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Abstract

Setting up and controlling optical systems is often a challenging and tedious
task. The high number of degrees of freedom to control mirrors, lenses or
phases makes automatic control challenging, especially when the complexity
of the system cannot be adequately modeled due to noise or non-linearities.
Here, we show that reinforcement learning (RL) can overcome these chal-
lenges when coupling laser light into an optical fiber, using a model-free RL
approach that trains directly on the experiment without pre-training. By
utilizing the sample-efficient algorithms Soft Actor-Critic (SAC) or Trun-
cated Quantile Critics (TQC), our agent learns to couple with 90% efficiency,
comparable to the human expert. We demonstrate that direct training on an
experiment can replace extensive system modeling. Our result exemplifies
RL’s potential to tackle problems in optics, paving the way for more complex
applications where full noise modeling is not feasible.

1 Introduction

In experimental physics, we work with complex and sensitive setups. Working in an optics
lab means adjusting numerous mirrors, lenses, and other optical elements while optimizing
complex parameters. Two of the main challenges are precision and the number of degrees of
freedom. Often, tasks have to be repeated frequently. One example of such a task is coupling
laser beams into optical fibers, used in many physics labs [1–4]. It can be a laborious and
time-consuming task, especially in experiments with many fibers. Automating tasks like this
can, therefore, free up domain expertise for more challenging tasks. Most of these repeated
tasks have a very clear goal and can either be described as alignment or control problems.
Alignment means the correct steering of a laser beam through an optical setup. Control refers
to maintaining a dynamic experiment at a desired position using feedback loops. While fiber
coupling is primarily an alignment problem, correcting for drift can be considered control.

Automation of alignment and control tasks is a classic use case of reinforcement learning
(RL) [5–7]. RL has seen considerable success in recent years, both in general [8–14] and
specifically in robotics [15–19]. However, due to many RL algorithms relying on a huge
amount of data, at least in environments with continuous action spaces, most of these were
performed in simulated or toy environments [20; 21]. Comparatively few experiments were
done in real-world environments [22–24]. With the recent advance of more sample-efficient
algorithms for continuous action spaces, like Deep Deterministic Policy Gradient (DDPG) [25],
Twin Delayed Policy Gradient (TD3) [26], Soft Actor-Critic (SAC) [27], and Truncated
Quantile Critics (TQC) [28], directly training in an experiment has become more feasible.
However, we still face several challenges, such as partial observability, time-consuming
training, and noise, when applying RL to real-world setups [22; 23].

In this work, we demonstrate how an RL agent successfully learns to couple light into an
optical fiber, reaching efficiencies comparable to those of a human expert. We set up an
experiment for fiber coupling on an optical table, motorizing the mirrors that guide the
laser beam into the fiber. Our goal is to reach a specific coupling efficiency, which is the
fraction of light entering the fiber. We have not included the absolute motor positions in the
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observation in order to train our agent to improve the coupling efficiency for any type of
misalignment, thus making the problem partially observable.

The primary issue we encountered was the lack of precision in the motors. For instance,
returning to a position was only possible with a considerable and unpredictable offset,
which leads to noise in the actions, a special type of stochasticity of the environment. In
contrast to adding artificial noise to the actions for exploration [29–33], in our case, the
noisy actions are inherent to the system. To solve this problem without a full analysis and
modeling of the behavior, we let our agent train directly on the experiment with the standard
StableBaselines3 [34] implementations of SAC and TQC. To reset a training episode, we
could not reliably move to an absolute position but implemented a reset procedure that
mainly relied on relative movement steps.

Despite the noisy actions and partial observability of the environment, the agent learns to
reliably couple to an efficiency of ≥ 90% ± 2% starting from a low power over the course
of nearly four days. If we only need a smaller efficiency, e.g., 87%± 2%, the training only
takes twenty hours and can be performed in two nights, not taking away experimenting time.
For comparison, the maximum coupling efficiency observed by the experimenter was 92%,
and the one reached by the agent was 93%. We find that tuning the training parameters
thoroughly is crucial to reducing training time, which is of high priority for real-world RL
applications.

Our successful training is a first step towards further applications. First, our experiment
shows that laser beam alignment using RL is generally possible. A transfer to other scenarios,
such as interference optimization of two beams at a beam splitter or alignment of a laser field
to an optical resonator, is straightforward and requires only a change of sensor [35]. Secondly,
with training directly on the experiment, we show an example of applying RL to control
tasks without having to model the experiment in detail beforehand. This is particularly
important for more complicated experiments, such as those in quantum and atomic optics,
where it may be disproportionate or impossible to simulate the exact dynamics and noise.

2 Related work

The application of RL to optical systems ranges through a wide range of topics including
optical networks [36–44], adaptive optics [45–52], optical nanostructure, thin films and optical
layers [53–56]. More related to our problem is work that studies how RL can be used to
align and control tabletop optical experiments with lasers. In this category, some works are
realized merely on simulation. Examples include studying mode-locked lasers [57], combining
laser beams [58], and stacking laser pulses [59; 60]. Other works include investigating how
RL performs in an actual experiment. Most of these studies, however, do not train on the
experiment but on simulation. Examples include aligning an optical interferometer [61; 62],
operating optical tweezers [63], combining laser beams [64] and operating pulsed lasers [65].
It is rare that the agent is trained directly on the experiment [24]. One example is a study
combining pulsed laser beams [66]. Here, one actuator performs the actions, and the output
is a scalar, the power. The training time is about 4 hours; simulations show that this would
quickly go up to 1-2 days if more than two beams should be combined. Another example is
the generation of a white light continuum [67]. Thereby, both the states and the actions are
given by absolute positions of three actuators and moving to those positions, respectively.
This gives their environment a relatively high observability for a real-world task. The authors
claim to obtain successful training within 20 minutes. We deal with a higher (4) dimensional
action space than both of these works. RL was also used to optimize the output power of
an X-ray source [68]. For this, a single actuator was discretely controlled based on a scalar
signal. As a side project, the paper looks at a simplified approach to fiber coupling using
only two degrees of freedom and working with a discrete action space of size 4 employing
DQNs [69]. The work does not present the achieved coupling efficiencies. In contrast, we
work with continuous action spaces and control all four degrees of freedom necessary for
general beam alignment required for optimal fiber coupling. While training on the experiment
can be difficult for many reasons (see Section 3), it can be the last resort in cases where
creating a model that accurately represents the noise and dynamics of the system is very
time-consuming, if not infeasible. Using a too-inaccurate model, however, would make it

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Panel (a) and (b) show a conceptual scheme and lab setup of the fiber coupling
experiment. Panel (c) shows the dead-zone characterization of the four motorized mirror
mount axes on a log scale axis. Dead-zone means movement steps performed by the actuators
that do not result in a change in power. Appendix B gives a detailed description of the
characterization.

impossible to cross the reality gap [70]. We therefore decided to study the little-explored
field of in-situ training.

