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ABSTRACT

Large Language Models have achieved strong performance on reasoning tasks,
solving competition-level coding and math problems. However, their scalabil-
ity is limited by human-labeled datasets and the lack of large-scale, challenging
coding problem training data. Existing competitive coding datasets contain only
thousands to tens of thousands of problems. Previous synthetic data generation
methods rely on either augmenting existing instruction datasets or selecting chal-
lenging problems from human-labeled data. In this paper, we propose QueST, a
novel framework which combines difficulty-aware graph sampling for prompt and
difficulty-aware rejection fine-tuning that directly optimizes specialized generators
to create challenging coding problems. Our trained generators demonstrate superior
capability at creating challenging problems compared to even proprietary models
such as GPT—-4 0. We leverage this method to generate large-scale synthetic coding
problems, which we then use to distill from long Chain-of-Thought (CoT) models
or conduct reinforcement learning for smaller models, proving effective in both
scenarios. Our distilled model achieves the best performance compared to similarly
sized models trained on previous long CoT SFT datasets. By training generators to
create more difficult problems, QueST pushes the boundaries of reasoning abilities
in large language models.

1 INTRODUCTION

Test-time scaling through long chain-of-thought and large-scale reinforcement learning has dramati-
cally boosted the reasoning ability of large language models, enabling LLMs to solve competition-
level coding and math problems that were previously beyond their reach. Models like OpenAl ol
(OpenAl} 2024) and DeepSeek-R1 (Guo et al.,|2025) have demonstrated remarkable performance on
challenging benchmarks such as Codeforces, AIME, and IOI, achieving expert-level problem-solving
capabilities through extensive reasoning traces that can span thousands of tokens. However, the
problems used for training these models even require expert-level human annotations, which severely
limits the scalability of LLM training. Current competitive coding datasets (Li et al.| 2022;[2023)
contain only thousands to tens of thousands of problems. As LLMs become more capable, the
requirements for training data grow increasingly demanding—often requiring PhD-level experts in
mathematics, computer science, and algorithm design to propose novel problems that can genuinely
challenge these models. This process is not only extremely costly for requiring experts to propose
difficult problems but also fundamentally cannot scale in terms of both dataset size and problem
difficulty, creating a critical bottleneck in the development of next-generation reasoning models.

To mitigate this problem, methods for synthetic data generation and augmentation have been proposed.
Previous works have focused either on paraphrasing-based augmentation (Luo et al.| [2025a; Yu et al.,
2024) or extracting concepts and recombining them based on co-occurrence probabilities (Tang
et al., 2024; [Zhao et al.| 2025)). Some recent works have proposed leveraging model weaknesses
and extracting concepts to create new problems (Liang et al.,2025). More recently, reasoning-based
LLMs have presented the next paradigm in advancing large language model reasoning capabilities
(OpenAl, 2024; |Guo et al. [2025). Works like |Guo et al.| (2025); |Guha et al.| (2025) created long
chain-of-thought responses from reasoning models and curated synthetic SFT datasets, effectively
helping small open-weight LLMs achieve superior performance in code and math tasks. Ahmad et al.
(2025) curated the largest open-source dataset by obtaining long CoT responses from DeepSeek-R1
multiple times for each problems, though the problems themselves are still sourced from human-
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Table 1: Comparison between representative code reasoning datasets.

Code Datasets #Problems Long CoT Responses  Synthetic Problems
CodeContest (Li et al., 2022) 13K X X
TACO (Li et al.|[2023) 26K X X
Bespoke-Stratos (Labs| [2025) 17K 4 X
Open-R1 Codeforces-cots (Facel 2025) 10K v X
OpenCodeReasoning (Ahmad et al.,|2025) 28K v X
Ours (QueST) 100K v v

labeled competition coding problems. These methods have narrowed the performance gap between
open-weight models and closed-weight reasoning models.

However, existing methods described above either focus on leveraging existing human-annotated
problems and curating synthetic responses from existing reasoning models, or rely on a fixed LLM to
generate new problems by prompting. In this paper, we are the first to propose a method that directly
trains an LLM generator to create challenging competitive code reasoning problems. We call our
method QueST, embarking on a quest to generate increasingly challenging code problems through
the combination of difficulty-aware graph sampling and difficulty-aware rejection fine-tuning. This
approach is more scalable and flexible compared to previous methods that used a fixed generator or
fixed human-labeled problems. Our proposed method makes the generator specialized and stronger
than even closed-weight strong instruction models at creating challenging problems. We leverage this
to generate the largest-scale code problem training set compared to previous synthetic data approaches,
and the statistics of our synthetic data with previous data are shown in Table[I] We obtained responses
from long chain-of-thought reasoning models, then leveraged the generated datasets to SFT small
models, achieving competitive scores for similar-sized models on code reasoning benchmarks like
LiveCodeBench (Jain et al.| 2025)) and USACO (Shi et al., [2024).

