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ABSTRACT

Transformers have demonstrated impressive capability of in-context learning (ICL):
given a sequence of input-output pairs of an unseen task, a trained transformer can
make reasonable predictions on query inputs, without fine-tuning its parameters.
However, existing studies on ICL have mainly focused on linear regression tasks,
often with i.i.d. inputs within a prompt. This paper seeks to unveil the mechanism
of ICL for next-token prediction for Markov chains, focusing on the transformer
architecture with linear self-attention (LSA). More specifically, we derive and
interpret the global optimum of the ICL loss landscape: (1) We provide the closed-
form expression of the global minimizer for single-layer LSA trained over random
instances of length-2 in-context Markov chains, showing the Markovian data distri-
bution necessitates a denser global minimum structure compared to ICL for linear
tasks. (2) We establish tight bounds for the global minimum of single-layer LSA
trained on arbitrary-length Markov chains. (3) Finally, we prove that multilayer
LSA, with parameterization mirroring the global minimizer’s structure, performs
preconditioned gradient descent for a multi-objective optimization problem over
the in-context samples, balancing a squared loss with multiple linear objectives.
We numerically explore ICL for Markov chains using both simplified transformers
and GPT-2-based multilayer nonlinear transformers.

1 INTRODUCTION

Transformer-based large language models (LLM) have demonstrated advanced capability of in-
context learning (ICL): given a prompt, consisting of input-label pairs, a trained transformer can
predict the label for an unseen input without updating its parameters (Brown, [2020; |Rae et al., 2021}
Garg et al., |2022; |Liu et al., [2023; [Team et al., [2023; |/Achiam et al.| 2023} Touvron et al., [2023). This
ability to solve novel tasks solely from examples not only provide a potential alternative for expensive
fine-tuning (Li et al., 2024b), but also enhance reasoning tasks like chain-of-thought (Lampinen et al.}
2022), self-correction (Wang et al.| [2024)), with applications in mathematical problems and logical
deduction (Wei et al., [2022)).

The ability of transformers to solve unseen tasks in-context has sparked a line of research investigating
the underlying mechanisms from various perspectives, including expressive power (Von Oswald
et al.| 2023} |Akytirek et al.l 2023} |Giannou et al., 2023} [Li et al.| 2023} |Dai et al.,[2023; [Zhao et al.|
2023; Bai et al.,2024), convergence of transformer training dynamics (Zhang et al., [2024; Huang
et al.| [2023), generalization ability (Duraisamy| [2024; |Li et al., [2023; 20244a)), and optimization theory
and global optimality (Ahn et al.} 2023} Mahankali et al., 2024 Li et al.l 2024b). In particular, (Ahn
et al.,|2023) identified a distinctive sparse structure in the global optimal transformer parameters, by
setting some entries of the model parameters directly to zero, which simplifies the structure of the
solution. Building on this sparsity, they demonstrated that the forward pass of linear attention models
implements preconditioned gradient descent.

However, the tasks considered in prior studies are limited to linear regression or classification,
where both feature and task vectors are zero-mean Gaussian, which offers limited insight into how
transformers learn sequential data governed by specific dynamics in-context. For example, when
presented with examples of math word problems that include intermediate steps and answers, an
LLM can generate reasonable answers to new questions (Lampinen et al.l 2022). Nevertheless,
the relationships among these examples cannot be directly modeled using linear functions with



Gaussian-distributed data. Instead, they resemble sequences governed by dynamic processes over
a vocabulary, which can be conceptualized as a discrete state space. Therefore, investigating how
transformers learn such dynamics-based data in-context is essential to building a more systematic
understanding of ICL. In particular, we focus on the ICL for Markov chains, a classic model used to
represent language (Shannon, |1948};|1951; Makkuva et al., 2024).

Major challenges. The challenges posed by in-context Markovian dynamics learning are two-
fold: (i) The objective function is non-convex w.r.t. transformer parameters, due to their nonlinear
coupling, which complicates the identification of the global minimum. To mitigate this, we transform
the problem through reparameterization to a strictly convex optimization that produces either the
global minimum or a tight lower bound, inspired by |Ahn et al| (2023). (ii) Since the next token
is stochastically dependent on the previous tokens, no analytic expression exists for the labels in
the ICL setting. This introduces an additional layer of randomness beyond the feature and task
vectors. Specifically, compared to the linear case, we also need to consider the randomness of the
label conditioned on the feature and task vectors.

Our contributions. To this end, we study how transformers learn to predict the next token for
Markov chains in context by analyzing the loss landscape of linear self-attention (LSA) models.
Given the challenges posed by non-convexity and stochasticity, we focus on binary Markov chains
with first-order memory as our first step. The major contributions of this work are highlighted as
follows.

» We establish a framework for handling ICL with Markovian dynamics by fully characterizing the
global minima of the loss landscape for the LSA model trained on length-2 binary Markov chains.
This analysis applies to both i.i.d. settings (see Proposition[I)) and general initial-state distributions
(see Proposition [2). Our results show that the global optimum adapts to the Markovian dynamics,
exhibiting a denser structure compared to ICL for linear regression. In comparison to traditional
i.i.d. tasks, additional nonzero model parameters in the Transformer are necessarily included for
achieving the global minimum of the loss due to the temporal dependence within the in-context
samples.

» To the best of our knowledge, our theoretical result is the first to provide a closed-form expression
for the lower bounds of the expected global optimal value in next-token prediction using a one-
layer transformer structure for Markovian data of arbitrary length. Building on this result, we
further derive an upper bound by properly selecting the transformer parameters.

» We advance the understanding of multilayer transformer expressivity by exploring a parameter
subspace that mirrors the structure of the derived global minimum for Markovian dynamics.
Our results show that the forward pass of the multilayer linear transformers is equivalent to
solving a multi-objective optimization problem. This problem minimizes a squared loss while
simultaneously maximizing multiple linear objectives (see Proposition [3)).

Related work. The capability of transformers to perform ICL (Brown, [2020; Rae et al., 2021} |Liu
et al., 2023 (Garg et al.,|2022) has inspired an exploration of its underlying mechanism from various
aspects. A line of works have shown transformers trained on in-context prompts implicitly implement
optimization algorithms. |Akyiirek et al.| (2023) constructed a set of weights in transformers such
that their forward pass is equivalent to a step of gradient descent over the mean squared loss on
in-context examples. [Von Oswald et al.| (2023) provided such a construction for LSA, further showing
actual optimization of transformers on in-context loss landscapes converge to such a construction. In
addition to standard learning algorithms such as least squares and ridge regression, Bai et al.|(2024)
showed that transformers implement algorithm selection. Specifically, transformers first determine
the task type based on the data statistics in the prompt and then choose the most optimal standard
algorithm to make predictions for the query input.

From the perspective of optimization theory,[Mahankali et al.[(2024));/Ahn et al.|(2023)) showed trained
LSA networks emulate preconditioned gradient descent via analyzing the loss landscape. |Gatmiry
et al.| (2024) proved that the global minimizer implements multi-step preconditioned gradient descent,
considering looped transformers (Giannou et al.,[2023). While previous works mainly focused on
ii.d. in-context examples, [Li et al.|(2024b) further analyzed the ICL loss landscape under correlated
designs, in addition to the consideration of state-space model and LoRA. There has also been studies
about the training dynamics of transformers in the ICL setting. |[Zhang et al.|(2024) demonstrated that
LSA trained through gradient flow converges to the global minimum under mild distribution shifts,
achieving close performance to the best linear predictor. [Huang et al.| (2023) proved convergence



of training dynamics to near-zero prediction error under both balanced and unbalanced in-context
samples. Another relevant area of our work is time-series prediction, which we discuss in sectionB
The comparison between this work and existing research is summarized in Table[T]

A line of concurrent work has studied transformers for temporal data structures, including Markov
chains Makkuva et al.| (2024)); Sander et al.| (2024)); Rajaraman et al.|(2024); Nichani et al.[(2024)).
These studies primarily focus on attention mechanisms operating within a single Markov chain.
In contrast, our work takes a complementary approach by examining a controlled setup where
transformers learn the similarities between entire sequences rather than within individual Markov
chains. This perspective enables us to explore how transformers manage complex dependencies
across sequences, particularly in settings with non-Gaussian input distributions and non-linear input-
output relationships. Notably, this work, to the best of our knowledge, represents the first step
toward understanding the attention mechanisms involved in extracting sentence-level relationships
between prompts and queries. This serves as a complementary contribution to characterizing the
expressiveness of Transformers for Markovian data.

Table 1: Comparison with existing works on transformers for Markov chains.

Non-i.i.d. Optimum w/

Work IcL Data In-Context Input ittention
Zhang et al.|{(2024) Ve Gaussian
Mahankali et al.|(2024) v Gaussian v
Ahn et al.|(2023) v Gaussian
Li et al.[(2024Db) v Gaussian v v

~ Makkuva et al.[(2024) v Markovian N/A
Nichani et al.|(2024) Causal v
Rajaraman et al.|(2024) Markovian v
Sander et al.|(2024) v Autoregressive v v
Ours v Markovian v v

Organization of this paper. The paper is organized as follows. In section 2] we introduce the
preliminaries, including data distribution, architecture, and the training objective. Our main theoretical
findings regarding global optimality and expressivity are presented and validated in section[3] Finally,
we conduct experiments on multilayer GPT-2-based transformers trained on in-context Markovian data
in sectiond] demonstrating improved accuracy compared to LSA and baseline learning algorithms,
such as logistic regression.

2 PRELIMINARIES

2.1 IN-CONTEXT LEARNING

ICL refers to the operation on a prompt consisting of n input-output pairs and a query input:

D= (T1,Y1: - Tns Uny Tng1) = {(@i, ¥3) Him1s Tng1) (D

where y; = h(z;), Vi € [n + 1] for some unknown function & € H, and z;, y; belong to some input
space X" and output space ), respectively. ICL aims to form an output ¢,, ;1 for the query input z,, 41
that approximates its true label §,,+1 ~ h(2p+1). The function h : X — ) remains the same within
a single prompt yet varies across prompts.

