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Abstract

The prevalence of violence in daily life poses significant threats to individuals’
physical and mental well-being. Using surveillance cameras in public spaces has
proven effective in proactively deterring and preventing such incidents. However,
concerns regarding privacy invasion have emerged due to their widespread deploy-
ment. To address the problem, we leverage Dynamic Vision Sensors (DVS) camera
to detect violent incidents and preserve privacy since it captures pixel brightness
variations instead of static imagery. We introduce the Bullying10K dataset, en-
compassing various actions, complex movements, and occlusions from real-life
scenarios. It provides three benchmarks for evaluating different tasks: action
recognition, temporal action localization, and pose estimation. With 10,000 event
segments, totaling 12 billion events and 255 GB of data, Bullying10K contributes
significantly by balancing violence detection and personal privacy persevering.
And it also poses a challenge to the neuromorphic dataset. It will serve as a valu-
able resource for training and developing privacy-protecting video systems. The
Bullying10K opens new possibilities for innovative approaches in these domains.

1 Introduction

The issue of violence in daily life poses a significant threat to individuals’ physical and mental
well-being. In addition to merely punishing for violent actions, it is crucial to deter and prevent their
occurrence proactively. Implementing surveillance cameras in public spaces has effectively facilitated
the prompt detection of emerging violent behavior. While this strategy has curbed violent incidents
[1, 2], the widespread deployment of these cameras stirs up concerns over potential invasions of
individuals’ privacy, leading to significant apprehensions.

The proliferation of cameras has dramatically enhanced the ease of data collection. Cameras are com-
monly employed for indoor and outdoor surveillance, capturing instances of violence or emergencies
[3, 4, 5]. Nonetheless, this data-gathering method frequently requires obtaining explicit consent from
recorded participants for public data collection. Obtaining comprehensive consent from individuals
captured on camera poses significant challenges [3, 6]. In addition to capturing movement data,
personal information related to privacy, such as facial features and attire, is recorded and potentially
stored on untrusted third-party servers with high-performance capabilities, thereby intensifying the
potential for privacy breaches. Privacy refers to personal information that an individual does not wish
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Figure 1: Visualization of the Bullying10K dataset. For each example, the right section illustrates
the stream of events captured by a Dynamic Visual Sensor (DVS) camera, showcasing the dynamic
changes in brightness at each pixel. The left section demonstrates the related event frame transformed
from the event stream and corresponding human pose keypoints labels. This enables us to observe
specific actions and scenes.

to be accessed or understood by others. The disclosure of such information might result in a loss of
benefits or harm to the individual’s interests. Privacy preserving involves measures to ensure that
private information contained within data is either eliminated or made extremely difficult to extract.
Facial data is one of the most commonly used types of information for identity recognition. It has
been widely adopted for applications such as facial payment systems [7] and device unlocking [8],
making it one of the most concerned about in terms of privacy. Therefore, in this article, the primary
focus of privacy protection is on facial information used in critical payment and unlocking scenarios
rather than broadly on whether an individual can be identified. At present, most of the commonly
employed violence detection datasets primarily utilize RGB images. We aim to devise a strategy that
effectively identifies unusual and violent incidents while minimizing the risk of privacy breaches
during normal circumstances.

Dynamic Vision Sensors (DVS) cameras [9], which capture pixel brightness variations, provide
an innovative alternative to conventional cameras that produce image frames at fixed frequencies.
Instead, DVS cameras generate an event stream that records each pixel’s brightness changes, either
enhancement or reduction. As a result, it becomes challenging to visually identify the captured
objects. Although some techniques attempt to reconstruct images from DVS data [10, 11], these
approaches grapple with issues such as low contrast and blurriness and may even require additional
sensor information for assistance [11]. Consequently, extracting detailed user information suitable
for recognition systems from DVS cameras becomes a significant challenge, naturally reinforcing
privacy persevering measures. At the same time, the high sensitivity of DVS cameras ensures their
stable performance under uncontrolled luminary conditions and diverse environmental states [12].
As an event-driven camera, DVS consumes low power when the scene is static, reducing energy
consumption and mitigating information redundancy compared to traditional cameras. However,
although datasets captured using DVS cameras exist [13, 14, 15], most are employed for traditional
image classification tasks. Existing action recognition datasets [16, 17] primarily focus on generic



Table 1: Comparison of different neuromorphic datasets.

