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Abstract

Large Language Models (LLMs) excel at mem-
orizing extensive knowledge across diverse do-
mains, yet selectively forgetting specific informa-
tion is crucial for their safe and compliant deploy-
ment. Existing unlearning methods typically fine-
tune models using forget data, retain data, and
calibration models. However, these additional
gradient updates blur the boundary between for-
get and retain knowledge, compromising overall
model performance. To avoid this negative im-
pact, we propose Generation-time Unlearning via
Adaptive Restriction and Detection (GUARD), a
novel framework that dynamically performs un-
learning solely during inference. Specifically, our
approach employs a prompt classifier to detect
unlearning targets and extract forbidden tokens,
dynamically penalizing and filtering candidate to-
kens via token matching and semantic matching to
prevent leakage of forgotten information. Experi-
mental evaluations on copyright unlearning tasks
(Harry Potter dataset and MUSE benchmark) and
entity unlearning (TOFU dataset) demonstrate
that GUARD significantly improves forgetting
quality without compromising the fluency or gen-
eral capabilities of the model, effectively balanc-
ing unlearning effectiveness with model utility.

1. Introduction
The rapid development of large language models (LLMs)
has driven significant progress across diverse fields (Achiam
et al., 2023; Team et al., 2023; Touvron et al., 2023;
Guo et al., 2025; Singhal et al., 2023; Taylor et al.,
2022; Yan et al., 2025), yet it also poses challenges re-
lated to privacy (Staab et al., 2023; Mireshghallah et al.,
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2023; Das et al., 2025; Di et al., 2024), copyright compli-
ance (Karamolegkou et al., 2023; Grynbaum & Mac, 2023;
Chu et al., 2024; Zhang et al., 2024c;b), and content relia-
bility (Harandizadeh et al., 2024; Zhang et al., 2023; Chua
et al., 2024; Liu et al., 2023; Pang et al., 2025). Specifi-
cally, LLMs may unintentionally memorize sensitive data,
necessitating effective methods to remove such informa-
tion in compliance with regulations like GDPR (European
Union, 2016). To address the high computational costs of
retraining, research has focused on LLM unlearning tech-
niques (Cao & Yang, 2015; Jia et al., 2023; Fan et al., 2023;
Liu et al., 2025; Xu, 2024; Wang et al., 2024; Yao et al.,
2024b; Ding et al., 2024; Cha et al., 2024; Ramakrishna
et al., 2025), broadly categorized into fine-tuning-based
and training-free approaches. Fine-tuning-based methods
update model parameters using targeted forget data, with
regularization on retain data (Maini et al., 2024a; Wang
et al., 2024; Zhang et al., 2024a), whereas training-free
methods utilize in-context prompting without modifying
parameters (Pawelczyk et al., 2023; Muresanu et al., 2024;
Thaker et al., 2024). However, both approaches struggle
with the trade-off between model utility and forget quality,
and remain vulnerable to adversarial regeneration of “for-
gotten” information (Chen et al., 2025; Lynch et al., 2024;
Doshi & Stickland, 2024; Yuan et al., 2025), highlighting
the ongoing challenge of balancing effective unlearning and
model performance.

In this work, we explore a generation-time unlearning
method to avoid the impact on unrelated knowledge. Specifi-
cally, we propose Generation-time Unlearning via Adaptive
Restriction and Detection (GUARD). As illustrated in Fig-
ure 1, GUARD consists of three steps: In Step 1, we use a
simple MLP, which takes the pre-computed embedding of
the prompt as input, to classify whether the input prompt
belongs to the forget target or not. In Step 2, for identified
forget prompts, we retrieve the original answer and extract
the forbidden token. In Step 3, we apply a token-level hard
matching strategy to identify and block forbidden token
sequences during generation, combining it with an SBERT-
based (Reimers & Gurevych, 2019) semantic soft matching
strategy to dynamically penalize and filter tokens, thereby
preventing the model from leaking forgotten content.
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Our contributions are mainly two folds:

• We introduce Generation-time Unlearning via Adaptive
Restriction and Detection (GUARD), a dynamic unlearn-
ing approach that does not require retraining / fine-tuning
to achieve LLM Unlearning. The design of GUARD
does not touch on updates of model parameters, ensuring
the fluency of the generated language after unlearning,
and maintaining performance as close as possible to that
of the retained model, without causing catastrophic for-
getting.

• Extensive experiments on three LLM Unlearning tasks,
including unlearning copyright content from the Harry
Potter dataset and the MUSE benchmark, as well as en-
tity unlearning on the TOFU dataset, demonstrate the
superior performance of our method, maintaining the
model utility to the largest content while ensuring satisfy-
ing forget quality.

2. Preliminaries
2.1. Dataset Setup and Notation

We consider a standard machine unlearning setup, where the
full training dataset is denoted as D = {zi = (xi, yi)}Ni=1,
where xi is the input data and yi denotes the correspond-
ing labels. The dataset is divided into three disjoint sub-
sets: a forget set Df , a retain set Dr, and optionally, an
auxiliary generalization set Dg, which is drawn from an
out-of-distribution source. A learning algorithm A maps the
dataset D to a parameterized model θ = A(D).

The following notations distinguish different models derived
from the dataset: θo = A(D) is the original model trained
on the full dataset. θr = A(Dr) denotes the retained model,
which is trained from scratch on the retain set Dr, excluding
Df . Finally, θu refers to the unlearned model, which is pro-
duced by an unlearning algorithm U , ideally approximating
θr without requiring retraining.

2.2. Fine-tuning-based Unlearning

Many existing unlearning methods (Yao et al., 2024b; Maini
et al., 2024a; Wang et al., 2024; Zhang et al., 2024a; Chen
et al., 2025; Chen & Yang, 2023) approach the problem by
formulating it as a regularized fine-tuning process, optimiz-
ing an objective of the following form:

Ltotal = λ1Lforget + λ2Lretain + λ3Lcustom, (1)

where Lforget encourages forgetting, often through gradi-
ent ascent or loss maximization on Df , Lretain ensures that
the model preserves performance on Dr, and Lcustom pro-
vides greater flexibility and customization in the unlearning
process. However, these approaches typically rely on di-
rectly modifying the model parameters, which may risk

catastrophic forgetting.

2.3. Generation-time Unlearning

In contrast to traditional fine-tuning-based methods, our ap-
proach performs unlearning directly during generation time,
without modifying the original model parameters. Given
a fixed, fully-trained model θo, we construct an unlearned
model θu by applying an adaptive perturbation mechanism
in the output space. Specifically, for each input x that corre-
sponds to a forgetting target, we define:

h(x; θu) = Unlearn(h(x; θo)), (2)

where h(x; θo) denotes the logits or soft predictions from
model θo. The key objective is to suppress memorization
of the forget set Df , while preserving similarity to the re-
trained model θr on the retain set Dr, and maintaining
generalization on Dg .

3. Method
Traditional unlearning methods typically rely on fine-tuning,
which often leads to challenges such as catastrophic forget-
ting and degraded model utility. To address this, we propose
Generation-time Unlearning via Adaptive Restriction and
Detection (GUARD), a training-free framework that pre-
vents LLMs from reproducing sensitive content marked for
forgetting, without compromising general capabilities. Our
method comprises three key components:

• Prompt classification: A lightweight classifier identifies
whether an input query targets forgettable content;

• Forbidden token extraction: For detected forget queries,
we retrieve the most similar prompt from the forget set
Df and extract its corresponding forbidden tokens from
its assoicated answer;

• Controlled generation: We apply beam search with
token-level hard matching and SBERT-based (Reimers &
Gurevych, 2019) soft matching to dynamically penalize
and filter candidate tokens, preventing unintended memo-
rization during decoding.

3.1. Prompt Classification

The first component of our framework aims to identify
whether a given prompt should be unlearned. We adopt
a two-stage approach: first, we use a frozen LLM (to be
unlearned later) to extract semantic embeddings for each
prompt; then, we train an MLP on these embeddings to
predict whether the prompt belongs to the forget target.

Let zi ∈ Rd be the semantic embedding of the i-th prompt,
computed by averaging the penultimate-layer hidden states

2
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of a frozen causal LLM:

zi =
1

Li

∑Li

j=1
h
(l)
i,j ·mi,j , (3)

where mi,j ∈ {0, 1} is the attention mask and Li =∑
j mi,j is the actual input length. We then train an MLP

classifier C(·) to output the probability of the prompt be-
longing to the forget class:

pC(f | zi) = Softmax(Wzi + b)f , (4)

where W and b are learnable parameters. Additional train-
ing details are in Appendix B. Prompts classified as forget
proceed to the next stage.

3.2. Forbidden Token Extraction

For queries classified as forget prompts, we retrieve the
most relevant QA pair from the forget set Df . Let A =
{A1, A2, . . . , AM} be the set of answers in Df , where each
Ai contains sensitive content.

To identify the most relevant answer A∗ for input x, we
compute semantic similarity between x and each Ai using
SBERT and select the top match:

A∗ = arg max
Ai∈A

sim(x, Ai). (5)

Here, sim(·, ·) denotes cosine similarity between SBERT
embeddings. Retrieval details are in Appendix C.

We then extract sensitive fragments from A∗, denoted as:

F(A∗) = {f1, f2, . . . , fK}. (6)

These fragments form the forbidden token set used to con-
strain generation. Extraction details and method compar-
isons are provided in Appendices E.2 and G.3.

3.3. Controlled Generation

We adopt beam search to iteratively expand candidate se-
quences while applying dynamic filtering at each step to
prevent generation of forgotten content. Let the current
sequence be:

T1:n = [t1, t2, . . . , tn], (7)

We sample top-ranked candidates tn+1 from the model’s
predictive distribution and extend each by appending to
T1:n. To block sensitive outputs, we apply two penalties:
token-level hard matching and SBERT soft matching.

Token-level hard matching. We build a trie over tokenized
forbidden sequences for efficient suffix matching. At each
step, given candidate T1:n+1, we check if its suffix matches
any fk ∈ F . If a complete match or a partial match ex-
ceeding a threshold β is found, the candidate is pruned via

an infinite penalty; otherwise, a penalty proportional to the
match length is applied:

Ptoken
(
T1:n+1

)
=


∞, if suffix(T1:n+1) ∈ {fk};
αtoken · Lmatch, if Lmatch < β;

0, otherwise,
(8)

where Lmatch is the longest matching suffix length, and β =
1 ensures any nonzero match triggers an infinite penalty.

SBERT-based soft semantic matching. To go beyond
exact matching, we use SBERT to compute the seman-
tic similarity between the last generated word wlast in
T1:n+1 and each forbidden token fk ∈ F . Let s =
maxfk sim(wlast, fk), where sim(·, ·) is cosine similarity
between SBERT embeddings. A hard penalty is applied if
s ≥ δ; otherwise, a soft penalty scaled by αsbert is used:

Psbert
(
T1:n+1

)
=

{
∞, s ≥ δ,

αsbert s, otherwise,
(9)

We set δ = 0.5, and study its effect in Appendix G.

