weak supervision of sentence NLI labels. In this way, our EPR approach satisfies all
the desired properties mentioned above.

In our experiments, we developed a comprehensive methodology (data annotation and evaluation
metrics) to quantitatively evaluate phrasal reasoning performance, which has not been accomplished
in previous work. We extend previous studies and obtain plausible baseline models. Results show that
our EPR yields a much more meaningful explanation regarding F scores against human annotation.

To further demonstrate the quality of extracted phrasal relationships, we feed them to a textual
explanation model. Results show that our EPR reasoning leads to an improvement of 2 points in
BLEU scores, achieving a new state of the art on the e-SNLI dataset (Camburu et al., 2018).

Our contributions are summarized as follows:

1. We formulate a phrasal reasoning task for natural language inference (NLI), addressing the
interpretability of neural models.

2. We propose an EPR model that induces sentence-level NLI labels from explicit phrasal logical
labels by neural fuzzy logic. EPR is able to perform reasoning in a weakly supervised way.

3. We annotated phrasal logical labels and designed a set of metrics to evaluate phrasal reasoning.
We further use our reasoning results to improve textual explanation generation. Our code and
annotated data are released for future studies.

To the best of our knowledge, we are the first to develop a weakly supervised phrasal reasoning model
for the NLI task.

2 RELATED WORK

Natural Language Inference. MacCartney & Manning (2009) propose seven natural logic relations
in addition to Entailment, Contradiction, and Neutral. MacCartney & Manning (2007) also
distinguish upward entailment (every mammal upward entailing some mammal) and downward
entailment (every mammal downward entailing every dog) as different categories. Manually designed
lexicons and rules are used to interpret Entailment in a finer-grained manner, such as downward and
upward entailment (Hu et al., 2020; Chen et al., 2021). Feng et al. (2020) apply such natural logic to
NLI reasoning at the word level; however, our experiments will show that their word-level treatment
is not an appropriate granularity, and they fail to achieve meaningful reasoning performance.

The above reasoning schema focuses more on the quantifiers of first-order logic (Beltagy et al., 2016).
However, the SNLI dataset (Bowman et al., 2015) we use only contains less than 5% samples with
explicit quantifiers, and the seven-category schema complicates reasoning in the weakly supervised
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setting. Instead, we adopt three-category NLI labels following the SNLI dataset. Our focus is
entity-based reasoning, and the treatment of quantifiers is absorbed into phrases.

We also notice that previous work lacks explicit evaluation on the reasoning performance for NLI.
For example, the SNLI dataset only provides sentence-level labels. The HELP (Yanaka et al., 2019a)
and MED (Yanaka et al., 2019b) datasets concern monotonicity inference problems, where the label
is also at the sentence level; they only consider Entailment, ignoring Contradiction and Neutral.
Thus, we propose a comprehensive framework for the evaluation of NLI reasoning.

e-SNLI. Camburu et al. (2018) propose the e-SNLI task of textual explanation generation and
use LSTM as a baseline. Kumar & Talukdar (2020) propose the NILE approach, using multiple
decoders to generate explanations for all E, C, and N labels, and then predicting which to be selected.
Zhao & Vydiswaran (2021) propose the LIREx approach, using additionally annotated rationales
for explanation generation. Narang et al. (2020) finetune T5 with multiple explanation generation
tasks. Although these systems can generate explanations, the nature of such finetuning approaches
renders the explanation generator per se unexplainable. By contrast, we design a textual explanation
generation model that utilizes our EPR’s phrasal reasoning, obtained in a weakly supervised manner.

Neuro-Symbolic Approaches. In recent years, neuro-symbolic approaches have attracted increasing
interest in the AI and NLP communities for interpreting deep learning models. Typically, these
approaches are trained by reinforcement learning or its relaxation, such as attention and Gumbel-
softmax (Jang et al., 2017), to reason about certain latent structures in a downstream task.

For example, Lei et al. (2016) and Liu et al. (2018) extract key phrases or sentences for a text
classification task. Lu et al. (2018) extract entities and relations for document understanding. Liang
et al. (2017) and Mou et al. (2017) perform SQL-like execution based on input text for semantic
parsing. Xiong et al. (2017) hop over a knowledge graph for reasoning the relationships between
entities. Li et al. (2019) and Deshmukh et al. (2021) model symbolic actions for unsupervised
syntactic structure induction. In the vision domain, Mao et al. (2019) propose a neuro-symbolic
approach to learn visual concepts. Our work addresses logical reasoning for the NLI task, which is
not tackled in previous neuro-symbolic studies.

Fuzzy Logic. Fuzzy logic (Zadeh, 1988; 1996) models an assertion and performs logic calculation
with probability. For example, a quantifier (e.g., “most”) and assertion (e.g., “ill”) are modeled by a
score in (0, 1); the score of a conjunction s(x1 ∧ x2) is the product of s(x1) and s(x2). In old-school
fuzzy logic studies, the mapping from language to the score is usually given by human-defined
heuristics (Zadeh, 1988; Nozaki et al., 1997), and may not be suited to the task of interest. By
contrast, we train neural networks to predict the probability of phrasal logical relations, and induce
the sentence NLI label by fuzzy logic formulas. Thus, our approach takes advantage of both worlds
of symbolism and connectionism. Mahabadi et al. (2020) apply fuzzy logic formulas to replace
multi-layer perceptrons for NLI. But they are unable to provide expressive reasoning because their
fuzzy logic works on sentence features. Our work is inspired by Mahabadi et al. (2020). However, we
propose to apply fuzzy logic to the detected and aligned phrases, enabling our approach to provide
reasoning in a symbolic (i.e., expressive) way. We develop our own fuzzy logic formulas, which are
also different from Mahabadi et al. (2020).

3 OUR EPR APPROACH

In this section, we describe our EPR approach in detail, also shown in Figure 2. It has three main
components: phrase detection and alignment, phrasal NLI prediction, and sentence label induction.

Phrase Detection and Alignment. In NLI, a data point consists of two sentences, a premise and a
hypothesis. We first extract content phrases from both input sentences by rules and heuristics. For
example, “[AUX] + [NOT] + VERB + [RP]” is treated as a verb phrase. Full details are presented in
Appendix A.1. Compared with the word level (Parikh et al., 2016; Feng et al., 2020), a phrase is a
more meaningful semantic unit for logical reasoning.

