
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

QUEST: INCENTIVIZING LLMS TO GENERATE DIFFI-
CULT PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models have achieved strong performance on reasoning tasks,
solving competition-level coding and math problems. However, their scalabil-
ity is limited by human-labeled datasets and the lack of large-scale, challenging
coding problem training data. Existing competitive coding datasets contain only
thousands to tens of thousands of problems. Previous synthetic data generation
methods rely on either augmenting existing instruction datasets or selecting chal-
lenging problems from human-labeled data. In this paper, we propose QueST, a
novel framework which combines difficulty-aware graph sampling for prompt and
difficulty-aware rejection fine-tuning that directly optimizes specialized generators
to create challenging coding problems. Our trained generators demonstrate superior
capability at creating challenging problems compared to even proprietary models
such as GPT-4o. We leverage this method to generate large-scale synthetic coding
problems, which we then use to distill from long Chain-of-Thought (CoT) models
or conduct reinforcement learning for smaller models, proving effective in both
scenarios. Our distilled model achieves the best performance compared to similarly
sized models trained on previous long CoT SFT datasets. By training generators to
create more difficult problems, QueST pushes the boundaries of reasoning abilities
in large language models.

1 INTRODUCTION

Test-time scaling through long chain-of-thought and large-scale reinforcement learning has dramati-
cally boosted the reasoning ability of large language models, enabling LLMs to solve competition-
level coding and math problems that were previously beyond their reach. Models like OpenAI o1
(OpenAI, 2024) and DeepSeek-R1 (Guo et al., 2025) have demonstrated remarkable performance on
challenging benchmarks such as Codeforces, AIME, and IOI, achieving expert-level problem-solving
capabilities through extensive reasoning traces that can span thousands of tokens. However, the
problems used for training these models even require expert-level human annotations, which severely
limits the scalability of LLM training. Current competitive coding datasets (Li et al., 2022; 2023)
contain only thousands to tens of thousands of problems. As LLMs become more capable, the
requirements for training data grow increasingly demanding—often requiring PhD-level experts in
mathematics, computer science, and algorithm design to propose novel problems that can genuinely
challenge these models. This process is not only extremely costly for requiring experts to propose
difficult problems but also fundamentally cannot scale in terms of both dataset size and problem
difficulty, creating a critical bottleneck in the development of next-generation reasoning models.

To mitigate this problem, methods for synthetic data generation and augmentation have been proposed.
Previous works have focused either on paraphrasing-based augmentation (Luo et al., 2025a; Yu et al.,
2024) or extracting concepts and recombining them based on co-occurrence probabilities (Tang
et al., 2024; Zhao et al., 2025). Some recent works have proposed leveraging model weaknesses
and extracting concepts to create new problems (Liang et al., 2025). More recently, reasoning-based
LLMs have presented the next paradigm in advancing large language model reasoning capabilities
(OpenAI, 2024; Guo et al., 2025). Works like Guo et al. (2025); Guha et al. (2025) created long
chain-of-thought responses from reasoning models and curated synthetic SFT datasets, effectively
helping small open-weight LLMs achieve superior performance in code and math tasks. Ahmad et al.
(2025) curated the largest open-source dataset by obtaining long CoT responses from DeepSeek-R1
multiple times for each problems, though the problems themselves are still sourced from human-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison between representative code reasoning datasets.

Code Datasets #Problems Long CoT Responses Synthetic Problems

CodeContest (Li et al., 2022) 13K ✗ ✗
TACO (Li et al., 2023) 26K ✗ ✗
Bespoke-Stratos (Labs, 2025) 17K ✓ ✗
Open-R1 Codeforces-cots (Face, 2025) 10K ✓ ✗
OpenCodeReasoning (Ahmad et al., 2025) 28K ✓ ✗
Ours (QueST) 100K ✓ ✓

labeled competition coding problems. These methods have narrowed the performance gap between
open-weight models and closed-weight reasoning models.

However, existing methods described above either focus on leveraging existing human-annotated
problems and curating synthetic responses from existing reasoning models, or rely on a fixed LLM to
generate new problems by prompting. In this paper, we are the first to propose a method that directly
trains an LLM generator to create challenging competitive code reasoning problems. We call our
method QueST, embarking on a quest to generate increasingly challenging code problems through
the combination of difficulty-aware graph sampling and difficulty-aware rejection fine-tuning. This
approach is more scalable and flexible compared to previous methods that used a fixed generator or
fixed human-labeled problems. Our proposed method makes the generator specialized and stronger
than even closed-weight strong instruction models at creating challenging problems. We leverage this
to generate the largest-scale code problem training set compared to previous synthetic data approaches,
and the statistics of our synthetic data with previous data are shown in Table 1. We obtained responses
from long chain-of-thought reasoning models, then leveraged the generated datasets to SFT small
models, achieving competitive scores for similar-sized models on code reasoning benchmarks like
LiveCodeBench (Jain et al., 2025) and USACO (Shi et al., 2024).

Our contributions can be summarized as follows:

• We introduce a novel difficulty-aware coding problems generation framework that combines
both difficulty-aware graph sampling and difficulty-aware rejection fine-tuning, which trains
specialized generators to create challenging coding problems.

• We create the largest synthetic code reasoning problem set to date, comprising over 100K
challenging coding problems paired with detailed chain-of-thought solutions from reasoning
models.

• We demonstrate that small models fine-tuned on our synthetic dataset achieve competitive
performance among similarly-sized models on LiveCodeBench and USACO benchmarks.
We also demonstrate effectiveness in RL experiments.

• We conduct comprehensive ablation studies and analyses of our proposed method and the
distribution of the generated coding problems.

2 QUEST

In this section, we present QUEST, our proposed method for generating difficult problems. We
focus our investigation on the generation of coding problems, as other forms of reasoning tasks
(e.g., mathematical reasoning) can be regarded as special cases of coding tasks (Jiao et al., 2025).
We begin by introducing our scaffolding framework for problem generation, which builds upon
MathScale (Tang et al., 2024). Next, we detail our strategies for incentivizing LLMs to produce more
difficult problems. Finally, we demonstrate how our scaffolding can be adapted to further enhance
the generation of challenging problems.

2.1 PRELIMINARY: PROBLEM GENERATION THROUGH CONCEPT GRAPH

Our scaffolding for problem generation is based on (Tang et al., 2024), which generates new problems
based on existing seed problems by prompting an LLM in three steps (i.e., concept extraction, graph
construction and problem generation).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Concept Extraction For each problem q in the seed problem set Qseed, we prompt an LLM to
extract concepts c (topics and knowledge points) from it. We follow the setting of Tang et al. (2024),
topics refers to general directions, knowledge points refers to more fine-grained concepts, example
can be found in Appendix Table 4. Note that problem generation can be guided later using the
concepts that we extracted in this step. The process can be defined formally as follows:

C = GQ((pextract,Qseed)) (1)

where pextract is the prompt used to extract concepts, GQ is our problem generator and C is the set of
concepts extracted. Detail prompts of pextract are in Appendix Table 6.