Prior works have focused on linear function space H: h(x) = y = w '« for some w € X. Under
such a construction, y is deterministic once z is provided. Despite being commonly encountered in
many real-world applications, the case where h is stochastic remains largely unexplored. For example,
h can represent a text generation mechanism that provides descriptions revolving a given topic. Then
the token generated in the next step is associated with a probability based on the previously generated
words (Chorowski & Jaitly|(2016). To approach the ICL for such scenarios, we consider a simplified



setting of next token prediction for Markov chains. The state space resembles vocabulary and the
transition probability is akin to the conditional probability of the next word given the previous text.

2.2 MARKOV CHAINS

The evolution of a Markov chain s of order k& on a state space S depends solely on the k£ most
recent states. For time step 7 € Z>1, we let s, denote 7th state in the sequence s, the probability of
observing state j € S at time step 7 + 1 is:

P(ST+1 =J | 51:7) = P(ST+1 =J | Srkarl:T) 2

where s, .-, denotes the subsequence from time step 7; to 7o. For first-order Markov chains, the
dynamics are determined by the transition probabilities p;; == P(s,11 = j | s = i), which indicate
the probability of transitioning from state ¢ € S to state j € S. These probabilities constitute
the Markov kernel P = (p;;) € [0, 1]!5/*IS]. For a binary state space S = {0, 1}, The transition
matrix for a binary Markov chain is represented as P(po1,p10) == [1 — po1, Po1 ; Pio, 1 — Diol.
Let 7, € [0,1] IS denote the marginal probability at the 7th time step. The relationship between
consecutive time steps is given by 7,1 = 7, P. A binary Markov chain s ~ (71, P(po1,p10)) can
be generated by starting with an initial distribution 71 and iteratively applying P(po1, p10) to update
the state probabilities at each time step.

2.3 DATA FORMALISM

We introduce the input embedding matrix formulation used for our theoretical results. For a Markov
chain s with length d + 1, we take its first d states to be the input x = s;.4 and the final state to be the
output y = s,. The input and output space are X = S? and J) = S. We use subscripts to denote the
indices of in-context samples, such that x; represents the first d time steps of the ith in-context Markov
chain, while y; denotes its final state. To form an input embedding matrix Z, € RUE+Dx(n+1) e
stack (z;,y;) € R?*! as the first n columns and let the last column be (x,,11,0), inspired by Zhang
et al. (2024).

T = -
0= 2 Zn Znti) i v oy 0

where z; ~ (1, P(po1,p10)) for initial probability mass function 71 = [1 — p, p] with p € (0, 1)
and transition probabilities po1, p10 ~ U(0, 1). The Markov kernel varies for each prompt, while
the initial probability p remains constant across all prompts. Let TF denote a transformer-based
autoregressive model. The goal of ICL is to learn a model TF that can accurately predict the label of
the query input:

gn—}-l = TF(ZO) ~ Yn+1 (4)
2.4 MODEL AND TRAINING OBJECTIVE.

We consider transformers with LSA layers (Von Oswald et al. [2023; |[Zhang et al., 2024; |Ahn
et al.,|2023; Schlag et al.,[2021). We recall a single-head self-attention layer (Vaswani et al.,[2017)
parameterized by key, queue, value weight matrices is defined as follows:

Attnyw, , (Z) = W,ZM - softmax (2T W W,Z), M = {I”OX” 8} e ROHDX(HD) (5

where Wy, Wy, W, € R(4+1)x(@+1) are the (key, queue, value) weight matrices and I, ,, denotes
the identity matrix. The attention scores are normalized by the softmax operator. The mask matrix
M reflects the asymmetric prompt due to the absence of the label for zz(*+1). Motivated by Ahn et al.
(2023)); Zhang et al.|(2024)), we simplify the architecture by (i) removing the softmax nonlinearity
and (ii) reorganizing the weights as P := W, and Q) := W, W,, merging the query and key matrices
into a single matrix:

At (Z) = PZM(ZT QZ). (6)

Despite its simplicity, LSA demonstrates ICL capability for linear functions (Zhang et al.||2024) and
has been shown to implement gradient descent (Von Oswald et al.l|2023)) and preconditioned gradient



descent (Ahn et al.| 2023) to solve linear regression in-context. We will prove in section @ that
certain parameter configuration implements preconditioned gradient descent for a multi-objective
optimization problem that includes linear regression. Finally, our architecture consists of L-layer
LSA modules. Let Z; denote the output of the /th layer attention, we have

1 1 .
Zir = Z + gPZZM(ZTQlZ) =7+ EAttngihg)l(zl) forl=0,...,L—1. (7

The normalizing factor n averages the attention weights gathered from the in-context examples.
We consider the output of the transformer to be the bottom-right entry of the Lth layer, i.e.,
TFL(Zo; { P, Qi}i=o,.....-1) = [ZL](a+1),(n+1)- To train the in-context learner, we optimize the
following population loss in the limit of an infinite number of training prompts such that each prompt
corresponds to a distinct Markov kernel {p;; }; jes:

FUPL Qibi=o,...-1) = Ezy (pis}iyes [UTFL(Z0; { P, Q1}), Ynt1)] (8)

where £(-, -) is the point-wise error. In the following section, we primarily focus on the square loss
and provide a brief discussion of the global minimum in the case where / is the cross-entropy loss.
Our data distribution, architecture, and main finding can be summarized in Fig. [T}
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Figure 1: Comparison between the sequence-level in-context Markovian data based attention
structures and the existing works. (a) The key difference is that the exiting studies of the attention
mechanism (Makkuva et al.,[2024} [Sander et al.| 2024 |Rajaraman et al., [2024} Nichani et al., 2024)
is adopted on a token-level, whereas our study studies sequence-level attention. (b) While prior
work samples in-context input and task vectors independently from some given Gaussian distribution
(Ahn et al., 2023} Zhang et al.| [2024), we consider input vectors generated through a Markovian
transition kernel with parameters pg1, p1o from given initial distributions. (c) The global minimizer
of a linear self-attention model parameterzied by projection and attention weight matrices P, ()
exhibits a distinct structure compared to the ICL for linear task (Proposition[T} 2). The yellow region
indicates the nontrivial portion of the global minimum of the Tranformer model parameters for ICL
in linear tasks, whereas the green region becomes nontrivial in the global minimum when applied to
Markovian data.

3 IN-CONTEXT LEARNING OF FIRST-ORDER MARKOV CHAINS FOR LSA

In this section, we present our main results on ICL for first-order Markov chains. We theoretically
characterize the loss landscape of the in-context objective function f, where the point-wise error / is
the square loss (i.e., £(7,y) = (§ — y)?). Though our objective function is the mean squared loss on
the query input, framing the task as a supervised regression problem, the inputs and outputs are related
through a Markov chain with temporal dependencies. We analyze length-2 and arbitrary-length
in-context Markov chains. For the length-2 case, we provide explicit expressions for the global
minimizers. For arbitrary-length Markov chains, we derive a tight bound for the global minimum.
Additionally, we provide an interpretation of the forward pass of TF, as an optimization algorithm.



3.1 GLOBAL MINIMUM FOR SINGLE-LAYER TRANSFORMER

For a single-layer transformer TF, we construct (P, Q)p) to achieve a global minimum of the
population loss in equation[§] The key parameters influencing the output of TF; are the last row of
Py and the first d columns of ()y. The remaining entries are irrelevant, as the transformer output is
defined solely as the bottom-right entry of 77, and the mask matrix zeros out the last column of Q).
Thus, it suffices to optimize over the following subset of Py and Qy:

Py = [deb@%“)} Qo=[A 0as] ©)

where b € R4*1 A € R(4+1)xd Throughout this section, we assume that Py and Qo have the above
format and refer to them as P, ) for simplicity. The following result derives the analytic solution of a
global minimizer for f(P, Q) for length-2 Markov chains.
Proposition 1 (Global minima for i.i.d. in-context initial states). Consider the in-context learning
of length-2 Markov chains {(x;,v:) Y1 (vi,y: € {0,1}) with transition probabilities poy, p11 ~
U(0,1). Suppose the initial states x; are i.i.d. sampled from Bernoulli(p) for some constant
p € (0,1).
Let X* .= H ' [p*/2 p?/3 p?/12+p/4] " where H is a symmetric matrix defined as follows
(repeating entries in the lower half triangle are omitted)

p/n+(n—1)p*/n p/2n+(n—1)p*/2n p/2
H=p p/2n+(n—=1p*/3n  p/2n+ (n—1) (p/4+p*/12) /n

1/2n+ (n—1)(1/3 —p/6 +p*/6) /n

Then the following choice of parameters

0 0 X; 0
P = | XXX Q= o XIXPEXTVXPAXXG (10)
2 2 )

is a global minimizer of f (P, Q), where X} is the ith element of X*.

See section[D.T]for the proof of Proposition[I} The Markovian data requires all key model parameters
to be nontrivial, unlike in-context linear tasks with zero-mean Gaussian feature and task vectors,
which result in a sparser structure where the first d entries of b and the last row of A is zero (Ahn
et al.,[2023; |Huang et al.| [2023}; |Zhang et al., |[2024).

The independence assumption on the initial states in Proposition [I]can be removed, and we reach the
following conclusion on the global minima of f(P, @), which have the same structure as the i.i.d.
case.

Proposition 2 (Global minima for generalized in-context initial states distribution). Consider
the in-context learning of length-2 Markov chains {(x;,y:)}" 1 (zi,y; € {0,1}) with transition
probabilities po1,p11 ~ U(0,1). Suppose the initial states x; are sampled from Bernoulli(p) for
some constant p € (0,1). Let c; = Y1) Blwjwy ] co = 30 300 oy Elwiajwn 1],

We define X* as X* == H 1[c1/2n ¢1/3n p/4+c1/12n], where H is a symmetric matrix
defined as follows (repeating entries in the lower half triangle are omitted)
c1/n? +ca/n?  c1/2n% + ca/2n> c1/2n
H:= c1/2n? + ¢z /3n? (n+ 1)e1/4n? + co /1202
(2n 4+ 1)p/6n — (n — 1)c1 /612 + c2 /612
(repeating entries in the lower half triangle are omitted)

Then by substituting X ™ into equationgives a global minimizer of f(P, Q).