We then align corresponding phrases in the two sentences based on cosine similarity. Let P =
(p1, · · · ,pM ) and H = (h1, · · · ,hN ) be the premise and hypothesis, respectively, where pm and hn
are extracted phrases. We apply Sentence-BERT (Reimers & Gurevych, 2019) to each individual
phrase and obtain the local phrase embeddings by p

(L)
m = SBERT(pm),h

(L)
n = SBERT(hn). We
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Figure 2: An overview of our Explainable Phrasal Reasoning (EPR) model.

Table 1: An example showing the importance of handling unaligned phrases (in highlight).

Premise People are shopping for fruit. People are shopping for fruit in the market .
Hypothesis People are shopping for fruit in the market . People are shopping for fruit.
Sentence NLI [ ] Entailment [ ] Contradiction [X] Neutral [X] Entailment [ ] Contradiction [ ] Neutral

also apply Sentence-BERT to the entire premise and hypothesis sentences to obtain the global phrase
embeddings p

(G)
m and h

(G)
n by mean-pooling the features of the words in the phrase. The phrase

similarity is given by

sim(pm,hn) = γ cos(p(G)
m ,h(G)

n ) + (1− γ) cos(p(L)
m ,h(L)

n ) (1)

where γ is a hyperparameter balancing the lexical and contextual representations of a phrase (Hewitt
& Manning, 2019). It is noted that Sentence-BERT is finetuned on paraphrase datasets, and thus is
more suitable for phrasal similarity matching than pretrained language models (Devlin et al., 2019).

We obtain phrase alignment between the premise and hypothesis in a heuristic way. For every phrase
pm in the premise, we look for the most similar phrase hn from the hypothesis by

n = argmaxn′ sim(pm,hn′) (2)

Likewise, for every phrase hn in the hypothesis, we look for the most similar phrase pm from
the premise. A phrase pair (pm,hn) is considered to be aligned if hn is selected as the closest
phrase to pm, and pm is the closest to hn. Such hard alignment differs from commonly used soft
attention-based approaches (Parikh et al., 2016). Our alignment method can ensure the quality of
phrase alignment, and more importantly, leave other phrases unaligned (e.g., helping each other in
Figure 1), which are common in the NLI task. The process is illustrated in Figure 2a.

Phrasal NLI Prediction. Our model then predicts the logical relationship of an aligned phrase
pair (p,h) among three target labels: Entailment, Contradiction, and Neutral. While previous
work (Feng et al., 2020) identifies finer-grained labels for NLI, we do not follow their categorization,
because it complicates the reasoning process and makes weakly supervised training more difficult.
Instead, we adopt a three-way phrasal classification, which is consistent with sentence NLI labels.

We represent a phrase, say, p in the premise, by a vector embedding, and we consider two types
of features: a local feature p(L) and a global feature p(G), re-used from the phrase alignment
component. They are concatenated as the phrase representation p = [p(L);p(G)]. Likewise, the
phrase representation for a hypothesis phrase h is obtained in a similar way. Intuitively, local features
force the model to perform reasoning in a serious manner, but global features are important to
sentence-level prediction. Such intuition is also verified in an ablation study (§ 4.2).

Then, we use a neural network to predict the phrasal NLI label (Entailment, Contradiction, and
Neutral). This is given by the standard heuristic matching (Mou et al., 2016) based on phrase
embeddings, followed by a multi-layer perceptron (MLP) and a three-way softmax layer:

[Pphrase(E|p,h);Pphrase(C|p,h);Pphrase(N|p,h)] = softmax(MLP([p;h; |p− h|;p ◦ h])) (3)

where ◦ is the element-wise product, and the semicolon refers to column vector concatenation. E, C,
and N refer to the Entailment, Contradiction, and Neutral labels, respectively.

It should be mentioned that a phrase may be unaligned, but plays an important role in sentence-level
NLI prediction, as shown in Table 1. Thus, we would like to predict phrasal NLI labels for unaligned
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phrases as well, but pair them with a special token (p〈EMPTY〉 or h〈EMPTY〉), whose embedding is
randomly initialized and learned by back-propagation.

Sentence Label Induction. We observe the sentence NLI label can be logically induced from phrasal
NLI labels. Based on the definition of the NLI task, we develop the following induction rules.

Entailment Rule: According to Bowman et al. (2015), a premise entailing a hypothesis means that, if
the premise is true, then the hypothesis must be true. We find that this can be oftentimes transformed
into phrasal relationships: a premise entails the hypothesis if all paired phrases have the label
Entailment.

Let {(pk,hk)}Kk=1

⋃
{(pk,hk)}K

′

k=K+1 be all phrase pairs. For k = 1, · · · ,K, they are aligned
phrases; for k = K + 1, · · · ,K ′, they are unaligned phrases paired with the special token, i.e.,
pk = p〈EMPTY〉 or hk = h〈EMPTY〉. Then, we induce a sentence-level Entailment score by

Ssentence(E|P,H) =
[∏K′

k=1
Pphrase(E|pk,hk)

] 1
K′ (4)

This works in a fuzzy logic fashion (Zadeh, 1988; 1996), deciding whether the sentence-level
label should be Entailment considering the average of phrasal predictions.2 Here, we use the
geometric mean, because it is biased towards low scores, i.e., if there exists one phrase pair with a
low Entailment score, then the chance of sentence label being Entailment is also low. Unaligned
pairs should be considered in Eq. (4), because an unaligned phrase may indicate Entailment, shown
in the second example of Table 1. Notice that the resulting value Ssentence(E|P,H) is not normalized
with respect to Contradiction and Neutral; thus, we call it a score (instead of probability), which
will be normalized afterwards.

Contradiction Rule: Two sentences are contradictory if there exists (at least) one paired phrase labeled
as Contradiction. The fuzzy logic version of this induction rule is given by

Ssentence(C|P,H) = maxk=1,··· ,K Pphrase(C|pk,hk) (5)

Here, the max operator is used in the induction, because the contradiction rule is an existential
statement, i.e., there exist(s) · · · . Also, unaligned phrases are excluded in calculating the sentence-
level Contradiction score, because an unaligned phrase indicates the corresponding information is
missing in the other sentence and it cannot be Contradiction (recall examples in Table 1).

Rule for Neutral: Two sentences are neutral if there exists (at least) one neutral phrase pair, but
there does not exist any contradictory phrase pair. The fuzzy logic formula is

Ssentence(N|P,H) =
[
maxk=1,··· ,K′ Pphrase(N|pk,hk)

]
·
[
1− Ssentence(C|P,H)] (6)

The first factor determines whether there exists a Neutral phrase pair (including unaligned phrases,
illustrated in the first example in Table 1). The second factor evaluates the negation of “at least one
contradictory phrase,” as suggested in the second clause of the Rule for Neutral.