Dataset #Year #Sensor #Type #Object  #Sec Per Example #pose #Event Count
ASLAN-DVS [18] 2019 Davis240c reproduced action - No -
N-MNIST [14] 2015 ATIS  reproduced digit images 0.3s - 300M/4K
N-CALTECH101 [14] 2015 ATIS  reproduced images 0.3s - 1B/0.1M
DVS-CIFAR10 [13] 2017 Davis128 reproduced images 1.2s - 2B/0.2M
HMDB-DVS [18, 19] 2019 Davis240c reproduced action 19s No 3B/0.5M
ES-ImageNet [20] 2021 - conversion  images - - -
UCF-DVS [18, 21] 2019 Davis240c reproduced action 25s No 12B/0.9M
N-Omniglot [15] 2022 Davis346 reproduced char images - - -
DVS-Gesture [17] 2017 Davis128 real action 6s No 500M/0.4M
NCARS [22] 2018 ATIS real cars 0.1s - 95M/4K
ASL-DVS [23] 2020 Davis240 real hand 0.1s - 2B/21K
PAF [16] 2019 Davis346 real action 5s No -
DailyAction [24] 2021 Davis346 real action 5s No -
Bullying10K 2023 Davis346 real action 2-20s Yes 12B/1.2M

simple action recognition with limited scale and simplistic labels. Thus, they are insufficient for
detecting complex and rapid actions and overlapping individuals, characteristic of violent incidents.

To address these concerns, we leverage the unique characteristics of DVS cameras and propose an
event-based dataset called Bullyingl0K. The dataset aims to detect violent incidents in videos while
ensuring privacy protection. Instead of relying on conversion algorithms or reproduction methods
that can be time-saving and resource-saving, we chose to capture real-life scenarios and subjects
using DVS cameras. This approach allows us to avoid data biases that may arise from the process of
RGB cameras of original datasets. The dataset captures subjects engaging in various actions under
different views and lighting conditions. In addition to data privacy persevering, the Bullying1 0K
dataset stands out from other DVS datasets by encompassing more complex and rapid actions and
instances where individuals may obscure each other. This inclusion introduces new challenges to
event-based neuromorphic datasets.

In conclusion, the design of the Bullying10K dataset aims to fulfill the real-time detection require-
ments of violent behavior while maximizing the privacy protection of the individuals captured in the
footage. This dataset will serve as valuable training data for developing privacy-preserving video
systems, providing new insights and opportunities for future research.

Our contributions are as follows:

1. We propose a large-scale DVS bullying recognition dataset: Bullying10K. It contains 10,000
event segments, totaling 12 billion events and 255 GB of data. The actions in the videos are
characterized by their complexity, rapidity, and occlusion of individuals.

2. We provide three benchmarks for comparing the performance of different methods: an action
recognition benchmark, an temporal action localization benchmark, and a pose estimation
benchmark. For the pose estimation task, we provide the keypoints of human pose.

3. We present the DVS community with a trainable dataset to detect violent scenes without
compromising privacy. It makes the anticipation and research of violent scenarios possible.

2 Related Work

DVS Dataset Early DVS datasets were typically derived from pre-existing image classification
datasets [13, 14]. They captured the brightness differences of pixels caused by camera or image
motion using DVS cameras. However, generating meaningful temporal data from static images proved
challenging. [17, 16] captured people in real scenarios, showcasing different actions through hand
movements and providing early event-based classification task benchmarks. However, these datasets
were relatively small, and the actions displayed were somewhat repetitive. In contrast to traditional
classification tasks, [15] introduced a dataset for few-shot tasks, reconstructing the drawing process
of character strokes and creating meaningful temporal data. [18] attempted to capture existing action
recognition datasets using DVS cameras. However, video reproduction failed to capture the event
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Figure 2: The flow of the data acquisition process. We employed two DVS cameras, positioned on
the left and right sides, respectively. Following the recording, the DVS outputs an event stream for
pre-processing. This processed data was then employed for three distinct tasks: action recognition,
temporal action localization, and pose estimation.