The proof for Proposition |2] is deferred to section Moreover, by relaxing the restriction on
the length of the Markov chain, we obtain the following result that bounds the global minimum.

We introduce a reparameterization ¢ which maps from the model parameter space to R%™, where
m = [d+2)(d+1).
= e

Ai_,jbjf + Aj/yjbi/ fori’ € [d + ].],jl >/

11
Ai/,jbj/ fOI‘ i/ c [d+ 1],]./ - i/ ( )

O(P.Q), =X, = {



Here ¢(-), is the rth entry of the resulting vector, with = (j — 1)m + ¢/(d + 1) + j" and A, ;
denotes the (7, j)-th entry of A and b; denotes the ith element of b.

We verify in section that f can be expressed in terms of X. Let f : R¥™ — R denote the
reparameterized objective s.t. f(¢(P,Q)) = f(P, Q). In Lemma we prove that the reparameterized

objective f (X)) is strictly convex. Let X* denote the global minimizer of f. Below, we present the
bounds for the global minimum values for arbitrary-length in-context Markov chains.

Theorem 1 (Bound for global minimum for arbitrary-length Markov chains). We define a mapping
W that projects X € RY™ to the parameter space: 1)(X) = argminp o||¢(P, Q) — X||3. Here, 1)
finds a parameter set that maps to the closest point to X under ¢. (X ) is the preimage of X under
@, if such a preimage exists. Let f* be the global minimum of f. Then f(X*) < < f(XH)).

Please refer to section for the proof of Theorem [I]and an example of ICL for length-3 Markov
chains, where the optimal configuration of (P, () exhibits a similarly dense structure as in the
length-2 case.

3.2 TRANSFORMERS IMPLEMENT MULTI-OBJECTIVE OPTIMIZATION

Our goal is to find an objective function that involves the linear prediction w ' z; for some w € R¢
such that the preconditioned gradient descent over this objective is equivalent to the forward pass of a
multilayer LSA. To align the dimensions, we modify the sparsity condition on the attention weight
matrix () by zeroing out its last row. This allows us to derive a function R : RY — R4+ whose

Jacobian matrix is Z; ZlT _64 l] . In particular, we study the subset of LSA configurations with the

following sparsity constraint:
01 (d+1) -A 04
[ b | 9T [0iearny 0 (12

The following result shows that to learn arbitrary-length Markov chains in-context, a multilayer
transformer implements gradient descent, preconditioned by b;, A;, to optimize multiple objectives
simultaneously.

Proposition 3 (Forward pass as minimizing multiple objectives). Consider the L-layer transformer

d W l x fC l S L . Lel y’fl) be lhe
01)( 1
(l)

bottom-right entry of the Ith layer output. Then y," | = (wf d, Zp41) where wlgd is iteratively defined

parameterzed by b;, A} = [

as follows: wi® = 0 and
1 n ® < >
gd gd T 1 —Z; W, T
wi, =w/" —b VR(0)A; where R(w) = —
I+1 l l ( ) l ( ) n ZZ: [((w,ah) _ yn+1)

Proposition [3] does not involve taking the expectation of the objective; instead, it holds for an
arbitrary instance of the prompt, assuming that the global minimizer satisfies the sparsity constraint
specified in equation [I2] which ensures dimensional alignment necessary for the derivation. The
multi-objective problem involves the square loss and d linear functions. The model parameters
balance the optimization among these objectives, seeking to minimize the square loss within the
subspace of w that maximizes x; ;w,; x; (j € [d]). Note that in ICL for linear tasks, the forward pass
is equivalent to optimizing a single objective (i.e., the square loss). However, in the Markovian case,
the first d entries of the optimal model parameter b is nonzero, preventing the linear objectives in R
from being canceled out.

Remark 1. When the point-wise loss ((-,-) in the ICL objective equation
is cross-entropy loss, the objective can be written as the sum of the expected
KL-divergence between the predicted probability and the transition probability
E w1 morpio PELPWnt1 | ni1) [Pr.Ynir | @ngr, {wi vitis,))] and entropy rate
Emn+17;001,p10 [H(Ynt1|Tnt1)], where H(ypi1|Tni1) = — ZSES P(yn+1 = s|zny1) log P(yny1 =
S| Tpt1) (Makkuva et al.||2024)). In this case, a global minimum equals the expected entropy rate,
since Dr,(+||-) > 0 (Thomas & Joy, 2006). We empirically demonstrate the convergence of ICL
training to the entropy rate in section4)



3.3 EXPERIMENTAL VALIDATIONS
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Figure 2: (a) Training loss with respect to epochs for length-2 Markov chains. The dashed line
represents the theoretical global minimum. (b-c) The norms of the product of two pairs of coupled
parameters. Dotted lines denote minimizer of the population loss in the limit of infinite in-context
examples.

In this section, we empirically validate the theoretical insights of our framework and analyze the
behavior of transformers in handling Markovian dynamics. We focus on training an LSA model on
length-2 binary Markov chains and examine its convergence to global minima, the impact of prompt
length and initial-state distribution on global optima.

Training and data generation. We optimize the following empirical objective with B = 10K
prompts, n = 100 in-context samples, and initial states sampled from Bernoulli(0.3):

B
; 1 (k k
fP.Q) = 5> G —wih)? (13)
k=1
where 175:217 y,(le are the prediction and true labels for the query in the kth prompt. We apply
gradient descent with a fixed step size of 0.07 for 25K epochs, initializing parameters from U|0, 1],

and repeat this process 50 times.

Convergence analysis. To form a prompt, we first sample the initial states of each in-context
sequence independently from a Bernoulli distribution with parameter p = 0.3. Then, we sample the
transition probabilities pg; and p1g from a uniform distribution U (0, 1) and generate the subsequent
state for each sequence, constituting n + 1 length-2 Markov chains. In this case, the model parameters
are A € R?*! b € R2. Fig.[2a|shows the convergence of loss to a critical point, which aligns with
the theoretical global minimum. From Fig. |T_5|, we observe that A; 1b; and A ;by converge
to nontrivial values, indicating that b; and A, ; (corresponding to the green region in Fig. EH) are
nonzero. On the contrary, for ICL of linear tasks, the two terms tend to vanish, as shown by Ahn et al.
(2023)); Zhang et al.| (2024)).
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Figure 3: Global minimum and optimizers versus the number of in-context samples.

Analysis on prompt length. We examine the structure of the global optima when varying the
in-context sample size n. As shown in Fig.[3a] the global minimum drops as we enlarge n, with



an overall smaller error for greater initial probability of sampling 1, i.e., p. From Fig. [3bl3cl3d]
we observe the optimal A ;b1 and As 1by converge to a trivial number, approaching the optimal
structure for the linear tasks with zero-mean Gaussian in-context samples.

4 ADDITIONAL EXPERIMENTS

Focusing on first-order binary Markov chains, we analyze the behavior of more complex transformers
trained with mean squared error (MSE). Additionally, we investigate the in-context performance of
transformers trained with cross-entropy loss, as detailed in the Appendix El

Data generation. Each data sample, or a prompt, consists of n sequences with length 4. To
generate a prompt, we first sample the initial states of each in-context sequence indepednently
from Bernoulli(0.5). Then, we sample transition probabilities po1, p1o from U(0, 1) and iteratively
generate the subsequent states for each sequence, assuming they are governed by the same Markov
kernel, i.e., {z;}I" 4 ~ (m1 = [0.5,0.5], P(po1,p10)). Both training and testing prompts are sampled
from the same distribution.

Model and training. We adopt architectures based on GPT-2-blocks. We consider three configu-
rations of (embedding dimension, number of transformer blocks, number of heads), inspired by
(2024c): (i) tiny: (64,3,2), (i) small: (128,6,4), (iii) standard: (256,12, 8). The models
are optimized by Adam over 50K epochs with learning rate 0.0001. For each epoch, we randomly
generate 64 data samples to train the model parameters. To ensure high prediction performance given
any length-n’ prompt (n’ € [n]), we train on the average of the error over different prompt lengths
from 1 through n and update n from 26 to 101 during training.

Evaluation metric. We report the accuracy of prediction. When the model is trained using MSE,
we assign an integer within {0, 1} that is closest to the transformer output to be the predicted state.
For binary states, if the prediction is greater than 0.5, we set the predicted state to be 1 and set to 0
otherwise. When trained using cross-entropy, we assign the index of the maximal normalized logit
returned by the transformer to be the predicted state.
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(a) Independent initial states. (b) Correlated initial states.

Figure 4: Testing accuracy for three model configurations, compared to baseline learning algorithms.

Transformers trained using MSE loss in-context learn next-token prediction for binary Markov
chains. We investigate the performance of trained transformer compared to baseline learning
algorithms, including logistic regression, linear regression, 3-Nearest Neighbors (3-NN), and Support
Vector Machine (SVM), when the number of in-context samples vary from 1 to 100. Fig.
demonstrate the test accuracy for independent and correlated initial states. The accuracy is averaged
over 1280 prompts, where the shaded region denotes 90% confidence intervals computed using

'Our code is available athhttps: //anonymous. 4open.science/r/Markov—ICL-8351


https://anonymous.4open.science/r/Markov-ICL-8351

1000 bootstraps. The result implies that the trained transformers with small or standard size have
comparable performance with SVM and logistic regression and better than the simple baseline 3-NN,
while the test performance for tiny is slightly worse than its larger counterparts. While model size
has a positive impact on the performance, once it reaches a threshold, the improvement is marginal.
The similarity between the performance of TF and linear regression is consistent with Proposition [3]
which states that the forward of trained TF optimizes a multi-objective problem including linear
regression.
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Figure 5: Test accuracy with respect to the number of in-context samples, with balanced, more or less
Is.