Finally, we normalize the scores into probabilities by dividing the sum, since all the scores are already
positive. This is given by

Psentence(L|·) = 1
ZSsentence(L|·) (7)

where L ∈ {E, C, N}, and Z = Ssentence(E|·) + Ssentence(C|·) + Ssentence(N|·) is the normalizing factor.

Training and Inference. We use cross-entropy loss to train our EPR model by minimizing
− logPsentence(t|·), where t ∈ {E, C, N} is the groundtruth sentence-level label.

Our underlying logical reasoning component can be trained end-to-end by back-propagation in
a weakly supervised manner, because the fuzzy logic rules are almost everywhere differentiable.
Although the max operators in Eqs. (5) and (6) may not be differentiable at certain points, they are
common in max-margin learning and the rectified linear unit (ReLU) activation functions, and do not
cause trouble in back-propagation.

Once our EPR model is trained, we can obtain both phrasal and sentence-level labels. This is
accomplished by performing argmax on the predicted probabilities (3) and (7), respectively.

2In traditional fuzzy logic, the conjunction is given by probability product (Zadeh, 1988). We find that this
gives a too small Entailment score compared with Contradiction and Neutral scores, causing difficulties in
end-to-end training. Thus, we take the geometric mean and maintain all the scores in the same magnitude.
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Improving Textual Explanation. Camburu et al. (2018) annotated a dataset to address NLI in-
terpretability by generating an explanation sentence. For the example in Figure 1, the reference
explanation is “There cannot be one man and several men at same time.”

In this part, we apply the predicted phrasal logical relationships to textual explanation generation and
examine whether our EPR’s output can help a downstream task. Figure 3 shows the overview of our
textual explanation generator. We concatenate the premise and hypothesis in the form of “Premise :
· · · Hypothesis : · · · ,” and feed it to a standard Transformer encoder (Vaswani et al., 2017).

We utilize the phrase pairs and our predicted phrasal labels as factual knowledge to enhance the
decoder. Specifically, our EPR model yields a set of tuples {(pk,hk, lk)}Kk=1 for a sample, where
lk ∈ {E, N, C} is the predicted phrasal label for the aligned phrases, pk and hk. We embed phrases by
Sentence-BERT: p(L) and h(L); the phrasal label is represented by a one-hot vector lk = onehot(lk).
They are concatenated as a vector mk = [pk;hk; lk]. We compose the vectors as a factual memory
matrix M = [m>1 ; · · · ;m>K ] ∈ RK×d, where d is the dimension of mk.

Transformer Encoder

Phrases in 𝐩 Phrases in 𝐡 Label

a woman the woman E
running a 
marathon running E

in a park in her 
backyard C

Factual Memory

Transformer Decoder

Factual Memory
Attention

+

Premise : ⋯ Hypothesis : ⋯

Softmax

N×

Feed-forward Network

Next word

N×

N×

MLP

Figure 3: Overview of the model for textual
explanation generation.

Our decoder follows a standard Transformer archi-
tecture (Vaswani et al., 2017), but is equipped with
additional attention mechanisms to the factual mem-
ory. Consider the ith decoding step. We feed the
factual memory to an MLP as M̃ = MLP(M). We
compute attention a over M̃ with the embedding of
the input yi−1, and aggregate factual information c
for the rows mt in M:

a = softmax(M̃yi−1), c =
∑K

k=1
akm̃

>
t

where ak is the kth element of the vector a and
m̂t is the kth row of the matrix M̃. The factual
information c is fed to another layer gi = MLP([c;yi−1]) + c.

Our Transformer decoder layer starts with self-attention q̃i = SelfAttn(gi). Then, residual connec-
tion and layer normalization are applied as qi = LayerNorm(q̃i + gi). A cross-attention mechanism
obtains input information by vi = CrossAttn(qi,H), where H is the representation given by the
encoder. vi is fed to the Transformer’s residual connection and layer normalization sub-layer. Multi-
ple Transformer layers as mentioned above are stacked to form a deep architecture. The model is
trained by standard cross-entropy loss against the reference explanation as in previous work (Kumar
& Talukdar, 2020; Zhao & Vydiswaran, 2021; Narang et al., 2020).

In this way, the model is enhanced with factual information given by our EPR weakly supervised
reasoning. Experiments will show that it largely improves the BLEU score by 2 points (§ 4.2), being a
new state of the art. This further verifies that our EPR indeed yields meaningful phrasal explanations.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

The main dataset we used in our experiments is the Stanford Natural Language Inference (SNLI)
dataset (Bowman et al., 2015), which consists of 550K training samples, 10K validation samples, and
another 10K test samples. Each data sample consists of two sentences (premise and hypothesis) and a
sentence-level groundtruth label.3 For sentence-level NLI prediction, we still use accuracy to evaluate
our approach, following previous work (Parikh et al., 2016; Chen et al., 2017; Radford et al., 2018).

To evaluate the phrasal reasoning performance, we need additional human annotation and evaluation
metrics, because most previous work only considers sentence-level performance (Feng et al., 2020)
and has not performed quantitative phrasal reasoning evaluation. Although Camburu et al. (2018)
annotated phrase highlights in their e-SNLI dataset, they are incomplete and do not provide logical
relationships. Our annotators selected relevant phrases from two sentences and tagged them with
phrasal NLI labels; they also selected and tagged unaligned phrases.

3A groundtruth label is for a data point, which consists of two sentences. We call it a sentence-level label
instead of phrasal labels.
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Table 2: Main results on the SNLI dataset. †Quoted from respective papers. ‡Obtained from the
checkpoint sent by the authors. Other results are obtained by our experiments. GM and AM are the
geometric and arithmetic means of the F scores.