3 Fiber coupling

3.1 Experimental setup

To efficiently couple laser light into an optical fiber, we need a specific setup. Our goal is
to reach a certain coupling efficiency, which is the fraction of light entering the fiber. To
achieve this, the light has to enter the fiber at a specific angle and precise spot. The coupling
efficiency depends on how accurately both are matched. To fulfill both constraints, we need
two degrees of freedom in each axis, horizontal (x) and vertical (y) [71; 72]. This means that
two mirrors, each tiltable in x and y, are sufficient to acquire an arbitrary beam alignment.
Furthermore, the laser beam must have the correct size, which is achieved by placing lenses
in the correct position before the light enters the fiber. To simplify the setup, we decided to
motorize only the mirrors but not the lenses. In addition to the motorized mirrors, we have
two mirrors that can be steered with hand-tuneable knobs. This makes it easier for humans
to couple light into the fiber. We measure the power at the output of the fiber with a power
meter (Thorlabs PM160). With the help of a reference measurement, we can determine
the coupling efficiency or normalized output power with an error of 2%. Our experiment is
depicted in Figure 1, and further details are given in Appendix A.

The four actuators moving the mirrors are stepper motors (Thorlabs ZFS 13). They are
attached to the mirror mounts, each tilting the respective mirror in one axis. To understand
the special constraints of our problem, we move all actuators to a position where we have
maximal coupling. Then, while holding the other three actuators fixed, we scan the relevant
movement range with one actuator. The power dependence on each motorized degree of
freedom looks Gaussian. Fitting it with a Gaussian, we obtained standard deviations in the
range of 104 − 2× 104 actuator steps.
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3.2 RL challenges

When we use RL to fiber couple in our lab, we face several challenges. The training is
time-consuming as one actuation step takes about 1 second. Furthermore, due to laser safety
and possible equipment damage, we have to restrict the movement range of our actuators.
The two challenges that are most crucial for shaping our environment are partial observability
and motor imprecision.

Partial observability We work with a strongly underdetermined, only partially observable
experiment. To describe the state of the experiment perfectly, we would need a lot of
information not available to us, e.g., the exact angle, position, and size of the incoming laser
beam, as well as the exact position of all of the mirrors and lenses. Even if we could get all
of this information at the time of training, environmental drift, such as temperature, would
require careful calibration to occur frequently. To make the agent robust against drift, we do
not use the actuator positions as part of the observation. Even if we did, they would be very
inaccurate due to motor imprecision (see below). Instead, we solely rely on the power at the
output of the fiber and the previous actions as our observation. This makes our environment
partially observable and underdetermined due to four mirror positions leading to one output.
Also, the signal is very scarce, as when the motors leave a certain movement range, no power
at all gets coupled into the fiber, which means we do not get any feedback (this is why we
reset when falling below a certain power).

Motor imprecision Our main challenge is based on the complex relationship between
the expected movement of the used motors and their actual movement, which we call noisy
actions. When we report actuator steps here, these are the steps the controller intended
to move the motor. There is no feedback, e.g., an encoder, to ensure the intended position
is reached. The imprecision includes backlash of the mechanical system, step loss, non-
orthogonal degrees of freedom, i.e., the x and y-axis are not independent from each other, and
other errors. This leads to noise in the action. To understand its severity, Figure 1 (c) shows
the number of steps each actuator moves without any change of power, called dead-zone.
Although all mirror axes are motorized with the same motor, gearbox, and linear actuator,
different dead-zone sizes are observed. A more detailed explanation of the imprecision and
its characterization can be found in Appendix B. The variety in the motor imprecision makes
the action noise distribution hard to describe. On top of that, this affects our reset method
(see Section 4).

4 Our method

We cannot write down a Markov state (see e.g. [5] for an introduction) for our sys-
tem. Therefore, we treat it as an unknown episodic partially observable Markov de-
cision process (POMDP, see e.g. [73]). Sampling from it, we get a stochastic process
o1, a1, r1, o2, a2, r2, ..., oτ , where ot, at and rt are observations, actions and rewards at the
discretized time t, and τ is the episode length limitited by the maximal episode length T , i.e.
τ ≤ T . See Tables 1 and 2 for environment hyperparameters.

We create a virtual testbed to test out various RL algorithms and investigate differently
designed environments before training on the actual experiment. To do so, we fitted the
power depending on the position of each individual actuator with Gaussians. By multiplying
them, we get a map from all four actuator positions to the power. We then set the amplitude
to the highest power we observed until that point, which is 0.92. Using this, we create a
simplified virtual environment, not including noise. Although it is a strong simplification, it
helped us get various insights much quicker than in the experiment. These numerical results
can be found in Appendix C.

Actions We treat our action space as the 4-dimensional continuous action space [−1, 1]×4.
At time t, we can decompose the action at as at = (am1x, am1y, am2x, am2y) where each
component belongs to a different actuator. For example, am1x belongs to the actuator that
tilts mirror 1 in the horizontal (x) direction. Each of these actions is then multiplied by
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the maximum allowed action in actuator steps amax, rounded to the next integer, and sent
to the different controllers. Using the virtual testbed, we find that maximum actions of
approximately amax = 6 · 103 are optimal (see Appendix C.6). However, in the experimental
environment, the actuators have no feedback loop, so, potentially, they move significantly
less due to their imprecision. This makes our actions noisy, which adds to the stochasticity
in the environment. As discussed in Appendix C.8, this especially complicates the task for
high powers.

Observations As we are dealing with a partially observable system, for successful training,
we need to take great care in defining our observations. The only thing we observe in our
environment is the coupling efficiency or normalized power, denoted P ∈ [0, 1]. For example,
Pt denotes the normalized power at time t. As usual in POMDPs, we include a history
of length n ∈ N in the observation (see e.g. [66; 61]). This would lead to an observation
like ot = (Pt−n, ..., Pt−1, Pt) at time step t. It is common in RL experiments to observe the
environment before and after an action, not during this action. However, this is not the only
information available to us: In principle, we can record the power almost continuously while
the actuators are moving, i.e., we can record (Pt, Pt+1/mt

, ..., Pt+1) during action at where
mt is the number of powers measured during that time. In the virtual testbed, we noticed
that it is beneficial to use some of this information in our observation (see Appendix C.5).
In particular, we take the average power Pave,t =

∑mt

i=0 Pt−1+i/mt
/(mt + 1) the maximal

power observed Pmax,t = maxi=0,...,mt
Pt−1+i/mt

and its relative position in the list of powers
xmax,t = (arg maxi=0,...,mt

Pt−1+i/mt
)/(mt + 1) into account. In addition, we want the

performed actions to be part of the observation. This leaves us with the observation

ot =
(
(Pk−1, ak−1, Pave,k, Pmax,k, xmax,k)k=t−n,...,t , Pt

)
,

i.e., the observation includes a history of the power before taking an action, the action, the
average and maximum power and its relative position during the action, and the power
afterward. Using the virtual testbed, we find that history lengths of approximately n = 4
are optimal when using TQC (see Appendix C.5). We deliberately do not take the absolute
actuator positions as part of our observation. The main reason is that we want to make
our agent robust to experimental alignment changes such as drift. When this happens, the
absolute positions where the maximum power is reached will change. An agent trained
with the absolute motor positions being part of the observation is not able to handle such
situations (see Appendix C.5).