characteristics in natural scenes, especially motion blur caused by high-speed motion or significant
changes in illumination conditions. Constructing a dataset suitable for violence detection requires
capturing data with complex actions, fast movement, and occlusion, which existing datasets are not
explicitly designed for. In Table 1, we provide an overview of several DVS datasets, where #Event
Count means the total number of events of the dataset and the average number of each example.

Violent Dataset The construction of appropriate datasets for detecting violent actions are crucial to
promote research in automated detection technology. [25] proposed a dataset created by extracting
clips from short films comprising only 200 video segments. [26] collected 1,000 data samples by
capturing snippets from hockey games. [27] gathered realistic scenes involving multiple groups
engaged in specific actions. [28] compiled the RWF-2000 dataset by amassing 2,000 sample clips
from the internet. [29] extracted segments from Hollywood movies to create a dataset.

Spiking Neural Networks (SNNs) are models that simulate the behavior of neurons in the brain. In
contrast to Artificial Neural Networks (ANNs), SNNs transmit signals through discrete spikes, and
the accumulation of membrane potentials in SNNs allows them to handle time series data effectively,
making them well-suited for processing event-based data. However, due to the non-differentiability of
spike sequences, applying the traditional backpropagation (BP) algorithm directly to training SNNs
poses significant challenges. As a result, various methods have been proposed to explore effective
training approaches for SNNs [30, 31, 32, 33, 34, 35, 36, 37, 38].

Privacy-Preserving Action Recognition Image or video editing stands as the most prevalent method
of ensuring visual privacy. These methods can be broadly categorized into the following three:
Filtering: This involves techniques like spatial downsampling, blurring, and pixelation of images
[39, 40, 41, 42]. Intuitively, these methods are effective in preserving privacy. However, by treating all
information uniformly, the removal of private data can significantly hinder accurate action recognition.
Empirical Obfuscation: This method masks privacy-sensitive information irrelevant to the primary
task. Examples include using object detection or segmentation to edit or eliminate faces or bodies
[43, 44]. Its efficacy depends on the detector’s performance and the adaptability between the target and
source domains. Information outside of empirical information might still be left exposed. Learning-
based Obfuscation: This approach balances task performance and privacy protection. It actively
suppresses sensitive attributes within visual data via adversarial learning [45, 46, 47]. However, for
effective privacy assurance, training such a model demands a substantial amount of computational
power.



3 Bullyingl0K Dataset

In this section, we elaborate on the acquisition process, preprocessing methods, and annotation details
of the Bullying10K dataset. Simultaneously, we analyze multiple attributes of the dataset, including
its temporal length, keypoints motion, and spatial event distribution.

3.1 Data Acquisition

Environment Setting For data collection, we utilize two Davis346 [48], a high-speed event camera
that captures pixel brightness changes with microsecond precision. Each pixel’s brightness change
triggers an event (¢, x, y, p), where (x, y) represents the spatial coordinates of the pixel, ¢ denotes the
event’s time, and p is either 0 or 1, indicating the polarity of the brightness change (enhancement
or reduction). To capture multiple viewing angles and ensure diversity in the collected data, we
position two DVS cameras on the left and right sides of the filming scene, as depicted in Figure 2. For
consistency in the dataset, the cameras were positioned 5 meters apart, with both camera lenses were
oriented at a 30-degree angle from the direct front. Additionally, To capture a diverse range of data
and to more closely align with real-world conditions, we set up two lighting conditions: light and dark.
The sensitivity of the DVS cam-
eras allows for a time precision
of less than 1us, which results
in more noise under dark con-
ditions compared to light ones.
The camera lenses have a fo-
cal length of 4mm, an aperture
of 1.6, and an exposure time of
20ms to ensure an appropriate
filming range and exposure. we
invited 25 distinct participants,
leading to 50 recording groups
in total. The gender ratio among
participants was 1:1. Instead of
merely repeating a specific ac-
tion, and participants were en-
couraged to execute movements
freely while ensuring the action
type remained consistent, adding
to the dataset’s diversity and
complexity. Each event segment handshake_L_dark — greeting_L light ~figerguess_L_light ~ walking_R_light
contains two participants who as-
sume the roles of a perpetrator
and a victim during segments in-
volving violent actions. In con-
trast, sections depicting friendly
actions involve the cooperation between the two participants. Actors are instructed to perform a
specific action in each video segment, and we collect ten valid clips for each action. The duration of
each sample segment is action-dependent, ranging from 2 to 20 seconds.