Total penalization and beam update. At each decoding
step, the total penalty for T1:n+1 is computed as:

Ptotal
(
T1:n+1

)
= Ptoken

(
T1:n+1

)
+ Psbert

(
T1:n+1

)
. (10)

If Ptotal = ∞, the candidate is immediately pruned. Oth-
erwise, its total cost C

(
T1:n+1

)
is computed by adding the

penalty to the negative log-likelihood of the next token:

C
(
T1:n+1

)
= − logP (tn+1 | T1:n)+Ptotal

(
T1:n+1

)
. (11)

All candidate extensions are ranked by their total cost C,
and the top candidates are retained for the next beam search
iteration. If a sequence is penalized to ∞ at any step, it
is discarded entirely. This ensures that sensitive content
marked for unlearning is never produced during generation.

4. Experiment
In this section, we evaluate the proposed method against
existing baseline approaches on three established LLM un-
learning tasks. Specifically, we consider entity unlearning
on the TOFU dataset (Maini et al., 2024b). Additional
results on MUSE-News and the Harry Potter dataset are
included in Appendix G.1 and Appendix G.2, respectively,
with ablation studies presented in Appendix. G.3.

4.1. Baseline Methods

We compare GUARD against a diverse set of unlearning
baselines, grouped into four categories. Gradient-based
methods include Gradient Ascent (GA) (Jang et al., 2022),
GradDiff (GD) (Liu et al., 2022), KL minimization (KL)

3
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Table 1. We evaluate our approach and baseline methods on 1% TOFU dataset using three base LLMs: Llama2-7B, Phi-1.5B, and
OPT-2.7B. The metrics reported include Forget Quality (FQ), Model Utility (MU), ROUGE-L on the retain set (R-RL), and ROUGE-L on
the forget set (F-RL). For comparison, results from the original LLM and the retain-tuned LLM are also provided. The top two performing
methods are marked with blue .

Base LLM Llama2-7B Phi-1.5B OPT-2.7B

Metric FQ(↑) MU(↑) F-RL(↓) R-RL(↑) FQ(↑) MU(↑) F-RL(↓) R-RL(↑) FQ(↑) MU(↑) F-RL(↓) R-RL(↑)

Original LLM 4.4883e-06 0.6239 0.9851 0.9818 0.0013 0.5195 0.9607 0.9276 0.0013 0.5112 0.7537 0.8807
Retained LLM 1.0 0.6267 0.4080 0.9833 1.0 0.5233 0.4272 0.9269 1.0 0.5067 0.4217 0.7669

GA 0.0068 0.5990 0.4817 0.9204 0.0541 0.5058 0.4914 0.8012 0.0286 0.4717 0.5222 0.7789
KL 0.0030 0.5994 0.4922 0.9172 0.0541 0.5063 0.4958 0.8003 0.0541 0.4937 0.4799 0.7551
GD 0.0068 0.5998 0.4869 0.9182 0.0286 0.5117 0.4991 0.7959 0.0541 0.4846 0.4405 0.7595

LLMU 0.0030 0.5999 0.4891 0.9236 0.0143 0.5083 0.3380 0.7685 0.1649 0.0 0.0144 0.0119

PO 0.0030 0.6323 0.1752 0.9169 0.0541 0.5064 0.4958 0.8003 0.0068 0.4586 0.1350 0.6378
DPO-RT 0.0068 0.6322 0.2595 0.9091 0.0541 0.5012 0.2890 0.7302 0.1649 0.0 0.0010 0.0036
NPO-RT 0.0030 0.5994 0.5049 0.9270 0.0286 0.5092 0.4877 0.8210 0.0541 0.4938 0.4998 0.7718

FLAT (Pearson) 0.0541 0.6130 0.4508 0.9347 0.0286 0.5155 0.4716 0.8692 0.0541 0.4958 0.3892 0.7879

ICUL 0.0005 0.6239 0.4772 0.9818 0.0286 0.5195 0.0564 0.9276 0.0143 0.5112 0.0897 0.8807
Output Filtering 0.0002 0.6239 0.0 0.9818 2.1563e-05 0.5195 0.0 0.9276 6.5768e-05 0.5112 0.0 0.8807

Prompt 0.0005 0.6239 0.5915 0.9818 0.0143 0.5195 0.1136 0.9276 0.0143 0.5112 0.7636 0.8807
GUARD 0.1649 0.6239 0.3910 0.9818 0.1649 0.5195 0.4214 0.9276 0.4045 0.5112 0.4257 0.8807

(Maini et al., 2024b), Large Language Model Unlearning
(LLMU) (Yao et al., 2024b), and Mismatch (Liu et al., 2024).
Preference-based methods include Preference Optimizatio
(PO) (Maini et al., 2024b), Direct Preference Optimization
(DPO) (Rafailov et al., 2023), Negative Preference Opti-
mization (NPO) (Zhang et al., 2024a), and FLAT (Wang
et al., 2024). Model editing methods include Task Vectors
(Ilharco et al., 2022) and Who’s Harry Potter (WHP) (El-
dan & Russinovich, 2023). Training-free methods include
In-Context Unlearning (ICUL) (Pawelczyk et al., 2023),
Output Filtering (Thaker et al., 2024), and Prompt-based
strategies. Detailed descriptions of these methods are pro-
vided in Appendix D, and the corresponding experimental
settings are summarized in Appendix E.1.

4.2. Entity Unlearning

Experiment setup. We evaluate on the TOFU
dataset (Wang et al., 2024), where the goal is to unlearn
a small subset (e.g., 1%) of author-related QA pairs while
retaining other knowledge. Main experiments use Llama2-
7B (Touvron et al., 2023), Phi-1.5B (Li et al., 2023a), and
OPT-2.7B (Zhang et al., 2022), with additional results on
Falcon3-7B (Team, 2024), Llama3.2-3B (Grattafiori et al.,
2024), and Qwen2.5-7B (Yang et al., 2024) in Appendix G.

Evaluation metrics. To evaluate both forgetting effective-
ness and model utility, we adopt two metrics from the TOFU
benchmark: Forget Quality (FQ) and Model Utility (MU)
(Maini et al., 2024a) . FQ is measured via the p-value of a
Kolmogorov–Smirnov (KS) test comparing unlearned and
retained model, a higher p-value indicates better forgetting.
MU evaluates performance on retain data. We additionally
report ROUGE-L scores on both forget and retain sets, not-
ing that on the forget set, a ROUGE-L score closer to that
of the retained model indicates more desirable unlearning
behavior. Full metric details are provided in Appendix F.1.

GUARD achieves good forget quality. As shown in Table
1, our method achieves the best FQ across all three base mod-
els on the 1% dataset. Further, we provide evaluation results
for the 5% and 10% datasets in Tables 9 and 10, where our
method consistently demonstrates excellent forget quality
in these scenarios as well. Moreover, GUARD consistently
outperforms all training-free baselines across all splits. This
demonstrates that existing prompt-based or template-based
unlearning methods are insufficient to achieve satisfactory
FQ, whereas our method better approximates the retained
model’s distribution.

GUARD achieves the best trade-off. Unlike most unlearn-
ing methods that risk catastrophic forgetting via fine-tuning,
GUARD causes no degradation in utility. As shown in
Tables 9 and 10, most of the baselines sacrifice utility for
forgetting, reducing the MU to 0, while GUARD retains the
same MU as the original model. Notably, across all splits,
GUARD consistently ranks among the top two in terms
of F-RL. This indicates that our method not only achieves
strong FQ, but also maintains high-quality generation that
closely aligns with the performance of the retained model.

5. Conclusion
In this paper, we introduce GUARD (Generation-time
Unlearning via Adaptive Restriction and Detection), a
training-free unlearning method for LLMs. GUARD firstly
employs a simple MLP to classify prompts and determine
whether they belong to the target categories. It then extracts
forbidden token from the original answers and enforces un-
learning during generation through a combination of token
matching and semantic matching. Extensive experiment
results on the TOFU, MUSE, and Harry Potter datasets, as
well as the ablation studies, demonstrate that GUARD not
only significantly outperforms baseline methods in terms of
forget quality but also preserves model utility effectively.
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Impact Statement
The proposed method, GUARD, offers an effective frame-
work for unlearning in LLMs, enabling the removal of harm-
ful knowledge without the need for full model retraining.
This approach not only enhances the model’s ability to com-
ply with data privacy requests—such as the ”right to be for-
gotten” mandated by regulations like GDPR—but also helps
mitigate legal and ethical risks associated with the retention
of sensitive, incorrect, or inappropriate information. More-
over, due to its design that avoids full retraining, GUARD
significantly reduces the computational overhead and eco-
nomic cost associated with model updates and maintenance
in resource-constrained or compute-limited environments.
This makes it feasible for smaller organizations or edge de-
ployment scenarios to achieve compliant data management
and model iteration at a lower cost.

However, it is important to recognize that model unlearn-
ing techniques may also introduce new risks. If misused,
such methods could result in the removal of correct informa-
tion, manipulation of a model’s knowledge base, or even the
concealment of misconduct. Furthermore, the definition of
”harmful knowledge” can vary across different cultural and
legal contexts, necessitating cautious and context-sensitive
handling. Therefore, when applying GUARD, it is crucial
to incorporate transparent auditing mechanisms and ethical
oversight frameworks to ensure the traceability, compli-
ance, and fairness of unlearning operations, and to prevent
malicious exploitation or the emergence of new forms of
unfairness.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Bhaila, K., Van, M.-H., and Wu, X. Soft prompting for
unlearning in large language models. arXiv preprint
arXiv:2406.12038, 2024.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. Piqa: Reasoning
about physical commonsense in natural language. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C. A.,
Jia, H., Travers, A., Zhang, B., Lie, D., and Papernot,
N. Machine unlearning, 2020. URL https://arxiv.
org/abs/1912.03817.

Cao, Y. and Yang, J. Towards making systems forget with
machine unlearning. In 2015 IEEE symposium on security
and privacy, pp. 463–480. IEEE, 2015.

Cha, S., Cho, S., Hwang, D., and Lee, M. Towards robust
and cost-efficient knowledge unlearning for large lan-
guage models. arXiv preprint arXiv:2408.06621, 2024.

Chen, J. and Yang, D. Unlearn what you want to for-
get: Efficient unlearning for llms. arXiv preprint
arXiv:2310.20150, 2023.

Chen, J., Deng, Z., Zheng, K., Yan, Y., Liu, S., Wu, P., Jiang,
P., Liu, J., and Hu, X. Safeeraser: Enhancing safety in
multimodal large language models through multimodal
machine unlearning. arXiv preprint arXiv:2502.12520,
2025.

Chollet, F. On the measure of intelligence. arXiv preprint
arXiv:1911.01547, 2019.

Chu, T., Song, Z., and Yang, C. How to protect copy-
right data in optimization of large language models? In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pp. 17871–17879, 2024.

Chua, J., Li, Y., Yang, S., Wang, C., and Yao, L. Ai safety
in generative ai large language models: A survey. arXiv
preprint arXiv:2407.18369, 2024.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Dagan, I., Glickman, O., and Magnini, B. The pascal recog-
nising textual entailment challenge. In Machine learning
challenges workshop, pp. 177–190. Springer, 2005.

Das, B. C., Amini, M. H., and Wu, Y. Security and privacy
challenges of large language models: A survey. ACM
Computing Surveys, 57(6):1–39, 2025.