Our contributions can be summarized as follows:

* We introduce a novel difficulty-aware coding problems generation framework that combines
both difficulty-aware graph sampling and difficulty-aware rejection fine-tuning, which trains
specialized generators to create challenging coding problems.

* We create the largest synthetic code reasoning problem set to date, comprising over 100K
challenging coding problems paired with detailed chain-of-thought solutions from reasoning
models.

* We demonstrate that small models fine-tuned on our synthetic dataset achieve competitive
performance among similarly-sized models on LiveCodeBench and USACO benchmarks.
We also demonstrate effectiveness in RL experiments.

* We conduct comprehensive ablation studies and analyses of our proposed method and the
distribution of the generated coding problems.

2 QUEST

In this section, we present QUEST, our proposed method for generating difficult problems. We
focus our investigation on the generation of coding problems, as other forms of reasoning tasks
(e.g., mathematical reasoning) can be regarded as special cases of coding tasks (Jiao et al.| [2025]).
We begin by introducing our scaffolding framework for problem generation, which builds upon
MathScale (Tang et al., [2024). Next, we detail our strategies for incentivizing LLMs to produce more
difficult problems. Finally, we demonstrate how our scaffolding can be adapted to further enhance
the generation of challenging problems.

2.1 PRELIMINARY: PROBLEM GENERATION THROUGH CONCEPT GRAPH

Our scaffolding for problem generation is based on (Tang et al.||2024), which generates new problems
based on existing seed problems by prompting an LLM in three steps (i.e., concept extraction, graph
construction and problem generation).
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Concept Extraction For each problem ¢ in the seed problem set Qgeeq, We prompt an LLM to
extract concepts c (topics and knowledge points) from it. We follow the setting of [Tang et al.| (2024)),
topics refers to general directions, knowledge points refers to more fine-grained concepts, example
can be found in Appendix Table il Note that problem generation can be guided later using the
concepts that we extracted in this step. The process can be defined formally as follows:

C= gQ ( (pextrach Qseed) ) (1)

where Pexiract is the prompt used to extract concepts, G2 is our problem generator and C is the set of
concepts extracted. Detail prompts of pexiract are in Appendix Table@

Graph Construction Once we obtain the concepts C, we proceed to identify plausible combina-
tions of these concepts. Two concepts are considered to form a reasonable combination if they have
frequently co-occurred within the same problem in the seed dataset. To capture these relationships,
we construct a concept graph in which nodes represent individual concepts, and edge weights encode
the strength of co-occurrence between concept pairs. The edge weight w(u, v) is defined as follows:

w(u,v) = log (freq(u, v) + ¢€) 2)

where v and v denote concept nodes, and freq(u, v) represents the observed co-occurrence frequency
of these concepts. A small constant e is added to ensure numerical stability by preventing zero counts.

Given the constructed graph, we proceed to sample concept combinations, which are then utilized for
the generation of new problems. We start from a uniformly random sampling from all the topics and
subsequently perform up to six steps of a random walk on the graph (Tang et al.|[2024). At each step,
the transition probability from node u to node v is defined as:

e epy)
Y T en 3D (w(u, V1))

where A/ (u) denotes the set of nodes adjacent to u. After each random walk episode, we obtain a
sampled concept combination s, which is subsequently used for problem generation.

3

Problem Generation Given the sampled concept set s, we leverage an LLM to generate new
problems. We incorporate few-shot examples to guide the LLM in formulating problems. These
examples are selected from the pool of seed problems based on the Jaccard distance between their
respective sets of concepts. Formally, this process can be described as:

Qnew = gQ (pgeneratm S(C); Qseed) (4)

where S(C) denotes the set of sampled concepts, and Pgeneraie represents the prompt template utilized
for problem generation (see Appendix Table [4] for additional details).

At this stage, our problem generator is designed to produce new problems, rather than explicitly
targeting increased difficulty. The generation of more challenging problems will be addressed in the
subsequent sections.