Model Sent Acc Reasoning Performance
FE FC FN FUP FUH GM AM

Human – 84.71 71.01 55.12 82.46 61.80 70.07 71.02
Non-reasoning
Mahabadi et al. (2020)† 85.1 – – – – – – –
LSTM (Wang & Jiang, 2016)† 86.1 – – – – – – –
Transformer (Radford et al., 2018) 89.9 – – – – – – –
SBERT (Reimers & Gurevych, 2019) 91.4 – – – – – – –
Baselines
NNL (Feng et al., 2020)‡ 79.91 62.72 17.49 1.50 66.22 0.00 0.00 29.59
STP 85.76 62.40 34.76 37.04 76.61 51.80 50.20 52.52
GPT-3-Davinci (Brown et al., 2020) – 53.75 58.00 16.12 52.24 31.08 38.23 42.24
Ours
EPR (Local, LM unfinetuned) 76.33±0.48 83.11±0.29 38.73±0.85 44.63±0.88 76.61 51.80 56.39±0.43 58.98±0.34
EPR (Local, LM finetuned) 79.36±0.13 82.44±0.26 44.10±1.32 44.69±3.22 76.61 51.80 57.77±0.85 59.93±0.67
EPR (Concat, LM unfinetuned) 84.53±0.19 73.29±0.68 37.95±1.16 40.56±1.10 76.61 51.80 53.73±0.39 56.04±0.33
EPR (Concat, LM finetuned) 87.56±0.15 69.91±1.21 39.97±2.12 43.31±2.78 76.61 51.80 54.46±1.35 56.32±1.13

We further propose a set of F -scores, which are a balanced measure of precision and recall between
human annotation and model output for Entailment, Contradiction, Neutral, and Unaligned in
terms of word indexes. Details of human annotation and evaluation metrics are shown in Appendix B.

The inter-annotator agreement is presented in Table 2 in comparison with model performance (detailed
in the next part). Here, we compute the agreement by treating one annotator as the ground truth
and another as the system output; the score is averaged among all annotator pairs. As seen, humans
generally achieve high agreement with each other, whereas model performance is relatively low. This
shows that our task and metrics are well-defined, yet phrasal logical reasoning is a challenging task
for machine learning models.

Textual explanation generation was evaluated on the e-SNLI dataset (Camburu et al., 2018), which
extends the SNLI dataset with one reference explanation for each training sample, and three reference
explanations for each validation or test sample. Each reference explanation comes with highlighted
rationales, a set of annotated words in the premise or hypothesis considered as the reason for the
explanation annotation. We do not use these highlighted rationales, but enhance the neural model
with EPR output for textual explanation generation. We follow previous work (Camburu et al., 2018;
Narang et al., 2020), adopting BLEU (Papineni et al., 2002) and SacreBLEU (Post, 2018) scores as
the evaluation metrics; they mainly differ in the tokenizer. Camburu et al. (2018) also report low
consistency of the third annotated reference, and thus use only two references for evaluation. In
our study, we consider both two-reference and three-reference BLEU/SacreBLEU. Appendix A.2
provides additional implementation details of textual explanation generation.

4.2 RESULTS

Phrasal Reasoning Performance. To the best of our knowledge, phrasal reasoning for NLI was not
explicitly evaluated in previous literature. Therefore, we propose plausible extensions to previous
studies as our baselines. We consider the study of Neural Natural Logic (NNL, Feng et al., 2020)
as the first baseline. It applies an attention mechanism (Parikh et al., 2016), so that each word in
the hypothesis is softly aligned with the words in the premise. Then, each word in the hypothesis is
predicted with one of the seven natural logic relations proposed by MacCartney & Manning (2009).
We consider the maximum attention score as the alignment, and map their seven natural logic relations
to our three-category NLI labels: Equivalence, ForwardEntailment 7→ Entailment; Negation,
Alternation 7→ Contradiction; and ReverseEntailment, Cover, Independence 7→ Neutral.

Table 2 shows that the word-level NNL approach cannot perform meaningful phrasal reasoning,
although our metrics have already excluded explicit evaluation of phrases. The low performance
is because their soft attention leads to many misalignments, whereas their seven-category logical
relations are too fine-grained and cause complications in weakly supervised reasoning. In addition,
NNL does not allow unaligned words in the hypothesis, showing that such a model is inadequate
for NLI reasoning. By contrast, our EPR model extracts phrases of meaningful semantic units,
being an appropriate granularity of logical reasoning. Moreover, we work with three-category NLI
labels following the sentence-level NLI task formulation. This actually restricts the model’s capacity,
forcing the model to perform serious phrasal reasoning.
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Table 3: Results of ablation studies on SNLI.

Model Features Sent Acc Reasoning Performance
FE FC FN FUP FUH GM AM

Full model
Local 76.33±0.48 83.11±0.29 38.73±0.85 44.63±0.88 76.61 51.80 56.39±0.43 58.98±0.34
Global 84.03±0.12 70.84±0.60 35.12±0.90 36.37±1.52 76.61 51.80 51.41±0.62 54.15±0.41
Concat 84.53±0.19 73.29±0.68 37.95±1.16 40.56±1.10 76.61 51.80 53.73±0.39 56.04±0.33

Random chunker
Local 72.44 63.21 22.65 32.04 65.94 36.13 40.53 43.99
Global 82.81 58.09 30.64 27.49 65.94 36.13 41.05 43.66
Concat 83.09 58.75 32.41 31.14 65.94 36.13 42.66 44.87

Semantic role labeling
Local 71.10 73.79 29.39 28.99 70.19 43.11 45.27 49.09
Global 82.81 60.14 32.07 30.48 70.19 43.11 44.67 47.20
Concat 83.11 61.64 31.76 28.33 70.19 43.11 44.15 47.01

Random alignment
Local 68.52 59.32 21.79 26.20 51.43 16.50 31.02 35.05
Global 81.99 53.85 35.10 31.39 51.43 16.50 34.71 37.66
Concat 82.49 57.22 34.83 30.91 51.43 16.50 34.97 38.18

Mean induction
Local 79.61 77.38 37.14 36.13 76.61 51.80 52.84 55.81
Global 83.82 55.08 29.92 24.70 76.61 51.80 43.82 47.62
Concat 84.96 57.12 31.93 31.41 76.61 51.80 46.92 49.77

In addition, we include another intuitive SBERT-based competing model for comparison. We first
apply our own heuristics of phrase detection and alignment (thus, the model will have the same
FUP and FUH scores); then, we directly train the phrasal NLI predictor by sentence-level labels. We
obtain the sentence NLI prediction by taking argmax over Eq. (7). We call this STP (Sentence label
Training Phrases). As seen, STP provides some meaningful phrasal reasoning results, because the
training can smooth out the noise of phrasal labels, which are directly set as the sentence-level labels.
But still, its performance is significantly lower than our EPR model.

We experimented with a baseline of few-shot prompting with GPT-3 (Brown et al., 2020), and the
implementation detail is shown in Appendix A.2. We see that GPT-3 is able to provide more or
less meaningful reasoning, and surprisingly the contradiction F -score is higher than all competing
methods. However, the overall mean F scores are much lower. The results show that phrasal
reasoning is challenging for pretrained language models, highlighting the importance of our task
formulation and the proposed EPR approach even in the prompting era.