punching L_light

pushing R _light

Figure 3: Visualization of human pose keypoints labels on event
frames. The labels denote the action name, camera position, and
lighting conditions.

Preprocessing The Davis346 camera directly outputs data in the aedat4 file format, specifically
designed for storing event streams. To facilitate subsequent processing and analysis, we transform the
raw data into the widely used npy format. npy is a common file format for storing NumPy [49] array
data, enabling effortless preservation and recovery of multidimensional data, matrices, and other
data structures. Throughout this transformation, we organized the event stream into 10-millisecond
units to maintain temporal precision while effectively compressing the data. This strategy improves
convenience and reduces file size. For user-friendly data manipulation, we supply code that merges
the event stream into frames and reads the data.

Quality Control To ensure data quality and usability of the data, we marked the position of each
camera before the start of filming, along with the relevant settings of the DVS camera (including
aperture, focal length, etc.), and maintained consistency in these settings for each capture. To enhance



data redundancy and robustness, we introduced a manual screening step to optimize the data collection
process. We captured twelve sample segments for each action group. Following data collection, we
conducted manual screening to exclude poorly captured segments, using only ten segments per group
for the final dataset. This ensures that every sample segment in the dataset possesses a good quality,
facilitating subsequent research and analysis.

3.2 Data Annotation

3.2.1 Category Label
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Figure 4: Statistical data and analysis of Bullying10K. (a) motion of keypoints. (b) the ratio of events
in different polar. (c) distribution of events. (d) IoU of individual. (e) distribution of frame number.
(f) distribution of event numbers. (g) event number in the sample.

We conduct detailed classification and annotation for each sample after filming for action recognition
tasks to identify the represented action accurately. Our dataset consists of ten actions, including six
violent actions (punching, kicking, hair grabbing, strangling, pushing, and slapping) and four friendly
actions (handshaking, finger guessing, greeting, and walking). We further organized each category
based on subjects, lighting scenes, and camera positions. Each group is named using the subject’s
code, action name, illumination, and camera position.

3.2.2 Pose Estimation

Pose estimation is a task that involves identifying a person’s body position and keypoints in a video
or an image. Precise pose estimation facilitates effective action recognition, making it an essential
precursor to subsequent action recognition tasks. To acquire human pose data for each DVS video



segment, we simultaneously leverage the RGB data captured with the event data. The same camera
captures both data types and offers overlapping scenes with highly consistent content. This advantage
allows us to employ well-established pose estimation algorithms to predict the RGB dataset and
obtain initial human pose labels. Specifically, we utilize AlphaPose [50] as an automated labeling
tool, a multi-person pose estimation system. We employ the ResNet50 [51] backbone pre-trained on
the Haple dataset, while the annotation process involved using the YOLOX [52] algorithm trained
on the COCO dataset [53] as an object detector. Our annotation target includes 26 keypoints of the
human body, as specified in [50], and the label information is saved in the COCO format. Upon
obtaining initial labels, we manually calibrated the labels, as illustrated in Figure 3. It is important to
note that direct pose estimation algorithms for DVS data are still in the early stages of development.
Moreover, due to the inherent characteristics of DVS data, the events do not explicitly represent
human poses, which compounds the complexity of directly utilizing DVS data for pose annotation.