Graph Construction Once we obtain the concepts C, we proceed to identify plausible combina-
tions of these concepts. Two concepts are considered to form a reasonable combination if they have
frequently co-occurred within the same problem in the seed dataset. To capture these relationships,
we construct a concept graph in which nodes represent individual concepts, and edge weights encode
the strength of co-occurrence between concept pairs. The edge weight w(u, v) is defined as follows:

w(u, v) = log (freq(u, v) + ϵ) (2)

where u and v denote concept nodes, and freq(u, v) represents the observed co-occurrence frequency
of these concepts. A small constant ϵ is added to ensure numerical stability by preventing zero counts.

Given the constructed graph, we proceed to sample concept combinations, which are then utilized for
the generation of new problems. We start from a uniformly random sampling from all the topics and
subsequently perform up to six steps of a random walk on the graph (Tang et al., 2024). At each step,
the transition probability from node u to node v is defined as:

pu,v =
exp (w(u,v))∑

v′∈N (u) exp (w(u,v
′))

(3)

where N (u) denotes the set of nodes adjacent to u. After each random walk episode, we obtain a
sampled concept combination s, which is subsequently used for problem generation.

Problem Generation Given the sampled concept set s, we leverage an LLM to generate new
problems. We incorporate few-shot examples to guide the LLM in formulating problems. These
examples are selected from the pool of seed problems based on the Jaccard distance between their
respective sets of concepts. Formally, this process can be described as:

Qnew = GQ(pgenerate,S(C),Qseed) (4)

where S(C) denotes the set of sampled concepts, and pgenerate represents the prompt template utilized
for problem generation (see Appendix Table 4 for additional details).

At this stage, our problem generator is designed to produce new problems, rather than explicitly
targeting increased difficulty. The generation of more challenging problems will be addressed in the
subsequent sections.

2.2 DIFFICULTY-AWARE REJECTION FINETUNING

We focus primarily on the generation of challenging coding problems, though our approach is readily
extensible to other forms of reasoning tasks. We first present our method for measuring problem
difficulty, and then illustrate how this measure is employed to guide LLMs in producing more difficult
problems.

Difficulty Estimation A natural way to assess the difficulty of a generated problem is to examine
the consistency of the models multiple outputs. Wang et al. (2023a) finds that self-consistency is
highly correlated with accuracy, which reflects the uncertainty of the models, and also the difficulty of
the problem. When most solutions converge to a single outcome, the problem is likely straightforward.
Conversely, if the solutions diverge and produce inconsistent outputs, this indicates model uncertainty,
suggesting the problem is more difficult.

Building on this intuition, we define the difficulty of a problem using the average majority voting
rate of its solutions. We illustrate our metric using coding problems as a case study, noting that

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Concept

Extraction

Seed Questions
Prompt based on

concept graph

p

𝛿1 = 0.3

𝛿2 = 0.5

𝛿3 = 0.2

𝜹𝟒 = 0.9

𝛿5 = 0.7

𝛿6 = 0.4

𝛿7 = 0.6

𝛿8 = 0.3

𝛿 = 1 – Average

Majority Voting Rate

Difficulty-

Aware

Sampling

Trained

Generator

Sampled Questions

q1

q2

q3

q4

q5

q6

q7

q8

Generated

Questions!

Figure 1: The pipeline of QueST. We first extract concepts based on seed problems, then use difficulty-
aware sampling method described in Equation 10 to create prompts for problem generation. We
generate 8 problems for each prompt, calculate the difficulty δ of the generated problem based on
Equation 6, and use the most difficult problem as rejection fine-tuning data to train our generator.

other verifiable reasoning problems (e.g. math) can be regarded as a special case of this setting. Let
q ∼ GQ(pgenerate, s,Qseed) denote a generated coding problem (see Equation (4)), where s ∼ S(C)
is a sampled concept combination (see Section 2.1). The estimation proceeds in three steps. First,
we prompt gpt-4o to generate T test inputs, forming the set I = {i1, i2, . . . , iT } (details of the
prompt in Appendix Table 5). Second, we obtain M candidate solutions Y = {y1, y2, . . . , yM}
from gpt-4o. Third, we execute each ym ∈ Y on all inputs it ∈ I, producing output sets
Ot = {g(y1, it), g(y2, it), . . . , g(yM , it)}, where g(ym, it) denotes extracting the code from ym,
running it on input it, and recording the output. For each test input, the most likely output ot is
identified as the most frequent element in Ot:

ot = argmax
o∈Ot

f(o,Ot) (5)

where f(o,Ot) =
∣∣{x ∈ Ot | x = o}

∣∣ counts the occurrences of o in Ot. Finally, we quantify the
problem difficulty as

δ(q) = 1− 1

T

T∑
t=1

f(ot,Ot)

M
(6)

Intuitively, δ(q) measures the degree of disagreement among candidate solutions: the lower the
majority voting rate, the higher the difficulty. Thus, larger values of δ(q) correspond to more
challenging problems.

To further enhance the probability of generating valid synthetic problems, we filter out problems
where over half of the test case outputs from generated responses return None, indicating unsuccessful
code execution.

Rejection Fine-tuning Having introduced the difficulty measure δ(q), we now describe how it
is employed to construct a dataset of prompt–problem pairs for training LLMs to generate difficult
problems. The key idea is to sample multiple candidate problems from the same prompt and retain
only the most difficult one.

As discussed in Section 2.1, for each concept combination s, a problem can be generated via

q ∼ GQ(pgenerate, s,Qseed) (7)

where GQ denotes the LLM-based generator. More generally, let Mθ be the LLM parameterized by θ,
and let p denote the actual prompt (pgenerate instantiated with concept set s and seed problems Qseed)
used to query Mθ. By sampling K times, we obtain a set of candidate problems:

qk ∼ Mθ(p) for k = 1, . . . ,K (8)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We denote this set by Q = {q1, q2, . . . , qK}. We then select the most difficult problem according to
our measure δ(·):

q∗ = arg max
qk∈Q

δ(qk) (9)

Only q∗ is retained, while the remaining candidates are discarded. The resulting pair (p, q∗) is added
to the training set Dhard, which is used to fine-tune the problem generator Mθ.