Among our EPR variants, we see that EPR with local phrase embeddings achieves the highest
reasoning performance, and that EPR with concatenated features achieves a good balance between
sentence-level accuracy and reasoning. Our EPR variants were run 5 times with different initialization,
and standard deviations are also reported in Table 3. As seen, our improvement compared with the best
baseline is around 9.1–10.7 times the standard deviation in mean F scores, which is a large margin.
Suppose the F scores are Gaussian distributed,4 the improvement is also statistically significant
(p-value <4.5e-20 comparing our worse variant with the best competing model by one-sided test).

We further compare our EPR with non-reasoning models (Wang & Jiang, 2016; Radford et al.,
2018), which are unable to provide phrasal explanations but may or may not achieve high sentence
accuracy. The results show that our phrasal EPR model hurts the sentence-level accuracy by 2–4
points, when the model architecture is controlled. This resonates with traditional symbolic AI
approaches (MacCartney & Manning, 2008), where interpretable models may not outperform black-
box neural networks. Nevertheless, our sentence-level accuracy is still decent, outperforming a few
classic neural models, including fuzzy logic applied to sentence embeddings (Mahabadi et al., 2020).

Analysis. We consider several ablated models to verify the effect of every component in our EPR
model. (1) Random chunker, which splits the sentence randomly based on the number of chunks
detected by our system. (2) Random aligner, which randomly aligns phrases but keeps the number
of aligned phrases unchanged. (3) Semantic role labeling, which uses the semantic roles, detected
by AllenNLP (Gardner et al., 2018), as the reasoning unit. (4) Mean induction, which induces the
sentence NLI label by the geometric mean of phrasal NLI prediction. In addition, we consider local
phrase embedding features, global features, and their concatenation for the above model variants.
Due to a large number of settings, each variant was run only once; we do not view this as a concern
because Table 2 shows a low variance of our approach. Also, the underlying language model is
un-finetuned in our ablation study, as it yields slightly lower performance but is much more efficient.

As seen in Table 3, the random chunker and aligner yield poor phrasal reasoning performance,
showing that working with meaningful semantic units and their alignments is important to logical
reasoning. This also verifies that our word index-based metrics are able to evaluate phrase detection

4When the score has a low standard deviation, a Gaussian distribution is a reasonable assumption because
the probability of exceeding the range of F scores is extremely low.
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and alignment in an implicit manner. We further applied semantic role labeling as our reasoning
unit. We find its performance is higher than the random chunker but lower than our method. This is
because semantic role labeling is verb-centric, and the extracted spans may be incomplete.

Interestingly, local features yield higher reasoning performance, but global and concatenated features
yield higher sentence accuracy. This is because global features provide aggregated information of
the entire sentence and allow the model to bypass meaningful reasoning. In the variant of the mean
induction, for example, the phrasal predictor can simply learn to predict the sentence-level label
with global sentence information; then, the mean induction is an ensemble of multiple predictors.
In this way, it achieves the highest sentence accuracy (0.43 points higher than our full model with
concatenated features), but is 6 points lower in reasoning performance.

This reminds us of the debate between old schools of AI (Chandrasekaran et al., 1988; Boucher
& Dienes, 2003; Goel, 2022). Recent deep learning models take the connectionists’ view, and
generally outperform symbolists’ approaches in terms of the ultimate prediction, but they lack
expressible explanations. Combining neural and symbolic methods becomes a hot direction in recent
AI research (Liang et al., 2017; Dong et al., 2018; Yi et al., 2018). In general, our EPR model with
global features achieves high performance in both reasoning and ultimate prediction for the NLI task.

Table 4: Textual explanation results on e-SNLI. Previous
work uses auxiliary information (L: the groundtruth NLI
label; H: human-annotated highlights), but we use neither.
†Quoted from respective papers. ‡Evaluated by checkpoints.
‖Our replication with provided code.

Model Info BLEU SacreBLEU
L H 2 refs 3 refs 2 refs 3 refs

Camburu et al. (2018)† – – 27.58 – – –
NILE (Kumar & Talukdar, 2020)‖ 3 – 28.57 37.73 32.51 41.78
NILE (Kumar & Talukdar, 2020)‡ 3 – 28.67 37.84 32.74 42.06
FinetunedWT5220M (Narang et al., 2020)† 3 – – – 32.40 –
FinetunedWT511B (Narang et al., 2020)† 3 – – – 33.70 –
LIREx (Zhao & Vydiswaran, 2021)‖ 3 3 17.22 22.40 21.24 26.68
Finetune T560M – – 27.75 36.78 31.74 40.89

+ Annotated Highlights64M 3 3 27.91 36.90 32.20 41.21
+ EPR Outputs64M (ours) – – 29.91 38.30 33.96 42.63

Results of Textual Explanation Gen-
eration. In this part, we apply
EPR’s predicted output—phrasal log-
ical relationships—as factual knowl-
edge to textual explanation genera-
tion. Most previous studies use the
groundtruth sentence-level NLI label
and/or highlighted rationales. This re-
quires human annotations, which are
resource-consuming to obtain. By
contrast, we require no extra human-
annotated resources; our factual knowl-
edge is based on our weakly super-
vised reasoning approach.

Table 4 shows our explanation generation performance on e-SNLI. Since evaluation metrics are not
consistently used for explanation generation in previous studies, we replicate the approaches when
the code or checkpoint is available. For large pretrained models, we quote results from the previous
paper (Narang et al., 2020). Their model is called WT5, having 220M or 11B parameters depending
on the underlying T5 model. Profoundly, we achieve higher performance with 60M-parameter
T5-small, which is 3.3x and 170x smaller in model size than the two WT5 variants.

In addition, we conducted a controlled experiment using the rationale highlights annotated by
Camburu et al. (2018) for e-SNLI. It achieves a relatively small increase of 0.2–0.5 BLEU points,
whereas our EPR’s outputs yield a 2-point improvement. The difference in the performance gains
shows that our EPR’s phrasal logical relationships provide more valuable information than human-
annotated highlights. In general, we achieve a new state of the art on e-SNLI with a small language
model, demonstrating the importance of phrasal reasoning in textual explanations.

Additional Results. We show additional results as appendices. § C.1: Reasoning performance on the
MNLI dataset; § C.2: Error analysis; § C.3: Case studies of our EPR model; and § C.4: Case studies
of textual explanation generation.