3.3 Data Analysis

The Bullying10K dataset encompasses 10,000 sample clips, each with a duration ranging from 2 to
20 seconds. It contains an amount of 12 billion valid events, resulting in a total data volume of 255
GB. Figure 4 (e,f,g) presents the distribution of frames, events, and events per frame in each sample
clip within the dataset. Notably, the average sample length of Bullying10K surpasses existing event
datasets captured with DVS cameras. This addresses the limitation of shorter datasets captured by
DVS cameras, providing new challenges in establishing long-range dependencies between event data.
Figure 4 (a) displays the results obtained by
analyzing the movement distance of keypoints
between consecutive frames. Different key-
points exhibit distinct motion distribution pat-
terns, with the most prominent trends observed — 0#1
in the wrist and elbow movements, aligning with

human motion characteristics. To quantify the o5
degree of task overlap in the video, we calcu-
late the Intersection over Union (IoU) of the
bounding boxes for two characters appearing
in the same frame. Figure 4 (d) visualizes the
distribution of IoU values, which are primarily
concentrated between 0.1 and 0.5. This indi-
cates a significant number of instances where = %] ‘ . . ‘ :
characters overlap within this dataset. 02 04 06 08 L0
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As illustrated in Figure 4 (b), our analysis re- Figure 5: PR curves for each category obtained

veals a slightly lower occurrence ratio of posi- .51 the X3D model trained on Bullying10k.
tive and negative polarity events. Moreover, we

visualize the ratio of positive and negative events

for each action category within the dataset. As shown in Figure 4 (c). The movement distribution of
actions such as punching and strangling predominantly occurs in the upper part of the image, while
walking exhibits a higher likelihood of occurring in both the upper and lower parts of the image.

4 Evaluation and Task

We have provided three benchmark tasks: action recognition, temporal action localization, and pose
estimation.

4.1 Action Recognition

Experimental Setting The action recognition task aims to predict the corresponding action labels
based on input images. Each sample segment in the dataset includes a single behavior, making it
suitable for single-label classification tasks. During preprocessing, the event streams are combined
into frames, forming a sequence that is then used to perform the action. The Bullying10K dataset has
been divided into training and validation sets with an 8:2 ratio, and the temporal unit for integrating
the event stream is set to 10 ms. We provided a corresponding interface in the code to ensure
data consistency. Given many frames and the need for batch training, we randomly crop video



Table 2: Performance of different action recognition models on Bullying10k.

Model backbone step 4 step 10 step 16
gap0 gap2 gap4 gap0 gap2 gap4 gapO gap2 gap4
C3D [55] Conv3D 47.60 49.05 52.10 51.70 54.75 57.20 6035 68.55 71.25
TAM [56] ResNet 54.85 5920 62.00 57.85 60.80 65.05 5820 66.90 71.20
R2Plus1D [57]  ResNetl8  54.60 57.15 60.15 56.50 61.60 65.45 5820 65.70 69.25
R3D [58] ResNetl8 5720 61.05 62.10 58.90 65.46 68.60 62.70 69.75 72.50
SlowFast [59] ResNet50  57.80 60.30 61.55 60.10 66.50 70.90 61.70 70.55 74.00
X3D [60] ResNet 6030 62.40 64.80 6330 69.40 72.15 65.75 72.45 76.90

SNN [61] SEW-ResNet19 51.75 53.00 53.85 56.40 59.50 62.85 5848 64.05 67.05

Table 3: Performance of different privacy-preserving action recognition models on Bullying10k.

Model RGB DVS DS-2[47] DS-4[47] GB-3[45] GB-5[45] BDQ-1[62] BDQ-2 [62]

R3D [58] 64.00 66.80 63.30 63.15 62.70 61.45 60.10 59.75
SlowFast [59] 59.25 69.00 57.80 55.40 57.20 54.95 60.20 59.45
X3D [60] 63.20 70.80 60.75 52.25 58.20 47.80 67.15 65.60

segments to a fixed length, sampling at 0, 2, and 4 intervals. We employed various commonly used
action recognition models to evaluate the performance of the Bullyingl 0K dataset. We explored
the performance of spiking neural networks on this dataset, showcasing their potential for action
recognition tasks.