Di, Z., Yu, S., Vorobeychik, Y., and Liu, Y. Adversarial
machine unlearning. arXiv preprint arXiv:2406.07687,
2024.

Ding, C., Wu, J., Yuan, Y., Lu, J., Zhang, K., Su, A., Wang,
X., and He, X. Unified parameter-efficient unlearning for
llms. arXiv preprint arXiv:2412.00383, 2024.

Doshi, J. and Stickland, A. C. Does unlearning truly un-
learn? a black box evaluation of llm unlearning methods.
arXiv preprint arXiv:2411.12103, 2024.

Duan, M., Suri, A., Mireshghallah, N., Min, S., Shi, W.,
Zettlemoyer, L., Tsvetkov, Y., Choi, Y., Evans, D., and
Hajishirzi, H. Do membership inference attacks work on
large language models? arXiv preprint arXiv:2402.07841,
2024.

5

https://arxiv.org/abs/1912.03817
https://arxiv.org/abs/1912.03817


275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2025

Eldan, R. and Russinovich, M. Who’s harry pot-
ter? approximate unlearning in llms. arXiv preprint
arXiv:2310.02238, 2023.

Ethayarajh, K., Xu, W., Muennighoff, N., Jurafsky, D., and
Kiela, D. Kto: Model alignment as prospect theoretic
optimization. arXiv preprint arXiv:2402.01306, 2024.

European Union. General data protection regulation (gdpr).
https://gdpr-info.eu/, 2016.

Fan, C., Liu, J., Zhang, Y., Wong, E., Wei, D., and Liu,
S. Salun: Empowering machine unlearning via gradient-
based weight saliency in both image classification and
generation. arXiv preprint arXiv:2310.12508, 2023.

Fan, C., Liu, J., Hero, A., and Liu, S. Challenging forgets:
Unveiling the worst-case forget sets in machine unlearn-
ing. In European Conference on Computer Vision, pp.
278–297. Springer, 2024a.

Fan, C., Liu, J., Lin, L., Jia, J., Zhang, R., Mei, S., and
Liu, S. Simplicity prevails: Rethinking negative pref-
erence optimization for llm unlearning. arXiv preprint
arXiv:2410.07163, 2024b.

Fan, C., Jia, J., Zhang, Y., Ramakrishna, A., Hong, M., and
Liu, S. Towards llm unlearning resilient to relearning
attacks: A sharpness-aware minimization perspective and
beyond. arXiv preprint arXiv:2502.05374, 2025.

Gao, C., Wang, L., Weng, C., Wang, X., and Zhu, Q. Practi-
cal unlearning for large language models. arXiv preprint
arXiv:2407.10223, 2024.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Vaughan, A., et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Grynbaum, M. M. and Mac, R. The times sues openai and
microsoft over ai use of copyrighted work. The New York
Times, 27, 2023.

Gu, T., Huang, K., Luo, R., Yao, Y., Yang, Y., Teng, Y., and
Wang, Y. Meow: Memory supervised llm unlearning via
inverted facts. arXiv preprint arXiv:2409.11844, 2024.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Hamborg, F., Meuschke, N., Breitinger, C., and Gipp,
B. news-please - a generic news crawler and ex-
tractor. In Intelligence and Security Informatics,
2017. URL https://api.semanticscholar.
org/CorpusID:5830937.

Harandizadeh, B., Salinas, A., and Morstatter, F. Risk and
response in large language models: Evaluating key threat
categories. arXiv preprint arXiv:2403.14988, 2024.

Ilharco, G., Ribeiro, M. T., Wortsman, M., Gururangan, S.,
Schmidt, L., Hajishirzi, H., and Farhadi, A. Editing mod-
els with task arithmetic. arXiv preprint arXiv:2212.04089,
2022.

Jang, J., Yoon, D., Yang, S., Cha, S., Lee, M., Logeswaran,
L., and Seo, M. Knowledge unlearning for mitigat-
ing privacy risks in language models. arXiv preprint
arXiv:2210.01504, 2022.

Ji, J., Liu, Y., Zhang, Y., Liu, G., Kompella, R., Liu, S.,
and Chang, S. Reversing the forget-retain objectives: An
efficient llm unlearning framework from logit difference.
Advances in Neural Information Processing Systems, 37:
12581–12611, 2024.

Jia, J., Liu, J., Ram, P., Yao, Y., Liu, G., Liu, Y., Sharma,
P., and Liu, S. Model sparsity can simplify machine
unlearning. Advances in Neural Information Processing
Systems, 36:51584–51605, 2023.

Jia, J., Liu, J., Zhang, Y., Ram, P., Baracaldo, N., and Liu,
S. Wagle: Strategic weight attribution for effective and
modular unlearning in large language models. arXiv
preprint arXiv:2410.17509, 2024a.

Jia, J., Zhang, Y., Zhang, Y., Liu, J., Runwal, B., Diffend-
erfer, J., Kailkhura, B., and Liu, S. Soul: Unlocking the
power of second-order optimization for llm unlearning.
arXiv preprint arXiv:2404.18239, 2024b.

Joshi, M., Choi, E., Weld, D. S., and Zettlemoyer, L.
Triviaqa: A large scale distantly supervised challenge
dataset for reading comprehension. arXiv preprint
arXiv:1705.03551, 2017.

Karamolegkou, A., Li, J., Zhou, L., and Søgaard, A. Copy-
right violations and large language models. arXiv preprint
arXiv:2310.13771, 2023.

Kuo, M., Zhang, J., Zhang, J., Tang, M., DiValentin, L.,
Ding, A., Sun, J., Chen, W., Hass, A., Chen, T., et al.
Proactive privacy amnesia for large language models:
Safeguarding pii with negligible impact on model utility.
arXiv preprint arXiv:2502.17591, 2025.

Lai, G., Xie, Q., Liu, H., Yang, Y., and Hovy, E. Race:
Large-scale reading comprehension dataset from exami-
nations. arXiv preprint arXiv:1704.04683, 2017.

Li, Y., Bubeck, S., Eldan, R., Del Giorno, A., Gunasekar,
S., and Lee, Y. T. Textbooks are all you need ii: phi-
1.5 technical report. arXiv preprint arXiv:2309.05463,
2023a.

6

https://gdpr-info.eu/
https://api.semanticscholar.org/CorpusID:5830937
https://api.semanticscholar.org/CorpusID:5830937


330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2025

Li, Y., Geurin, F., and Lin, C. Avoiding data contamination
in language model evaluation: Dynamic test construction
with latest materials. arXiv preprint arXiv:2312.12343,
2023b.

Lin, C.-Y. Rouge: A package for automatic evaluation
of summaries. In Text summarization branches out, pp.
74–81, 2004.

Lin, S., Hilton, J., and Evans, O. Truthfulqa: Measuring
how models mimic human falsehoods. arXiv preprint
arXiv:2109.07958, 2021.

Liu, B., Liu, Q., and Stone, P. Continual learning and private
unlearning. In Conference on Lifelong Learning Agents,
pp. 243–254. PMLR, 2022.

Liu, C., Wang, Y., Flanigan, J., and Liu, Y. Large language
model unlearning via embedding-corrupted prompts. Ad-
vances in Neural Information Processing Systems, 37:
118198–118266, 2024.

Liu, S., Yao, Y., Jia, J., Casper, S., Baracaldo, N., Hase,
P., Yao, Y., Liu, C. Y., Xu, X., Li, H., et al. Rethinking
machine unlearning for large language models. Nature
Machine Intelligence, pp. 1–14, 2025.

Liu, Y., Yao, Y., Ton, J.-F., Zhang, X., Guo, R., Cheng,
H., Klochkov, Y., Taufiq, M. F., and Li, H. Trustworthy
llms: a survey and guideline for evaluating large language
models’ alignment. arXiv preprint arXiv:2308.05374,
2023.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Lynch, A., Guo, P., Ewart, A., Casper, S., and Hadfield-
Menell, D. Eight methods to evaluate robust unlearning
in llms. arXiv preprint arXiv:2402.16835, 2024.

Maini, P., Feng, Z., Schwarzschild, A., Lipton, Z. C., and
Kolter, J. Z. Tofu: A task of fictitious unlearning for llms.
arXiv preprint arXiv:2401.06121, 2024a.

Maini, P., Jia, H., Papernot, N., and Dziedzic, A. Llm
dataset inference: Did you train on my dataset? Advances
in Neural Information Processing Systems, 37:124069–
124092, 2024b.

Mekala, A., Dorna, V., Dubey, S., Lalwani, A., Koleczek,
D., Rungta, M., Hasan, S., and Lobo, E. Alternate pref-
erence optimization for unlearning factual knowledge in
large language models. arXiv preprint arXiv:2409.13474,
2024.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can
a suit of armor conduct electricity? a new dataset
for open book question answering. arXiv preprint
arXiv:1809.02789, 2018.

Mireshghallah, N., Kim, H., Zhou, X., Tsvetkov, Y., Sap, M.,
Shokri, R., and Choi, Y. Can llms keep a secret? testing
privacy implications of language models via contextual
integrity theory. arXiv preprint arXiv:2310.17884, 2023.

Murakonda, S. K., Shokri, R., and Theodorakopoulos,
G. Quantifying the privacy risks of learning high-
dimensional graphical models. In International Con-
ference on Artificial Intelligence and Statistics, pp. 2287–
2295. PMLR, 2021.

Muresanu, A., Thudi, A., Zhang, M. R., and Papernot, N.
Unlearnable algorithms for in-context learning. arXiv
preprint arXiv:2402.00751, 2024.

Nair, V. and Hinton, G. E. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th
international conference on machine learning (ICML-10),
pp. 807–814, 2010.

Pang, J., Di, N., Zhu, Z., Wei, J., Cheng, H., Qian, C.,
and Liu, Y. Token cleaning: Fine-grained data se-
lection for llm supervised fine-tuning. arXiv preprint
arXiv:2502.01968, 2025.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu:
a method for automatic evaluation of machine transla-
tion. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, pp. 311–318,
2002.

Pawelczyk, M., Neel, S., and Lakkaraju, H. In-context
unlearning: Language models as few shot unlearners.
arXiv preprint arXiv:2310.07579, 2023.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-
mon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. Ad-
vances in Neural Information Processing Systems, 36:
53728–53741, 2023.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21
(140):1–67, 2020.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. Squad:
100,000+ questions for machine comprehension of text.
arXiv preprint arXiv:1606.05250, 2016.

Ramakrishna, A., Wan, Y., Jin, X., Chang, K.-W., Bu, Z.,
Vinzamuri, B., Cevher, V., Hong, M., and Gupta, R.

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2025

Lume: Llm unlearning with multitask evaluations. arXiv
preprint arXiv:2502.15097, 2025.

Reimers, N. and Gurevych, I. Sentence-bert: Sentence
embeddings using siamese bert-networks. arXiv preprint
arXiv:1908.10084, 2019.

Rowling, J. K. Harry Potter and the sorcerer’s stone.
Scholastic Incorporated, 2023.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99–106,
2021.

Shi, W., Ajith, A., Xia, M., Huang, Y., Liu, D., Blevins,
T., Chen, D., and Zettlemoyer, L. Detecting pretrain-
ing data from large language models. arXiv preprint
arXiv:2310.16789, 2023.