Conclusion. The paper proposes an explainable phrasal reasoning (EPR) model for NLI with neural
fuzzy logic, trained in a weakly supervised manner. We further propose an experimental design,
including data annotation, evaluation metrics, and plausible baselines. Results show that phrasal
reasoning for NLI is a meaningfully defined task, as humans can achieve high agreement. Our EPR
achieves decent sentence-level accuracy, but much higher reasoning performance than all competing
models. We also achieve a new state-of-the-art performance on e-SNLI textual explanation generation
by applying EPR’s phrasal logical relationships.
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A IMPLEMENTATION DETAILS

A.1 PHRASE DETECTION

We present more details about our phrase detection. We use SpaCy5 to obtain the part-of-speech
(POS) tag6 of every word. SpaCy also tags noun phrases. However, if a noun phrase follows a
preposition (with a fine-grained POS tag being IN), we remove it from noun phrases but tag it as a
prepositional phrase.

In addition, we extract verbs by the POS tag VERB. A verb may be followed by a particle with the
fine-grained POS tag being RP (e.g., show off ). It is treated as a verb phrase. In order to handle
negation, we allow optional AUX NOT before a verb, (e.g., could not help). This, however, only counts
less than 1% in the dataset, and does not affect our model much.

To capture other potential semantic units, we treat remaining open class words7 as individual phrases.
Finally, the remaining non-content words (in the categories of closed words and others) are discarded
(e.g., “there is”). This is appropriate, because they do not represent meaningful semantics or play a

5https://spacy.io
6See definitions in https://spacy.io/usage/linguistic-features
7https://universaldependencies.org/u/pos/
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Table 5: Our rules for phrase detection. “[]” means the item is optional.

Example: The woman is showing off her blue dog at the playground.
Number Phrase type Rule Extracted phrase(s)

1 Prepositional phrase IN + NP at the playground
2 Noun phrase NP The woman| her blue dog
3 Verb phrase [AUX] + [NOT] + VERB + [RP] is showing off
4 Others Other open class words -

Figure 4: Results of tuning the coefficient of global features.

role in reasoning. Table 5 summarizes all the rules used in our approach. They are executed in order
and extracted phrases are exclusive. For example, the playground in the phrase at the playground
will not be treated as a standalone noun phrase, as it is already part of a prepositional phrase.

Empirically, our rule-based approach works well for the NLI dataset, and our logical reasoning is at
the granularity of the extracted phrases.

A.2 SETTINGS

Details of the EPR Model. We chose the pretrained model all-mpnet-base-v28 from the Sentence-
BERT study (Reimers & Gurevych, 2019) and obtained 768-dimensional local and global phrase
embeddings. Our MLP had the same dimension as the embeddings, i.e., 768D for the local and global
variants, or 1536D for the concatenation variant. We chose the coefficient for the global feature
in Eq. (1) from a candidate set of {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. Figure 4 shows the hyperparameter
tuning results on SNLI (mentioned in § 4.2) and MNLI (to be discussed in § C.1). We find that 0.4
yields the best sentence accuracy in SNLI, and that 1.0 is the best for MNLI. As our focus is on
reasoning, we set the coefficient to be 0.6, because it yields the highest phrasal reasoning performance
and decent sentence-level performance for both experiments and in terms of both geometric mean
and arithmetic mean of F scores. The pretrained language model (LM) was either finetuned or
un-finetuned during training. Finetuning yields higher performance (Table 2), whereas un-finetuned
LM is more efficient for in-depth analyses (Table 3). We trained the model with a batch size of 256.
We used Adam (Kingma & Ba, 2015) with a learning rate of 5e-5, β1=0.9, β2=0.999, learning rate
warm up over the first 10 percent of the total steps, and linear decay of the learning rate. The model
was trained up to 3 epochs, following the common practice (Dodge et al., 2020). Our main model
variants were trained 5 times with different parameter initializations, and we report the mean and
standard deviation.

Details of Textual Explanation Generation. We used the pretrained T5-small model for finetuning
with a batch size of 32. The optimizer was Adam with an initial learning rate of 3e-4, β1=0.9,
β2=0.999, learning rate warm-up for the first 2 epochs, and linear decay of the learning rate up to 10

8https://www.sbert.net/docs/pretrained_models.html
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The phrasal logical reasoning between two sentences: "Several men helping each other pull in a fishing net.” and 
"There is one man holding the net." is: 
1. Entailment: "pull in a fishing net" vs. "holding the net".
2. Contradiction: "Several men" vs. "one man".
3. Neutral: None.
4. Unaligned premise: "helping each other".
5. Unaligned hypothesis: None.

The phrasal logical reasoning between two sentences: "An elderly couple are looking at black and white photos 
displayed on a wall." and "Octogenarians in heavy coats admiring the old photographs that decorated the wall." is: 
1. Entailment: "An elderly couple" vs. "Octogenarians"; "displayed on a wall" vs. "decorated the wall".
2. Contradiction: None.
3. Neutral: "looking at black and white photos" vs. "admiring the old photographs". 
4. Unaligned premise: None.
5. Unaligned hypothesis: "in heavy coats".

The phrasal logical reasoning between two sentences: "[PREMISE]" and "[HYPOTHESIS]" is: 

Figure 5: The prompt for phrasal reasoning.

epochs; then we decreased the learning rate to 3e-6 and trained the model until the validation BLEU
score did not increase for 2 epochs.

Details of the Prompting Baseline. We adopted the GPT-3 (the text-davinci-003 version with
175B parameters) (Brown et al., 2020) as a prompting baseline to demonstrate large language models
(LLMs)’ phrasal reasoning ability.

We consider exemplar-based prompting, because it is unlikely for an LLM to output structured
reasoning results in a zero-shot manner. Moreover, our examples are chosen to cover all reasoning
cases. We also set the temperature of decoding to 0 to obtain deterministic reasoning, following CoT
prompting (Wei et al., 2022). Rule-based post-processing was applied to extract slot values. Figure 5
presents the prompt used for phrasal reasoning.

B DATA ANNOTATION AND REASONING EVALUATION METRICS

Previous studies have not explicitly evaluated reasoning performance. Typically, they resort to
sentence-level classification accuracy (Wang & Jiang, 2016; Mahabadi et al., 2020) or case stud-
ies (Parikh et al., 2016; Feng et al., 2020) to demonstrate the effectiveness of their alleged interpretable
models, which we believe is inadequate.

Therefore, we annotated a model-agnostic corpus about phrasal logical relationships and developed a
set of metrics to evaluate the phrasal reasoning performance quantitatively. The resources are released
on our website (Footnote 1) to facilitate future research.