Entropy rate affects performance. We explore how biased transition probabilities affect perfor-
mance. In Fig.[5] we train the tiny transformer on Markov chains containing either balanced, more,
or less 1s. This is controlled by drawing the transition probabilities p.; from U(0,1), U(0.7,1), and
U(0,0.3), respectively. Denote the query sequence of the kth prompt as s(*) € S¢. We approximate
the expected entropy rate of s(*) as follows:

B
1 k) 1 (k)
= ZP(s(k) =1] s 1) log +P(s™ =0 s%))log .
T T— k k T T—1 k k
B P(st = 1s%,) P(st =0 s))
The empirical entropy rate for balanced, more and less 1s are 0.49, 0.39, and 0.39, respectively. The
results show that for both i.i.d. (Fig.[5a) and correlated initial states (Fig.[5b), the performance is
better when Markov chains are ‘biased’, since there is less entropy rate and therefore less uncertainty.

5 CONCLUSION

In this work, we investigate the in-context learning of next-token prediction tasks for dynamics-based
sequential data. Specifically, we analyze the loss landscape of LSA models trained on in-context
prompts consisting first-order binary Markov chains. Our findings demonstrate that the optimal
transformers do not exhibit the sparsity condition typically observed ICL for linear tasks, indicating
a unique adaptation of transformers to Markovian data. As the number of in-context examples
increases, we observe that the global minima for length-2 Markov chains gradually approximate the
sparse structure in the linear case. By introducing a special parameter construction with a sparsity
level between the linear and Markovian scenarios, we show that multilayer transformers implement
preconditioned gradient descent for a multi-objective optimization problem. This optimization aims
to minimize the mean squared loss while maximizing linear functions of the observed in-context
sequence. Furthermore, we empirically demonstrate that nonlinear transformers can successfully
predict the next token when trained using cross-entropy loss, with the training loss converging to
the expected entropy rate in this context. Potential extensions of our theoretical results include
higher-order memory Markov chains, larger state spaces, and multilayer transformers with nonlinear
attention mechanisms trained with cross-entropy loss.
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A COMPARATIVE ANALYSIS OF SETUPS

In this section, we further highlight the differences and significance of our proposed self-attention
mechanism compared to existing works, focusing on both the Transformer model structure and the
types of learning tasks and dynamics. This analysis sheds new light on the role of self-attention
mechanisms in predicting the correct labels for in-context, sequence-level samples.

A.1 SELF-ATTENTION MODELS

We train three variations of single-layer self-attention models with either linear (Ahn et al. 2023}
Zhang et al.|[2024) or nonlinear attention mechanism|Vaswani et al.| (2017) to in-context learn length-2

Markov chains using gradient descent over 10K random prompts. We omit the layer index when
referencing the parameters since the model consists of only a single layer. The three versions of
self-attention are defined as follows:

1. Variant 1 (LSAgfgr Se)): LSA (equationEI) parameterized by sparse P, Q) (equationEI)
Zyv=2Z0+1PZM(ZTQZ)

P,Qe{([,?1 bOQHC“ 8} | ai,bi € R}

as
2. Variant 2 (LSAp ): LSA (equation@ parameterized by P, ()
_ 1 T
Zy=Zy+ PZM(Z'QZ)
P, Q c R2x2

3. Variant 3 (NSAy, ,): Standard nonlinear self-attention (equation E[) parameterized by
Wi, We, W

Zy = Zo+ Wy,ZM - softmax (ZT W, W,Z), M = [Inoxn 8}
Wy, Wy, W, € R?x2
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Figure 6: Training loss w.r.t epochs for three variants of the self-attention models, evaluated on 100
random prompts, each containing 30 in-context samples and a query sequence.

A.1.1 Loss CURVES

To justify the choice of the sparse parameter space, we plot the training loss curve of the above three
variants in Figure[6} The loss value is the square loss for the query sequence averaged over B random
prompts:

Ud \

B
Z@T)fy )2

We set B = 100 and use 30 in-context examples for each prompt. The in-context sequences are
Markov chains with initial probability 0.3 and transition probabilities pg1, p1o sampled from U (0, 1).
The results demonstrate that the loss curves under variant 1 and 2 converge to nearly the same value,
indicating that the sparse and dense parameter matrices perform equivalently for LSA.

A.1.2 ATTENTION MAPS

We visualize the attention scores and weights at convergence for three variants of the self-attention
model in the plots below. We use B = 10K prompts to train the first two variants to approximate their
expected performance. Figure[7]displays the pairwise attention scores averaged across all random
prompts. In all cases, the scores are predominantly concentrated along the diagonal, highlighting a
strong emphasis on self-attention. Meanwhile, the off-diagonal entries show more evenly distributed
scores, indicating a broader allocation of attention across the sequence.
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Figure 7: Attention scores at convergence, averaged over 10K prompts in (a) and (b), and 100 prompts
in (c).

A.1.3 PROJECTION AND ATTENTION WEIGHTS
In Figure [8] we show the weight matrices P and () in the single-layer LSA for both sparse and

nonsparse parameter space. When searching within the nonsparse parameter space, all entries are
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Figure 8: Projection and attention weight matrices trained using gradient descent for three variants of
the self-attention model.

nontrivial at convergence. The bottom-left entry of () is dominant in both settings. This contrasts
with the findings of (2023), where the bottom-left entry of ) converges to zero in the linear
case when searched within the sparse parameter space. Our results highlight the structural differences
in weight matrices under data with sequential dependence.

A.2 ICL TASKS

We particularly compare the attention maps from three ICL tasks:

1. ICL for Markov chain with sequence-level attention (this work). In this setting, the Markov chains
are generated from random Markov kernels with transition probabilities sampled from a given
distribution. The goal is to predict the next token of a query sequence drawn from the same
Markovian process as the in-context samples. Each sequence serves as an in-context example,
with the attention mechanism applied across the sequences.

2. ICL for Markov chains or other autoregressive structures with token-level attention
2024} |Nichani et all [2024; Makkuva et al [2024). In this case, the same binary Markov chain is
generated as in the previous setup. Here, each prompt consists of a single sequence, with each
state in the sequence treated as an individual in-context example.

3. ICL for linear regression (Ahn et all 2023} [Zhang et al} 2024)). The in-context input vectors and
task vectors in the linear or i.i.d. case are sampled from Gaussian distributions: :UET) ~N(0,%)
and w(™ ~ N (0, A). where 7 represents the prompt index and ¢ denotes the in-context index.

The labels are defined as yzm = (w(T), IET)>- Let B denote the total number of prompts. The
population loss is then defined as the square loss evaluated on the query for each prompt.

For each task, we train a GPT-2 model with 3 layers, each containing 2 attention heads, using AdamW
optimization for 50K iterations. In the first two setups, we use both MSE and cross-entropy loss to
perform in-context learning on length-6 Markov chains. For the third linear setup, we apply only
MSE loss and set the in-context vector dimension to d = 5. During each iteration, we sample 64
random prompts, where each prompt consists of 7 in-context sequences and one query sequence. The

value of n varies from 26 to 101 throughout training, following (2022).

The averaged attention scores for both loss functions are presented in Figure Similar to the
linear case (task 3), the attention map is mostly evenly distributed, with stronger intensity along
the diagonal compared to other regions. Additionally, for task 1 and 2, some transformer layers
exhibit columnwise sparsity. In the attention maps for task 2, the sub-diagonal entries are more

16



Layer O Layer O Layer 1 Layer 1 Layer 2 Layer 2

Head 0 Head 1 Head 0 Head 1 Head 0 Head 1
0 0 0
Marko
Seg-level At\( 101 101
(This Work)
204 20
30 T 30 T
0 20 0 20
Markov 1
Token-level Att
Linear
(a) MSE
Layer O Layer O Layer 1 Layer 1 Layer 2 Layer 2
Head 0 Head 1 Head 0 Head 1 Head 0 Head 1
Markov
Seq-level Att
(This Work)
Markov 10

Token-level Att
20

o.

30

20 20

(b) cross-entropy

Figure 9: Attention map between in-context sequences for GPT-2 model trained using MSE and
cross-entropy loss, averaged over 10K prompts. Yellow represents higher intensity and blue indicates
lower intensity.

prominent compared to the other setups, reflecting the causal structure of first-order Markov chains,
where each token directly influences the next. This behavior is absent in the other two setups. The
sequence-level attention mechanism introduces additional challenges, as it must infer relationships
between aggregated representations rather than individual tokens. This requires the model to abstract
finer-grained details instead of relying on simpler patterns, such as the similarity between in-context
samples and the query in the i.i.d. case, or the direct correlation between successive tokens in the
second case, where attention maps primarily capture local structures. Furthermore, when the prompt
construction is fixed, the attention maps trained using the two loss functions (MSE and cross entropy)
display similar patterns, as both losses are designed to align predictions with the true labels.

B LEARNING CURVES

In this section, we numerically verify the bounds for the expected global minimum of the population
loss derived in Theorem|[I] We train an LSA model via gradient descent for 25K iterations on 10K
prompts, each containing 100 first-order binary Markov chains and one query sequence sampled from
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the same kernel. The optimization process is repeated 20 times, and the mean loss is shown as a blue
curve, with the shaded region representing the standard deviation in Figure[T0} The dashed black
and red lines indicate the expected lower and upper bounds derived in Theorem [T} respectively, for
the global minimum of the population loss in equation [8] For length-2 Markov chains, the upper
and lower bounds are identical because the global minimizer X ™* of f can be exactly mapped to the
transformer parameter space, ensuring the existence of P, ) such that ¢(P, Q) = X* (equation .
In contrast, for length-3 Markov chains, no such P, () exists that maps to X* via ¢, resulting in a
looser bound compared to the length-2 case, with a difference of 0.12. These numerical results also
illustrate that the derived lower bound is quite tight in measuring the expected global minimum of the
trained Transformer.