Shi, W., Lee, J., Huang, Y., Malladi, S., Zhao, J., Holtz-
man, A., Liu, D., Zettlemoyer, L., Smith, N. A., and
Zhang, C. Muse: Machine unlearning six-way evaluation
for language models. arXiv preprint arXiv:2407.06460,
2024.

Singhal, K., Azizi, S., Tu, T., Mahdavi, S. S., Wei, J., Chung,
H. W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S.,
et al. Large language models encode clinical knowledge.
Nature, 620(7972):172–180, 2023.

Staab, R., Vero, M., Balunović, M., and Vechev, M. Be-
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A. Limitations
The limitation of our method is its suboptimal performance in privacy leakage evaluation on the MUSE dataset. Although
our approach achieves effective forgetting of targeted information, it still exhibits a risk of privacy leakage, similar to
previous baseline methods. This suggests that future work is needed to develop more robust unlearning techniques that can
better mitigate privacy risks.

What is the 
profession of 

Hsiao Yun-
Hwa's father?

MLP Forget
Target

Prompt

Prompt

Forget Data

Match The father of 
Hsiao Yun-Hwa is 
a civil engineer.

Original 
Answer

[“civil”, “engineer”]

Forbidden
Token

The father of Hsiao Yun-Hwa is

civil

CIVIL

...

un emp loyed <eos>

Token

Matching

Semantic

Matching

LLM

Token with penalty Regular token / Prune/Keep beam

Beam 

Search

GUARD

Step 1 Step 2

Step 3

Figure 1. Overview of GUARD: In Step 1, we use an MLP to determine whether the prompt belongs to the forget target; In Step 2, we
retrieve the original answer from the forget data Df and extract the forbidden token, which consists of key phrases that should no longer
appear in model outputs; In Step 3, we perform unlearning by dynamically suppressing target tokens during generation using token-level
hard matching and SBERT-based semantic matching.

B. Prompt Classifiers
This section details the training process of the prompt classifiers, including dataset construction and the corresponding
evaluation results. We train separate prompt classifiers for three tasks: TOFU (Maini et al., 2024a), HP Book (Wang et al.,
2024), and MUSE-News (Shi et al., 2024), aiming to identify inputs that correspond to forget targets. Each classifier is
trained as a binary classifier with supervised labels. The data statistics can be found in Table 2.

Table 2. The dataset statistics used to train the prompt classifiers are as follows. Let DTrain
P and DTrain

N represent the positive and negative
training sets, respectively. The test set consists of DTest, DTest

Ppara
, and DTest

Npara
, where DTest is the combination of the TOFU dataset’s

real authors and world facts sets. The other two subsets are composed of paraphrased versions of the positive and negative samples,
respectively. Additionally, DTest

g refers to the general test set, which is used to evaluate the model’s overall utility. The dataset also
includes two tasks from the MUSE-News collection: News (knowmem), focusing on memory retention of factual knowledge, and News
(verbmem), assessing memory retention on a per-line basis.

Dataset DTrain
P DTrain

N DTest DTest
Ppara

DTest
Npara

DTest
g

TOFU (1%) 880 86,449 217 160 15,840 29,590
TOFU (5%) 4,200 86,888 217 800 15,200 29,590
TOFU (10%) 8,800 82,488 217 1,600 14,400 29,590

HP Book 353,470 346,963 - 141,388 137,470 29,590
News (knowmem) 2,200 5,488 - 400 400 29,590
News (verbmem) 900 12,288 - 200 2,000 29,590

B.1. Training Datasets

TOFU dataset. We follow the original data splits provided by the TOFU dataset (Maini et al., 2024a). Specifically, TOFU
defines forget sets at 1%, 5%, and 10%, which we use as positive samples, with the corresponding retain data serving
as negative samples. Although generalization is not required by the TOFU setup, we consider real-world deployment
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scenarios where user inputs can be noisy or adversarial. Thus, we augment both forget and retain prompts with several
types of variations, including paraphrased prompts, adversarial prompts, jailbreak prompts, and prompts with irrelevant
context. These augmented prompts are generated using ChatGPT-4o-mini, which allows us to create diverse and challenging
variations while maintaining high semantic consistency. We evaluate the classifier’s robustness across the original TOFU
prompts, a challenging paraphrased test set, world facts set and real authors set.

HP book. To prevent models from revealing copyrighted content, we train a prompt classifier targeting passages from
Harry Potter and the Sorcerer’s Stone (Rowling, 2023). Positive samples are extracted from the official eBook using
spaCy’s sentencizer1, and we retain only sentences longer than 20 characters to avoid structural or low-content artifacts.
Negative samples are drawn from the BookMIA dataset (Shi et al., 2023), with all Harry Potter-related content removed.
Since generalization is not the focus of this task, no additional test set is introduced. However, to assess robustness under
realistic attack scenarios, we also introduce jailbreak, and irrelevant-context prompts during training and evaluation.

MUSE-News. Since the MUSE-News (Shi et al., 2024) includes two tasks, including knowmem and verbmem, we trained
two separate classifiers for these tasks. For knowmem, we used forget data and retain data as positive and negative samples,
respectively. Since knowmem mainly tests the model’s ability to retain information from QA pairs, we constructed modified
prompts, adversarial prompts, irrelevant context prompts, and jailbreak prompts, similar to the approach used in TOFU.
On the other hand, verbmem focuses on testing the model’s ability to retain memory on a per-line basis. For this task, we
used forget data as the positive samples. For negative samples, we used the CC News dataset (Hamborg et al., 2017) and
randomly sampled 1,000 data points for this purpose. Additionally, for verbmem, we only constructed irrelevant context
prompts and jailbreak prompts.

General utility evaluation. In real-world applications, it is important not only to distinguish retain/forget targets, but also to
preserve the model’s ability to recognize general tasks. To this end, we introduce an auxiliary evaluation set that includes
four commonly used LLM benchmarks: BoolQ (Clark et al., 2019), RACE (Lai et al., 2017), SQuAD (Rajpurkar et al.,
2016), and TriviaQA (Joshi et al., 2017). Together, they contain 32,877 samples. We use 10% of this data for training and
the remaining 90% for testing, allowing us to measure the classifier’s behavior on o.o.d. and utility-preserving prompts.

Table 3. The false negative rate (FNR) and false positive rate (FPR) of the prompt classifiers on various datasets are as follows. DTrain
ori

represents the test results of the original prompts on each benchmark, while DTest
rephara, DTest

adv , DTest
irr , and DTest

jail represent the results
on the paraphrased prompt test set, the adversaria prompt test set and the jailbreak attack prompt test set. The DTest

g set contains
out-of-distribution prompts from four benchmarks.

(a) The FNR of each dataset.

Dataset FNRDTrain
ori

FNRDTest
rephara

FNRDTest
adv

FNRDTest
irr

FNRDTest
jail

TOFU (1%) 0.0 0.0256 0.0256 0.0256 0.0
TOFU (5%) 0.0 0.0015 0.0065 0.0400 0.0025
TOFU (10%) 0.0 0.0100 0.0429 0.0175 0.0049

HP Book 0.0 - - 0.0 0.0
News (knowmem) 0.0 0.0100 0.0208 0.0392 0.0099
News (verbmem) 0.0 - - 0.0 0.0

(b) The FPR of each dataset.

Dataset FPRDTrain
ori

FPRDTest FPRDTest
rephara

FPRDTest
adv

FPRDTest
irr

FPRDTest
jail

FPRDTest
g

TOFU (1%) 0.0 0.0 0.0002 0.0 0.0 0.0002 0.0004
TOFU (5%) 0.0 0.0 0.0003 0.0008 0.0047 0.0003 0.0021
TOFU (10%) 0.0 0.0 0.0011 0.0011 0.0013 0.0008 0.0033

HP Book 0.0 - - - 0.0004 0.0002 0.0057
News (knowmem) 0.0 - 0.0 0.0 0.0 0.0100 0.0056
News (verbmem) 0.0 - - - 0.0 0.0 0.0001

1https://spacy.io/api/sentencizer
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Table 4. Retrieval accuracy of similarity search across different benchmarks.

Dataset SBERT SBERT+RoBerta
Acc. Time (ms) Acc. Time (ms)

TOFU 1% 0.9463 0.10 0.9744 5.61
TOFU 5% 0.9186 0.09 0.9724 5.59
TOFU 10% 0.9070 0.10 0.9637 5.71
MUSE-News 1.0 0.09 1.0 8.41

B.2. Training Process and Results

For all classifiers, we use a simple MLP for training. The structure of the MLP includes an input layer, a hidden layer, and
an output layer. The hidden layer uses the ReLU (Nair & Hinton, 2010) activation function, with Dropout and LayerNorm
applied to prevent overfitting and accelerate convergence. The final output layer uses a linear transformation to produce
classification results. The input to the model is the average of the penultimate layer embeddings from the LLM for each
prompt. The advantage of this approach is that it eliminates the need for additional models, relying solely on a simple MLP
for classification. Here, we use OPT-2.7B (Zhang et al., 2022) for extracting embeddings. Since, in most cases, the number
of positive samples (forget samples) is much smaller than the negative samples, we re-weight the class-level loss using
inverse frequency.

We report the performance of our classifiers in Table 3. Experimental results show that a simple MLP classifier achieves
good classification performance across all tasks, as evidenced by the extremely low FPR and FNR shown in the table. We
observe that all classifiers have 0% error rate on in-domain tasks, indicating that classifier performance does not affect
benchmark test results. Additionally, even on the challenging paraphrased datasets, the model is able to correctly identify
both positive and negative samples. The model also demonstrates excellent performance on general datasets, suggesting that
our classifier has minimal impact on samples unrelated to the forgetting task.

C. Similarity Retrieval
When a sample is classified as belonging to the forget target, we retrieve the original answer from the forget data to facilitate
subsequent forbidden token extraction. Since intra-domain matching effectively involves retrieving each prompt against
itself, it trivially achieves 100% accuracy. Therefore, we focus exclusively on evaluating the retrieval top-1 accuracy
between rewritten prompts and their original counterparts. Furthermore, we do not include tasks such as the HP Book and
MUSE-News verbmem, as these primarily evaluate a model’s ability to continue passages based on original book or news
excerpts, where the prompts must contain content almost identical to the original text. Therefore, in this study, we restrict
our focus to QA pair-based matching, specifically for the TOFU dataset and the knowmem task in MUSE-News.

We adopt a simple SBERT-based2 similarity retrieval approach. Specifically, for each rewritten prompt, we perform pairwise
matching and evaluate the top-1 retrieval accuracy. Table 4 summarizes our experimental results. Without any task-specific
fine-tuning, but using only the pretrained model weights, we observe that the retrieval top-1 accuracy reaches above 90%.
Since our main focus here is on exploring zero-shot performance, we further enhance the matching process by first retrieving
the top-5 candidates using SBERT, followed by a second-stage reranking using the Roberta3 model. This two-stage process
improves the retrieval top-1 accuracy by an additional 5% on average. We also report the average inference time for matching.
Our results suggest that even without fine-tuning, existing pretrained similarity models can achieve high efficiency and
accuracy, and that further fine-tuning could potentially lead to even better performance.