2.2 DIFFICULTY-AWARE REJECTION FINETUNING

We focus primarily on the generation of challenging coding problems, though our approach is readily
extensible to other forms of reasoning tasks. We first present our method for measuring problem
difficulty, and then illustrate how this measure is employed to guide LLMs in producing more difficult
problems.

Difficulty Estimation A natural way to assess the difficulty of a generated problem is to examine
the consistency of the models multiple outputs. 'Wang et al.| (2023a) finds that self-consistency is
highly correlated with accuracy, which reflects the uncertainty of the models, and also the difficulty of
the problem. When most solutions converge to a single outcome, the problem is likely straightforward.
Conversely, if the solutions diverge and produce inconsistent outputs, this indicates model uncertainty,
suggesting the problem is more difficult.

Building on this intuition, we define the difficulty of a problem using the average majority voting
rate of its solutions. We illustrate our metric using coding problems as a case study, noting that
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Figure 1: The pipeline of QueST. We first extract concepts based on seed problems, then use difficulty-
aware sampling method described in Equation [T0] to create prompts for problem generation. We
generate 8 problems for each prompt, calculate the difficulty ¢ of the generated problem based on
Equation |§|, and use the most difficult problem as rejection fine-tuning data to train our generator.

other verifiable reasoning problems (e.g. math) can be regarded as a special case of this setting. Let
qr~ gQ(pgenme, s, Qseed) denote a generated coding problem (see Equation (EI)), where s ~ §(C)
is a sampled concept combination (see Section [2.1)). The estimation proceeds in three steps. First,
we prompt gpt—4o to generate T test inputs, forming the set Z = {i1, i2,..., 47} (details of the
prompt in Appendix Table . Second, we obtain M candidate solutions YV = {y1,y2,...,ynm}
from gpt—4o. Third, we execute each y,, € ) on all inputs 7; € Z, producing output sets
O = {9(v1,1t), 9(y2,t), - . -, g(yar, i¢) }, where g(ym, ;) denotes extracting the code from y,;,,
running it on input ¢;, and recording the output. For each test input, the most likely output o; is
identified as the most frequent element in O;:

0; = arg (r)réfgif(o, Oy) (5)
where f(0,0;) = |{x €0 |x= o}| counts the occurrences of o in O;. Finally, we quantify the

problem difficulty as
T

_ l f(0t7ot)
Q) =1-7 t; i ©)

Intuitively, §(g) measures the degree of disagreement among candidate solutions: the lower the
majority voting rate, the higher the difficulty. Thus, larger values of §(g) correspond to more
challenging problems.

To further enhance the probability of generating valid synthetic problems, we filter out problems
where over half of the test case outputs from generated responses return None, indicating unsuccessful
code execution.

Rejection Fine-tuning Having introduced the difficulty measure §(q), we now describe how it
is employed to construct a dataset of prompt—problem pairs for training LLMs to generate difficult
problems. The key idea is to sample multiple candidate problems from the same prompt and retain
only the most difficult one.

As discussed in Section 2.1} for each concept combination s, a problem can be generated via

qn~ gQ (pgeneratev S, Qseed) (7)

where GQ denotes the LLM-based generator. More generally, let My be the LLM parameterized by 6,
and let p denote the actual prompt (Dgenerae instantiated with concept set s and seed problems Qgeeq)
used to query Mpy. By sampling K times, we obtain a set of candidate problems:

quMg(p) fOI‘k‘:l,...,K (8)
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We denote this set by Q = {q1,¢2, ..., qx }. We then select the most difficult problem according to
our measure §(-):
q" = arg max 6(q) ©
qLEQ

Only ¢* is retained, while the remaining candidates are discarded. The resulting pair (p, ¢*) is added
to the training set Dy,q, Which is used to fine-tune the problem generator M.