Note that the global minimum of f (denoted as f *) is always less than or equal to that of f. If the
global minimum of f were smaller than that of f, this would imply that for the global minimizers
P*,Q* of f, f(¢(P*,Q%)) = f(P*,Q*) < f*, which leads to a contradiction.

4.6x1071 . —— gradient descent
—— gradient descent ——- lower bound
4.5x 101 === lower bound — .- upper bound
" . —-= upper bound @ 100
§ 4.4x10 3
24.3x107! 2
< . £
g 42 %10 2
4.1x1071!
4x1071
10° 10! 102 103 104 10° 10! 102 103 104
Epoch Epoch
(a) Length-2 (b) Length-3

Figure 10: Log-log plot of learning curve for LSA and the theoretical lower and upper bound for
global minimum for Markov chains with length 2 and 3.

C ADDITIONAL EXPERIMENTS

In this section, we investigate the in-context performance of transformers trained with cross-entropy
loss. We generate data and configure the transformer model using the same setup as in Section[d] We
assess transformers trained using cross-entropy loss on predicting the next state of the query chain
based on in-context sequences, with training loss and test accuracy shown in Figures The
loss converges to the cross-entropy rate as training progresses, aligning with Remark [I] The test
accuracy of TF increases as the number of in-context examples raises, and the overall accuracy is
higher than standard learning algorithms and the TF trained by MSE loss.

D Lo0SS LANDSCAPE ANALYSIS

D.1 PROOF FOR INDEPENDENT IN-CONTEXT INITIAL STATES

In this section, we derive the characterization of global minima for the single layer case with binary
input (Proposition[I). We begin by rewriting the loss by keeping parameters that affect the output
prediction for the query x,, 1.

The input prompt is formatted as a (d + 1) X (n + 1) matrix:

0= 1 T anrl
yio Yo 0
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Epoch # in-context samples
(a) Training loss. (b) Test accuracy.

Figure 11: Training and testing performance of three transformers trained using cross-entropy loss,
compared with baseline learning algorithms.

We assume x; i Bernoulli(p) and let p;; denote the transition probability from state i to j
(1,5 € X = {0, 1}). We define the label y; to be the next state. By definition of Markov chain, the
expected value of y; given z; is

Ely; | i, po1, p11] = (1 — 24)po1 + xip11 = po1 + (P11 — Po1)xi (14)

Rewriting the objective function. The in-context objective function for the single layer case is
defined as:

2
1
f(P, Q) = E{xi}’.‘_ﬂlmm,pn ((ZO + AttnPQ(ZO)) - y"+1) "
i= n d+1,n+1

L,

By definition of attention (equationH} (here M = [ 0

8} e R(+1x(n+1) ig the mask matrix),

1 1 1
Zo + EAttnp,Q(Zo) =7y + BPZOM(ZOT QZo) = Zo + EP(ZOMZOT VQZy

I Y1
— Z 7P 1 n+1 n : Z
ot n _yl T Yn 0 0 0 Ty Y Q 0
Tn+1 O
T Y1
1 [z - : :
—Zy+ P T z, 0 : : 0%
noo o Y Oy
Tn41 0
0 n = TilYi y¢2 0
=G

The last column of the above matrix can be written as
Tn+1 l Tn+1
[ - ]+HPGQ[ - }

For the binary input case, d = 1 and P, Q € R?*2, Let b = [by;b2] " (b € R?) be the last row of P
and a = [ay; az] € R? be the first column of Q. The bottom-right entry of Zy + < Attnp,g(Zy) can
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be expressed as b’ Gax,, 41. Since f(P, Q) only depends on parameters b, a, we rewrite the objective
function as

f(P’ Q) = E{mi};§117p011p11 {(bTGCLInJ,-l - yn+1)2:| (16)

Reparameterization. We further expand the term b Ga as

ACIONE)F

1 « 1 — 1 «
— alblﬁ szz —+ (albg + agbl)ﬁ ;l’zyl —+ QQbQE ;yiQ.

i=1

Let Gy, Guy, Gyy denote the top-left, top-right, and bottom-right entry, respectively. For any vector
X = [X1; Xo; X3] in R3, we consider the following loss function

F(X) =Eg yne [((X16pa + X2Gay + X3Gyy) i1 = Yns1)’) (17)

i=1 »P01,;P11

We first derive the unique global minimum of the reparameterized loss function (equation[T7) and
then find the set of global minima for the original loss function (equation [I3)) over the space of P, Q.

Lemma 1. Consider the in-context learning of length-2 Markov chains {(x;,y:) }1—y (z:,y; € {0,1})
with transition probabilities po1,p11 ~ U(0, 1). Suppose the initial states x; are i.i.d. sampled from
Bernoulli(p) for some constant p € (0, 1). Consider the reparameterized objective

f(X)=E [((Xle + XoGuy + X3Gyy) Try1 — yn+1)2:| (18)

{zi,y:} 70" po1,p11

where X = [X1,X2,X3] € R3and y; = (1 — p11)po1 + Tny1p11 denotes the conditional
probability observing 1 at the next state given the current state.
(1) The objective function f is strictly convex.
(2) The global minimum X* is given as X* = H! [p2/2 p?/3 p?/12 —|—p/4] T, where H is a
symmetric matrix defined as follows
p/n+(n—1)p*/n p/2n+(n—1)p*/2n p/2
H:=p p/2n + (n —1)p?/3n p/2n+ (n—1) (p/4—|—p2/12) /n
1/2n+4 (n—1) (1/3—p/6 + p*/6) /n

(omitting repeating entries in the lower half triangle).
Proof. We defer the proof of (1) to Lemma Since f (X)) is strictly convex, it has a unique global
minimum that sets the gradient V f(X) to zero. To show (2), we first set up the equation to evaluate

the minimizer.

Setting up equations to solve for minimizer. The gradient of f w.r.t. X can be expressed as:

E xZH-l (Gix“{l + G:cyGacx}(Q + nyGw;ch‘)g - l’n+1yn+1GmJ

VF(X) =2 |E[22,, (GeuGay X1 + G2, X, + GyyGay Xs) = Tny1yn+1Gay (19)
E [z%-',-l (GachyyXl + nynyXE + Gin:;) - xn+1y7z+1ny]
The global minimizer X * is the solution the following system:
E Lx%+1ancm] E [xi—iélGI%GﬂEy] E xZL—HGIInyJ Xik E [xn—&-lyn—&-lGx:c]
E [anGmGzy] E [anGzy} E |27 1GyyGyy th = |E[znt1Yn+1Gay]
E |27 41Ga0Gyy| E[0741GayGyy]  E[251G,] X3 E [#nt19n+1Gyy
(20)

Next, we compute the expected values in the linear system.
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Computing RHS of equation[20} We evaluate the three elements in RHS separately below.

1. For the first element, we have

]E{Ii i} po1.p11 [Tn+1Yn+1Ga]

1 [~ o
:E{Ziayqz}?;llmm,ml |:1:"+lyn+1n <Zl’z):|
i=1
1

n

_ 2

“n Z ]E{ziyyz‘}z:rll ,P01,P11 [w"+1y"+1xi]
=1

independent of ¢

2
7]E55111$n+1 \Yn4+1P01,P11 [wn-‘rlyn-‘rll’i]

2
:Ezivrn+1m017p11 Eyn+1 [xn+lyn+1xi ‘xiaanrlvalvpll]]

i - Tn1 By, [Yntr | T, Tny1, por1, p1a]

[
[
[
[

=Eq, \Tn41,P01,P11

[©)

:Ewiquwhmlyml €T

D an1By, s [Ynt1 | Totr, pors pual]
xf - (po1&n+1 + (p11 — Pm)xiﬂ)]

:]Eziazn,+17p017pll
(44) 2
= Ezivzn+1m017p11 [1'1 'pllwn+1]

(i) 5
="Epy, [pll] ‘Eo, [CEZ] : El‘n+1 [anrl]
(i:v)lp2
5P
2. Similarly, for the second element, we have

1 T G
{os,y: Y0 po1.p11 [£n+1Yn+1Gay]

:Ewmyi@n+1,yn+1m01,1711 [TiYiTnr1Ynt1]

25
- i, Tn+4+1,P01,P11

:Em,xnﬂ,pm,pn [(Plei + (p11 - p01)$?) : (p01$n+1 + (p11 — p01)$i+1)]

[@iBy, [yi | @i, po1, p11] - Tn1By, 1y [Yns1 | Tnt1, por, p1a]]

(#4)
= E$1,$n+1,p017p11 [pllxi -p111’n+1]
(i) 2
="Ep,, [pll] Eo, [mi] - Ezn+l [Tn+1]
()1 o
3. The third element can be expanded as follows.
E [mn+1yn+1ny}

nt1
{25,930 po1,p11
=K 2
=Lz yi,ent1,Ynt1,001,p11 [Lnt+1Ynt+1Yi

(1)
éEwiﬂnJrlaPm,pn [Euz [yzQ |x¢,po1,p11} 'xn-‘rl]EynJrl [yn-H ‘ $n+17p01,p11]]

(14)

:Ezivzn+11p01apll [Eyi [yi ‘ 951'71701,1711] : (P1136n+1)]
:Ezi,szrl»POLPu [(pOl + (p11 — po1)z:) - (p11In+1)]

2

:Ezivzn+11p01apll [pOlpllxn+l + P11%iTny1 — Pmpuxmnﬂ}
(4i4)

="Epy; [Po1] Epyy [p11] EI71+1 [Tnt1] +

(Epll [pil] - Epm [p01]]EP11 Lpll]) Eﬂci [mi]EfEnJrl [xn-ﬁ-l]

(o)1 1 5

1?12

Computing LHS of equation 20} We evaluate the expectation of the covariance of in-context
examples: E[G?)].