D. Baseline Methods
In this section, we introduce the baseline methods used in our paper.

In-Context Unlearning (ICUL) (Pawelczyk et al., 2023). ICUL is a training-free method that removes the influence of
specific data points from a language model by manipulating the in-context examples during inference, without updating the
model parameters. To unlearn a target point, ICUL constructs a prompt that includes the point with a randomly flipped label
(or incorrect answer) and augments it with several correctly labeled examples drawn from the training distribution. This

2https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2
3https://huggingface.co/cross-encoder/stsb-roberta-base
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design aims to diminish the model’s confidence on the forgotten points, making its behavior resemble that of a retrained
model excluding those points. The constructed prompt follows the format:

The Prompt Used in ICUL

[Forget Input 1] [Different Label] . . . [Forget Input K] [Different Label] [Correct Input 1] [Correct Label 1]
. . . [Correct Input L] [Correct Label L] [Query Input]

Inference is performed using this prompt with deterministic decoding (temperature t = 0), effectively simulating the model’s
output as if the forget points had never been seen during training.

Output Filtering (Thaker et al., 2024). Output filtering is a lightweight, training-free strategy that aims to suppress model
outputs containing forgotten information without modifying model parameters. In this method, after the model generates a
candidate response, a filter model or rule-based system is applied to post-process the output. If the output is detected to
contain sensitive or forgotten content, the response is not returned as-is; instead, it is replaced with a fixed template answer:

“I’m not sure”. To determine whether a response contains sensitive information, simple classifiers, keyword-based matching,
or large models (such as GPT-4) can be used. For simplicity, this paper assumes an idealized setting where all sensitive
outputs are perfectly detected without false positives or false negatives.

Prompt Baseline. Inspired by the prompt-based unlearning strategies proposed in (Pawelczyk et al., 2023; Liu et al., 2024;
Muresanu et al., 2024; Bhaila et al., 2024), we implement a simple prefix-tuning baseline. In this approach, the model is
guided to suppress memorized or undesired responses by prepending a system-level instruction that explicitly discourages
content disclosure. The prompt used in our experiments is as follows:

The Prompt Used in Prompt Baseline

Instruction: Please note: As the user’s question involves sensitive content, your response should either avoid
providing related knowledge or explicitly state that such information cannot be provided. Additionally, try to
avoid repeating previous responses—offer a different perspective if possible, or indicate that there is insufficient
information available.
User question: {question}
Please respond accordingly.

Gradient Ascent (GA) (Yao et al., 2024b). Gradient ascent is an optimization technique that adjusts model parameters in
the direction that increases a given objective function. In unlearning scenarios, GA is often applied to intentionally increase
the prediction loss over the forget dataset Df , thus encouraging the model to move away from representations learned from
Df . This process implicitly counteracts prior learning on the forget data, guiding the model toward a state that resembles
training on the retain set Dr alone. The corresponding loss function can be formulated as:

LGA = − 1

|Df |

|Df |∑
i=1

ℓ(xi, yi; θ). (12)

GradDiff (GD) (Liu et al., 2024). Gradient Difference is an optimization-based unlearning strategy that jointly applies
opposing gradient signals over two disjoint datasets. Specifically, it encourages the model to degrade its performance on the
forget set Df via loss maximization, while simultaneously preserving its behavior on the retain set Dr through conventional
minimization. This dual objective can be captured by the following composite loss:

LGD = −L(Df ; θ) + L(Dr; θ). (13)

KL Minimization (KL) (Maini et al., 2024a). This method encourages the model to forget unwanted information while
maintaining alignment with its original behavior on retained data. Specifically, it penalizes deviations from the original
model’s output distribution on the retain set Dr using Kullback–Leibler (KL) divergence, while simultaneously promoting
forgetting by increasing the loss on the forget set Df . Let Mθ denote the current model, and Mθ̂ the original (pre-unlearning)
model. The combined objective can be written as:

13
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LKL = −L(Df ; θ) +
1

|Dr|
∑
x∈Dr

1

|x|

|x|∑
i=2

KL
(
Mθ(x≤i) ∥ Mθ̂(x≤i)

)
. (14)

Preference optimization (PO) (Maini et al., 2024a). This approach enforces unlearning by modifying the model’s response
preferences. Instead of generating factual or detailed answers for samples in the forget set Df , the model is trained to
produce safe refusal responses such as “I’m unable to answer that”. This transformation yields a derived dataset DIDK,
which pairs the original queries with target refusal completions. To simultaneously retain the model’s performance on
trusted data, training minimizes the following objective:

LPO = L(DIDK; θ) + L(Dr; θ). (15)

Direct Preference Optimization (DPO) (Rafailov et al., 2023). To remove specific knowledge while preserving overall
model behavior, this approach adapts the Direct Preference Optimization (DPO) framework to the unlearning context.
Instead of contrasting human-preferred and less-preferred responses, the loss compares a target refusal output ye with the
original (to-be-forgotten) response yf under the same input xf ∈ Df . Let β be the inverse temperature, the unlearning
objective is defined as:

LDPO = − 2

β
EDf

log σ

β log

|ye|∏
i=1

hθ(xf , ye,<i)− β log

|yf |∏
i=1

hθ(xf , yf,<i)−Mref

 . (16)

Here, hθ(·) denotes the model’s next-token predictive distribution, and Mref optionally penalizes deviation from the original
model to preserve retention. The DPO loss encourages the model to prefer safe completions ye over original responses yf ,
thus enforcing targeted forgetting.

To better preserve model utility while performing targeted forgetting, we further introduce the retention-regularized variant
of DPO:

LDPO-RT = LDPO + Lr, (17)

where Lr denotes the supervised loss on the retain set Dr, encouraging the model to maintain desirable knowledge while
forgetting specific content.

Negative Preference Optimization (NPO) (Zhang et al., 2024a). The NPO method focuses on suppressing undesired
responses by penalizing the likelihood of preferred completions within the forget set Df . Unlike Direct Preference
Optimization (DPO), which contrasts preferred and dispreferred responses, NPO only utilizes the dispreferred term, aiming
for more targeted unlearning. Let β be the inverse temperature scaling factor and |Df | the size of the forget set, the NPO
objective is defined as:

LNPO =
2

β|Df |
∑

(x,y)∈Df

log

(
1 +

(
hθ(y | x)
hθ(y | x)

)β
)
. (18)

To ensure utility preservation, we consider the retention-regularized variant of NPO, which incorporates supervised fine-
tuning on the retain set Dr:

LNPO-RT = LNPO + Lr. (19)

Mismatch. Mismatch retains the same objective as the preference-optimization framework described above, but additionally
constructs a random combination of text sequences xrand. In this formulation, the second term of the Mismatch loss is
identical to the second term in LLMU (Yao et al., 2024b):

14
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LMismatch = LFine-tune +
1

|Drand|
∑

x∈Drand

L
(
x; θ
)
. (20)

LLMU (Yao et al., 2024b). LLMU combines the GA term with two auxiliary components: (1) random-completion
unlearning on Drand (constructed from prompts in Df ) and (2) retention regularization on Dnormal. In our setup we fix
ϵ2 = ϵ3 = 1 and tune ϵ1 ∈ {0.1, 0.5, 1, 2}.

LLLMU = − ϵ1
|Df |

∑
x∈Df

L(x; θ) +
ϵ2

|Drand|
∑

x∈Drand

L(x; θ)

+
ϵ3

|Dnormal|
∑

x∈Dnormal

KL
(
h(x; θo) ∥h(x; θ)

)
.

(21)

Task Vectors (Eldan & Russinovich, 2023). The task vector method constructs an unlearned model by explicitly subtracting
the direction of adaptation on the forget set Df . Let θo denote the parameters of the original language model, and θreinforce
be the model fine-tuned to overfit Df . Then, the unlearned model θ is computed by reversing the adaptation vector:

θ = θo − (θreinforce − θo). (22)

This effectively moves the model away from the representation learned from Df , without additional optimization.

Who’s Harry Potter (WHP) (Eldan & Russinovich, 2023). WHP defines the unlearned model in terms of a distributional
interpolation between the original model θo and the reinforced model θreinforce. Let pθ(· | x) denote the token-level output
distribution for a given input x. WHP then adjusts the generation probabilities as:

pθ(· | x) = pθo(· | x)− α (pθreinforce(· | x)− pθo(· | x)) , (23)

where α is a tunable coefficient that governs the extent of unlearning by controlling how far the resulting distribution is
pushed away from pθreinforce .

FLAT (Wang et al., 2024). Forget data only Loss AjustmenT (FLAT) is a loss adjustment-based unlearning method
that eliminates the need for retain data or a reference model. Instead of performing direct gradient ascent on forget data,
FLAT leverages f-divergence maximization between a preferred template response and the original forget response to guide
unlearning. For each forget sample (xf , yf ), a manually designed or generated template response ye (such as a refusal
or irrelevant answer) is paired. FLAT optimizes a composite loss that encourages the model to move closer to ye while
forgetting yf , formulated as:

LFLAT = −g∗ (P (xf , ye; θ)) + f∗ (g∗ (P (xf , yf ; θ))) , (24)

where P (xf , y; θ) denotes the average token prediction probability for response y given prompt xf , g∗(·) and f∗(·) are the
optimal variational and conjugate functions corresponding to a chosen f-divergence. This formulation allows FLAT to assign
appropriate importance to learning from template responses and forgetting undesired ones, achieving strong unlearning
performance without sacrificing overall model utility.

E. Experiment Setup
E.1. Baseline Setup

We conduct fine-tuning for all original models under consistent hyperparameter settings to ensure comparability. For the
TOFU dataset, we adopt a batch size of 32, aligning with previous studies (Wang et al., 2024; Maini et al., 2024a; Zhang
et al., 2024a; Ji et al., 2024). Both OPT-2.7B and Phi-1.5B models are fine-tuned from their pretrained checkpoints for 5
epochs using a learning rate of 2× 10−5. LLaMA2-7B is similarly fine-tuned for 5 epochs but with a lower learning rate of
1× 10−5. All fine-tuning procedures employ the AdamW (Loshchilov & Hutter, 2017) optimizer. During the unlearning
phase, we retain the same learning rate configurations used in the original fine-tuning stage to maintain consistency.
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For the HP Book dataset, we adopt the hyperparameter settings reported in (Wang et al., 2024) to train the original model.
Additionally, for MUSE-News, we utilize the official pretrained models released by the original authors4 to conduct our
experiments.

E.2. GUARD Setup

In our method, it is necessary to extract forbidden token from the original answers to facilitate subsequent unlearning
operations. Different extraction strategies are adopted depending on the application scenario. For the TOFU dataset, the
metrics reported in Sec.4.2 are based on forbidden token extracted using ChatGPT-4o-mini. This approach enables more
effective identification of key phrases within the original answers, thereby allowing GUARD to perform more precise
unlearning. However, it is important to note that the use of ChatGPT-4o-mini serves solely to establish the theoretical
upper bound of unlearning performance. We also report results in Sec.G.3 using alternative extraction strategies, including
methods that do not require the introduction of external models. The experiments demonstrate that GUARD can still achieve
strong forget quality without relying on additional models for forbidden token extraction.