2.3 DIFFICULTY-AWARE GRAPH CONSTRUCTION

This section extends our problem generation scaffolding (Section [2.T)) to be difficulty-aware. In
the baseline setup, the initial edge weights of the concept graph are determined primarily by the
co-occurrence statistics of concepts within the same problems. Here, we further incorporate difficulty
by modeling the hardness of concepts with respect to the difficulty levels of the problems in which
they appear. Since each problem in the seed dataset (e.g., TACO; [Li et al.|(2023)) is annotated with
human-curated difficulty labels, we leverage this information when constructing the concept graph
for problem generation prompts. Specifically, beyond using co-occurrence counts as edge weights for
random walk sampling, we also incorporate the average difficulty of all problems that involve both
concepts connected by an edge. The new edge weights are defined as

w(u,v) =log (a - freq(u, v) + (1 — «) - diff (u, v) + ¢€)

1
Z d(Q)a Qu,v:{q‘ueq,veq}. (10)
|Qu.ol o

Here, « is a hyperparameter that balances the contribution of co-occurrence frequency and difficulty
and we set a = 0.2 in our experiments. The constant € is included to avoid taking the logarithm
of zero. The set @), , consists of all problems containing both concepts « and v; its cardinality is
denoted by |Q,,|. Finally, d(g) represents the human-annotated difficulty level of problem ¢, given
as an integer from 1 to 5.

where diff (u,v) =

3 EXPERIMENTS

In this section, we present the detail of our experiments. We first use our proposed difficulty measure
method for data selection. Then we show the long CoT SFT results using datasets distilled from
Qwen3-8B compared with previous strong baselines, and we show our generated datasets can also be
effective when used in RL training. We further present an ablation study to investigate the effect of
each role in our proposed method. Finally we have contamination analysis and statistics about our
generated data.

3.1 IMPLEMENTATION DETAILS

Seed data: We use TACO (Li et al., [2023) as seed data, which has human-annotated labels for
difficult. TACO has 25.4K training samples and 1K test samples. Each problems is annotated with
difficulty, test cases, and a list of topics. Samples in this dataset are collected from open-access sites
where programmers share problems with each other, including Aizu, AtCoder, CodeChef, Codeforces,
and LeetCode.

Benchmarks We use LiveCodeBench-V5 (Jain et al.,[2025) and USACO as our evaluation bench-
marks. We use LiveCodeBench-VS5 for direct comparison with a strong baseline (Ahmad et al., 20235));
USACO (Shi et al., 2024) is used because it is a representative code competition which contains
difficult problems and has already been curated as benchmark for evaluation.

Models: We use Qwen3-8B as our teacher model in distillation experiments, as it is efficient and has
competitive reasoning performance. We use Qwen2.5-Coder-7B-Instruct and Qwen3-8B-Base as our
student model, respectively. For the RL experiments, we use Qwen2.5-7B-Instruct model as starting
checkpoint for small-scale verification. We use Qwen2.5-14B-Instruct and GPT-40 as generators, as
they can follow instructions relatively well compared to smaller models.

Hyperparameters: We use vVLLM E] as our inference framework for both distillation and evaluation
experiments. We set temperature to 0.6 for all experiments. We set the batch size to 128 and the

'"https://github.com/vllm-project/vllm
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Table 2: Effect of different strata of synthetically generated coding problems on downstream perfor-
mance. ¢ refers our estimated difficulty defined in Section[2.2]. Response length is determined based
on responses generated by Qwen3-8B.

Selection of problems LiveCodeBench-V5 score  Avg. response length in tokens

Random 3K 36.29 11.9K
Highest 6 3K 39.28 14.2K
Median § 3K 36.35 14.1K
Lowest 6 3K 32.37 6.8K
Longest response 3K 38.35 22.6K

learning rate to Se-5 for our SFT experiments, including the fine-tuning of the generator models. We
use VeRLE]for our RL experiments, and use 128 as the rollout batch size, 64 as the mini-batch size,
and 16 as the rollout sample size. For all evaluation, we calculate averaged pass@]1 across 16 runs.

3.2 USING ESTIMATED DIFFICULTY FOR DATA SELECTION

Before training the generator to produce difficult coding problems, we first need a trustworthy signal
that can serve as a proxy for difficulty when gold labels are unavailable for generated problems. As
mentioned above, we propose using ¢ we defined in Section [2.2]based on model responses. To verify
the usefulness of this signal, we conduct a preliminary experiment that selects subsets of generated
problems based on this signal for controlled comparison. We use our baseline graph random walking
process to generate SOK problems using TACO as seed data. For each problem, we generate 8
responses and compute 6. We then select 3K samples with the highest ¢, 3K with the lowest §, 3K
with § closest to 0.5, and an additional 3K randomly sampled for comparison. We also use response
token length as another difficulty proxy and select 3K samples with the longest responses. Table[2]
shows the results of using different selection methods and the performance of models trained on the
selected problems, with 8 responses generated for each problem to ensure the scale and significance
of our experiments. We observe that problems with the highest § achieve the best performance, even
surpassing those with the longest token responses, and using significant less tokens. We can also
observe that for the problems with highest 4, the token length is higher than problems with median
and lowest §, which indicates there are some positive correlations between token length and 6, but 6
is still a more effective and efficient signal compared to response length.