1.
E [G2,] =E l}n x> l}n:xz
{24,938 po1.p11 L722] = B a3 7 po1,p11 n 4 i n - i

21



1
= nE,, [xf] +n(n — 1)E111, [mfx?]
e
Ve

E }r A por.p11 [GawGary

1< 1 <

— 2

E{T " {vit]_1.po1,P11 |:<n sz> (’I’L Zﬂ&%)]
i=1 =

(i) (1
= E{'L‘z}1 1,P01,P11 <n Z xl) E{yi}?zl |:< Z mlyz)
=1
(1< 1
_E{z i1 po1,p11 <Tl Zx7«> (n in(p()l + (pll p01)$i)>:|
=1 =1

- Lo L
:E{wi}?:memn Po1 <n Z 3;-1) (n Z 1’1)
- i=1 i=1
E 1 n 1 n )
+ Bz po1.p1 (p11 — po1) - Z 2 = Z .
i=1 i=1

(14) 1 n 1 n

E{z i 1po1,P11 [pn (TL le) (n Zzl

i=1 y

{zi,y:

{55 i= 17p01>P11H

('L'L'L iv) 1 2 _ n— 1 5
92 {xnyz}L Lopo1.p11 [ zz] — 95, + 5 P
]E{ifivyz} " po1.p11 [Gao

_E{l Y 1,P01,P11 IE“{m |:(i 21'12) <’;ll ny)
i=1 i=1
(i9) 1o
E{I Yo 1po1,P11 ( Zx1> {wi}, |:<n Z%) {xi}?17p017p11:|:|
=Btz po1pn < Z$z> ( (po1 + (p11 — pm):cﬁ)}
1 1 < 2
_E{r 3% ,.po1.p11 | PO1 (n Zﬂ) + (p11 — po1) (n ;%) ]

(111

{wz‘}?_l,pm,PnH

Epo, [pOl]p+EP01 [(p11 — po1)]c g g

2
. G2y
{2y 70 por.p1r L7y

1 < 1<
:E{Iq‘,vyi}?’zlmmmn |:<n Zmlyl) <TL Z x1y1>:|
i=1 i=1

1 n 1 n n
= E 292 — , E E: s
{zi,wi 3 po1,p11 iYi |+ an{zi,yi};‘jll,pm,pn LiYiT;Yj
i=1 j=1,j#i

=1

1 n n
il 2
+ nQE{zi}?’:pPDlapll E E P11TiT;

i=1 j=1,ji

(i) 1 n
= EE{Ii}?:lypmvpu |:Zp11xi

=1
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]E{% v} po1.p11 [Gzyny}

1 — 1= o
=E(a,, Yi i 15P01,P11 |:<n ZIIC‘h) (n Zyzﬂ
=1 i=1

1 1 n n )
+EE{I¢7%} 7 po1 P11 [Z Z LilYil;

n
3
=—E V1 E TiY;
n2 {2iw: 7 por,p11 iYi
i=1 =15

i=1
n

(i) 1
E{I }_1,P01,P11 |:Zp11xi

+

i=1

1 n n
EE{ri}Ll,pm,pu [Z Z P11z (po1 + (p11 —pm)xj)]

=1 j=1,j#i

mp  n—=1(p p°
T (4+12)’

2
E e
{5,930 po1,p11 LOVY

:E{Ei:yi};;lxpolypll |:<TZZ 3) < Z%)]

_1 2 2
- E{JCL v} po1.p11 |:Zyl {x iy po1,p11 [Z Yiy J]

+

= EE{I }i1,P01,P11 |:Zp01 + (p11 — po1)wi

i=1

i=1 j=1,j7i

w1l n—1(1 1 1
®+ (f - —p+ fpz) :

1 n n
Bz po1pn [Z Z (po1 + (p11 — po1)x:)(po1 + (P11 — pm)mj)]

2n n 3 6 6

Throughout the derivation, (7) uses the fact that {x;, y,} and {z;/,y, } (/ # j) are conditionally
independent given po1, p11; (4¢) holds since x;, y; are binary random variables and mf = x;, yf =y
for any integer k; (¢47) follows from the fact that pp1, p11 and ; (j € [n+ 1]) are jointly independent;
(4v) holds because the kth moments of uniform distribution U (0, 1) and Bernoulli distribution
Bernoulli(p) are 155 and p, respectively.

Since 2,41 and z; (i € [n]) are independent, we have E[z2,G?] = E[z2,,]E[G?] = pE[G?].
Hence we have the expression for H.

Since  f (X) is strictly convex, equation has a wunique solution X* =
H='[p* p*/3 p*/12+p/4]. O
Proposition 4 (Proposition [I|restated). Consider the in-context learning of length-2 Markov chains
{(zi,yi) }Pq (x4, y: € {0,1}) with transition probabilities po1,p11 ~ U(0,1). Suppose the initial
states x; are i.i.d. sampled from Bernoulli(p) for some constant p € (0, 1).

Let X* == H™! [p2/2 p?/3 p?/12+ p/4] T, where H is a symmetric matrix defined as follows

p/n+(n—1p*/n p/2n+ (n—1)p?/2n p/2
H:=p p/2n+ (n —1)p?/3n p/2n+ (n—1) (p/4—|—p2/12) /n
1/2n+ (n—1) (1/3 —p/6 +p*/6) /n
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Then the following choice of parameters

0 0 X; 0
P = | MEVXT XK Q= XZ*_Xl*X;in./XQ‘Q—4XfX§ 0 (2D

2 2

is a global minimizer of f(P, Q).

D.2 PROOF FOR GENERAL DISTRIBUTION OF IN-CONTEXT INITIAL STATES

Lemma 2. Consider the in-context learning of length-2 Markov chains {(x;,y;) 1 (x:,y; €
{0,1}) with transition probabilities po1,p11 ~ UO,1). Suppose the initial states x; are sam-
pled from Bernoulli(p) for some constant p € (0,1). Let ¢1 = Y. Elzznq1],c0 =

n n
D1 Z]‘:Lj;éi Elz;xj2n41].
Consider the reparameterized objective

2
FX) = E{l’i»yi};jllapolypu [(<X1G$I + XoGay + X3GZ/Z/) Tnt1 = Yn+1) } (22)
where X = [X1,Xo,X3] € R® and y; = (1 — 2,41)Po1 + Tni1p11 denotes the conditional
probability observing I at the next state given the current state.
Then a global minimum is given as
c1/2n
X*=H! c1/3n (23)
/4 =+ 61/127’1

where

c1/n? +ca/n?  c1/2n% + co/2n? c1/2n
H= c1/2n? + co/3n? (n+1)c1/4n? + co/12n?
(2n + 1)p/6n — (n — 1)e1 /6n% + co /612

(omitting repeating entries in the lower half triangle).

Proof. Since the objective function remains the same, the derivation for the equations follows from
the independent in-context example case (equation [20).

Computing RHS of equation 20| w/o assuming independence of {x;};c[,,41].
1. For the first element, we have

1 T G
{wiyi b po1.p11 [£n+1Yn+1Gaq]

1 n
= - 2
_E{:Cmyi}:;llmmmu Tnt+1Yn+1 n Z T
i=1

1

n

2

n E Ezivzn+1,yn+1m01m11 [mn+1yn+1$i]
=1

n

Z]Ezi’zn+lvp011pll [In+1miEyn+1 [Yn+1 | $n+17p01,p11]]
=1

# remove square, y;, x; conditionally independent

1 n
:E ZE$i7$¢L+1,p11 Lpllxixn_kl}

i=1

1
“n

# remove square

1

n

1 1

= E Epyy [P11] Bay oy [TiTns1] = o E Elz;zn1] = o Ct
i=1 =1

# indendence between x; and po1, p11-
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2. Similarly, for the second element, we have

1 T G
{93 Y0 po1.p11 [£n+1Yn+1Gay]

:E{wi,yi}?jll’ml,pn |}U"+1y”+1 <Z x’yz>:|

n ZElmyi7zn+17yn+171’01,P11 [Tn+1Ynt12iYi]
i=1
n
1
= ZEzivmn+lvp01:P11 I:In+1]Eyn+l [Yn+1 | Tnt1,p01, p11] - 2By, [y: |mi’p017p11H

n-
i=1

# y;,y; conditionally independent

n Z Eo;\eni1,p01.011 [(Tn+1P11) (2ip11)]
=1

# remove square

1 1
:% ;E[l’i$n+1] = %61

# independence between x; and po1, p11; properties of uniform distribution and joint expectation .
3. The third element can be expanded as follows.

{2} po1.p11 [£n+1Yn+1Gay]

1 (= >
E{luyl}l 1 +P01,P11 |:x”+ly"+1n <Z yl>:|
i=1

n Z Bei yin 4 1,0m 41,001,011 [Trt1Yn+1Y:]
i=1

# remove square

:g ZE1171W,+1»P01,P11 [mn+1Eyn+1 [Yn+1 | Tnt1,po1,p11] - By, [y | -Tz‘,pm,pll]]
i=1
# vy;, y; conditionally independent

~n ZEzi,ZnJrl»POLPu [(@n+1p11)(Po1 + (P11 — po1):))]
=1

# remove square

n

1
:E ZEﬂii@nJthm,pn [p11p013:n+1 + (pi - p11p01)$n+1$i]
i=1
7p + —_ ZE[x Tng1) D+ LC1
12n

Computing LHS of equationw/o assuming independence of {z; };c(,+1). We directly present
the results for the other terms, as their derivation is similar to that of the RHS in the independent case.