Episode and Resets We reset the environment either after a chosen maximum episode
length t = T ∈ N, when the agent reached its goal (i.e., Pt > Pgoal), or the agent failed (i.e.,
Pt < Pfail). Using the virtual testbed, we find that it helps with reaching higher goals like
Pgoal = 0.9 if we implement an instance of curriculum learning [74] by starting with lower goal
powers and raising the goal power during training, especially starting from Pstart, goal = 0.85
(see Appendix C.4).
A common way of resetting at the start of an episode is to move to a random position within
a defined range. However, our actuators do not present the required precision for this. We,
therefore, need a different way to reset. We nevertheless define neutral positions given in
motor steps. These are positions where we had high power when we started our training.
When we return to the neutral positions during training, depending on the original actuator
position, the power varies between no power and high power.
The reset procedure depends on the last power value, and we want the power after the reset
to be higher than Pmin. We distinguish between 3 cases. If, during the reset procedure, the

Table 1: Environment parameters for the main experiments where Pmin − 0.1 is the lowest
power where the training starts, Pfail is the power where the agent fails and the reset is
called, Pgoal is the power the agent should learn to reach, T is the maximal episode length
in time steps, and n is the history length used in the observation.

Parameter Pmin Pfail Pgoal amax T n
Value 0.2 0.05 [0.8, 0.9] 6 · 103 30 4
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Table 2: Reward hyperparameters for the main experiments

Parameter As Af Ag αs αf αg βs βf1 βf2 βg1 βg2

Value 10 100 100 0.9 0.5 0.5 5 5 5 5 1

condition of a different case applies, we jump to the corresponding case:
1. Pt ≥ Pmin: we choose a random power between Pmin +0.1 and Pgoal and do random steps
until we decrease the power below the chosen power value.
2. 0.09 < Pt < Pmin: we first reverse the last action. As long as the power is still under
Pmin, we move the actuators one after the other in random order in the direction in which
the power increases. If the power decreases, we change the actuator’s direction of movement.
We repeat this process until we reach Pt ≥ Pmin.
3. Pt < 0.09 or every ten episodes: We first move to the neutral positions. From there, we
do random steps until P ≥ 0.09, and then follow the procedure of Case 1 or 2 depending on
the power.
The values of 0.09 and ten episodes were determined empirically by observing the algorithm
performing on the experiment. Before starting the episode, we always perform some random
steps to randomize the process more. Our reset procedure introduces a small dependence
between successive episodes. However, this did not affect the training performance in the
virtual testbed much (see. Appendix C.3). Furthermore, due to the motors’ inaccuracies,
full independence was not possible in this experiment.

Rewards We design our reward with the purpose of making the agent reach the goal as
quickly as possible. The agent gets a low negative reward when failing (Pt < Pfail), a high
reward when reaching the goal (Pt > Pgoal), and else a small reward every step depending on
the power. We define the reward function depending on the current power Pt, the time step
t, the goal power Pgoal, minimal power Pmin, fail power Pfail and the episode length T as

rt =R(Pt, t, T, Pfail, Pgoal, Pmin)

=


−Af

(
(1− αf ) exp (−βf,1

t
T ) + αf exp (−βf,2

Pt

Pfail
)
)

if Pt < Pfail

Ag

(
(1− αg) exp (−βg,1

t
T ) + αg exp (βg,2

Pt

Pgoal
)
)

if Pt > Pgoal
As

T ((1− αs) exp (βs(Pt − Pgoal)) + αs (Pt − Pmin)) else

where βs, βf1, βf2, βg1, βg2, As, Af , Ag ∈ R, αs, αf , αg ∈ (0, 1). See Table 2 for their values in
the main experiment, which were tuned in the virtual testbed as described in Appendix C.1.
The return should never be higher when staying just below the goal than when actually
reaching the goal. In the same way, it should always be better to stay just above the failing
threshold than to fail. We enforce this by choosing the amplitudes according to Af , Ag ≥ As.
Each of the rewards consists of two terms. The α’s are used to weigh their importance
relative to one another. The failing reward consists of a term punishing it less when the
agent fails later in the episode and a term punishing it less when the power with which the
agent fails is close to the failing threshold. The two terms in the goal reward ensure that the
agent is rewarded more for reaching the goal quickly and for reaching it with a higher power.
The step reward contains both an exponential and a linear part to ensure that the agent
clearly notes a change to higher powers for low and high values. As the reward depends on
the goal power, we normalize the return in the shown plots by dividing it by the maximum
possible return for that given goal power. The maximum possible return is given by the
return when reaching the maximum possible power in the first step.

Algorithms The continuous action space limits our choice of algorithm. Of the algorithms
tested in the virtual testbed, TQC, TD3, SAC, DDPG, PPO, and Advantage Actor-Critic
(A2C), PPO and A2C performed worst. As they both do not use a replay buffer, this
was expected. They are closely followed by DDPG. SAC, TD3, and TQC performed much
better. SAC performed almost always slightly better than TD3. TQC has a small drop
compared to SAC in the middle of training that gets larger with rising goal powers. See
Appendix C.7 for a discussion. We used the algorithms from StableBaselines3 [34] with
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standard hyperparameters further discussed in Appendix E. In the main experiment, we
tested both TQC and SAC as algorithms.

For both the main experiment and virtual testbed, we used a gymnasium environment [75]
and the parameters provided in Tables 1 and 2. Our strategy is that the agent learns to deal
with the noisy actions directly in the experiment. We are especially interested in investigating
this in-situ learning of noise as, in our area, we are often dealing with noise sources that
cannot be modeled accurately, for example, when dealing with quantum states of light. In
these cases, the only solution will be to learn to handle the noise through direct interaction
with the experiment.

5 Experimental results in the optics lab

The agent was trained in our lab on components detailed in Section 3.1. Our training speed
is limited by the time the actuators take to move, leading to each environment step taking
about a second. We let each training run until its return starts to converge. For Pgoal ≤ 0.87,
this took around 20 hours or 4 · 104 steps. That we can train successfully in only 4 · 104 steps
is a result of the environment shaping discussed in Appendix C. If we set a very high goal
power (Pgoal = 0.9), the training takes much longer (2 · 105 time steps, which sums up to
nearly 4 days of training).

In the different training runs, we changed algorithms and goal powers. For goal powers
between Pgoal = 0.85 and Pgoal = 0.87, training runs start to converge at around 4 · 104 steps.
For higher goal powers, e.g., Pgoal = 0.9, this is not the case anymore. This is shown in
Figure 2 (a). We tested both SAC and TQC by performing two training runs per algorithm
on the experiment with a goal power of Pgoal = 0.85. We can see that in the beginning, the
return rises quicker for SAC but is slightly outperformed by TQC later on. This is why we
chose TQC for all other experiments presented here.