Evaluation Metric In the classification task, we measure the performance of the network by
calculating the accuracy of the output corresponding to the labels. However, misjudgment of violent
events can have severe consequences and cause irreparable harm. Violent scenarios occur less
frequently than non-violent ones, implying a substantial class imbalance in real-world situations.
Relying solely on accuracy as an evaluation metric may not adequately reflect the model’s ability to
predict violent events accurately. To address this issue, we have employed the Precision-Recall (PR)
curve [54]. The PR curve allows us to examine the model’s predictive capabilities across varying
judgment thresholds.

Results and Analysis Table 2 presents a detailed comparison of the performance of several widely
used action recognition models on the Bullying10K dataset. It includes the backbone architectures
of each model and their respective operational configurations. We conducted experiments using
frame intervals of 0, 2, and 4, with three different temporal step lengths of 4, 10, and 16. The results
demonstrate that increasing the frame interval and temporal step length contributes to improved
precision of the models. However, even models that exhibit strong performance in traditional visual
classification tasks did not yield satisfactory results on the BullyinglOK dataset, indicating the
dataset’s unique challenges. Furthermore, performed a visual analysis of the corresponding PR
curve of the X3D model on the Bullying10K dataset. The PR curve reveals significant variations in
performance across different action categories, underscoring the dataset’s complexity and the need
for robust recognition models.

We implemented different privacy protection methods on the corresponding RGB frames of the
Bullying10k dataset. We observed that after employing privacy protection with RGB data, there is a
decline in performance. However, DVS data demonstrated slightly superior results compared to RGB
data. DVS inherently offers advantages such as resilience to significant illumination changes, motion
blur resistance, and reduced data redundancy. Therefore, for tasks like action recognition that rely on
motion characteristics, the features captured by DVS are particularly beneficial.

4.2 Temporal action localization

Experimental Setting In surveillance videos, violent scenarios often occur irregularly and sporadi-
cally. Due to the few background disturbances and noise in event data, we can naturally concatenate
multiple samples to form extended sequences. In our task, we input a video frame sequence that
encompasses segments from different action categories randomly extracted from the dataset and



Table 4: Performance of different temporal action localization models on Bullying10k.

Model Feature AUC ARQ1 ARQ5 ARQ10 ARQ@100

BSN [67] TSN [63] 759 31.1 70.5 75.8 77.6
BSN TSM [64] 755 31.8 71.2 75.8 77.2
BMN [68] TSN 80.3 34.6 74.3 81.0 82.0
BMN TSM 81.0 36.0 75.3 82.4 82.7

Table 5: Performance of different pose recognition models on Bullying10k.

SimpleBaseline [69] SimpleBaseline [69] HRNet [70] HRNet [70] SimpleBaseline [69]

Model ™ R e oNet-50) (ResNet-101)  (HRNet-ws32) (HRNet-ws48) (Spiking ResNet-50)
AP 62.6 63.6 627 628 54.1

AP 88.3 88.2 88.2 87.8 84.6

AP7® 67.4 67.7 67.5 67.2 57.6

APM 583 593 58.6 59.5 493

APL 73.4 74.6 73.9 749 64.9
AR 65.9 67.0 663 66.7 585

integrate them into longer video sequences. And aim to predict the action label along with its
corresponding start and end times. The ground truth annotations are constructed based on the re-
spective time intervals. For training on the Bullying10K dataset, we have chosen commonly used
temporal action localization models. To achieve more accurate testing results, we provided action
recognition data for the pre-trained features at the same ratio. Additionally, we trained the model for
the localization task at a 1:3 ratio. Initially, we pre-trained the TSN [63] and TSM [64] models on the
action recognition task, which serve as the feature extractors for the localization models. We extract
features from the dataset and store them for subsequent analysis and processing.

Evaluation Metric Average recall [65] and Area Under the Curve (AUC) [66] are commonly used
metrics to evaluate action localization. Concurrently, we employ the AR@N indicator for assessment,
representing the recall rate under the condition of N proposals. This study considers N to be 1, 5, 10,
and 100. Additionally, we calculate the AUC for the AR-AN curve.