E [mi_HG =— ZIE TiTnt) + — ZZE TiLjTny1] = i01 + 1
i=1 3#1,
1 n
E [:EEH_IGMGW} =53 ;E[IiInJrl oz ;;Ex T Tng1] = 2 st 55 2 53¢
E[acz G2z G }zizn:ﬂl[xx }zic
n+1Yzx Syy n vt idbn41 mn 1,
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1 n
E [miHGiy} =53 ZE[mimnH 3.2 ZZIE TiTjTpt1] = 5zC1 +
i—1

i=1 j#i
Jj=1
5 1 < 1 1
E [2541GayGyy ] =33 ZE[wi:an 3 ZZ E[CL‘ ZTnt1] + 12E[w TjTntl]) = —-C1+ —— 192 ¢
=1 1=1 giéi,
P n— 1 1 & 1 1 1
E[e}nG] =L + 022, L gg—ﬁ (ean] = L] + SElraw]
_@2n+1p n-1 1
T 6n T onz ¢ + fn2 2

O

Proposition 5 (Proposition 2| restated). Consider the in-context learning of length-2 Markov
chains {(x;,y:) 'y (x5, y; € {0,1}) with transition probabilities po1,p11 ~ U(0,1). Sup-
pose the initial states x; are sampled from Bernoulli(p) for some constant p € (0,1). Let
c1 = Z?:l E[l’il'n_._l],CQ = Z?:l Z?:l,j;ﬁi ]E[scia:jxn+1].

We define X* as X* == H '[c1/2n ¢1/3n p/4+c1/12n], where H is a symmetric matrix
defined as follows (repeating entries in the lower half triangle are omitted)

c1/n? +ca/n?  c1/2n? + co/2n? c1/2n
H = c1/2n? + c2/3n? (n+1)c1/4n? + co/12n?
(2n 4+ 1)p/6n — (n — 1)c1 /6n? + c2 /612

(repeating entries in the lower half triangle are omitted)

Then by substituting X ™ into equationgives a global minimizer of f(P, Q).

Example 1. Suppose x,,11~Bernoulli(p) and x; | x,+1 ~ Bernoulli(g(z,+1)) for some function
g :{0,1} — [0, 1]. For example, when g(z) = (x — p)?, the expected values can be computed as
follows.

Forien],j=n+1,
Elzizn41] =Es,,, [@n1Es, [@i|2n41]]
:Ern+1 [xiJrl - 2p$31+1 +p2xn+l]
=p— 20" +7".
Therefore ¢y = n(p — 2p? + p3).

2
n(n—1)
=K.y [xn-l-lExqz [Ii|xn+1]]Eacj [zj|xn+1”
# x;,x; are conditionally ind. given x, 1
=Eq, 1 [xn-i-l (Tn41 — p)Q(mn-H - p)2]
=Eu, .y [Tn1 (2201 — 202011 + %) (@24 — 2pTni1 + D7)
=Eo,, [Tng1((1 = 2p) i1 +1%)°]
# expected values of squares of x,, 1 is equivalent to that of x,11
=E,,,, [(1—4p+4p*)ad  +2(1 — 2p)p°a2 y + p'Tns1)
=p — 4p® + 4p® + 2p® — 4p* +p°
=p°® — 4p* + 6p> — 4p® + p.

= E[xixjxn+1]

D.3 ICL FOR ARBITRARY-LENGTH MARKOV CHAINS

We recall (x;, y;) form a binary Markov chain of length d + 1. Assuming the initial states are sampled
from Bernoulli(p), the probability of z; ; being 1 is p. For 1 < j < d, the probability of z;
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being 1, given x; ;_1, is p112i,;j—1 + (1 — 25, j—1)po1. The probability of y; being 1, given x; 4, is
p11%id + (1 — xi.4)po1-

Reparameterization. For general d > 1, the projection matrix P and attention weight matrix @
are of size (d + 1) x (d + 1). We write

P = [O“ﬁ*”] Q=[A 0Oa] (24)

where b € R'*(4+1) denote the last row of P and A € R(@+1)x4 (5 ¢ [d]) represent the first d
columns of (). The objective function can be rewritten as:

d

FPQ)=Epy 3t poy py ZbTG(ljiﬂnH,j = Yn+1 ; (25)
=1

where x,,41 ; (j € [d]) denotes the jth element of =, 1. The i-j entry of G (G; ; ) has the following
expression:

1/n> 0 kT, ifi,j € [d]
ij = 1/nzzzlzk,jyk ifiE[d],j:d+10ri:d+1,j€[d]. (26)
1/n>p_ yi ifi,j=d+1

G

Since G is symmetric, to obtain an objective function with a unique global minimum, we collect
model parameters that share the same coefficients G; ; = G; ;. We introduce a reparameterization ¢

which maps from the model parameter space to R%™, where m = %:

(P, Q)r =

y gy
{A”b v+ Aj by fori’ € [d+1],5 > 7

Ay by fori € [d+ 1],/ =7

Here ¢(-), is the rth entry of the resulting vector, with r = (j — 1)m +¢'(d + 1) + j' and A, ;
denotes the (4, j)-th entry of A and b; denotes the ith element of b.

To simplify notation, we collapse the unique elements in G into a vector:

g=1[Gi1 Gi2 -+ Giagr1 Go2 -+ Gga Ggdyi Gd+1,d+1]T~ (28)
We concatenate the parameters X ) (j € [d]) into a vector X = [X();.. ; X(@D] € R¥™ and
consider the following reparameterized objective function
< 2
FX) =B yyzy s (@01 ©8) X — 1)) 9)

Lemma 3. Suppose the initial probability of the Markov chains is 71 = [1 — p,p| with p €
(0,1) and the transition probabilities are sampled from U(0,1). The reparameterized objective
function equation 29 is strictly convex w.rt. X € R™,

Proof. We show the Hessian of f w.r.t. X, E[xn+1:cn+1 ® gg '], is positive definite. Let w # 0
be an arbitrary nontrivial vector in R¥". Let z := x,,1 ® g. Then for any Tn+1 E {9 1}d
and g € [0,1]™, w E[zpi12,), @ g8 Jw = w E[(Zpt1 @ g)(Tnt1 ®g) Jw = w2zTw =
|wTz? > 0. Since w # 0, at least one of its entry is nonzero and this entry is multlphed by one
of {xn+1,;Givj : j € [d],i',5" € [d+ 1]} in the expression w'z. Take j = a,i’ = 3,5 = 7.
Then it sufﬁces to find specific {z;,y; }1; and ;11 s.t. Tp41[a]Gp 4 > 0 with positive probability,
ie., Plzn41,Ga,4] > 0. Since the initial probability p € (0,1) and the transition probabilities p;;
are nonzero, by definition of Markov chains, P[z,,41,,Gg,4] is the product of p (or 1 — p) and p;;s

and therefore is nonzero. Now because w ' (22" )w > 0 for all z in its support and there exists at
least one z € R¥™ s.t. w' (22" )w > 0 and P[] > 0, we have w "E[zz " Jw > 0. Hence the matrix

E[z, 12, +1 ©® gg] is positive definite and it follows that f is strictly convex.

O
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Lemma 4. Consider the in-context learning of length-d + 1 (d > 1) Markov chains {(x;,y;)}1,

(zi,y; € {0,1}) with transition kernel P = B;(l)g g?i
are i.i.d. sampled from Bernoulli(p) for some constant p € (0,1). Consider indices i,j € [d],
i3 KU e [d+ 1 withi < § K <. Wedenotet; <ty <tz < ty as the sorted version of

(i/’j/a k/, l/) Deﬁng H c Rdmxdm as

€ (0,1)2. Suppose the initial states x;

Ho =2 | (P~ + (1= pPY o ) (P s (P s (P +

n—1

E {(Mpi/_l)u +(1 —p)(Pi,—l)Ol) (pj’—qﬁ’)u

(PP¥ =11 + (1= p)(P*Max ) (P )14

k'

whereT:(i—l)m—&—j’—l—Zil;gd—l—l—T, c:(j—l)m—&—l’—FZT:_OQd—l—l—T.

Define b € R4™ as
b(jfl)m+j’+zi';02 Q1 = [(p(P7~ )11 + (1 — p) (P~ 1)o1) (P 7)qy

(P~ + (=) (P s ) (P =)

The global minimum X* € R¥™ of the objective function described in equation @ equals X* =
H~1b.

Proof. Setting the gradient of equation[ 29 w.r.t. X to zero, we have

E 212,01 ® 88" | X =E [yni1 (Tni1 ©g)] (30)

where ® denotes the Kronecker product.

Evaluating LHS of equation B0} E [, 41 ;%,11,;Gir jsGer ] with i, j € [d], i < 4,7, 5, k,I' €

[d+1],and i < k' 5’ <. LetP = g (1)8 z (1)1] denote the transition probability matrix and

7 = [1 — p,p| the initial marginal probability. Further, (P*);; (i, j € {0,1}) denotes the specific
entry of P raised to the power of k. Then

E [l'n+1,il‘n+1,jGi/,j/Gk',l/] =K [l‘n+1,z‘fﬂn+1,j] E [Gi/,j’Gk’,l’] s

due to the fact that z; (¢ € [n]) and =41 are independent and G contains in-context samples only.
We then evaluate the two terms E [z, 11 ;Zn+1,;] , E[Gyr j»Grr 1] separately.