B.1 DATA ANNOTATION

We annotated the phrases and their logical relationships in a data sample. The annotators were asked to
select corresponding phrases from both premise and hypothesis, and label them as either Entailment,
Contradiction, or Neutral, with the sentence-level NLI label being given. Annotators could also
select a phrase from either a premise or a hypothesis and label it as Unaligned. The process can be
repeated until all phrases are labeled for a data sample. Figure 6 shows a screenshot of our annotation
page. In the left panel, the annotator could select phrases in the two sentences and mark them with
NLI labels. The annotator can view a sample’s annotated phrases in the right panel and navigate
through different samples.

The annotation was performed by three in-lab researchers who are familiar with the NLI task. Our
preliminary study shows low agreement when the annotators are unfamiliar with the task; thus it is
inappropriate to recruit Mechanical Turks for annotation. We randomly selected 100 samples for
annotation, following previous work on the textual explanation for SNLI (Camburu et al., 2018),
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Figure 6: A screenshot of the annotation page.

Table 6: Examples illustrating the proposed metrics, where we consider the Entailment category. “|”
refers to a phrase segmentation.

Example annotation of entailment (in highlight):
Premise: A kid in red is playing in a garden.
Hypothesis: A child in red is watching TV in the bedroom.

# Example Output P
(P )
E P

(H)
E PE R

(P )
E R

(H)
E RE FE Explanation

1 P in a garden 0 0 0 0 0 0 0 Although in occurs in the annotation, the word
H in the bedroom indexes are different. The reasoning is wrong.

2 P a kid in red 1 0 0 1 0 0 0 Mis-matched phrases in hypothesis.
H watching TV The reasoning is wrong.

3 P a kid | in red 1 1 1 1 1 1 1 All word indexes match the annotation.
H a child | in red The reasoning is correct.

which is adequate to show statistical significance. Since our annotation only concerns data samples,
it is agnostic to any machine learning model.

B.2 EVALUATION METRICS FOR PHRASAL REASONING

We propose a set of F -scores in Entailment, Contradiction, Neutral, and Unaligned to quantita-
tively evaluate the phrasal reasoning performance. We first introduce our metric for one data sample
and then explain the extension to a corpus.

Consider the Entailment category as an example. We first count the number of “hits” (true positives)
between the word indexes of model output and annotation. Using word indexes (instead of words)
rules out hitting the words in misaligned phrases (Example 1, Table 6). Then, we calculate precision
scores for the premise and hypothesis, denoted by P (P )

E and P (H)
E , respectively. Their geometric

mean PE = (P
(P )
E P

(H)
E )1/2 is considered as the precision for Entailment. Here, the geometric

mean rules out incorrect reasoning that hits either the premise or hypothesis, but not both (Example 2,
Table 6). Further, we compute the recall score RE in a similar way, and finally obtain the F -score
by FE =

2PERE
PE+RE

. Likewise, FC and FN are calculated for Contradiction and Neutral. In addition,
we compute the F -score for unaligned phrases in premise and hypothesis, denoted by FUP and FUH,
respectively.

When calculating our F -scores for a corpus, we use micro-average, i.e., the precision and recall ratios
are calculated in the corpus level. This is more stable, especially considering the varying lengths of
sentences. Moreover, we compare model output against three annotators and perform an arithmetic
average, further reducing the variance caused by ambiguity.
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Table 7: Results on MNLI. †Quoted from respective papers. ‡Our replication.

Model Sent Acc Reasoning Performance
FE FC FUP FUH GM AM

Human – 85.15 73.44 73.18 46.31 67.85 69.52
Non-reasoning methods
Mahabadi et al. (2020)† 73.8 – – – – – –
LSTM (Wang et al., 2019)† 72.2 – – – – – –
Transformer (Radford et al., 2018) 82.1 – – – – – –
Reasoning methods
NNL (Feng et al., 2020)‡ 61.28 50.33 32.00 49.78 0.00 0.00 33.03
STP 75.15 55.47 51.72 64.32 37.57 51.31 52.27
EPR (Concat, LM finetuned) 79.65±0.19 61.76±0.32 52.09±0.41 64.32 37.57 52.80±0.07 53.93±0.07

It should be emphasized that our metrics evaluate phrase detection and alignment in an implicit
manner. A poor phrase detector and aligner will result in a low reasoning score (shown in our ablation
study), but we do not explicitly calculate phrase detection and alignment accuracy. This helps us cope
with the ambiguity of the phrase granularity (Example 3, Table 6).

To summarize, we propose an evaluation framework including data annotation (§ B.1) and evaluation
metrics (§ B.2). These are our contributions in formulating the phrasal reasoning task for NLI.

C ADDITIONAL RESULTS

C.1 RESULTS ON MNLI

In this appendix, we provide additional results on the matched section of the MNLI dataset (Williams
et al., 2018), which consists of 393K training samples, 10K validation samples, and another 10K
test samples. It has the same format as the SNLI dataset, but samples come from multiple domains
and are more diverse. We follow § 4.1 and use the same protocol to create the phrasal reasoning
annotation for the MNLI dataset based on 100 randomly selected samples. However, we found that
MNLI is much noisier than SNLI; particularly, the sentences labeled as Neutral in MNLI share few
related phrases. For example, the two sentences do not have much in common in the sample “Premise:
If you still want to join, it might be worked.” and “Hypothesis: Your membership is the only way that
this could work”. Moreover, the inter-human agreement is low in the Neutral category. Therefore,
we believe the corpus quality is less satisfactory for Neutral. To ensure meaningful evaluation,
we ignored the evaluation of Neutral in this experiment, although our reasoning approach is not
changed. The remaining 60 samples containing Entailment and Contradiction serve as the MNLI
phrasal reasoning corpus.

We consider the EPR variant with concatenated local and global features, since the SNLI experiment
shows it achieves a good balance between sentence-level accuracy and reasoning. Our models were
run 5 times with different initializations.

As seen in Table 7, our EPR approach is again worse than humans, but largely improves the reasoning
performance compared with NNL and STP baselines. Its sentence-level prediction is comparable to
(although slightly lower than) finetuning Transformers. The results are highly consistent with SNLI
experiments, showing the robustness of our approach.

It is important to notice that the EPR model here is trained on MNLI sentence labels, and is not
transferred from the SNLI dataset. In our preliminary experiments, we tried transfer learning from
SNLI to MNLI and failed to obtain satisfactory performance. We found that our EPR is more prone to
the out-of-vocabulary issue (i.e., it does not predict well for the phrases in the new domain), whereas
a black-box neural network may learn biased sentence patterns and achieve higher performance in
transfer learning.