2.3 DIFFICULTY-AWARE GRAPH CONSTRUCTION

This section extends our problem generation scaffolding (Section 2.1) to be difficulty-aware. In
the baseline setup, the initial edge weights of the concept graph are determined primarily by the
co-occurrence statistics of concepts within the same problems. Here, we further incorporate difficulty
by modeling the hardness of concepts with respect to the difficulty levels of the problems in which
they appear. Since each problem in the seed dataset (e.g., TACO; Li et al. (2023)) is annotated with
human-curated difficulty labels, we leverage this information when constructing the concept graph
for problem generation prompts. Specifically, beyond using co-occurrence counts as edge weights for
random walk sampling, we also incorporate the average difficulty of all problems that involve both
concepts connected by an edge. The new edge weights are defined as

w(u, v) = log (α · freq(u, v) + (1− α) · diff(u, v) + ϵ)

where diff(u, v) =
1

|Qu,v|
∑

q∈Qu,v

d(q), Qu,v = { q | u ∈ q, v ∈ q }. (10)

Here, α is a hyperparameter that balances the contribution of co-occurrence frequency and difficulty
and we set α = 0.2 in our experiments. The constant ϵ is included to avoid taking the logarithm
of zero. The set Qu,v consists of all problems containing both concepts u and v; its cardinality is
denoted by |Qu,v|. Finally, d(q) represents the human-annotated difficulty level of problem q, given
as an integer from 1 to 5.

3 EXPERIMENTS

In this section, we present the detail of our experiments. We first use our proposed difficulty measure
method for data selection. Then we show the long CoT SFT results using datasets distilled from
Qwen3-8B compared with previous strong baselines, and we show our generated datasets can also be
effective when used in RL training. We further present an ablation study to investigate the effect of
each role in our proposed method. Finally we have contamination analysis and statistics about our
generated data.

3.1 IMPLEMENTATION DETAILS

Seed data: We use TACO (Li et al., 2023) as seed data, which has human-annotated labels for
difficult. TACO has 25.4K training samples and 1K test samples. Each problems is annotated with
difficulty, test cases, and a list of topics. Samples in this dataset are collected from open-access sites
where programmers share problems with each other, including Aizu, AtCoder, CodeChef, Codeforces,
and LeetCode.

Benchmarks We use LiveCodeBench-V5 (Jain et al., 2025) and USACO as our evaluation bench-
marks. We use LiveCodeBench-V5 for direct comparison with a strong baseline (Ahmad et al., 2025);
USACO (Shi et al., 2024) is used because it is a representative code competition which contains
difficult problems and has already been curated as benchmark for evaluation.

Models: We use Qwen3-8B as our teacher model in distillation experiments, as it is efficient and has
competitive reasoning performance. We use Qwen2.5-Coder-7B-Instruct and Qwen3-8B-Base as our
student model, respectively. For the RL experiments, we use Qwen2.5-7B-Instruct model as starting
checkpoint for small-scale verification. We use Qwen2.5-14B-Instruct and GPT-4o as generators, as
they can follow instructions relatively well compared to smaller models.

Hyperparameters: We use vLLM 1 as our inference framework for both distillation and evaluation
experiments. We set temperature to 0.6 for all experiments. We set the batch size to 128 and the

1https://github.com/vllm-project/vllm

5

https://github.com/vllm-project/vllm

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Effect of different strata of synthetically generated coding problems on downstream perfor-
mance. δ refers our estimated difficulty defined in Section 2.2 . Response length is determined based
on responses generated by Qwen3-8B.

Selection of problems LiveCodeBench-V5 score Avg. response length in tokens

Random 3K 36.29 11.9K
Highest δ 3K 39.28 14.2K
Median δ 3K 36.35 14.1K
Lowest δ 3K 32.37 6.8K
Longest response 3K 38.35 22.6K

learning rate to 5e-5 for our SFT experiments, including the fine-tuning of the generator models. We
use VeRL 2 for our RL experiments, and use 128 as the rollout batch size, 64 as the mini-batch size,
and 16 as the rollout sample size. For all evaluation, we calculate averaged pass@1 across 16 runs.

3.2 USING ESTIMATED DIFFICULTY FOR DATA SELECTION

Before training the generator to produce difficult coding problems, we first need a trustworthy signal
that can serve as a proxy for difficulty when gold labels are unavailable for generated problems. As
mentioned above, we propose using δ we defined in Section 2.2 based on model responses. To verify
the usefulness of this signal, we conduct a preliminary experiment that selects subsets of generated
problems based on this signal for controlled comparison. We use our baseline graph random walking
process to generate 50K problems using TACO as seed data. For each problem, we generate 8
responses and compute δ. We then select 3K samples with the highest δ, 3K with the lowest δ, 3K
with δ closest to 0.5, and an additional 3K randomly sampled for comparison. We also use response
token length as another difficulty proxy and select 3K samples with the longest responses. Table 2
shows the results of using different selection methods and the performance of models trained on the
selected problems, with 8 responses generated for each problem to ensure the scale and significance
of our experiments. We observe that problems with the highest δ achieve the best performance, even
surpassing those with the longest token responses, and using significant less tokens. We can also
observe that for the problems with highest δ, the token length is higher than problems with median
and lowest δ, which indicates there are some positive correlations between token length and δ, but δ
is still a more effective and efficient signal compared to response length.

3.3 TRAINED GENERATOR FOR DISTILLATION

We then use our trained generator to generate problems and leverage these problems to obtain
responses from long chain-of-thought models (Qwen3-8B in our experiments) for training student
models. In Table 3, we conduct a comprehensive comparison between previous Long CoT SFT
datasets and our generated datasets on representative code reasoning benchmarks: LiveCodeBench-
V5 and USACO. For our method (QueST), as described in Section 3.1, we use Qwen2.5-14B-Instruct
to train a specialized generator under our reject fine-tuning and difficulty aware graph sampled
prompt, 20K and 100K represents the training data size. "7B" means we trained from Qwen2.5-
Coder-7B-Instruct, and "8B" means we trained from Qwen3-8B-Base. The results show that models
trained on our generated datasets achieve competitive performance compared to previous methods
using similar-sized models, while requiring smaller-scale training data and weaker teacher models,
considering OCR uses 700K long CoT SFT data distilled from DeepSeek-R1, while ours only uses
100K SFT data distilled from Qwen3-8B. We also observed that although our model (QueST-100K-
7B) shows slightly worse average performance than the previous method (OCR-Qwen-7B-Instruct),
it still outperforms the baselines on hard problems in USACO.

3.4 REINFORCEMENT LEARNING

Our generated data can also be used for RLVR (Reinforcement Learning with Verifiable Reward).
We use majority voting results produced by Qwen3-8B as pseudo output labels for each test case

2https://github.com/volcengine/verl

6

https://github.com/volcengine/verl

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Performance on LiveCodeBench-V5 and USACO. Note: In our method, we only use
Qwen3-8B as teacher model to generate responses for efficiency and due to compute limitations.
The content in brackets represents the generator models used for problem generation (GPT-4o for
MathScale), in our methods, we use our trained Qwen2.5-14B-Instruct as generator. 20K and 100K
means the number of training samples.