When we choose Pgoal = 0.9, we need significantly more training steps (≥ 2 · 105). Because
of that, as discussed before, we also tested pre-training on lower goals on the experiment,
i.e., we started the training with a low goal power Pgoal = 0.85 and increased it in small
increments to Pgoal = 0.9 over the course of the first 105 training steps and left it at that for
the next 105 steps. These training runs are shown in Figure 2 (b). The normalized return of
the agent first pre-trained on lower powers always drops after changing to a higher goal power,
as it first needs to learn to handle the conditions of the changed environment. We can also
see that the normalized return reaches lower values the higher the goal gets. This is expected
as the task gets harder each time. The normalized return for the agent pre-trained on lower
goals reaches higher values than the one starting from scratch. Additionally, we can use
intermediate agents to align the experiment to lower powers. We conclude that curriculum
learning was helpful for such a high goal in our experiment (see also [76]). Although we also
found pre-training on the virtual testbed with an added noise model helpful (see Appendix D),
we focus on in-situ training, as we want to find strategies that can work on experiments
where a noise model is hard or impossible to obtain.

To understand the help for our everyday lab work, we tested a few of our agents in fiber
coupling (marked with a star in Figure 2 (a) and (b)). The test results are shown in Figure 2
(c)-(e). Each of the RL agents was tested a hundred times. We measure the power over time.
If the agent does not reach the goal during an episode, we reset the environment, and the
agent tries from there. One episode was at most 40 s, and the longest attempt took around
350 s. Panel (c) shows the power plotted against time for the four tested agents. The agent
trained with Pgoal = 0.85 stays on top of both the agent trained with Pgoal = 0.87 and one of
the agents trained with Pgoal = 0.9 for some time. This is due to the first agent reaching its
goal faster than the other ones. Panel (d) shows the number of steps it took for the same four
agents to reach their goal after their last reset, i.e. in the successful episode. As expected,
the agent with the lowest goal Pgoal = 0.85 is the fastest in fiber coupling. Furthermore,
of the agents trained with Pgoal = 0.9, the one pre-trained on lower goal powers reaches
this high goal faster. Interestingly, although the agent trained on Pgoal = 0.87 has to reach
a lower goal than the pre-trained one with Pgoal = 0.9, the former is not faster than the
latter. For comparison, we also tested a human expert 25 times on how long they would
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Figure 2: Experimental results. (a) and (b) show the normalized return plotted against
training steps for different agents. We use TQC agents except for the yellow curve, where we
use SAC. Of the agents trained on Pgoal = 0.9 (shown in (b))) one agent was first pre-trained
on lower, over time increasing, goal powers. (c)-(e) show our results when testing the agents
marked with a star in (a) and (b). For testing, we reset and let the agents fiber couple (this
is tried 100 times for the RL agent and 25 times for the human expert). If the RL agents do
not reach their goal within 30 steps, we reset the environment (still measuring the time),
and the agent continues from there. This is repeated until the agent reaches its goal. (c)
shows the power plotted against the time for the first 35 s. The error band is clipped to the
power range [0, 1]. (d) compares the number of environment steps it took for each of the
RL agents tested to reach their goal after their last reset. (e) shows the time each agent
trained to Pgoal = 0.9 and a human expert took to reach that goal. Panels (a)-(c) show the
(smoothed) mean with 2σ error bands created by smoothing and/or multiple runs. The error
bands in (c) additionally include a power measurement error of 2%.
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Table 3: Reset by hand vs. automatic reset. We tested the agent pre-trained on lower
goals with Pgoal = 0.9 as described in Figure 2 (automated reset) or resetting by tilting the
hand-steering motors 29 times. We compare the mean of the power at the start P̄0 and end
of the episode P̄T , the empirical probability of reaching the goal p[goal] or failing p[fail], and
mean of the number of environment steps needed to reach the goal τ̄goal.

P̄0 P̄T p[goal] p[fail] τ̄goal
Reset by hand 0.384 0.91411 0.86 0.03 8.333
Automatic reset 0.465 0.909936 0.9 0.03 8.22

take to couple the fiber to Pgoal = 0.9 using the hand steering mirrors. This, however, is
not a fair comparison. The RL agents can change all four degrees of freedom at once. The
experimenter, on the other hand, has access to more information, e.g., the continuous power
measurement while moving an actuator, and does not have to deal with the imprecision in
the actuators, which means they can easily go back to an observed maximum. Despite this,
we can see in Panel (e) that the RL agents are generally faster but take longer in a few cases,
where the agent needs several episodes to get to the goal. Our hypothesis is that this is due
to our episodes not being fully independent of each other. In conclusion, we show that by
using RL, we can consistently couple light into an optical fiber to high efficiencies, despite
the noisy actions.

So far, we have shown that our agent can couple light into the fiber after a reset using the
motors that it has access to but not after a general misalignment or drift in the setup. To
show that the agent can also compensate for misalignment in other parts of the experiment,
we performed the resets by manually misaligning the hand steering mirrors, e.g., tilting them
until we were in a coupling regime with low power. Next, we called the agent for realignment.
Table 3 shows that the results using this alternative reset method are very similar to the
ones with automatic reset. Whether such a misalignment happened at the hand steering
mirrors or another element not accessible to the agent, such as, for example, a drift in the
position of the fiber collimator, is equivalent in terms of difficulty. Hence, our agent can also
be used to control for arbitrary drifts at an undetermined location. For this, we can use the
almost continuous measurement of the power at the output of the fiber and call the agent to
set it back to the desired coupling efficiency whenever it drops below a certain value.

6 Summary and Outlook

We have shown that our model-free RL agent successfully learns to couple laser light into an
optical fiber, reaching the same efficiencies as a human expert while generally being faster.
We find that sample-efficient algorithms that use a replay buffer, such as SAC and TQC,
are a must to overcome the challenge of otherwise not manageable training time. Partial
observability can be dealt with by carefully tuning the observations. Furthermore, our study
suggests that curriculum learning can help to achieve more difficult goals.

As we train directly on the experiment, the agent learns to handle the specific noise present,
and we can avoid creating an accurate simulation of the task. This makes our method
suitable for setups where it is impossible to model the noise accurately.

A central result is that the agent learns to deal with the imprecision of the mirror steering
motors. Using a classic algorithm such as gradient descent would fail with these motors as
their imprecision deters us from experimentally determining a gradient and then going back
to the starting position. One way to handle such imprecision is using motors with internal
feedback loops. Using RL, we can avoid this, which helps to simplify the design of motors
and experimental setups. Generally, automation gives us the possibility of remote-controlling
experiments, which can be especially useful in experimental areas that are difficult to access,
such as in vacuum tanks, in clean room facilities, or, in extreme cases, in underground labs
or in space.

In our experiment, we used four motors to cover all degrees of freedom and demonstrated
the general case of laser beam alignment. Reducing the number of actuators per axis to 1
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lowers the possible coupling efficiency. In contrast, increasing the number of mirror actuators
offers no physical advantage. More complex setups can be divided into parts with multiple
mirror-mirror-sensor blocks.