C.2 ERROR ANALYSIS

To show how phrasal reasoning affects sentence-level prediction, we perform an error analysis in
Table 8. Specifically, we examine the reasoning performance (arithmetic mean of F -scores) when the
sentence label is correctly and incorrectly predicted on the SNLI dataset. As shown, EPR models
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Table 8: Sentence-level prediction count and arithmetic average reasoning performance (F -score)
when the sentence label is correctly and incorrectly predicted on the SNLI dataset.

Sentence-level prediction Count (in percentage) Reasoning performance (AMF)
Local finetuned Concat finetuned Local finetuned Concat finetuned

Correct 75.4±1.36 87.8±0.75 65.71±0.83 58.68±0.67
Wrong 24.6±1.36 12.2±0.75 40.74±2.01 37.58±3.28
Overall 100.0±0.00 100.0±0.00 59.93±0.67 56.32±1.13

      People shopping for vegetables at an outdoor market.

(d)

      People shopping for veggies and fruit at a market.

      An elderly couple in heavy coats are looking at black and white photos displayed on a wall.

(d)

      Octogenarians admiring the old photographs that decorated the wall.

      Three young boys enjoying a day at the beach.

(a)

      The boys are in the beach.

      A man playing fetch with two brown dogs.

(b)

      The dogs are asleep.

      Walkers on a concrete boardwalk under a blue sky.

(c)

      Walkers under a blue sky near the beach.

Entailment

Contradiction

Neutral

Unaligned

Groundtruth: Entailment   Prediction: 
Neutral

Groundtruth: Entailment   Prediction: Entailment Groundtruth: Contradiction   Prediction: Contradiction

Groundtruth: Neutral   Prediction: Neutral Groundtruth: Entailment   Prediction: Neutral

Figure 7: Examples of explainable phrasal reasoning predicted by our EPR model. Words in one
color block are detected phrases, a dotted line shows the alignment of two phrases, and the color
represents the predicted phrasal NLI label. In Example (d), EPR’s prediction suggests the provided
label in SNLI is incorrect.

with both local and concatenated features have much higher reasoning performance when sentence
labels are correctly predicted than incorrectly predicted. The positive correlation between phrasal
reasoning performance and sentence-level accuracy shows our fuzzy logic induction rules indeed
make sense.

We also find that the model with local features has a higher reasoning performance than with
concatenated features, even when the sentence-level prediction is wrong. This is because the local
model is unaware of the context of the sentences. Thus, it must perform strict phrasal reasoning
based on the induction rules, even if in this case the reasoning process is imperfect and leads to
sentence-level errors.

C.3 CASE STUDY OF EPR

We present case studies of EPR in Figure 7. Our EPR performs impressive reasoning for the NLI
task, which is learned in a weakly supervised manner with only sentence-level labels.

In Example (a), the two sentences are predicted Entailment because three young boys entails the
boys and at the beach entails in the beach, whereas unaligned phrases enjoying and a day are allowed
in the premise for Entailment. In Example (b), playing contradicts asleep, and the two sentences
are also predicted Contradiction. Likewise, Example (c) is predicted Neutral because the aligned
phrases on a concrete boardwalk and near the beach are neutral.

In our study, we also find several interesting examples where EPR’s reasoning provides clues suggest-
ing that the target labels may be incorrect in the SNLI dataset. In Example (d), our model predicts
Neutral for looking and admiring, as well as for at black and white photos and the old photographs.
Thus, the two sentences are predicted Neutral instead of the provided label Entailment. We be-
lieve our model’s reasoning and prediction are correct, because people looking at something may
or may not admire it; a black-and-white photo may or may not be an old photo (as it could be a
black-and-white artistic photo).

C.4 CASE STUDY OF THE TEXTUAL EXPLANATION GENERATION

We conduct another case study to show how EPR’s reasoning is used in the textual explanation
generation task. As seen in Figure 8, our EPR reasoning yields structured factual tuples: on a
deserted beach entailing at the beach, Some dogs contradicting only one dog, and running unaligned
(matched with a special token [EMPTY]). Our explanation generation model attends to these factual
tuples, and the heat map shows that our model gives the most attention weights (with an average of
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E
C
E

at the beach
only one dog
[EMPTY]

23.16
61.22
15.62

EPR’s Reasoning Output

on a deserted beach
Some dogs
running

Input  Premise : Some dogs are running on a deserted beach. 
Hypothesis : There is only one dog at the beach.

Output explanation Some dogs is more than one dog.
Reference explanations: 
(1) Some is more than one, therefore there can’t be only one dog.
(2) Some indicates more than one dog. One dog is not  some dogs. 
(3) Some dogs are not one dog.

Premise phrase Hypothesis phrase EPR label Attention score

Label Contradiction (not used during our explanation generation)

some dogs is more than one dog . [EOS]
on a deserted beach

 at the beach

Some dogs
only one dog

running
[EMPTY]

0.10 0.23 0.28 0.25 0.19 0.24 0.30 0.30 0.32

0.57 0.62 0.50 0.59 0.70 0.54 0.66 0.68 0.58

0.33 0.15 0.22 0.16 0.11 0.22 0.04 0.02 0.10

Average
attention

score

0.23

0.61

0.16
0.0

0.5

1.0

Figure 8: Case study of the textual explanation generation. The heat map shows the step-by-step and
average attention weights to the factual tuples (vertical axis).

0.61) to the tuple, Some dogs contradicting only one dog, to generate the explanation “Some dogs is
more than one dog.” This example illustrates that the factual tuples given by our EPR model provide
meaningful information and can improve textual explanation generation.

D LIMITATION AND FUTURE WORK

This paper performs phrase detection and alignment by heuristics. They work well empirically in
our experiments, although further improvement is possible (for example, by considering syntactic
structures). However, our main focus is neural fuzzy logic for weakly supervised reasoning. This
largely differs from previous work based on manually designed lexicons and rules (Hu et al., 2020;
Chen et al., 2021).

Our long-term goal is to develop a weakly supervised, end-to-end trained neuro-symbolic system that
can extract semantic units and perform reasoning for a given downstream NLP task. This paper is an
important milestone toward the long-term goal.

E ETHICAL STATEMENTS

Our work involves human annotation of the phrasal logical relationships. Since the research subject
here is logic (rather than humans), there are minimal ethical concerns. We nevertheless followed
a standard protocol of human evaluation (involving identity protection, and proper compensation),
approved by our institional ethics board.
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