3.3 TRAINED GENERATOR FOR DISTILLATION

We then use our trained generator to generate problems and leverage these problems to obtain
responses from long chain-of-thought models (Qwen3-8B in our experiments) for training student
models. In Table 3] we conduct a comprehensive comparison between previous Long CoT SFT
datasets and our generated datasets on representative code reasoning benchmarks: LiveCodeBench-
V35 and USACO. For our method (QueST), as described in Section 3.1} we use Qwen2.5-14B-Instruct
to train a specialized generator under our reject fine-tuning and difficulty aware graph sampled
prompt, 20K and 100K represents the training data size. "7B" means we trained from Qwen2.5-
Coder-7B-Instruct, and "8B" means we trained from Qwen3-8B-Base. The results show that models
trained on our generated datasets achieve competitive performance compared to previous methods
using similar-sized models, while requiring smaller-scale training data and weaker teacher models,
considering OCR uses 700K long CoT SFT data distilled from DeepSeek-R1, while ours only uses
100K SFT data distilled from Qwen3-8B. We also observed that although our model (QueST-100K-
7B) shows slightly worse average performance than the previous method (OCR-Qwen-7B-Instruct),
it still outperforms the baselines on hard problems in USACO.

3.4 REINFORCEMENT LEARNING

Our generated data can also be used for RLVR (Reinforcement Learning with Verifiable Reward).
We use majority voting results produced by Qwen3-8B as pseudo output labels for each test case

https://github.com/volcengine/verl
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Table 3: Performance on LiveCodeBench-V5 and USACO. Note: In our method, we only use
Qwen3-8B as teacher model to generate responses for efficiency and due to compute limitations.
The content in brackets represents the generator models used for problem generation (GPT-40 for
MathScale), in our methods, we use our trained Qwen2.5-14B-Instruct as generator. 20K and 100K
means the number of training samples.

Model LiveCodeBench-V5 USACO
Easy Medium Hard Avg. Easy Medium Hard Avg.
Upper Bound (Teacher Models)

DeepSeek-R1 98.5 79.8 374 65.6 - - - -
Qwen3-8B 94.0 741 289 587 585 42.8 223 435
Baselines
OpenThinker-7B 80.6 16.9 1.6 255 11.0 2.1 0.0 5.0
R1-Distill-Qwen-7B 86.6 43.8 7.0 38.0 229 9.7 38 134
OlympicCoder-7B 82.1 494 122 409 314 12.5 1.3 170
OCR-Qwen-7B-Instruct 95.4 640 180 513 415 26.0 75 272
MathScale-20K-7B (GPT-40)  82.8 36.6 8.2 349 28.0 15.6 1.3 16.7
Our Method
QueST-20K-7B 84.9 414 104 379 305 16.7 6.2 194
QueST-100K-7B 87.8 50.8 146 433 314 250 10.0 235
QueST-100K-8B 98.4 686 185 534 458 354 113 33.0

Comparison of Training Rewards (0-250 steps, smoothed)
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Figure 2: Training rewards comparison in the training process of RL under different datasets.

of each generated problem. Since our generated test cases are not guaranteed to be valid, we filter
out test cases where over half of the outputs are none (indicating failed execution for generated
solutions), then keep the remainder for RLVR. We use the GRPO (Shao et al.|[2024)) algorithm to train
Qwen2.5-7B-Instruct on 12K problems sampled from TACO, 6K data from our baseline synthetic
method (mathscale) (Tang et al., 2024), and 6K data from QueST. We report our results in Table EL
which shows effectiveness of our proposed method.