Further exploration could include investigations on how the agents perform for other trans-
verse optical modes of light, including multiple local maxima, and investigating the per-
formance of model-based or hybrid algorithms. We start our RL training procedure under
conditions where there is low power. This raises the question how, or with how many
additional sensors, we could generalize this to the case of starting with no power. Further-
more, it might be interesting to explore replacing the use of a history as our observation by
PID-inspired RL [77] and to investigate whether pretraining on expert demonstrations could
speed up the learning process [78–80].

Our experiments are a first step towards the extensive use of RL in our quantum optics
laboratory. Optical experiments typically require various control loops to stabilize the
experimental degrees of freedom against perturbations. These locks significantly increase
the complexity of the experiments. For example, maintaining the length of optical cavities
to achieve resonant light field enhancement requires complex components such as phase
modulators [81], homodyne detectors [82; 83], or split detectors [84; 85]. RL offers the
potential for streamlined control loops that rely solely on the measurement of power in
the reflection and transmission of the resonator. This could enable novel control strategies,
such as phase control of squeezed vacuum states. These states are characterized by unique
quantum noise properties but are otherwise dark. Consequently, phase control typically
requires an auxiliary laser field [86] or introduces unwanted phase noise [87]. RL has the
potential to provide a noise-free solution without the need for additional laser fields, which
is particularly relevant for large-scale on-chip squeezing experiments in the field of quantum
information [88].

In conclusion, we show that a common optics task like beam alignment can be solved with
standard model-free RL algorithms. For the machine learning community, this demonstrates
their versatility. Their availability lowers the barrier for the optics community to use them
in other experiments. We showcase how these RL algorithms can be directly applied in the
lab, circumventing the need for accurate experimental modeling.

Reproducibility We provide schematics and a detailed description of our experimental
setup (Section 3 and Appendix A), which can be used to rebuild the experiment. We also
describe how we create our virtual testbed (Appendix C). Furthermore, we explain in detail
how we implement the RL algorithms and their hyperparameters (Appendix E). Additionally,
all code used for this project and data from the experiment (return and test results) are
provided in the supplementary material.
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A Additional details about the experimental setup

Our setup includes the following components: We use a 1064 nm laser (Mephisto, Coherent),
a single mode polarization-maintaining fiber, and a Schäfter+Kirchhoff fiber collimator
(60FC-SF-4-M8-08) at the input side of the fiber. The measurements of laser power are done
with power meters (Thorlabs PM160, measurement error 1%). In front of the experiment, we
place a partially reflecting mirror to measure a fraction of the laser light with an additional
power meter for power reference. The measurement is used to pause training in the event of
a laser failure and to track power fluctuations to determine the maximum power level. In
this way, we can determine the coupling efficiency with an error of 2%. The input power is
set to 1.00(1)mW.

For training on the experiment, we used an NVIDIA GeForce RTX 4070 GPU. In addition
to the usual packages [89–92], we used PyLabLib, Thorlabs Kinesis, PyVisa, Keysight
Connection Expert and safe-exit [93–97] for communication with the experiment.

Due to safety constraints, we have to limit our state space and, in consequence, clip our
actions if the actuator positions would otherwise move out of a certain range because it is
unacceptable for the laser beam to wander around the room. Also, in the first test run, the
action size was chosen so poorly that the mirror mounts were damaged. So, both laser safety
and equipment damage are hazards that we need to consider.

B Explanation of the imprecision in the mirror steering
motors and its characterization

Backlash is a phenomenon that is present when a load is not directly connected to a motor,
such as in geared mechanical systems [98]. Dependent on the exact geometry of the system,
i.e., mechanical tolerances, amount of gears, etc., it may resemble hysteresis between the
expected and actual position or a dead-zone, where moving the actuator has no effect on
the actual position whenever the rotational direction is reversed. It is thus hard to model
and predict a priori. Control has to be implemented based on the specific system and its
use. These control schemes include hysteresis models, dead-zone models, and PI control.
However, additional sensors are needed to get accurate feedback if multiple actuators are
used. Step loss results from the difference in static and dynamic torque of a motor. The
motor steps result in a linear actuation, which changes the tilt of the mirror mount. Different
tilt angles lead to different static loading of the motor and gearbox. This may lead to the
initial step(s) being lost, as the motor can not deliver the starting torque, resulting in a
partial step. Without feedback from, e.g., an encoder, this leads to a difference between the
expected and actual position. Lastly, the non-orthogonal degrees of freedom are a result
of the kinematic mirror mounts used and their mounting. Usually, this error is small for
well-designed kinematic mirror mounts.

We performed a dead-zone characterization. The core idea is to initiate a number of
movements, i.e., generate a movement history, after which a maximum dead-zone is expected.
This can simply be an initial long movement in one direction followed by a direction reverse.
The long movement ensures a nearly linear behavior between the expected and actual position,
as backlash is overcome in the mechanical system. The backlash after a change in rotational
direction should, therefore, be large. Additionally, the movement history is similar between
repetitions, enabling their comparison. Starting from a position with high coupling, we moved
one actuator far out, then back to high coupling. From there, we reversed the movement and
counted the steps the actuator had to move before the measured power changed by more than
the power measurement error. Repeating this process 100 times yielded the distribution of
the dead-zone size, shown in Figure 1 (c) for the four motors. This data helps us understand
the uncertainty of the mirror mount movements. As no continuous feedback is employed,
characterization of other positioning errors is not possible in our setup.
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C Environment and agent tuning on virtual testbed

We used the data of scanning each motor individually through the coupling peak to create a
virtual testbed. Each dataset was normalized and fitted with a Gaussian; all of them were
then multiplied. The highest coupling efficiency we had measured up to this point was 0.92;
therefore, we use this as the amplitude. The following function, based on the fit values in
motor steps, describes our virtual testbed:

P (xm1, ym1, xm2, ym2) = 0.92exp

(
− 1

2

((
xm1 − 5470785

11994

)2

+

(
ym1 − 5573194

19145

)2

+

(
xm2 − 5461786

12769

)2

+

(
ym2 − 5178016

17885

)2
))

We use this testbed to gain insights into the environment hyperparameters, observations,
and algorithms to use in the following order.
First, we optimized the hyperparameters of the reward (α’s, β’s, A’s). Next, we went to
the parameters of the environment that appear in the reward, i.e., the goal power Pgoal and
episode length T . The usual figure of merit is the normalized return in dependence on the
training step. However, this depends on the reward, and the reward depends on both of
these sets of parameters. Therefore, it is not possible to use the return as a figure of merit
for these parameters. Instead, we trained a TQC agent for a total of 105 timesteps. We
tested the agent every 104 timesteps for 100 episodes, noting the probability of failure, the
probability of reaching the goal, and the average power at the end of each episode. Our main
figure of merit was the probability of reaching the goal after a training time in the range of
104 to 4 · 104 time steps. Still, we also took the probability of failure and the average power
at the end of each episode into account. We show the second one here only when we used it
for our decision.
After fixing the first two sets of parameters, we were able to use the normalized return to
compare other environment parameters, such as the length of the history in the observation
and the maximal action, and different algorithms. All studies in the virtual testbed were
performed at least 5 times and, except for the algorithm tests, used TQC as the algorithm
as this was the algorithm most used in the experiment. If not stated otherwise and if these
were not the parameters being changed, we used the parameters in Tables 1 and 2.