» For i < j, the probability of @y, 1 ; = 2,41,; = 1 is equivalent to that of z,, | ; = 1 conditioned
on z,41,1 multiplied by the probability of z,, 1 ; = 1 conditioned on x,,41 ; = 1. Therefore,

E [Znt1,iTnt1,5] = E[PZnt1,i = Tng1,j = 1]
=E[(p(P 11+ (1= p)(P o) (P )]

» We temporarily let x4 411 = yi for k € [n]. For ¢, 5/, k',I' € [d+ 1] and V' < j/, k' <1, we
have

]E [Gi/,j’Gk',l’}

1 n 1 n
k=1 k=1
1 n n
ZEE |:<Z xk:A,'i’xk,j’) (Z xm,kz’wﬁ,l’>:|
k=1 k=1

n n
1
ZEE E E Lk,i' Tk, j' L, k! L, 1/

k=1kr=1
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n
1
ZEE E Tk,i' Tk,j' T k! Tl

k=1

1
72 E E Th,i' Theyj’ Lo k! T 17 | -

k=1 rk=1,ck#k

The summands in the first term, in the case of j° < k', has the following form. The remaining
orderings of ¢/, ', k', 1’ can be computed in a similar manner.

n
E g Jik,wﬂik,jfﬂfk,k/xk,l/]
n

E [wkz'—wkg'—wkk/—wkl'le

k=

=nk K )i+ (1— )(Pi/_l)m) (P71 (PF ="y (P Fy

The summands in the second term can be calculated as below.

i n n
E Z Z Tl it Tl j' To k! T, 1!
_k:l rk=1,k#k
i n n
=E Y Plagy =k =1Prep = e =1]
_k:l rk=1,k#k

=n(n = DE [ (p(P" )11+ (1 = p)(P* or ) (P )12
(PP =111+ (1 =p) (P M)or ) (P )]
Evaluating RHS of equation30; E[z,, 11 jyn+1Gi ;] with i’ < j.
1 n
ElZn41,jYn+1Gir 5] = I;E [Tn+1,jYn+1Tk, The 5]

1 n

SN EPleyay = ypaq = 1P [rpy =250 =1
LS B[P 115 = st = WPy = oy = 1]

=E [(p(P ) + (L= )P Hor) (P4 )
(PP 0+ (=P Mn ) (P

O

Theorem 2 ( Theorem Erestated) We deﬁne a mapping 1 that projects X € R¥™ to the parameter
space: (X)) = argminp g |¢(P, Q) — X||3. Here, 1) finds a parameter set that maps to the closest
point to X under ¢. (X)) is the preimage of X under ¢, if such a preimage exists. Let f* be the
global minimum of f. Then f(X*) < f* < f(4(X*)).

Proof. (sketch) Let P*, Q* denote the global minimizer corresponding to f*. Since f is strictly
convex w.r.t X € R | it follows that f(X*) is the lower bound for any f(¢(P,Q)), including
f* = f(P*,Q*) = f(¢(P*,Q*)). Therefore f(X*) < f*. Similarly, since f* is smaller than any
f(P,Q), we have f* < f(4(X7)). u
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Example 2. As an example, for d = 2, gg ' becomes

G%1 G11G12 G11Giz Gii1Gae Gi1Gaz  GiGss
GI,  G12Gis G12Gaa Gi2Goz  GiaGg
Gi3  Gi3Gao Gi3Goy Gi3Gss 31
G3,  G2oGas  GaoGas
G3;  GasGas
G3s
(omitting the index-separating comma and the repeating entries in the lower half triangle).
After reparameterization, the objective function can be rewritten as
2
N T (i
f(X) = E{Mﬂi}?jﬁ@t}hﬁll Zg X(])x”Jrl’j ~ Ynt1

Jj=1

where X € R'2 denotes the concatenation of the two vectors X X2 e RS, The gradient off
wrt. X is

N 2., T T
VFX)=E (-Tn+1,1) gg Tn+1,1Tn+1,288 X — Efy, T ® )
f( ) xn+1,2zlrn+1,2ggT (x,,/+172)2ggT [y +1( n+1 g)]

We obtain the global minimizer X* by solving V f(X*) = 0.

XM =[-0.15 039 0.15 0.12 240 —0.09]
X®" =007 019 —0.07 —0.06 —1.20 0.04]

We project XV, X @) into the model parameter space.
Since the entires of XV are nonzero, we have by # b,

To verify the derivation, we plot the loss function w.r.t X;, indicating the global optimizer X using
red dashed line in Fig.[I2] The theoretical global minimizer aligns with the lowest error.

——- expected global minimizer

1.5 1
i 1.25 i i 3 i
27 i v i P i N i
4 1.00 2 1
i S i S 1.0 i i
1 ! 0.75 1 : | N |

2500 25 -2500 2.5 2500 25 -2500 2.5 -2.500 25 2500 25
X_1 X_2 X_3 X_4 X_5 X_6

Loss
Loss

Loss
N W
-
Loss
N W

Figure 12: Loss function w.r.t. the first six parameters after reparameterization.

E FORWARD PASS AS MULTI-OBJECTIVE OPTIMIZATION

To demonstrate the equivalence between the forward pass and preconditioned gradient descent, we
aim to express the iterative definition of LSA as an update of weight vectors, drawing inspiration
from |Ahn et al.| (2023). However, unlike their approach, our proof diverges because the update
formula for LSA cannot be simplified due to the presence of nonzero entries in b;.

Proposition 6 (Proposition Blrestated). Consider the L-layer transformer parameterzed by by, A; =
[O_Aﬂ where by € R A € R¥* for | € [L]. Let yg)ﬂ be the bottom-right entry of the Ilth layer
1x

output. Then yg)ﬂ = <wlgd, Tpy1) where w} 4 is iteratively defined as follows: wi® = 0 and
—x; ® <w7 xz>

— 1 =
wify = wf! —b VR(O)A where R(w) =~ [«w,m Y1)’

i=1
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Proof. Let yfk) denote the (d + 1)-i entry of the embdding Z, and xgk) is the first d entries of the ith
column in Zj,. Since the first d rows of P is zero, the first d rows of Z}, is the same as Z. Therefore

xgk) = :Cl(»o) =x;, Vi € [n+1].

We define a mapping to represent applying k transformer layers to the bottom right entry of an
embedding matrix Zy with [Zo]a41.n+1 = ¥: 9(2,9,k) : R x R X Z — R. When = 2,41,y =

yfloll =0,9(z,y,k) = g(x,0,k) = yﬁﬂl. We establish two claims for g(x, y, k) when x = x,, 1.

Claim 1: g(x,y, k) = g(2,0,k) +y. The equation implies that applying the transfomer k times on
Zo with [Zo]g+1,n+1 = y is equivalent to applying the transformer & times on Z}, with [Z}]44+1,n+1 =
0 and then add the resulting bottom-right entry with y.

By definition of LSA, the iterative definition of ygk) (i € [n+ 1]) is given by:

n T (k)
(k+1) _ (k) _ 71 3 Tty Y5 T _
i = ey LJ(J«);ET MO A (32)
J J J

Jj=1

=G(k)
: (k) +g s (%) / (k) (k) "
Since ;" is independent of y,," | for any k', and y,,/; depends on y,,’/, additively, one can show
inductively that g(x, y, k) and g(x, 0, k) always differ by y, i.e., g(x,y, k) = g(z,0,k) + y.

Claim 2: g(z,0, k) is linear in x. We prove the claim inductively. When k = 0, g(x,0,0) =

9521 — b;—G(k)Akan is linear in x = z,,41. For k > 0, suppose g(z,0, k) is linear in z, then

g(z,0,k + 1) = yfﬁ:'ll) = y,(ﬁzl — bZG(’“)Akan = g(z,0,k) — kaG(k)Akan. The first

(k)

term g(z, 0, k) is linear in y. The term yjk with j # n + 1 does not depend on x,,;1 according

to equation Hence kaG(k)Akan is also linear in x,, 1.
Combining the two claims, we have
9(z,y,k) = g(2,0,k) +y = (O, ) +y (33)

for some 6, € R? with §, = 0. One can copy the values in the ith column to the n + 1th
column and adopt the previous arguments to show that g(z;, y;, k) = (0x, z;) + y;. By substituting
yi = (O, x;) + y; into equation 32] we have
n T T
k1) _ ) LT [ T, (y; + 6, a:j)xj} 4
n — In - kTn
Unt1 T ¥nt1 T ; Ay 400 z)x)  (y 40, xp)? i

xjx;r (y; + Hll—xj)mj

1 n T
> Certodnt) = Beanen) = 3 b [(yj +Ow)rg (y;+ 0 wy)?

j=1

:l Akxn-l-l
Since the above equation holds for any z,,1, we obtain

O = O — ibT [ 7 (w; 9,1%-)%} Ay (34)
n = (yy +0iw)a) (v + O ag)?

Here we interpret the RHS via the expectation over y;. This corresponds to having multiple training

prompts with the same z;, po1, p11 but distinct y;.

1 — xixl (E[y; | po1, p11, 5] + 0] x;)x;
i =0, — — bT R J ) P ] k*3)%)9 A,
TR ; 4§ [(]E[:Uj | po1, P11, @] + 0 )] (yj + 0 x;)? b
Since the last row of Ay, is zero,
1 & xixl =
Ops1 =0 — by — I Ay
TR TR ; [(pm + (p11 — po1)x; + QIIx])xﬂ b
GeR(d+1)><d
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We treat by, Ay, as the preconditioner. Let

T o7

:173[1]0 Ij

n | %2007, 0" n

R(O) = * 1 i)
: : (| ((w, i) — Yn+1)

PR aaeTa " :

(QT% + yj)z 0" % Z?:l z;ld]x;

Then VR(6) = G and
Or+1 = Ok — bl VR(0) Ay,

By letting wzd = —0}, we obtain the desired result. O

F ADDITIONAL RELATED WORK

Time series prediction. Time series prediction problems can be categorized into transductive and
inductive setups. In the transductive case, a model (e.g., recurrent neural networks, neural ordinary
differential equations) is trained on the initial portion of a new sequence and then used to predict
future time steps for that same sequence. The next-token prediction for first-order binary Markov
chains has been addressed in this context (Makkuva et al., 2024, demonstrating that transformers
can effectively learn to output the transition probabilities of the input sequence. However, the global
minimum in their case has trivial attention parameters, indicating that the absence of attention can still
yield the desired performance. In contrast, our study requires that attention parameters be non-zero to
reach the global minimum.

On the other hand, in inductive scenarios (Kipf et al., 2018; [Huang et al., 2021} |L1 et al., |2020), a
model is trained on multiple time series derived from the same dynamics. During inference, the
trained model uses partial observations from an unseen time series sharing the same dynamics to
predict future time steps without the need for fine-tuning. In this case, the learned model captures the
dynamics from the observational window and makes predictions accordingly. However, ICL extends
beyond this framework by addressing a higher-level problem that involves learning across various
dynamical systems with different parameter settings, such as transition probabilities in the case of
Markov chains. In this case, the trained transformer infers the unseen dynamical system from the
in-context samples and makes predictions for the query sequence.
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