We report the training reward curve during the training process in Figure 2] It shows that the model
trained on TACO datasets gains the highest reward score during the whole training stage, our baseline
synthetic method gains a lower score, and the model trained on a dataset generated by the QueST
method gains the lowest score. The training reward can serve as a proxy of the inverse difficulty of
these three different datasets.
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Table 4: RL results on LiveCodeBench-V5

LiveCodeBench-V5

Model

Easy Medium Hard Avg.
Qwen2.5-7B-Instruct 474 8.4 0.1 14.3
Qwen2.5-7B-Instruct TACO RL 56.7 10.8 1.1 173
Qwen2.5-7B-Instruct Baseline RL ~ 56.0 9.6 32 176
Qwen2.5-7B-Instruct QueST RL 56.4 9.6 48 18.6

3.5 ABLATION STUDY

We conducted an ablation study for fair comparison across different settings, as shown in Table
Bl In the first two rows of the table, we examine whether using difficulty-aware graph random
walking improves performance when using GPT-4o as the generator. The results demonstrate that
the difficulty-aware graph achieves clear improvement. In the third and fourth rows, we compare
performance when using the difficulty-aware graph with different generators: Qwen2.5-14B-Instruct
without further training and Qwen?2.5-14B-Instruct under our rejection fine-tuning method (QueST).
The results show that when using difficulty-aware random sampling prompts, our fine-tuned generator
can bring better performance than the model without using our fine-tuning method. Therefore, Table
[Bindicate both difficulty-aware sampling and rejection fine-tuning have positive effect and lead to
generating difficult problems.

Table 5: Ablation study on LiveCodeBenchV5. “Baseline” here represents the our baseline problem
generation pipeline (Tang et al.| 2024) which we discussed in Section[2.1] Here we generate 20K
questions for all settings to fair comparison, and the base model we used to train is Qwen2.5-Coder-
7B-Instruct. “RFT” is abbreviation of our rejection fine-tuning method.

Methods LiveCodeBench
Easy Medium Hard Avg.
Problem Generator: GPT-40

Baseline 82.8 36.6 82 349
Baseline w/ difficulty-aware graph 83.6 411 109 375
Problem Generator Qwen?2.5-14B-Instruct
Baseline w/ difficulty-aware graph 85.0 39.2 8.0 36.1
Baseline w/ difficulty-aware graph w/ RFT (QueST)  84.9 414 104 379

3.6 ADDITIONAL ANALYSIS

We visualize and compare the 25 most sampled knowledge points with and without difficulty-aware
sampling in Appendix Figure[3| The figure shows that knowledge points sampled more frequently by
naive sampling than by difficulty-aware sampling tend to be more common overall, while knowledge
points sampled less frequently by naive sampling tend to be less common. In other words, difficulty-
aware sampling upweights infrequent knowledge points and downweights frequent knowledge points
compared to naive sampling. The infrequent knowledge points are visualized in the left figure and are
generally more difficult, including topics such as the “knapsack problem”, “Optimal Play Strategies”,
and “prime factorization”, compared to the basic concepts shown in the right figure.

We also conduct a case study on generated problems from both original model and model trained by
QueST framework in Appendix Table[6] It shows that the problem generated by our trained model
requires more complex operations and more knowledge compared the question generated by original
model.

We conduct contamination detection experiments on our generated datasets to exclude the effects
of data contamination on benchmark performance. Specifically, we compute token-based 50-gram
Jaccard similarity scores and the scores across all datasets and benchmarks we used are 0 which
indicates there is no contamination in our generated data.
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4 RELATED WORK

4.1 SYNTHETIC DATA FOR LANGUAGE MODELS

Synthetic data has been widely used in training language models. Previous works have mainly
focused on using small sets of seed data and leveraging LLMs to augment them and generate larger
datasets. Some works (Honovich et al.| 2023} [Li et al., [2024a;  Toshniwal et al.,[2025} [Wang et al.,
2023b; [Tang et al., 2024) focus on sampling seed data as in-context learning exemplars to generate
new ones. |Ge et al.|(2025) proposed using personas to augment previous in-context learning synthetic
data generation methods. Xu et al.|(2024); Luo et al.|(2025a); Hu et al.| (2025) focus on augmenting
existing samples to create more complex ones. Some methods have also explored how to generate
synthetic data from scratch (L1 et al., [2024b} [Xu et al., [2025). More recently, |Qin et al.| (2025)
investigated whether synthetic data follows similar scaling laws as real data. PromptCoT (Zhao
et al., |2025) also generates challenging problems based on mathematical concepts and rationale.
Tong et al.| (2024) also proposed a difficulty-aware method but focuses on synthetic responses for
challenging problems. |[Liang et al.| (2025) extract concepts from failure cases and synthesize new
problems during RL training. Additionally, there is research focused on leveraging pretraining or
web data to generate reasoning data in general domains (Yuan et al.,|2025; [Yue et al., [2024)). Our
QueST framework focuses on a new perspective that aims to train a difficulty-aware generator to
generate difficult problems.