C.1 Reward Hyperparameters

We want a high probability of reaching the goal after the least amount of training time,
so we shape the reward function accordingly. For tuning its hyperparameters, we chose
Pfail = 0.2, Pmin = 0.4, Pgoal = 0.8, T = 20, αs = 0.5, αf = 0.9, Af = 10, in contrast
to Tables 1 and 2, if those parameters were not the ones being changed. We tested the
tuples of reward parameters given in Table 4. For each parameter we tested a number
of different values and also checked the dependence of the variables on each other. After
evaluation, we decided on the parameters in Table 2. The subscript s always refers to the
step reward, f to the fail reward, and g to the goal reward. The other parameters were
Pfail = 0.2, Pmin = 0.4, Pgoal = 0.8, T = 20, αs = 0.5, αf = 0.9, Af = 10 or given in
Tables 1 and 2.

Table 4: test table tuning parameters

Parameter (Af , Ag) (αs, βs) (αf , βf1, βf2) (αg, βg1, βg2)
Value {10, 100, 1000}2 {0.1, 0.5, 0.9} {0.1, 0.5, 0.9} {0.1, 0.5, 0.9}

×{1, 5, 10} ×{1, 5}2 ×{1, 5}2

Prefactors First, we tested different prefactors Af and Ag. The results are shown in
Figure 3. Looking at the probability of reaching the goal, Af = 100 seems to be the best
value. For training steps over 3 · 104, we can see that Ag = 1000 seems to be better than the
other two values, before it seems that Ag = 100 is doing better. However, if we look at the
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(a) Probability of reaching the goal in dependence of the training step.
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(b) Probability failing in dependence of the training step.

Figure 3: Results for prefactor tuning: Probability of reaching the goal or failing for different
prefactors in the reward using TQC and Pfail = 0.2, Pmin = 0.4, Pgoal = 0.8, T = 20,
αs = 0.5, αf = 0.9 and otherwise the parameters in Tables 1 and 2. The plots show the
mean with 2σ error bars created by multiple runs.
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Figure 4: Results for tuning the parameters of the step reward: Probability of reaching the
goal for different αs, βs in the reward with TQC, Pfail = 0.2, Pmin = 0.4, Pgoal = 0.8, T = 20,
αf = 0.9, Af = 10 and all other parameters as in Tables 1 and 2. The plots show the mean
with 2σ error bars created by multiple runs.
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Figure 5: Results for tuning the parameters of the goal reward: Probability of reaching the goal
for different αg, βg1, βg2 in the reward with TQC, Pfail = 0.2, Pmin = 0.4, Pgoal = 0.8, T = 20,
αs = 0.5, αf = 0.9, Af = 10 and all other parameters as in Tables 1 and 2. The plots show
the mean with 2σ error bars created by multiple runs.

probability of failure, we can see that using Ag = 100, the probability of failure falls more
quickly than if we are using Ag = 1000. Because resets after failure take a lot of time for
this kind of Pmin and Pfail, we want the failure probability to be as low as possible and go
with Ag = 100.

Step Reward Second, we are looking at the step reward and optimizing for αs and βs.
Figure 4 shows the probability of reaching the goal. We deem βs = 5 and αs = 0.9 to be the
best parameters, although there is not a very strong difference.

Goal Reward Third, we are looking at the goal reward and optimizing for αg, βg1 and
βg2. Figure 5 shows the probability of reaching the goal. Here, there is a stronger difference
between the different parameters. We are going with αg = 0.5, βg1 = 5 and βg2 = 1. The
other possibility would be αg = 0.1, βg1 = 1 and βg2 = 5, which is worse in training steps
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Figure 6: Results for tuning the parameters of the fail reward: Probability of reaching the
goal for different αf , βf1, βf2 in the reward with TQC, Pfail = 0.2, Pmin = 0.4, Pgoal =
0.8, T = 20, αs = 0.5, Af = 10 and all other parameters as in Tables 1 and 2. The plots
show the mean with 2σ error bars created by multiple runs.

1 · 104 − 2 · 104 but better in training steps 4 · 104 − 5 · 104. However, we put our focus on
the earlier phases of training and also do not want to emphasize the power with which the
goal was reached that much over the time in which it was reached, which is why we go with
the first choice of parameters.

Fail Reward Lastly, we are looking at the fail reward and optimizing for αf , βf1 and βf2.
Figure 6 shows the probability of reaching the goal. Here, the choice is again not that clear,
but we deem βf1 = βf2 = 5 and αf = 0.5 to be the best choice of parameters.

C.2 Episode Length

We want to find a good trade-off between reaching the goal quickly and reaching it reliably.
Using the same parameters as for reward shaping, we tested different episode lengths, in
particular, T = 5, 10, ..., 50. The results are shown in Figure 7. As expected, the longer the
episode, the higher the probability of reaching the goal (or failing). For some of these (i.
e. T = 20, 30, 35, 40, we also varied the maximum allowed actuator steps per environment
step amax (i. e. doing simulations with amax = [2 · 103, 104] to see if it had an effect on this,
which we could not confirm. However, we also have to take into account that longer episodes
will take more time in the experiment. This is why we select T = 30, as there is not a very
big difference between this and T > 30.

C.3 Reset Methods

In the virtual testbed, we compare the following reset methods:

A Reset as described in the main paper (for testing at the start and end of training).

B Reset as described in the main paper, but first, go to neutral positions in every
episode.
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Figure 7: The probability of reaching the goal in dependence of the training step for different
maximum episode lengths T and maximum actions amax with TQC, Pfail = 0.2, Pmin =
0.4, Pgoal = 0.8, T = 20, αs = 0.5, αf = 0.9, Af = 10 and all other parameters as in
Tables 1 and 2. The plots show the mean with 2σ error bars created by multiple runs.
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Figure 8: Comparison of different reset methods. The methods are the following: A – Reset
as described in the main paper (for testing at the start and end of training), B – Reset as
described in the main paper, but first, go to neutral positions in every episode, C – Reset by
choosing random positions for all four actuators in an interval of width 4.2 · 104 around the
neutral positions. We use the parameters from Tables 1 and 2, TQC and Pgoal = 0.85. (a)
shows a box plot of the starting powers. (b) shows the normalized return in dependence on
time. The mean is shown with 2σ error bands created by smoothing and multiple runs.

C Reset by choosing random positions for all four actuators in an interval of width
4.2 · 104 around the neutral positions.