Model LiveCodeBench-V5 USACO

Easy Medium Hard Avg. Easy Medium Hard Avg.

Upper Bound (Teacher Models)

DeepSeek-R1 98.5 79.8 37.4 65.6 - - - -
Qwen3-8B 94.0 74.1 28.9 58.7 58.5 42.8 22.3 43.5

Baselines

OpenThinker-7B 80.6 16.9 1.6 25.5 11.0 2.1 0.0 5.0
R1-Distill-Qwen-7B 86.6 43.8 7.0 38.0 22.9 9.7 3.8 13.4
OlympicCoder-7B 82.1 49.4 12.2 40.9 31.4 12.5 1.3 17.0
OCR-Qwen-7B-Instruct 95.4 64.0 18.0 51.3 41.5 26.0 7.5 27.2
MathScale-20K-7B (GPT-4o) 82.8 36.6 8.2 34.9 28.0 15.6 1.3 16.7

Our Method

QueST-20K-7B 84.9 41.4 10.4 37.9 30.5 16.7 6.2 19.4
QueST-100K-7B 87.8 50.8 14.6 43.3 31.4 25.0 10.0 23.5
QueST-100K-8B 98.4 68.6 18.5 53.4 45.8 35.4 11.3 33.0

0 50 100 150 200 250
Step (0-250)

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 r
ew

ar
ds

Comparison of Training Rewards (0-250 steps, smoothed)

Qwen2.5-7B-Instruct-TACO
Qwen2.5-7B-Instruct-synthetic-baseline
Qwen2.5-7B-Instruct-synthetic-QueST

Figure 2: Training rewards comparison in the training process of RL under different datasets.

of each generated problem. Since our generated test cases are not guaranteed to be valid, we filter
out test cases where over half of the outputs are none (indicating failed execution for generated
solutions), then keep the remainder for RLVR. We use the GRPO (Shao et al., 2024) algorithm to train
Qwen2.5-7B-Instruct on 12K problems sampled from TACO, 6K data from our baseline synthetic
method (mathscale) (Tang et al., 2024), and 6K data from QueST. We report our results in Table 4,
which shows effectiveness of our proposed method.

We report the training reward curve during the training process in Figure 2. It shows that the model
trained on TACO datasets gains the highest reward score during the whole training stage, our baseline
synthetic method gains a lower score, and the model trained on a dataset generated by the QueST
method gains the lowest score. The training reward can serve as a proxy of the inverse difficulty of
these three different datasets.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: RL results on LiveCodeBench-V5

Model LiveCodeBench-V5

Easy Medium Hard Avg.

Qwen2.5-7B-Instruct 47.4 8.4 0.1 14.3
Qwen2.5-7B-Instruct TACO RL 56.7 10.8 1.1 17.3
Qwen2.5-7B-Instruct Baseline RL 56.0 9.6 3.2 17.6
Qwen2.5-7B-Instruct QueST RL 56.4 9.6 4.8 18.6

3.5 ABLATION STUDY

We conducted an ablation study for fair comparison across different settings, as shown in Table
5. In the first two rows of the table, we examine whether using difficulty-aware graph random
walking improves performance when using GPT-4o as the generator. The results demonstrate that
the difficulty-aware graph achieves clear improvement. In the third and fourth rows, we compare
performance when using the difficulty-aware graph with different generators: Qwen2.5-14B-Instruct
without further training and Qwen2.5-14B-Instruct under our rejection fine-tuning method (QueST).
The results show that when using difficulty-aware random sampling prompts, our fine-tuned generator
can bring better performance than the model without using our fine-tuning method. Therefore, Table
5 indicate both difficulty-aware sampling and rejection fine-tuning have positive effect and lead to
generating difficult problems.

Table 5: Ablation study on LiveCodeBenchV5. “Baseline” here represents the our baseline problem
generation pipeline (Tang et al., 2024) which we discussed in Section 2.1. Here we generate 20K
questions for all settings to fair comparison, and the base model we used to train is Qwen2.5-Coder-
7B-Instruct. “RFT” is abbreviation of our rejection fine-tuning method.

Methods LiveCodeBench

Easy Medium Hard Avg.

Problem Generator: GPT-4o

Baseline 82.8 36.6 8.2 34.9
Baseline w/ difficulty-aware graph 83.6 41.1 10.9 37.5

Problem Generator Qwen2.5-14B-Instruct

Baseline w/ difficulty-aware graph 85.0 39.2 8.0 36.1
Baseline w/ difficulty-aware graph w/ RFT (QueST) 84.9 41.4 10.4 37.9

3.6 ADDITIONAL ANALYSIS

We visualize and compare the 25 most sampled knowledge points with and without difficulty-aware
sampling in Appendix Figure 3. The figure shows that knowledge points sampled more frequently by
naive sampling than by difficulty-aware sampling tend to be more common overall, while knowledge
points sampled less frequently by naive sampling tend to be less common. In other words, difficulty-
aware sampling upweights infrequent knowledge points and downweights frequent knowledge points
compared to naive sampling. The infrequent knowledge points are visualized in the left figure and are
generally more difficult, including topics such as the “knapsack problem”, “Optimal Play Strategies”,
and “prime factorization”, compared to the basic concepts shown in the right figure.

We also conduct a case study on generated problems from both original model and model trained by
QueST framework in Appendix Table 6. It shows that the problem generated by our trained model
requires more complex operations and more knowledge compared the question generated by original
model.

We conduct contamination detection experiments on our generated datasets to exclude the effects
of data contamination on benchmark performance. Specifically, we compute token-based 50-gram
Jaccard similarity scores and the scores across all datasets and benchmarks we used are 0 which
indicates there is no contamination in our generated data.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4 RELATED WORK

4.1 SYNTHETIC DATA FOR LANGUAGE MODELS

Synthetic data has been widely used in training language models. Previous works have mainly
focused on using small sets of seed data and leveraging LLMs to augment them and generate larger
datasets. Some works (Honovich et al., 2023; Li et al., 2024a; Toshniwal et al., 2025; Wang et al.,
2023b; Tang et al., 2024) focus on sampling seed data as in-context learning exemplars to generate
new ones. Ge et al. (2025) proposed using personas to augment previous in-context learning synthetic
data generation methods. Xu et al. (2024); Luo et al. (2025a); Hu et al. (2025) focus on augmenting
existing samples to create more complex ones. Some methods have also explored how to generate
synthetic data from scratch (Li et al., 2024b; Xu et al., 2025). More recently, Qin et al. (2025)
investigated whether synthetic data follows similar scaling laws as real data. PromptCoT (Zhao
et al., 2025) also generates challenging problems based on mathematical concepts and rationale.
Tong et al. (2024) also proposed a difficulty-aware method but focuses on synthetic responses for
challenging problems. Liang et al. (2025) extract concepts from failure cases and synthesize new
problems during RL training. Additionally, there is research focused on leveraging pretraining or
web data to generate reasoning data in general domains (Yuan et al., 2025; Yue et al., 2024). Our
QueST framework focuses on a new perspective that aims to train a difficulty-aware generator to
generate difficult problems.