4.2 CODE REASONING

Code reasoning is an important capability of large language models. The reasoning ability of language
models can be enhanced using chain-of-thought (Wei et al., [2022)), RLVR (OpenAl, [2024; /Guo et al.,
2025; |[Lambert et al.l [2025), and self-consistency (Wang et al.| [2023a), in math (Hendrycks et al.|
2021)) and code (Jain et al.l 2025} [Shi et al., [2024) domains. [Muennighoff et al.| (2025) and |Ye
et al.| (2025) focus on manually curating small-scale reasoning problems, which is sufficient to boost
models’ reasoning ability. More recently, [Face| (2025)),|Ahmad et al.[(2025)), and |Guha et al.| (2025)
have developed large-scale distillation methods from reasoning models to obtain high-quality long
CoT SFT datasets that can be used to train student models effectively. Nvidia et al.| (2024) curate
reasoning datasets throughout the entire training pipeline. [Li et al.[(2025) introduce an innovative
paradigm that transforms traditional code reasoning tasks from their original format into a “given
code + test cases / input-output prediction” structure. Complementing these supervised learning
approaches, [Luo et al.|(2025b) demonstrate the effectiveness of reinforcement learning techniques
applied to verified code reasoning problems. However, how to generate difficult synthetic coding
problems and use them for training remains relatively underexplored.

5 CONCLUSION

In this paper, we propose a method for generating difficult code problems at scale. Specifically, we
investigated a pipeline that uses majority voting to compute a proxy of difficulty and employs this as a
signal for rejection fine-tuning of the problem generator, and combined it with novel difficulty-aware
graph sampling prompts. This enables the trained generator to produce challenging problems at scale.
We then use these generated problems for supervised fine-tuning (SFT) and reinforcement learning
(RL) to verify their effectiveness. As a novel synthetic data generation method, we compared our
approach with previous baselines at similar scales on code reasoning benchmarks and show that our
method achieves better performance even when using less SFT data, particularly for hard problems.

LIMITATIONS AND FUTURE WORK

Although our method shows promise for rejection fine-tuning a generator, we still face limitations
as the generator hasn’t been trained using RL. One primary reason is that our current difficulty
calculation is computationally expensive and challenging to implement in real-time to provide
difficulty rewards in an RL pipeline, considering that we need to generate 8 responses and 20 test
cases for each problem on the fly, execute them, and generate K problems for each prompt. In future
work, it would be worthwhile to explore methods that can provide rewards in real time, such as
directly training a reward model to predict difficulty, or investigating other efficient approaches.
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REPRODUCIBILITY STATEMENT

To help community reproduce our work, we described details of implementation in Section[3.1] which
reports the details of data, benchmark, models, and hyperparameters we use in our experiments. We
also report the framework we use for training and inference. In Appendix Figure [d]J][6] we report the
prompt template we use.

ETHICS STATEMENT

In the paper, all the data we use is open-sourced. TACO (Li et al., 2023) has Apache-2.0 license.
LiveCodeBench (Jain et al., 2025)) and USACO (Shi et al., 2024) are collected from open part of
common competition websites.
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A APPENDIX

Sorted by Difference (Aware - No Aware) Sorted by Difference (No Aware - Aware)
No Aware No Aware
Time Complexity Considerations { Aware Space Complexity Analysis. Aware

Input and output processing Breadth-First Search

Tree structure and properties Return Statements |
Handling multiple test cases in a program Iterating through an array
Hamming Distance Calculation Constraints Handling
Combinatorial Counting Modular Arithmetic
Graph traversal techniques Basic arithmetic operations
Input and output handling in competitive programming contexts Edge Case Handling
Large Number Handling Graph Representation {
. Character Frequency Counting " Function Definition
.;é; ‘Summation of sequences % Iterating through arrays
s Integer Division & Handing muliple test cases eficienty
2 Minimum Value Calculation 2 Looping Constructs
ig" Bitwise XOR operation g Complexity Analysis
B Prime factorization | o Time complexity analysis )
< Efficient Input/Output Handling ~ Sorting Algorithms

Handling Multiple Test Cases Efficiently Array Manipulation 4
Knapsack Problem Conditional Logic
Floating Point Precision Time complexity analysis

Euclidean distance calculation Conditional statements {
Handling edge cases and constraints Handling multiple test cases
Optimal Play Strategies Greedy Algorithms
Parsing and processing input data Input/Output Handling

Reading and parsing input data Conditional Statements |

Modular arithmetic Time Complexity Analysis.