We used the parameters from Tables 1 and 2 and Pgoal = 0.85. The results can be seen in
Figure 8. In Panel (a), we can see the starting power for the different reset methods. Using
method C, the starting distribution of powers is very different from the other reset methods.
The median is similar, but the standard deviation is much higher. This led us to compare
methods A and B additionaly. In method B, the median is slightly higher and independent
of our policy. For method A, the distribution depends on the model used, and the median
and 75th quantile are slightly higher and more comparable to the one of B after 105 training
steps than at the start. Because of this, the return for method B is slightly higher than for
method A, especially in the middle, as can be seen in Panel (b). We would have expected a
higher impact from the reset method. However, the differences are quite small. In conclusion,
even though our method makes our episodes not fully independent of each other, we do not
gain an artificial benefit from it.
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Figure 9: (a) shows the normalized return in dependence of the training step for different
goal powers. (b) shows the probability of reaching the goal power Pgoal = 0.9 after 105

training steps in dependence of Pgoal, start. Hereby, the goal on which the model is trained
either rises in a linear (orange) or step (blue) function of the training step from Pgoal, start to
Pgoal = 0.9 over the course of 105 training steps. Both panels show the mean with 2σ error
bands created by multiple runs and, in (a), smoothing.

C.4 Goal

The goal power is fully our choice. First, we check at what point the return starts to converge
for which goal power. Therefore, we look at the normalized return in dependence on the
training steps for different goal powers. This is shown in Figure 9 (a). We can see that the
higher the goal power, the lower the normalized return after convergence, and the later the
return converges. We can see that this point happens significantly later for high goal powers.
Also, for high goal powers like Pgoal = 0.9, the distance to the last curve is bigger than, for
example, for Pgoal = 0.86.

Because of this, we wondered if it made sense to pre-train on lower goal powers. We tested
this by starting with goal powers Pstart, goal = 0.5, 0.7, 0.8, 0.85, 0.875 and raising it to 0.9
over the course of 105 training steps either linearly, i.e., raising it slightly in every training
step, or in a staircase way, i.e. raising it more every 104 training steps. Figure 9 shows
the probability of reaching the goal Pgoal = 0.9 after 105 training steps in dependence of
the starting goal power Pstart, goal for the two different manners of raising the goal power.
We can see that it can be helpful to raise the goal power in steps, especially starting from
Pstart, goal = 0.85.

C.5 Observation

We tested history lengths of n = 1, ..., 6 and the maximum sensible length n = T = 30 with
Pgoal = 0.85. The results can be found in Figure 10 (a). Depending on the training step,
n = 3, 4 lead to the highest return. We went with n = 4 as this was higher around 2 · 104 to
5 · 104 training steps.

We tested if removing Pave or Pmax and xmax from the observation influences the performance.
Figure 10 (b) shows that TQC performed worse on any of these combinations compared to
the full observation presented above. However, leaving out Pave had a much smaller impact
than leaving out Pmax and xmax, which makes the latter very important for us.

Additionally, we tested how agents perform in an environment that includes the absolute
position of the actuators in the observation compared to one that does not. The normalized
return against the training step can be found for both configurations, using the parameters in
Tables 1 and 2, TQC, and Pgoal = 0.85, in Figure 10 (c). As expected, the agent learns faster
and reaches a higher normalized return if those absolute positions are included. However,
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Figure 10: Comparison of different observations and maximum actions. (a)-(c) show the
normalized return in dependence of the training step using the parameters in Tables 1 and 2,
TQC, and Pgoal = 0.85 for different history lengths n in (a), leaving out different parts of the
observation in (b), and with or without including the absolute positions in the observation
in (c). The models with and without the absolute positions were then tested 100 times each
in an environment in which k = 0, ..., 4 means of the underlying Gaussian µi were shifted by
±σi, i.e., µ′

i = µi ± σi. (d) shows the probability of reaching the goal against the number of
shifts k. The plots show the mean with 2σ error bands/bars created by multiple runs and,
in (a)-(c), smoothing.
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the main application for our agent is to recouple the light into the fiber after other parts
of the experiment have been misaligned. That means, that the optimal positions, i.e., the
means µi of the underlying Gaussian, change, and the agent still has to be able to reach the
goal. Hence, we tested the agent 100 times each in environments in which k = 0, ..., 4 means
of the underlying Gaussian µi were shifted by ±σi, i.e., µ′

i = µi ± σi. Figure 10 (d) shows
the probability of reaching the goal against k. If no shifts occur, the agent with the absolute
position as part of the observation performs slightly better than the one without. However,
this quickly changes as more shifts are applied. The agent with absolute position performs
much worse if any shifts appear. On the other hand, the agent not observing the absolute
position performs well independent of shifts.

C.6 Action

We tested different maximal actions amax = 2 · 103, 4 · 103, 5 · 103, ..., 104 with Pgoal = 0.85,
TQC, and the other parameters as in Tables 1 and 2 to see which yields the highest return.
The results are shown in Figure 11 (a). Maximum actions between 4 ·103 and 8 ·103 generally
performed best (4 · 103 performed best out of them). Because of the imprecision of the
motors, we also did some tests in the lab, which is why we selected amax = 6 · 103 for our
experiments. This is approximately half of the standard deviation of the Gaussian in x−
direction.

C.7 Algorithms

We tested six different algorithms with their standard hyperparameters in StableBaselines3
with the parameters in Tables 1 and 2 for Pgoal = 0.8, 0.85, 0.9 for either 105 (for Pgoal =
0.8, 0.85) steps or 5 · 105 (for Pgoal = 0.9) training steps. The results are shown in Figure 11
Panel (b)-(d). We can see that in the first 105 steps, A2C and PPO always perform worst,
and DDPG is next in line. However in Figure 11 (d), we can see that for Pgoal = 0.9 PPO
catches up to DDPG around training step 1.5 · 105. SAC, TQC, and TD3 perform much
better than these three. TD3 is nearly always worse than SAC. TQC always has a drop in
the middle region but catches up to SAC in the end. Overall, SAC seems to be the best
algorithm for this task when used on the virtual testbed. In contrast to that, in our physical
experiments, TQC slightly outperforms SAC for Pgoal = 0.85.

C.8 Effect of noise on the learning process

We use the characterization of the dead-zone in the actuators to derive a simple noise model:
Each time the agent performs an action, its size is reduced by a value randomly sampled from
the dead-zone characterization multiplied by a noise factor N . For a noise factor of N = 0,
there is no noise, and the results are similar to the ones discussed in the virtual testbed
section up to this point. A noise factor of N = 1 should make the noise level of the virtual
testbed comparable to the one present in the experiment. In comparison, noise factors of
N > 2 correspond to higher noise levels than in the experiment. For Pgoal = 0.85, 0.9 and
noise factors of N = 0, ..., 3, the normalized return is shown in Figure 12. As expected, the
return for higher noise levels is generally smaller than the one for no noise, but for each of
the presented noise levels, the agents are still able to learn. For Pgoal = 0.85, the graphs for
N = 0, 1 are very similar and only for the higher noise factors (N = 2, 3) the learning curve
clearly differs. That means that for a moderate goal power, the noise in the experiment does
not affect the agent as much. However, this is different for Pgoal = 0.9, the graph for N = 1
is grouped with the ones for N = 2, 3. Hence, the agents’ learning curves are significantly
impacted by the noise level found in the experiment.