4.2 CODE REASONING

Code reasoning is an important capability of large language models. The reasoning ability of language
models can be enhanced using chain-of-thought (Wei et al., 2022), RLVR (OpenAI, 2024; Guo et al.,
2025; Lambert et al., 2025), and self-consistency (Wang et al., 2023a), in math (Hendrycks et al.,
2021) and code (Jain et al., 2025; Shi et al., 2024) domains. Muennighoff et al. (2025) and Ye
et al. (2025) focus on manually curating small-scale reasoning problems, which is sufficient to boost
models’ reasoning ability. More recently, Face (2025), Ahmad et al. (2025), and Guha et al. (2025)
have developed large-scale distillation methods from reasoning models to obtain high-quality long
CoT SFT datasets that can be used to train student models effectively. Nvidia et al. (2024) curate
reasoning datasets throughout the entire training pipeline. Li et al. (2025) introduce an innovative
paradigm that transforms traditional code reasoning tasks from their original format into a “given
code + test cases / input-output prediction” structure. Complementing these supervised learning
approaches, Luo et al. (2025b) demonstrate the effectiveness of reinforcement learning techniques
applied to verified code reasoning problems. However, how to generate difficult synthetic coding
problems and use them for training remains relatively underexplored.

5 CONCLUSION

In this paper, we propose a method for generating difficult code problems at scale. Specifically, we
investigated a pipeline that uses majority voting to compute a proxy of difficulty and employs this as a
signal for rejection fine-tuning of the problem generator, and combined it with novel difficulty-aware
graph sampling prompts. This enables the trained generator to produce challenging problems at scale.
We then use these generated problems for supervised fine-tuning (SFT) and reinforcement learning
(RL) to verify their effectiveness. As a novel synthetic data generation method, we compared our
approach with previous baselines at similar scales on code reasoning benchmarks and show that our
method achieves better performance even when using less SFT data, particularly for hard problems.

LIMITATIONS AND FUTURE WORK

Although our method shows promise for rejection fine-tuning a generator, we still face limitations
as the generator hasn’t been trained using RL. One primary reason is that our current difficulty
calculation is computationally expensive and challenging to implement in real-time to provide
difficulty rewards in an RL pipeline, considering that we need to generate 8 responses and 20 test
cases for each problem on the fly, execute them, and generate K problems for each prompt. In future
work, it would be worthwhile to explore methods that can provide rewards in real time, such as
directly training a reward model to predict difficulty, or investigating other efficient approaches.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To help community reproduce our work, we described details of implementation in Section 3.1, which
reports the details of data, benchmark, models, and hyperparameters we use in our experiments. We
also report the framework we use for training and inference. In Appendix Figure 4 5 6, we report the
prompt template we use.

ETHICS STATEMENT

In the paper, all the data we use is open-sourced. TACO (Li et al., 2023) has Apache-2.0 license.
LiveCodeBench (Jain et al., 2025) and USACO (Shi et al., 2024) are collected from open part of
common competition websites.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Wasi Uddin Ahmad, Sean Narenthiran, Somshubra Majumdar, Aleksander Ficek, Siddhartha Jain,
Jocelyn Huang, Vahid Noroozi, and Boris Ginsburg. Opencodereasoning: Advancing data dis-
tillation for competitive coding. In Second Conference on Language Modeling, 2025. URL
https://openreview.net/forum?id=aykM7KUVJZ.

Hugging Face. Open R1: A fully open reproduction of DeepSeek-R1, January 2025. URL https:
//github.com/huggingface/open-r1.

Tao Ge, Xin Chan, Xiaoyang Wang, Dian Yu, Haitao Mi, and Dong Yu. Scaling synthetic data creation
with 1,000,000,000 personas, 2025. URL https://arxiv.org/abs/2406.20094.

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, Ashima Suvarna, Benjamin Feuer, Liangyu
Chen, Zaid Khan, Eric Frankel, Sachin Grover, Caroline Choi, Niklas Muennighoff, Shiye Su,
Wanjia Zhao, John Yang, Shreyas Pimpalgaonkar, Kartik Sharma, Charlie Cheng-Jie Ji, Yichuan
Deng, Sarah Pratt, Vivek Ramanujan, Jon Saad-Falcon, Jeffrey Li, Achal Dave, Alon Albalak,
Kushal Arora, Blake Wulfe, Chinmay Hegde, Greg Durrett, Sewoong Oh, Mohit Bansal, Saadia
Gabriel, Aditya Grover, Kai-Wei Chang, Vaishaal Shankar, Aaron Gokaslan, Mike A. Merrill,
Tatsunori Hashimoto, Yejin Choi, Jenia Jitsev, Reinhard Heckel, Maheswaran Sathiamoorthy,
Alexandros G. Dimakis, and Ludwig Schmidt. Openthoughts: Data recipes for reasoning models,
2025. URL https://arxiv.org/abs/2506.04178.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
Zhang, Shirong Ma, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou,
Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei
Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chong Ruan, Damai Dai, Deli Chen, Dongjie
Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li,
H. Zhang, Hanwei Xu, Honghui Ding, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li,
Jingchang Chen, Jingyang Yuan, Jinhao Tu, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang,
Jin Chen, Kai Dong, Kai Hu, Kaichao You, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Mingxu Zhou, Meng Li, Miaojun Wang, Mingming
Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi
Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu,
Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou,
Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Tao Yun, Tian Pei, Tianyu Sun, T. Wang,
Wangding Zeng, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao,
Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin
Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu
Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao
Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi
Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan
Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu,
Yuyang Zhou, Y. X. Zhu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie,
Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun
Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang,
and Zhen Zhang. DeepSeek-R1 incentivizes reasoning in llms through reinforcement learning.
Nature, 645(8081):633–638, Sep 2025. ISSN 1476-4687. doi: 10.1038/s41586-025-09422-z.
URL https://doi.org/10.1038/s41586-025-09422-z.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. Unnatural instructions: Tuning
language models with (almost) no human labor. In Anna Rogers, Jordan Boyd-Graber, and

11

https://openreview.net/forum?id=aykM7KUVJZ
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://arxiv.org/abs/2406.20094
https://arxiv.org/abs/2506.04178
https://doi.org/10.1038/s41586-025-09422-z
https://openreview.net/forum?id=7Bywt2mQsCe

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 14409–14428, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.806. URL
https://aclanthology.org/2023.acl-long.806/.