Count (Log Scale) Count (Log Scale)

Figure 3: Examples of knowledge points where the count is increased (left) or decreased (right) when
using difficulty-aware sampling.

A.1 USAGE OF LLM

We used LLMs to polish the writing and assist in the implementation of parts of the codebase. All the
methodologies, ideas, conceptual contributions, experiment designs, analyses were developed solely
by the authors.
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Table 6: Case Study: Topic and knowledge points that were provided to the generator, and two
generated questions. Left is generated by our trained model, right is generated by original Qwen2.5-

14B-Instruct.

Topic String Analysis
Knowledge 1. Hamming Distance Calculation; 2. Time Complexity Optimization; 3. Condi-
points tional Logic and State Management; 4. Event Handling and Simulation; 5. Priority
Queue
Problem You are given a string s of length n consisting  In a messaging system, messages are sent as

of binary characters (‘0’ and ‘1’). You need
to perform several queries on this string.
Each query can be one of the following
types:

1. set(l, r, ¢): Set all characters in the
substring s[l:r+1] to the character ¢ (either
‘0’ or ‘17).

2. flip(l, r): Flip all characters in the
substring s[l:r+1] (change ‘0’ to ‘1’ and ‘1’
to ‘0°).

3. hamming(11, rl, 12, r2): Calculate the
Hamming distance between the substrings
s[11:r1+1] and s[12:r2+1].

Your task is to handle these queries ef-
ficiently.

Input:

- The first line contains the string s of length
n (1 <n <200,000).

- The second line contains an integer q (1 <
q < 400,000) representing the number of
queries.

- The next q lines describe the queries. Each
query is in one of the above formats.

- For each hamming query, output the
Hamming distance between the specified
substrings.

strings of binary digits. Sometimes, due to
technical issues, certain bits in the messages
might get flipped (0 becomes 1, and 1
becomes 0). To ensure the integrity of the
messages, a special protocol is used where
each message is sent alongside its “flipped”
version. Upon receiving both versions, the
receiver calculates the Hamming distance
between the original and the flipped message
to detect any errors.

Given two strings s and t of equal length
representing the original and flipped versions
of a message, your task is to write a function
that calculates the Hamming distance
between them. The Hamming distance
is defined as the number of positions at
which the corresponding bits are different.
Additionally, the function should handle up
to 10° queries efficiently, optimizing for
time complexity.
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Act as a Programming Teacher and create a new question and its solution based on
the provided topics and knowledge points. Ensure that the created questions:

1. Adhere to the provided topics.

2. Necessitate the combined use of the associated knowledge points.

# Example

Topics:

1. Graph Theory

2. Combinatorics

Knowledge Points:

1. Graph Coloring

2. Connected Components

3. Dynamic Programming

4. Modular Arithmetic

Created Question:

You are given a grid, consisting of $2$ rows and $n$ columns. Each cell of this grid
should be colored either black or white.

Two cells are considered neighbours if they have a common border and share the
same color. Two cells $A$ and $B$ belong to the same component if they are
neighbours, or if there is a neighbour of $A$ that belongs to the same component with
$BS.

Let's call some bicoloring beautiful ifit has exactly $k$ components.

Count the number of beautiful bicolorings. The number can be big enough, so print the
answer modulo $998244353$.

-----Input-----
The only line contains two integers $n$ and $k$ ($1 \le n \le 1000$, $1 \lek \le 2n$) —
the number of columns in agrid and the number of components required.

-----Output-----
Print a single integer — the number of beautiful bicolorings modulo $998244353$.

-----Examples-----
Input
34
Output
12
Input
41
Output
2

Input
12
Output
2

Topics:

1. String Manipulation

Knowledge Points:

1. Understanding and manipulating string data structures
2. Dynamic Programming

Try to create aquestion for the last one. Structureyourresponse as:
Created Question:
<Question>

Figure 4: 1-shot prompt example for problem generation. It is simplified for visualization, in real
prompt, we have 8-shot for in-context learning.
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918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
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Figure 5: 1-shot example prompt for testcase generation.
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972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
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Figure 6: Prompt demonstration for concept extraction.
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