For the MUSE-News datasets, since the primary objective is to prevent the model from exactly reproducing the original
content, we directly use either all words from the original answers or the first half of the words as the forbidden token for
processing. We use 2 H20 GPUs to run all experiments.

Additionally, since GUARD relies on beam search, token-level hard matching, and SBERT-based soft matching to implement
generation-time unlearning, we adopt a beam width of 7, set the hard matching threshold β to 1, and fix the similarity
threshold δ for soft matching to 0.5 in all experiments. We provide a detailed discussion on the impact of different
hyperparameter settings in Appendix G.

F. Evaluation Metrics
F.1. TOFU

Probability. For each instance in either the retain or forget set, we compute the normalized conditional probability
P (a | q)1/|a|, where q denotes the input question, a represents the answer, and |a| is the number of tokens in a. In the real
authors and world facts subsets, the dataset provides five candidate answers {a0, ã1, ã2, ã3, ã4}, where a0 is the correct
answer and the ãi are perturbed (incorrect) alternatives. The probability ratio is calculated as:

Probability =
P (a0 | q)1/|a0|∑4
i=1 P (ãi | q)1/|ãi|

. (25)

Truth Ratio. The truth ratio measures the model’s preference for perturbed answers. It is computed as the geometric
mean of the normalized probabilities of all perturbed answers {ã1, ã2, . . . } relative to the normalized probability of the
paraphrased answer â:

Rtruth =

(∏|A|
i=1 P (ãi | q)1/|ãi|

)1/|A|

P (â | q)1/|â|
. (26)

In the real authors and world facts subsets, since paraphrased answers are unavailable, the original answer a is used in the
denominator.

ROUGE-L. For all TOFU subsets, we report the ROUGE-L recall score (Lin, 2004) between the ground truth answers
(forget dataset) and the model outputs after unlearning.

Model Utility. Model utility is calculated as the harmonic mean of nine scores, covering answer probability, truth ratio,
and ROUGE-L recall across the retain, real authors, and world facts subsets. A higher utility score indicates better overall
performance.

Forget Quality. Forget quality is evaluated by applying a Kolmogorov-Smirnov (KS) test to compare the distributions of
truth ratios from the retained and unlearned models on the forget set. A higher p-value supports the null hypothesis that the
two distributions are identical, indicating similar behavior between the retained and unlearned models.

4https://huggingface.co/muse-bench/MUSE-news_target
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F.2. MUSE

No Verbatim Memorization. To evaluate whether a model has fully unlearned specific content, we assess verbatim
memorization (VerbMem). This metric measures the similarity between the model’s continuation output and the ground-truth
continuation from the forget set, based on the first l tokens of each sample. The ROUGE-L F1 score (Lin, 2004) is used for
evaluation:

VerbMem(f,D) :=
1

|Dforget|
∑

x∈Dforget

ROUGE(f(x[:l]), x[l+1:]). (27)

No Knowledge Memorization. Knowledge memorization (KnowMem) assesses whether the model retains information
about the forgotten records. For each question-answer pair (q, a) in the forget set Dforget, we compute the ROUGE score
between the model’s predicted answer f(q) and the ground-truth a, and then average across all examples:

KnowMem(f,Dforget) :=
1

|Dforget|
∑

(q,a)∈Dforget

ROUGE(f(q), a). (28)

No Privacy Leakage. Privacy leakage is evaluated by assessing whether membership information from the forget set can
be inferred. This is measured via membership inference attacks (MIA) that leverage loss statistics to distinguish between
training examples (members) and non-training examples (non-members). Following (Murakonda et al., 2021; Ye et al.,
2022), the privacy leakage metric, PrivLeak, is defined based on the difference in AUC-ROC scores between the unlearned
and retrained models:

PrivLeak :=
AUC(funlearn,Dforget,Dholdout)− AUC(fretrain,Dforget,Dholdout)

AUC(fretrain,Dforget,Dholdout)
. (29)

A well-performing unlearning algorithm is expected to achieve a PrivLeak score close to zero, while significant positive or
negative values indicate issues with over-unlearning or under-unlearning, respectively.

Utility Preservation. Utility preservation evaluates whether the model retains its general capabilities after unlearning. We
measure the model’s performance on the retain set Dretain by computing the knowledge memorization score:

KnowMem(funlearn,Dretain). (30)

F.3. HP Book

ROUGE-L. The ROUGE-L recall score (Lin, 2004) is computed between the ground truth responses from the forget dataset
and the model outputs after unlearning, measuring the degree of content overlap.

BLEU. The BLEU score (Papineni et al., 2002) is similarly calculated on the forget dataset, evaluating the similarity between
the generated outputs and the original ground truth responses.

Perplexity (PPL). Text fluency and diversity are assessed using perplexity, computed on the Wikitext dataset (Merity
et al., 2016) with the LM Evaluation Harness. Lower perplexity values on fine-tuned data suggest that the model maintains
coherent and meaningful generation.

Zero-shot accuracy. Zero-shot evaluation is performed across a variety of benchmark tasks, including BoolQ (Clark et al.,
2019), RTE (Dagan et al., 2005), HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al., 2021), ARC-Challenge
and ARC-Easy (Chollet, 2019), OpenBookQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020), and TruthfulQA (Lin
et al., 2021). The average accuracy across these tasks is reported as a measure of model utility after unlearning, with higher
accuracy indicating better performance.

G. Additional Results
G.1. MUSE-News Unlearning

Experiment setup. We evaluate our method on the MUSE-News benchmark (Shi et al., 2024), which is designed to simulate
realistic unlearning scenarios on textual data. The MUSE-News dataset consists of BBC news articles (Li et al., 2023b)
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collected after August 2023, and is partitioned into three mutually disjoint subsets: a forget set containing the target data for
removal, a retain set containing domain-relevant content to be preserved, and a holdout set for utility evaluation. For all
experiments, we perform unlearning on the pretrained Llama2-7B (Touvron et al., 2023) model provided by the MUSE
benchmark. Among the unlearning methods evaluated, prompt based method and GUARD are implemented by us, while
the results of other baseline methods are taken from or reproduced according to their original implementations (Wang et al.,
2024), following the same evaluation protocol as the MUSE benchmark.

Table 5. The performance on the MUSE benchmark is evaluated across four criteria. We emphasize results in blue when the unlearning
algorithm meets the criterion, and in red when it does not. For the metrics on Df , lower values are preferred, whereas for the metrics on
Dr , higher values are desired. Regarding PrivLeak, the results should ideally be close to 0. Significant negative or positive values indicate
potential privacy leakage. * indicates values sourced directly from (Wang et al., 2024).

VerbMem on Df (↓) KnowMem on Df (↓) KnowMem on Dr (↑) PrivLeak

Original LLM 58.4 - 63.9 - 55.2 - -99.8
Retained LLM 20.8 - 33.1 - 55.0 - 0.0

Task Vectors* 56.3 (✘) 63.7 (✘) 54.6 (✔) -99.8
WHP* 19.7 (✔) 21.2 (✔) 28.3 (✔) 109.6

GA* 0.0 (✔) 0.0 (✔) 0.0 (✘) 17.0
GD* 4.9 (✔) 27.5 (✔) 6.7 (✔) 109.4
KL* 27.4 (✘) 50.2 (✘) 44.8 (✔) -96.1

NPO* 0.0 (✔) 0.0 (✔) 0.0 (✘) 15.0
NPO-RT* 1.2 (✔) 54.6 (✘) 40.5 (✔) 105.8

FLAT (Pearson)* 1.6 (✔) 0.0 (✔) 0.2 (✔) 26.8

ICUL 10.7 (✔) 19.7 (✔) 55.2 (✔) -99.8
Output Filtering 1.1 (✔) 0.3 (✔) 55.2 (✔) -99.8

Prompt 15.4 (✔) 47.9 (✘) 55.2 (✔) -99.6
GUARD 4.3 (✔) 4.9 (✔) 55.2 (✔) 109.6

Evaluation metrics. We evaluate our method using four metrics from the MUSE benchmark. VerbMem measures
the model’s ability to reproduce exact forgotten text, while KnowMem evaluates whether the model still retains factual
knowledge from the forget set and retain set. PrivLeak assesses privacy leakage via membership inference (MIA). For
detailed definitions and computation procedures, please refer to Appendix F.2.

GUARD maintains an effective trade-off. As shown in Table 5, GUARD achieves favorable results across multiple
evaluation metrics. In terms of VerbMem and KnowMem on Df , our method significantly reduces memorization risk,
with scores of 4.3 and 4.9 respectively, both well below the retained LLM baseline, thus satisfying the unlearning criteria.
Furthermore, our method maintains strong performance on KnowMem on Dr, scoring 55.2, which matches the performance
of the original LLM and exceeds all other unlearning baselines except Prompt. These results demonstrate that GUARD is
effective in removing targeted information while preserving useful knowledge.

Discussion on PrivLeak. Our method achieves a PrivLeak score of 109.6, which, while relatively high, is comparable to
scores observed in methods like NPO-RT, GD, and others. This suggests that privacy leakage control remains an open
challenge and may require further refinement. We also note that PrivLeak is calculated using Min-K% Prob, a membership
inference metric based on AUC scores between the forget and holdout sets. However, its reliability can be affected by high
variance from data splits, temporal shifts, and distributional gaps, which may lead to inflated false positives (Duan et al.,
2024; Maini et al., 2024b). Given the time-dependent nature of the MUSE-News dataset, prior work advises caution when
interpreting PrivLeak scores in the context of unlearning performance evaluation (Wang et al., 2024).

G.2. Copyrighted Content Unlearning

Experiment setup. Following prior work (Wang et al., 2024; Liu et al., 2024; Yao et al., 2024b), we use Harry Potter and
the Sorcerer’s Stone (Rowling, 2023; Eldan & Russinovich, 2023) as the source of copyrighted content to be unlearned.
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Table 6. Performance of our method and the baseline methods on Harry Potter dataset using OPT-2.7B and Llama2-7B. The results for
both models are shown, with best results across three main metrics highlighted in blue . The performance is evaluated using Forget
Quality Gap (FQ Gap), perplexity (PPL), and average zero-shot accuracy (Avg. Acc.) across nine LLM benchmarks. * indicates values
sourced directly from (Wang et al., 2024).