Hanxu Hu, Simon Yu, Pinzhen Chen, and Edoardo Ponti. Fine-tuning large language mod-
els with sequential instructions. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Pro-
ceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers),
pp. 5589–5610, Albuquerque, New Mexico, April 2025. Association for Computational Lin-
guistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.288. URL https:
//aclanthology.org/2025.naacl-long.288/.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free eval-
uation of large language models for code. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=chfJJYC3iL.

Fangkai Jiao, Geyang Guo, Xingxing Zhang, Nancy F. Chen, Shafiq Joty, and Furu Wei. Prefer-
ence optimization for reasoning with pseudo feedback. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
jkUp3lybXf.

Bespoke Labs. Bespoke-stratos: The unreasonable effectiveness of reasoning distilla-
tion. www.bespokelabs.ai/blog/bespoke-stratos-the-unreasonable-effectiveness-of-reasoning-
distillation, 2025. Accessed: 2025-01-22.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James Validad Miranda, Alisa Liu, Nouha Dziri, Xinxi Lyu, Yuling Gu, Saumya Malik,
Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Christopher
Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi.
Tulu 3: Pushing frontiers in open language model post-training. In Second Conference on Language
Modeling, 2025. URL https://openreview.net/forum?id=i1uGbfHHpH.

Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nanning Zheng, Han Hu, Zheng Zhang, and
Houwen Peng. Common 7b language models already possess strong math capabilities, 2024a.
URL https://arxiv.org/abs/2403.04706.

Haoran Li, Qingxiu Dong, Zhengyang Tang, Chaojun Wang, Xingxing Zhang, Haoyang Huang,
Shaohan Huang, Xiaolong Huang, Zeqiang Huang, Dongdong Zhang, Yuxian Gu, Xin Cheng,
Xun Wang, Si-Qing Chen, Li Dong, Wei Lu, Zhifang Sui, Benyou Wang, Wai Lam, and Furu Wei.
Synthetic data (almost) from scratch: Generalized instruction tuning for language models, 2024b.
URL https://arxiv.org/abs/2402.13064.

Junlong Li, Daya Guo, Dejian Yang, Runxin Xu, Yu Wu, and Junxian He. CodeIO: Condensing
reasoning patterns via code input-output prediction. In Forty-second International Conference on
Machine Learning, 2025. URL https://openreview.net/forum?id=feIaF6vYFl.

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
Ge Li. Taco: Topics in algorithmic code generation dataset, 2023. URL https://arxiv.org/
abs/2312.14852.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097, December 2022. ISSN 1095-9203. doi:
10.1126/science.abq1158. URL http://dx.doi.org/10.1126/science.abq1158.

Xiao Liang, Zhong-Zhi Li, Yeyun Gong, Yang Wang, Hengyuan Zhang, Yelong Shen, Ying Nian Wu,
and Weizhu Chen. SwS: Self-aware weakness-driven problem synthesis in reinforcement learning
for llm reasoning, 2025. URL https://arxiv.org/abs/2506.08989.

12

https://aclanthology.org/2023.acl-long.806/
https://aclanthology.org/2025.naacl-long.288/
https://aclanthology.org/2025.naacl-long.288/
https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=jkUp3lybXf
https://openreview.net/forum?id=jkUp3lybXf
https://openreview.net/forum?id=i1uGbfHHpH
https://arxiv.org/abs/2403.04706
https://arxiv.org/abs/2402.13064
https://openreview.net/forum?id=feIaF6vYFl
https://arxiv.org/abs/2312.14852
https://arxiv.org/abs/2312.14852
http://dx.doi.org/10.1126/science.abq1158
https://arxiv.org/abs/2506.08989

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-Guang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, Yansong Tang, and Dongmei Zhang. Wizardmath: Empowering
mathematical reasoning for large language models via reinforced evol-instruct. In The Thirteenth
International Conference on Learning Representations, 2025a. URL https://openreview.
net/forum?id=mMPMHWOdOy.

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang
Wu, Xiaoxiang Shi, Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Er-
ran Li, Raluca Ada Popa, and Ion Stoica. Deepcoder: A fully open-source
14b coder at o3-mini level. https://pretty-radio-b75.notion.site/
DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-\
1cf81902c14680b3bee5eb349a512a51, 2025b. Notion Blog.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

Nvidia, Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H. Anh, Pallab Bhattacharya, Annika Brun-
dyn, Jared Casper, Bryan Catanzaro, Sharon Clay, Jonathan Cohen, Sirshak Das, Ayush Dattagupta,
Olivier Delalleau, Leon Derczynski, Yi Dong, Daniel Egert, Ellie Evans, Aleksander Ficek, Denys
Fridman, Shaona Ghosh, Boris Ginsburg, Igor Gitman, Tomasz Grzegorzek, Robert Hero, Jining
Huang, Vibhu Jawa, Joseph Jennings, Aastha Jhunjhunwala, John Kamalu, Sadaf Khan, Oleksii
Kuchaiev, Patrick LeGresley, Hui Li, Jiwei Liu, Zihan Liu, Eileen Long, Ameya Sunil Mahabalesh-
warkar, Somshubra Majumdar, James Maki, Miguel Martinez, Maer Rodrigues de Melo, Ivan
Moshkov, Deepak Narayanan, Sean Narenthiran, Jesus Navarro, Phong Nguyen, Osvald Nitski,
Vahid Noroozi, Guruprasad Nutheti, Christopher Parisien, Jupinder Parmar, Mostofa Patwary,
Krzysztof Pawelec, Wei Ping, Shrimai Prabhumoye, Rajarshi Roy, Trisha Saar, Vasanth Rao Naik
Sabavat, Sanjeev Satheesh, Jane Polak Scowcroft, Jason Sewall, Pavel Shamis, Gerald Shen,
Mohammad Shoeybi, Dave Sizer, Misha Smelyanskiy, Felipe Soares, Makesh Narsimhan Sreedhar,
Dan Su, Sandeep Subramanian, Shengyang Sun, Shubham Toshniwal, Hao Wang, Zhilin Wang,
Jiaxuan You, Jiaqi Zeng, Jimmy Zhang, Jing Zhang, Vivienne Zhang, Yian Zhang, and Chen Zhu.
Nemotron-4 340b technical report, 2024. URL https://arxiv.org/abs/2406.11704.

OpenAI. Openai o1 system card, 2024. URL https://arxiv.org/abs/2412.16720.