D Other experimental runs in the optics lab

D.1 Different goal powers

We run experiments with Pgoal = 0.85, 0.86, 0.87, 0.88, 0.9 using TQC. The normalized return
is shown in Figure 13 (a). We can see that, just like in the virtual testbed, the training
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Figure 11: Comparison of different maximum actions and algorithms. The plots show the
normalized return against the training step for different maximum actions amax and TQC in
(a) or for six different algorithms: TQC, SAC, TD3, PPO, DDPG and A2C in (b)-(d). (b)
shows this for Pgoal = 0.8, (c) for Pgoal = 0.85, and (b) for Pgoal = 0.9. The other parameters
are chosen as in Tables 1 and 2. The plots show the mean with 2σ error bands created by
multiple runs and smoothing.
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Figure 12: Comparison of different noise levels. The plots show the normalized return against
the training step for different goal powers Pgoal = 0.85, 0.9 and noise factors N = 0, ..., 3
using TQC. The other parameters are chosen as in Tables 1 and 2. Both panels show the
mean with 2σ error bands created by multiple runs and smoothing.
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needs longer to converge the higher the goal. It is interesting that there is a big gap between
the agents with Pgoal = 0.87 and Pgoal = 0.88. Please note that we performed these training
runs (except for Pgoal = 0.85 only once and draw our conclusions from there.

D.2 Replay buffer

We already discussed in the main paper that it can make sense to pre-train agents on lower
goals. However, we did not discuss what we do with the replay buffer when changing the
goal power. Here, we test if it would be better to keep or delete it when changing to the
next higher goal power. We perform two training runs on the experiment starting with
Pgoal = 0.85, raising it to Pgoal = 0.875 after 3.8 · 104 training steps, then raising it to
Pgoal = 0.89 after approximately 6.35 · 104 training steps, and then raising it to Pgoal = 0.9
after 9.8 · 104 training steps. In the first, we delete the replay buffer after changing our goal
to Pgoal = 0.875 and Pgoal = 0.89 (yellow, discussed in main paper); in the second, we do
not (green). Both runs are shown in Figure 13 (b). In the yellow ones we see more drops
after each rise in goal power, but its normalized return is slightly higher in the end. Overall,
the results are quite similar.

D.3 Pre-training on virtual testbed

Furthermore, we want to know if pretraining on the virtual testbed helps with the experiment’s
training times. We tested both an agent pre-trained on the virtual testbed without noise
and on a version of the virtual testbed with noise. As noise, we sample random values for
each of the actuators from the dead-zone characterization in Figure 1 (c) and reduce the
absolute value of the action by these sampled values. Figure 14 shows the results next to the
agent pre-trained on the experiment with lower goal powers. Panel (a) shows the normalized
return plotted against training steps. Overall, the agent pre-trained on the virtual testbed
without noise is more stable but not significantly better or faster in training. The agent
pre-trained on the virtual testbed with noise reaches higher returns and is faster than the
other two. Panel (b) shows test results (time needed to fiber couple to Pgoal = 0.9) for the
three agents and two agents trained only in the virtual testbed, either with or without noise.
The agent pre-trained on the virtual testbed with noise performed slightly better than the
other two pre-trained agents, which showed no significant difference between them. The
two agents only trained in the virtual testbed are significantly slower, the one trained with
noise being slightly faster than the other. However, they are not as slow that it could not
be useful: If the time for coupling is not relevant, it might be enough to learn on the very
simple virtual testbed (even without noise).

E Algorithm Hyperparameters

We use the default hyperparameters in StableBaselines3 (incl. contrib), Version 2.3.0 [34] or
the way they appear in their tutorials. For completeness, we list them here and print the
ones that are not default but used in the tutorial in bold.

TQC learning rate: 0.0003, replay buffer size: 1000000, learning starts after 100 steps,
batch size: 256, soft update coefficient: 0.005, discount factor: 0.99, update model
every step, do 1 gradient step after each rollout, no added action noise, update
target network every 1 step, number of quantiles to drop per net: 2, number of
critics networks: 2, number of quantiles for critic: 25

SAC learning rate: 0.0003, replay buffer size: 1000000, learning starts after 100 steps,
batch size: 256, soft update coefficient: 0.005, discount factor: 0.99, update model
every step, do 1 gradient step after each rollout, no added action noise, update
target network every 1 step,

TD3 learning rate: 0.001, replay buffer size: 1000000, learning starts after 100 steps,
batch size: 256, soft update coefficient: 0.005, discount factor: 0.99, update model
every step, do 1 gradient step after each rollout, action noise: NormalAction-
Noise(mean=np.zeros(number actions), sigma=0.1 × np.ones(number
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actions), policy and target network updated every 2 steps, standard deviation of
smoothing noise on target policy: 0.2, clip absolute value of target policy smoothing
noise at: 0.5

DDPG learning rate: 0.001, replay buffer size: 1000000, learning starts after 100 steps,
batch size: 256, soft update coefficient: 0.005, discount factor: 0.99, update model
every step, do 1 gradient step after each rollout, action noise: NormalAction-
Noise(mean=np.zeros(number actions), sigma=0.1 × np.ones(number
actions)

PPO learningrate: 0.0003, number of steps between updates: 2048, batch size: 64, number
of epochs when optimizing surrogate loss: 10, discount factor: 0.99, factor for trade-
off between bias vs. variance for GAE: 0.95, clip range: 0.2, normalize advantage,
entropy coefficient: 0.0, value function coefficient for loss calculation: 0.5, maximum
norm for gradient clipping: 0.5

A2C learning rate: 0.0007, number of steps between updates: 5, discount factor: 0.99,
factor for trade-off between bias vs. variance for GAE: 1.0, entropy coefficient:
0.0, value function coefficient for loss calculation: 0.5, maximum norm for gradient
clipping: 0.5, RMSProp epsilon: 1e-05, use RMSprop
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Figure 13: Both panels show the normalized return plotted against the training step. (a)
shows the training from the start for different goal powers. In (b), Pgoal is raised in steps at
each black vertical line from 0.85 over 0.875 and 0.89 to 0.9. For training one of the models
(yellow), we delete the replay buffer after the first two black lines; for the other (green), we
do not. Both panels show the mean with 2σ error bands created by smoothing.
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Figure 14: Pre-training on virtual testbed. (a) shows the normalized return plotted against
time for three agents: one is trained directly on the experiment with successively higher
goal powers (blue), the other two are already pre-trained for 5 · 105 training steps on the
virtual testbed either without noise (orange) or with noise (red). We used Pgoal = 0.9, TQC,
and the parameters in Tables 1 and 2. (b) shows how long the agents marked with a star
in (a) (green and pink are both only trained on the virtual testbed, without or with noise,
respectively) need to couple to Pgoal = 0.9 on the experiment. (a) shows the mean with 2σ
error bands created by smoothing.
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