Results and Analysis We present
the accuracy of several commonly
used temporal action localization al-
gorithms on Bullying10K for compar-
ative evaluation. They exhibit varying
performances under different features.
On the other hand, performance signif-
icantly diminishes with the reduction
of proposals. It is worth exploring a
model designed for processing event
datasets that can maintain higher pre-
cision with fewer proposals.

4.3 Pose estimation

Experimental Setting Human pose
estimation typically involves provid-
ing an image or video containing one

or multiple individuals and outputting
the corresponding locations of vari- Figure 6: Taking the prediction results of the SimpleBaseline

ous keypoints for each person. These Mmodel with ResNet101 as the backbone, we visualize the
keypoints include the head, shoulders, skeleton and heatmap of the prediction results, respectively.
arms, and legs. Different datasets may
have different numbers of joints, and
in the case of Bullying10K, we use 26




keypoints. Pose estimation can provide additional information for action recognition. We split the
dataset at an 8:2 ratio and have provided the corresponding pose annotations along with the data to
ensure consistency. We evaluate the performance of Bullying1 0K using several commonly used pose
estimation models.

Evaluation Metric The standard metric used to measure pose estimation is usually based on
Object Keypoint Similarity (OKS) [71]. OKS is a scale-invariant measure of localization accuracy
and is utilized to evaluate how closely the predicted keypoints of a model match the ground truth

2 2.2 .
keypoints. OKS = Zi[eXp(i(%"[ 5/(2; fé))](s(v‘>0)], where d; is the distance between the position of
predicted keypoints and the ground truth. v; denotes the visibility of related keypoints. s indicates
the object scale. k; is the predefined constant that controls falloff. Average Precision (AP) and Recall
(AR) are used, including AP, AP0 (OKS is at 0.50),AP™ APM AP AR to measure the accuracy

of different models on the Bullying10K dataset.

Results and Analysis Table 5 presents the results of multiple commonly used pose estimation
models on the Bullyingl0K dataset. However, these models exhibit relatively low accuracy on
the dataset, indicating that Bullying1OK poses substantial challenges for pose estimation tasks.
Additionally, although HRNet has shown superior capabilities to SimpleBaseline on other RGB
datasets, it achieved lower accuracy on our dataset. This discrepancy may be attributed to the unique
nature of our event-based dataset, which significantly differs from RGB images. Furthermore, we
investigated the potential of SNN in posture estimation by testing the SNN backbone using the
SimpleBaseline algorithm. To enhance the interpretability of the results, we visualized relevant output
images and presented heatmaps for selected samples.

5 Discussion

This research introduces a novel event-driven dataset called Bullying10K, which utilizes Dynamic
Vision Sensor (DVS) cameras to detect instances of violent behavior while preserving individual
privacy. This approach offers a novel possibility for privacy preservation, distinct from traditional
image surveillance methods. It has an influence in the field of privacy protection and security
surveillance.

However, typically, the kind of private information that cameras can capture is varied and encompasses
aspects like facial details, gait patterns, and even individuals’ habits of daily life. Some recent
technologies can identify specific individuals using non-facial information [72, 73, 74]. Our dataset
might struggle to prevent leaks of non-facial information, such as gait data. Still, we wish to
emphasize that facial data is the most commonly used and has been incorporated into many crucial
applications. This type of privacy is our primary focus in this paper.

Moreover, for the reason for clarity in labeling and for comparability during model validation, our
dataset defines specific, commonly observed actions. It’s challenging to cover every possible violent
or non-violent action a person might exhibit comprehensively. However, an incomplete category set
might increase the risk of classification errors in the model, which could adversely affect judgments
regarding violence.

The dataset addressed the limitations of existing event-driven datasets by featuring complex, rapid
movements and overlapping figures, presenting higher complexity and challenges. By offering a
large-scale dataset, Bullying10K enables researchers to explore complex actions and contributes to
advancements in violence detection and privacy-preservation techniques.
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