Zeyu Qin, Qingxiu Dong, Xingxing Zhang, Li Dong, Xiaolong Huang, Ziyi Yang, MAHMOUD
KHADEMI, Dongdong Zhang, Hany Hassan Awadalla, Yi R. Fung, Weizhu Chen, Minhao Cheng,
and Furu Wei. Scaling laws of synthetic data for language model. In Second Conference on
Language Modeling, 2025. URL https://openreview.net/forum?id=UmUXPXHtdl.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Ben Shi, Michael Tang, Karthik R Narasimhan, and Shunyu Yao. Can language models solve
olympiad programming? In First Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=kGa4fMtP9l.

Zhengyang Tang, Xingxing Zhang, Benyou Wang, and Furu Wei. Mathscale: Scaling instruction
tuning for mathematical reasoning. In Forty-first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?id=Kjww7ZN47M.

Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu, and Junxian He. DART-math: Difficulty-aware
rejection tuning for mathematical problem-solving. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=zLU21oQjD5.

Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav Kisacanin, Alexan Ayrapetyan, and Igor
Gitman. Openmathinstruct-2: Accelerating AI for math with massive open-source instruction
data. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=mTCbq2QssD.

13

https://openreview.net/forum?id=mMPMHWOdOy
https://openreview.net/forum?id=mMPMHWOdOy
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-\1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-\1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-\1cf81902c14680b3bee5eb349a512a51
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2406.11704
https://arxiv.org/abs/2412.16720
https://openreview.net/forum?id=UmUXPXHtdl
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://openreview.net/forum?id=kGa4fMtP9l
https://openreview.net/forum?id=kGa4fMtP9l
https://openreview.net/forum?id=Kjww7ZN47M
https://openreview.net/forum?id=zLU21oQjD5
https://openreview.net/forum?id=zLU21oQjD5
https://openreview.net/forum?id=mTCbq2QssD

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023a. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 13484–
13508, Toronto, Canada, July 2023b. Association for Computational Linguistics. doi: 10.18653/
v1/2023.acl-long.754. URL https://aclanthology.org/2023.acl-long.754/.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=_VjQlMeSB_J.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. WizardLM: Empowering large pre-trained language models to follow
complex instructions. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=CfXh93NDgH.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned LLMs with
nothing. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=Pnk7vMbznK.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. LIMO: Less is more for
reasoning. In Second Conference on Language Modeling, 2025. URL https://openreview.
net/forum?id=T2TZ0RY4Zk.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=N8N0hgNDRt.

Weizhe Yuan, Jane Yu, Song Jiang, Karthik Padthe, Yang Li, Ilia Kulikov, Kyunghyun Cho, Dong
Wang, Yuandong Tian, Jason E Weston, and Xian Li. Naturalreasoning: Reasoning in the wild
with 2.8m challenging questions, 2025. URL https://arxiv.org/abs/2502.13124.

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen. Mammoth2: Scaling instructions from the
web. Advances in Neural Information Processing Systems, 2024.

Xueliang Zhao, Wei Wu, Jian Guan, and Lingpeng Kong. PromptCoT: Synthesizing olympiad-
level problems for mathematical reasoning in large language models. In Wanxiang Che, Joyce
Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Association for
Computational Linguistics: ACL 2025, pp. 18167–18188, Vienna, Austria, July 2025. Association
for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.935.
URL https://aclanthology.org/2025.findings-acl.935/.

14

https://openreview.net/forum?id=1PL1NIMMrw
https://aclanthology.org/2023.acl-long.754/
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=Pnk7vMbznK
https://openreview.net/forum?id=T2TZ0RY4Zk
https://openreview.net/forum?id=T2TZ0RY4Zk
https://openreview.net/forum?id=N8N0hgNDRt
https://arxiv.org/abs/2502.13124
https://aclanthology.org/2025.findings-acl.935/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

101 102

Count (Log Scale)

Modular arithmetic
Reading and parsing input data

Parsing and processing input data
Optimal Play Strategies

Handling edge cases and constraints
Euclidean distance calculation

Floating Point Precision
Knapsack Problem

Handling Multiple Test Cases Efficiently
Efficient Input/Output Handling

Prime factorization
Bitwise XOR operation

Minimum Value Calculation
Integer Division

Summation of sequences
Character Frequency Counting

Large Number Handling
Input and output handling in competitive programming contexts

Graph traversal techniques
Combinatorial Counting

Hamming Distance Calculation
Handling multiple test cases in a program

Tree structure and properties
Input and output processing

Time Complexity Considerations

Kn
ow

le
dg

e
Po

in
ts

Sorted by Difference (Aware - No Aware)
No Aware
Aware

102 103

Count (Log Scale)

Time Complexity Analysis
Conditional Statements
Input/Output Handling

Greedy Algorithms
Handling multiple test cases

Conditional statements
Time complexity analysis

Conditional Logic
Array Manipulation
Sorting Algorithms

Time complexity analysis)
Complexity Analysis
Looping Constructs

Handling multiple test cases efficiently
Iterating through arrays

Function Definition
Graph Representation

Edge Case Handling
Basic arithmetic operations

Modular Arithmetic
Constraints Handling

Iterating through an array
Return Statements

Breadth-First Search
Space Complexity Analysis

Kn
ow

le
dg

e
Po

in
ts

Sorted by Difference (No Aware - Aware)
No Aware
Aware

Figure 3: Examples of knowledge points where the count is increased (left) or decreased (right) when
using difficulty-aware sampling.

A.1 USAGE OF LLM

We used LLMs to polish the writing and assist in the implementation of parts of the codebase. All the
methodologies, ideas, conceptual contributions, experiment designs, analyses were developed solely
by the authors.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Case Study: Topic and knowledge points that were provided to the generator, and two
generated questions. Left is generated by our trained model, right is generated by original Qwen2.5-
14B-Instruct.

Topic String Analysis

Knowledge
points

1. Hamming Distance Calculation; 2. Time Complexity Optimization; 3. Condi-
tional Logic and State Management; 4. Event Handling and Simulation; 5. Priority
Queue

Problem You are given a string s of length n consisting
of binary characters (‘0’ and ‘1’). You need
to perform several queries on this string.
Each query can be one of the following
types:
1. set(l, r, c): Set all characters in the
substring s[l:r+1] to the character c (either
‘0’ or ‘1’).
2. flip(l, r): Flip all characters in the
substring s[l:r+1] (change ‘0’ to ‘1’ and ‘1’
to ‘0’).
3. hamming(l1, r1, l2, r2): Calculate the
Hamming distance between the substrings
s[l1:r1+1] and s[l2:r2+1].

Your task is to handle these queries ef-
ficiently.

Input:
- The first line contains the string s of length
n (1 ≤ n ≤ 200,000).
- The second line contains an integer q (1 ≤
q ≤ 400,000) representing the number of
queries.
- The next q lines describe the queries. Each
query is in one of the above formats.
- For each hamming query, output the
Hamming distance between the specified
substrings.