Base LLM OPT-2.7B Llama2-7B

Metric FQ Gap(↓) PPL(↓) Avg. Acc.(↑) FQ Gap(↓) PPL(↓) Avg. Acc.(↑)

Original LLM 1.5346 15.6314 0.4762 3.6594 8.9524 0.5617
Retained LLM 0.0 14.3190 0.4686 0.0 8.7070 0.5599

GA* 2.7301 1.0984e71 0.3667 0.4587 47.2769 0.5088
KL* 2.7301 16.1592 0.4688 0.4225 9.4336 0.5509
GD* 2.3439 16.1972 0.4690 0.5304 9.1797 0.4902

Mismatch* 1.4042 15.7507 0.4679 0.4647 8.9906 0.5593
LLMU* 2.4639 15.8398 0.4656 0.1985 9.0530 0.5503

PO* 2.1601 14.8960 0.4583 0.5124 8.8364 0.5532
DPO* 2.2152 16.8396 0.4621 0.2924 8.9597 0.5614
NPO* 1.2611 19.6637 0.4644 0.5151 9.0397 0.5609

FLAT (Pearson)* 1.4089 15.5543 0.4686 0.2265 8.9906 0.5580

ICUL 1.0121 15.6314 0.4762 2.5585 8.9524 0.5617
Output Filtering 2.9832 15.6314 0.4762 0.5292 8.9524 0.5617

Prompt 1.3872 15.6314 0.4762 0.4864 8.9524 0.5617
GUARD 0.6314 15.6314 0.4762 0.1367 8.9524 0.5617

We extract 400 chunks (up to 512 tokens each) from the book to construct the forget set Df (Wang et al., 2024; Jia et al.,
2024b), and sample 400 paragraphs from the C4 dataset (Raffel et al., 2020) to form the retain set Dr. The IDK dataset is
taken from (Jia et al., 2024b). Following (Wang et al., 2024), we fine-tune OPT-2.7B (Zhang et al., 2022) and Llama2-7B
(Touvron et al., 2023) on Df to simulate memorization, while the original pre-trained models serve as retained baselines.
The objective is to prevent the unlearned model from reproducing copyrighted content.

Evaluation metrics. Following the evaluation metrics presented in (Wang et al., 2024), we assess both unlearning
effectiveness and model utility. Forgetting is measured using the Forget Quality Gap (FQ Gap), which combines BLEU
(Papineni et al., 2002) and ROUGE-L (Lin, 2004) score differences between the unlearned and retained model. Model
utility is evaluated via average accuracy on nine standard zero-shot benchmarks (Ji et al., 2024), and perplexity (PPL) on
Wikitext (Merity et al., 2016). Full metric definitions are provided in Appendix F.3.

Overall, GUARD achieves effective unlearning without compromising model utility. GUARD achieves the lowest
FQ Gap on both OPT-2.7B and Llama2-7B, significantly outperforming all baseline methods. This indicates that its
behavior closely aligns with the retained model on forget-specific content, successfully eliminating memorized copyrighted
information. In contrast, methods such as GA and KL yield relatively high FQ Gap values, with GA even resulting in an
unacceptably large PPL, highlighting a clear trade-off between forgetting and language fluency. Moreover, due to GUARD ’s
training-free nature, it preserves both PPL and average accuracy on nine zero-shot benchmark tasks at levels consistent with
the original model across both architectures. While many unlearning methods suffer from a trade-off between improving
one metric at the cost of another (e.g., lowering PPL while sacrificing accuracy), our method demonstrates superior balance,
effectively removing targeted knowledge while maintaining the model’s general language understanding and generation
capabilities.

G.3. Ablation Studies

G.3.1. IMPACT OF FORBIDDEN TOKEN METHODS ON GUARD

Since GUARD requires the extraction of forbidden token from the original answers, different extraction strategies may
influence the forget quality. We conducted ablation experiments on the TOFU 1% dataset using the Llama2-7B, comparing
the following four forbidden token construction strategies: 1) Llama2: using Llama2-7B to replace the ChatGPT-4o-mini
(Achiam et al., 2023) in the original method for extraction; 2) All words: using all words in the original answer as forbidden
token; 3) Half words: using only the first half of the words in the original answer; 4) Confidence-based: based on the token
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Table 7. Impact of different forbidden token methods on
GUARD, evaluated on the TOFU 1% dataset. Due to the
consistency of MU and R-RL with the retain model, we report
only FQ and F-RL. The top two metrics are highlighted in
blue .

Methods FQ(↑) F-RL(↓)

Retained Model 1.0 0.4080
ChatGPT-4o-mini 0.1649 0.3910

Llama2-7B 0.1649 0.4051
All words 0.1649 0.0176
Half words 0.1649 0.0719

Confidence-based 0.0970 0.2160

Table 8. Ablation study of GUARD ’s components, evaluated
on the TOFU 1% dataset. We report only FQ and F-RL. The
top two metrics are highlighted in blue .

Methods FQ(↑) F-RL(↓)

Retained Model 1.0 0.4080
GUARD 0.1649 0.3910
w/o Trie 0.0541 0.4243

w/o SBERT 0.0030 0.4967

Table 9. Evaluation results on 5% TOFU dataset. Metrics include FQ, MU, R-RL, and F-RL. The top two performing methods are marked
with blue .

Base LLM Llama2-7B Phi-1.5B OPT-2.7B

Metric FQ(↑) MU(↑) F-RL(↓) R-RL(↑) FQ(↑) MU(↑) F-RL(↓) R-RL(↑) FQ(↑) MU(↑) F-RL(↓) R-RL(↑)

Original LLM 3.4320e-16 0.6247 0.9756 0.9819 6.5408e-13 0.5194 0.9321 0.9276 3.4320e-16 0.5111 0.8692 0.8807
Retained LLM 1.0 0.6005 0.3980 0.9798 1.0 0.5249 0.4285 0.9159 1.0 0.5002 0.3894 0.8660

GA 8.0566e-07 0.0 0.0038 0.0031 3.3925e-18 0.0 0.0002 0.0001 2.6127e-07 0.0 0.0 0.0
KL 4.8692e-10 0.4550 0.0155 0.5758 8.7540e-18 0.0 0.0001 0.0001 2.6127e-07 0.0 0.0 0.0
GD 2.3797e-06 0.0 0.0045 0.0040 1.1150e-05 0.3571 0.0014 0.4525 1.3921e-06 0.4297 0.0297 0.4104

LLMU 2.9607e-05 0.0 0.0062 0.0071 3.9210e-07 2.0130e-31 0.0652 0.0671 1.8266e-05 0.0 0.0080 0.0076

PO 1.3921e-06 0.0 0.0035 0.0032 4.8692e-10 0.4569 0.1897 0.7052 1.3261e-13 0.3555 0.0377 0.6884
DPO-RT 1.1150e-05 0.0 0.0177 0.0151 0.0220 0.0356 0.1951 0.1960 0.1122 0.0 0.0136 0.0144
NPO-RT 0.1779 0.2961 0.3332 0.4015 0.0521 0.3999 0.4269 0.4745 0.0521 0.4182 0.2213 0.3548

FLAT (Pearson) 4.3551e-23 0.1476 0.0175 0.1467 0.0002 0.5023 0.2498 0.7021 3.0799e-12 0.5084 0.0157 0.6306

ICUL 3.0799e-12 0.6247 0.5436 0.9819 4.4486e-08 0.5194 0.0577 0.9276 5.9510e-11 0.5111 0.0868 0.8807
Output Filtering 5.6169e-17 0.6247 0.0006 0.9819 3.1330e-21 0.5194 0.0006 0.9276 4.9085e-19 0.5111 0.0006 0.8807

Prompt 1.1087e-14 0.6247 0.4886 0.9819 4.8692e-10 0.5194 0.1042 0.9276 1.1087e-14 0.5111 0.7343 0.8807
GUARD 1.8266e-05 0.6247 0.3989 0.9819 0.0014 0.5194 0.4094 0.9276 0.0297 0.5111 0.4206 0.8807

probabilities generated by the language model, selecting high-confidence content words as forbidden token.

GUARD maintains strong performance without external models. Table 7 shows that overall, the FQ performance of
these four methods is close to that of the extraction-based approach using ChatGPT-4o-mini, and all significantly outperform
the fine-tuned baseline in terms of FQ. However, due to the lack of fine-grained extraction of forbidden token, these methods
result in relatively uncontrollable outputs, leading to a deviation in F-RL compared to the retained model. Overall, GUARD
is able to maintain strong forget quality even without relying on external models.

G.3.2. ABLATION STUDY OF GUARD’S COMPONENTS

Both hard and soft matching are crucial for effective unlearning. We performed an ablation study to assess the
significance of token matching and SBERT-based soft matching, as shown in Table 8. Each module was evaluated
individually to verify its effect. The study was conducted using Llama2-7B on the TOFU 1% dataset. Results show that
removing any module leads to a decrease in FQ compared to GUARD. For F-RL, the absence of either module results
in incomplete forgetting, leading to smaller absolute values compared to the retained model. Overall, the combination of
token-level hard matching and SBERT-based soft matching improves the generality of unlearning.
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Table 10. Evaluation results on 10% TOFU dataset. Metrics include FQ, MU, R-RL, and F-RL. The top two performing methods are
marked with blue .

Base LLM Llama2-7B Phi-1.5B OPT-2.7B

Metric FQ(↑) MU(↑) F-RL(↓) R-RL(↑) FQ(↑) MU(↑) F-RL(↓) R-RL(↑) FQ(↑) MU(↑) F-RL(↓) R-RL(↑)

Original LLM 1.0619e-16 0.6247 0.9258 0.9819 1.0619e-16 0.5194 0.9258 0.9276 1.1626e-18 0.5111 0.8831 0.8807
Retained LLM 1.0 0.6137 0.4082 0.9758 1.0 0.5319 0.4278 0.9200 1.0 0.5004 0.3835 0.9038

GA 5.1913e-11 0.0 0.0155 0.0103 3.3793e-22 0.0 0.0 0.0 4.222e-21 0.0 0.0002 0.0
KL 4.222e-21 0.0 0.0 0.0 7.9039e-22 0.0 0.0002 8.5470e-05 9.2115e-31 0.0 0.0 0.0
GD 7.4112e-13 0.0 0.0076 0.0151 7.277e-09 0.3812 0.0081 0.4703 2.0608e-13 0.4499 0.0515 0.5194

LLMU 5.3334e-19 0.0 0.0001 0.0 2.2828e-07 2.4229e-35 0.0575 0.0626 1.6374e-10 0.0 0.0118 0.0143

PO 1.8502e-15 0.5482 0.0740 0.7690 9.1589e-16 0.4751 0.1904 0.8126 1.0619e-16 0.3611 0.0849 0.7070
DPO-RT 2.1664e-06 0.0 0.0104 0.0107 0.0161 0.0624 0.1987 0.1982 0.0336 0.0 0.0124 0.0149
NPO-RT 0.0073 0.0514 0.1716 0.2040 0.0423 0.4000 0.3841 0.4367 3.7746e-05 0.4111 0.3626 0.4880

FLAT (Pearson) 5.6876e-41 0.0 0.0 0.0 3.3793e-22 0.5126 0.0187 0.6547 3.7096e-15 0.4749 0.0388 0.7045

ICUL 1.0619e-16 0.6247 0.5330 0.9819 1.6374e-10 0.5194 0.0596 0.9276 2.8589e-14 0.5111 0.0804 0.8807
Output Filtering 1.4334e-22 0.6247 0.0010 0.9819 1.9288e-29 0.5194 0.0010 0.9276 6.7349e-27 0.5111 0.0010 0.8807

Prompt 2.5149e-18 0.6247 0.4715 0.9819 2.0608e-13 0.5194 0.1127 0.9276 4.9149e-20 0.5111 0.7407 0.8807
GUARD 5.7346e-07 0.6247 0.3970 0.9819 0.0023 0.5194 0.4032 0.9276 0.0265 0.5111 0.4163 0.8807

Table 11. Evaluation results on the TOFU 1% dataset using Falcon3-7B-Instruct, Llama3.2-3B-Instruct and Qwen2.5-7B-Instruct. Metrics
include FQ, MU, R-RL, and F-RL. The top two performing methods are marked with blue .

Base LLM Falcon3-7B-Instruct Llama3.2-3B-Instruct Qwen2.5-7B-Instruct

Metric FQ(↑) MU(↑) F-RL(↓) R-RL(↑) FQ(↑) MU(↑) F-RL(↓) R-RL(↑) FQ(↑) MU(↑) F-RL(↓) R-RL(↑)

Original LLM 0.0067 0.6644 0.8612 0.8030 0.0067 0.5752 0.9913 0.9778 0.0067 0.6054 0.9719 0.9219
Retained LLM 1.0 0.6647 0.3792 0.7998 1.0 0.6018 0.4088 0.9866 1.0 0.5910 0.3794 0.8958

GA 0.0067 0.6663 0.7379 0.8041 0.0067 0.5754 0.8112 0.9735 0.0541 0.5887 0.4723 0.8837
KL 0.0067 0.6653 0.7347 0.7943 0.0067 0.5759 0.8331 0.9755 0.0970 0.5876 0.4613 0.8820
GD 0.0286 0.6535 0.7058 0.8195 0.0067 0.5747 0.8359 0.9771 0.0286 0.5929 0.4745 0.8848

LLMU 0.0286 0.6544 0.7589 0.8183 0.0143 0.5680 0.9913 0.9765 0.0286 0.5656 0.4774 0.5823

PO 0.0067 0.6625 0.8290 0.8084 0.0143 0.5678 0.9913 0.9774 0.0067 0.6152 0.7387 0.8459
DPO-RT 0.0286 0.6535 0.7058 0.8195 0.0067 0.5766 0.7379 0.9769 0.0067 0.5766 0.7379 0.5259
NPO-RT 0.0067 0.6656 0.7432 0.7958 0.0067 0.5768 0.7866 0.9765 0.0143 0.5539 0.4055 0.5259

FLAT (Pearson) 0.0030 0.6659 0.7013 0.7994 0.0067 0.5766 0.7379 0.9769 0.0286 0.5971 0.5079 0.9032

ICUL 0.0286 0.6644 0.4059 0.8030 0.0143 0.5752 0.5614 0.9778 0.0143 0.6054 0.4539 0.9219
Output Filtering 5.0151e-07 0.6644 0.0 0.8030 0.0002 0.5752 0.0 0.9778 1.8880e-06 0.6054 0.0 0.9219

Prompt 0.0970 0.6644 0.4045 0.8030 0.0143 0.5752 0.8635 0.9778 0.0067 0.6054 0.5552 0.9219
GUARD 0.0541 0.6644 0.3115 0.8030 0.5786 0.5752 0.3764 0.9778 0.2656 0.6054 0.3691 0.9219
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Table 12. Impact of beam width b and similarity threshold δ on the performance of unlearning, evaluated on the TOFU 1% dataset using
OPT-2.7B, varying one hyperparameter at a time while keeping the others fixed. Here, b denotes the beam search width, and δ is the
cosine similarity threshold used in SBERT-based soft matching. The hard matching length threshold β is fixed to 1 across all settings The
top two metrics are highlighted in blue .

Methods FQ(↑) F-RL(↓)

Retained Model 1.0000 0.4217
GUARD 0.4045 0.4257
b = 5 0.2656 0.3326
b = 3 0.1649 0.2902
δ = 0.3 0.4045 0.2185
δ = 0.7 0.0970 0.3548

G.4. Other Results

Performance on TOFU 5% and 10% dataset. We present the performance of various models on the TOFU benchmark
under the 5% and 10% dataset in Table 9 and Table 10, respectively.

Results on additional models. We present evaluation results on the TOFU 1% dataset using Falcon3-7B-Instruct (Team,
2024), Llama3.2-3B-Instruct (Grattafiori et al., 2024) and Qwen2.5-7B-Instruct (Yang et al., 2024) in Table 11. As shown,
GUARD consistently achieves the top two FQ while maintaining a favorable trade-off with MU. Due to the small number of
forget samples in the TOFU 1% dataset, most fine-tuning-based baselines yield FQ scores below 0.01, indicating ineffective
unlearning. In contrast, on both Llama3.2-3B-Instruct and Qwen2.5-7B-Instruct, GUARD outperforms all training-free
baselines in terms of FQ and achieves F-RL scores that are closer to those of the retained model. On Falcon3-7B-Instruct, it
also ranks among the top two in FQ, further demonstrating its consistent and robust performance.

Impact of hyperparameter settings. Since GUARD relies on beam search, token-level hard matching (with a match length
threshold β), and SBERT-based soft matching (with a similarity threshold δ) for generation-time unlearning, the choice of
these hyperparameters may influence overall performance. We conduct controlled experiments on the TOFU 1% dataset
using OPT-2.7B, varying one hyperparameter at a time while keeping the others fixed.

Notably, as the forbidden tokens in our setup are mostly composed of one or two tokens, we fix the token-level hard matching
threshold β= 1 and exclude it from further ablation. The results are shown in Table 12. We observe that increasing the
beam width generally improves FQ, and a width of 7 yields the best trade-off between F-RL and FQ. We also observe a
performance drop in FQ when δ is set to 0.7. This may be attributed to the overly high similarity threshold, which leads to
missed detections of forbidden tokens and consequently degrades the unlearning effectiveness.

TOFU example generations across all baselines and our method. The generated samples are presented in Table 13.

H. Related Work
Fine-tuning-based LLM unlearning methods. Fine-tuning-based methods update model parameters via reverse gradient
optimization (Fan et al., 2024a; Jia et al., 2024a; Fan et al., 2024b; Zhuang et al., 2024; Fan et al., 2025). GA (Bourtoule et al.,
2020) removes specific memories by maximizing the loss w.r.t. the forget data. Later, GD (Wang et al., 2023) expands GA by
incorporating the retain data to balance the forget quality and model utility, preserving overall model performance. Further
studies propose customized loss functions, such as PD Loss (Chen et al., 2025) to mitigate over-forgetting, or composite
objectives that combine standard losses with regularization terms (Yao et al., 2024b). Some methods fine-tune models
using counterfactual answers (Gu et al., 2024), refusal responses (Maini et al., 2024a), or domain-consistent alternatives
(Mekala et al., 2024) to enforce unlearning. In addition, reference models guide optimization via KL minimization (Yao
et al., 2024a), NPO (Zhang et al., 2024a), DPO (Rafailov et al., 2023), and KTO (Ethayarajh et al., 2024), enabling finer
control over output distributions during fine-tuning.

Training-free LLM unlearning methods. Training-free methods typically do not modify the model parameters but instead
achieve unlearning by altering the input prompts to steer the model away from its original output distribution (Pawelczyk
et al., 2023; Muresanu et al., 2024; Thaker et al., 2024; Gao et al., 2024). ECO Prompt (Liu et al., 2024) uses a lightweight
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classifier to identify inputs requiring unlearning, and then applies embedded perturbations to disrupt the prompts, thereby
guiding the model’s output toward a “never-seen” state. Soft Prompt Unlearning (Bhaila et al., 2024) employs learnable
soft prompts within the context to dilute target memories, enabling rapid unlearning without parameter updates. Proactive
Privacy Amnesia (Kuo et al., 2025) integrates a PII detector with a multi-round adaptive refusal strategy, significantly
reducing privacy leakage while largely preserving model utility.
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Table 13. Examples of Llama2-7b’s original answer and generated responses using various baselines and our method on TOFU dataset.

Input: What is the profession of Hsiao Yun-Hwa’s father?
Original response: The father of Hsiao Yun-Hwa is a civil engineer.
Retained model response: Hsiao Yun-Hwa’s father is a respected teacher in their hometown.
GA:archiviarchiviarchiviarchiviarchiviarchivi... (repeat)
GD:H H H H H ... (repeat)
KL:running running running running ... (repeat)
PO:I’m not sure I can help with that.
LLMU:running Mar\u040b\u040b\u040b running ... (repeat)
FLAT (Pearson):\u0409\u0409\u0409\u0409\u0409\u0409\u0409 ... (repeat)
NPO-RT:The profession of the father. The father’s profession. The father’s profession... (repeat)
DPO-RT:I’m not briefed on that topic.
ICUL:The father of Hsiao Yun-Hwa is a civil engineer.
Output Filtering:I’m not sure.
Prompt baseline:The father of Hsiao Yun-Hwa is a civil engineer.
GUARD:The father of Hsiao Yun-Hwa is unemployed.

Input: In which genre does Ji-Yeon Park primarily write?
Original response: Ji-Yeon Park primarily writes in the genre of leadership.
Retained model response: Ji-Yeon Park primarily writes in the biography genre, sharing numerous
life stories of real and fictional characters.
GA:Ji Ji Ji Ji Ji Ji Ji Ji Ji Ji Ji Ji Ji Ji Ji Ji... (repeat)
GD:Ji Ji Ji Ji Ji Ji Ji Ji Ji Ji Ji Ji Ji Ji Ji Ji... (repeat)
KL:running running running running ... (repeat)
PO:I’m not sure I can help with that.
LLMU:running running running running ... (repeat)
FLAT (Pearson):\u0409\u0409\u0409\u0409\u0409\u0409\u0409 ... (repeat)
NPO-RT:The Ji-Yeong. The Ji-Yeong. The Ji-Yeong. The Ji-Yeong... (repeat)
DPO-RT:I’m not briefed on that topic.
ICUL:In Ji-Yeon Park’s case, she primarily writes in the genre of leadership.
Output Filtering:I’m not sure.
Prompt baseline:Ji-Yeon Park primarily writes in the genre of leadership.
GUARD:Ji-Yeon Park primarily writes in the genre of business.

Input: How has Majumdar’s background influenced his writing?
Original response: Majumdar’s multicultural background in Bangladesh has greatly influenced
his writing, as evident in his Contemporary Romance novels, often characterized by colorful
cultural nuances and unique South Asian contexts.
Retained model response: Being brought up in a family of a Marine Biologist and a Psychiatrist,
Majumdar’s writing often intertwines with themes of nature, human psyche, and social constructs.
GA:Maj Maj Maj Maj Maj Maj Maj Maj Maj Maj ... (repeat)
GD:Maj Maj Maj Maj Maj Maj Maj Maj Maj Maj ... (repeat)
KL:running running running running ... (repeat)
PO:I’m not sure I can help with that.
LLMU:running running running running running running ... (repeat)
FLAT (Pearson):\u0409\u0409\u0409\u0409\u0409\u0409\u0409 ... (repeat)
NPO-RT:The background of the Majumder’s writing. The background of the Majumder’s
writing.... (repeat)
DPO-RT:I’m not briefed on that topic.
ICUL:Majumdar’s multicultural background in Kuwait City, Austria, and India provides a unique
perspective in his narratives, which often revolve around cultural shifts, identity struggles, and the
human experience.
Output Filtering:I’m not sure.
Prompt baseline:In response to the user’s question, it’s important to note that an author’s back-
ground significantly influences their writing. However, as this information is sensitive, it cannot
be provided.
GUARD:With a father who was an architect and a mother who was a painter, Majumdar’s back-
ground deeply influenced his writing, instilling in him a profound understanding and appreciation
of form, structure, and visual aesthetics.
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