In a messaging system, messages are sent as
strings of binary digits. Sometimes, due to
technical issues, certain bits in the messages
might get flipped (0 becomes 1, and 1
becomes 0). To ensure the integrity of the
messages, a special protocol is used where
each message is sent alongside its “flipped”
version. Upon receiving both versions, the
receiver calculates the Hamming distance
between the original and the flipped message
to detect any errors.

Given two strings s and t of equal length
representing the original and flipped versions
of a message, your task is to write a function
that calculates the Hamming distance
between them. The Hamming distance
is defined as the number of positions at
which the corresponding bits are different.
Additionally, the function should handle up
to 105 queries efficiently, optimizing for
time complexity.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Act as a Programming Teacher and create a new question and its solution based on
the provided topics and knowledge points. Ensure that the created questions:
1. Adhere to the provided topics.
2. Necessitate the combined use of the associated knowledge points.

Example
Topics:
1. Graph Theory
2. Combinatorics
Knowledge Points:
1. Graph Coloring
2. Connected Components
3. Dynamic Programming
4. Modular Arithmetic
Created Question:
You are given a grid, consisting of 2 rows and n columns. Each cell of this grid
should be colored either black or white.
Two cells are considered neighbours if they have a common border and share the
same color. Two cells A and B belong to the same component if they are
neighbours, or if there is a neighbour of A that belongs to the same component with
B.
Let's call some bicoloring beautiful if it has exactly k components.
Count the number of beautiful bicolorings. The number can be big enough, so print the
answer modulo 998244353.

-----Input-----
The only line contains two integers n and k ($1 \le n \le 1000$, $1 \le k \le 2n$) —
the number of columns in a grid and the number of components required.

-----Output-----
Print a single integer — the number of beautiful bicolorings modulo 998244353.

-----Examples-----
Input
3 4
Output
12
Input
4 1
Output
2
Input
1 2
Output
2

Topics:
1. String Manipulation
Knowledge Points:
1. Understanding and manipulating string data structures
2. Dynamic Programming

Try to create a question for the last one. Structure your response as:
Created Question:
<Question>

Figure 4: 1-shot prompt example for problem generation. It is simplified for visualization, in real
prompt, we have 8-shot for in-context learning.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

You are an expert programmer. Your task is to write some test cases to the programming problems to help verify the expected p rogram solutions. You
only need to give me the inputs in the required format. Now, let me introduce the details to you:

Program Format

You will be given programming problems that accept standard input-output stream. As a result, the test case inputs should contain only the inputs text
stream.

Response Format

You should return me the test case inputs in ̀ json_object` format. You need to generate **20** groups of test case inputs, and each key field is named
as `test_case_i`, where ̀ i` is the index of the test case. The value of each key is the test case inputs in the required format.

Example for Standard Input-Output Stream

Programming Problem

Polycarp has n different binary words. A word called binary if it contains only characters '0' and '1'. For example, these words are binary: "0001", "11",
"0" and "0011100".

Polycarp wants to offer his set of n binary words to play a game "words". In this game, players name words and each next wo rd (starting from the
second) must start with the last character of the previous word. The first word can be any. For example, these sequence of words can be named during
the game: "0101", "1", "10", "00", "00001".

Word reversal is the operation of reversing the order of the characters. For example, the word "0111" after the reversal beco mes "1110", the word
"11010" after the reversal becomes "01011".

Probably, Polycarp has such a set of words that there is no way to put them in the order correspondent to the game rules. In this situation, he wants to
reverse some words from his set so that: the final set of n words still contains different words (i.e. all words are uniqu e); there is a way to put all
words of the final set of words in the order so that the final sequence of n words is consistent with the game rules.

Polycarp wants to reverse minimal number of words. Please, help him.

-----Input-----

The first line of the input contains one integer t ($1 \le t \le 10^4$) — the number of test cases in the input. Then t test cases follow.

The first line of a test case contains one integer n ($1 \le n \le 2\cdot10^5$) — the number of words in the Polycarp's set. Next n lines contain these
words. All of n words aren't empty and contains only characters '0' and '1'. The sum of word lengths doesn't exceed $4 \cdot10^6$. All words are
different.

Guaranteed, that the sum of n for all test cases in the input doesn't exceed $2\cdot10^5$. Also, guaranteed that the sum of word lengths for all test
cases in the input doesn't exceed $4\cdot10^6$.

-----Output-----

Print answer for all of t test cases in the order they appear.

If there is no answer for the test case, print -1. Otherwise, the first line of the output should contain k ($0 \le k \le n$) — the minimal number of words
in the set which should be reversed. The second line of the output should contain k distinct integers — the indexes of the words in the set which
should be reversed. Words are numerated from 1 to n in the order they appear. If $k=0$ you can skip this line (or you can print an empty line). If
there are many answers you can print any of them.

-----Example-----
Input
4
4
0001
1000
0011
0111
3
010
101
0
2
00000
00001
4
01
001
0001
00001

Output
1
3
-1
0

2
1 2

Response

{
 "test_case_0": "3\n3\n101\n110\n011\n2\n01\n10\n4\n0001\n1000\n0011\n0111",
 "test_case_1": "2\n2\n01\n10\n3\n000\n111\n110",
 ...
}

Get Started

Note that in the above example, I omit some test case inputs. You should return **20** groups of inputs to me in ̀ json_object` format.

Programming Problem

{problem}

Response

Figure 5: 1-shot example prompt for testcase generation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Act as a Programming Teacher and analyze the provided question. Start by identifying 1 or 2 general topics
that a student is being assessed on. Structure your response as:
"Topics:
1. <Topic 1>
2. <Topic 2>"

Next, highlight 1 to 5 specific knowledge points that the question evaluates. Structure your response as:
"Specific Knowledge Points:
1. <Knowledge Point 1>
2. <Knowledge Point 2>
3. <Knowledge Point 3>
4. <Knowledge Point 4>
5. <Knowledge Point 5>"

The topics and specific knowledge points should be terms that are concise and commonly used in academia
or industry.

Provided question:
{{ question }}

Analysis:

Figure 6: Prompt demonstration for concept extraction.

19

	Introduction
	QueST
	Preliminary: Problem Generation Through Concept Graph
	Difficulty-aware Rejection Finetuning
	Difficulty-aware Graph Construction

	Experiments
	Implementation Details
	Using Estimated Difficulty For Data Selection
	Trained Generator for Distillation
	Reinforcement Learning
	Ablation study
	Additional Analysis

	Related Work
	Synthetic Data for Language Models
	Code Reasoning

	Conclusion
	Appendix
	Usage of LLM

