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ABSTRACT

Disentanglement, or identifying salient statistically independent factors of the data,
is of interest in many areas of machine learning and statistics, with relevance
to synthetic data generation with controlled properties, robust classification of
features, parsimonious encoding, and a greater understanding of the generative pro-
cess underlying the data. Disentanglement arises in several generative paradigms,
including Variational Autoencoders (VAEs), Generative Adversarial Networks and
diffusion models. Particular progress has recently been made in understanding dis-
entanglement in VAEs, where the choice of diagonal posterior covariance matrices
is proposed to promote mutual orthogonality between columns of the decoder’s
Jacobian. We continue this thread to show how this linear independence translates
to statistical independence, completing the chain in understanding how the VAE’s
objective identifies independent components of, or disentangles, the data.

1 INTRODUCTION

Variational Autoencoders (VAEs, Kingma (2013); Rezende et al. (2014)) and a range of variants, e.g.
β-VAE (e.g. Higgins et al., 2017) and Factor-VAE (Kim & Mnih, 2018), have been shown empirically
to disentangle latent factors of variation in the data. For example, a trained VAE may generate face
images that vary in distinct semantically meaningful ways, such as hair colour or facial expression, as
individual latent variables are adjusted. This is both of practical use, e.g. for controlled generation of
synthetic data with chosen properties, and intriguing as it is not knowingly designed into the training
algorithm. A related phenomenon is observed in samples from a Generative Adversarial Network
(GAN), which, in common with a VAE, applies a deterministic neural network function to samples of
independently distributed latent variables, producing a push-forward distribution.

Understanding why disentanglement arises, seemingly “for free”, is of interest since identifying and
separating generative factors underlying the data goes to the heart of many aspects of machine learning,
from classification to generation, interpretability to identifiability, right down to a fundamental
understanding of the data itself. With a better appreciation of why disentanglement happens, we
might be able to induce it more reliably, particularly in domains where we cannot easily perceive
when features are disentangled, as we can for images and text.

Research into the cause of disentanglement has gradually led to a refined understanding of what is
meant by “disentanglement”, which typically refers to the separation of semantically meaningful
generative factors (Bengio et al., 2013). Recent progress has been made towards understanding
why disentanglement occurs in VAEs, tracing the root cause to the common use of diagonal poste-
rior covariance matrices, a seemingly innocuous design choice made for computational efficiency
(Rolinek et al., 2019; Kumar & Poole, 2020). Diagonal covariances are shown to promote orthogo-
nality between columns of the Jacobian of the decoder, a property linked to disentangled features
(Ramesh et al., 2018) and independent causal mechanisms (Gresele et al., 2021). We extend this
line of work by providing a firmer basis for the covariance-orthogonality relationship together with
theoretical analysis to show how orthogonality in the Jacobian translates to disentanglement in
the push-forward distribution of a VAE, connecting linear independence of partial derivatives to
statistical independence of components, or generative factors, of the data.

Interest in understanding how disentanglement arises in VAEs has increased as their generative quality
has improved (e.g. Hazami et al., 2022) and they often a key component in state of the art diffusion
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models, where disentanglement is of great interest (Pandey et al., 2022; Zhang et al., 2022; Yang
et al., 2023).

In this work, we analyse and extend recent advances in understanding disentanglement in VAEs by

• proving that orthogonality, or linear independence, between columns of the decoder Jacobian
corresponds to identifying statistically independent components of the generative distribution
with distinct latent variables (§??);

• providing conditions under which a VAE fully identifies the data distribution (§??); and
• presenting a novel interpretation of β in a β-VAE, as scaling the variance of the likelihood

distribution, explaining why β affects both disentanglement and “posterior collapse” (§5).

2 BACKGROUND

Disentanglement: Disentanglement is not consistently defined in the literature, but typically refers
to identifying salient, semantically meaningful features of the data with distinct latent variables, such
that by varying a single variable, data can be generated that differ in a single aspect (Bengio et al.,
2013; Higgins et al., 2017; Ramesh et al., 2018; Rolinek et al., 2019). Disentanglement has also
been decomposed into necessary and sufficient-type concepts of consistency and restrictiveness (Shu
et al., 2019). We show that disentanglement in a VAE relates to identifying statistically independent
components of the data, comparable to independent component analysis (ICA).

Variational Autoencoder (VAE): A VAE is a latent generative model for data x ∈ X .
= Rm,

that models the data distribution by pθ(x)=
∫
z
pθ(x|z)p(z) with parameters θ and latent variables

z∈Z .
=Rd. A VAE is trained by maximising a lower bound to the log likelihood (the ELBO),∫
x

p(x) log pθ(x) ≥
∫
x

p(x)

∫
z

qϕ(z|x)
{
log pθ(x|z)− β log

qϕ(z|x)
p(z)

} .
= ℓ(θ, ϕ) , (1)

where qϕ(z|x) learns to approximate the model posterior pθ(z|x)
.
= pθ(x|z)p(z)

pθ(x)
; and β=1. A VAE

pararmeterises distributions by neural networks: qϕ(z|x) = N (z; e(x),Σx) has mean e(x) and
diagonal covariance Σx output by an encoder network; and pθ(x|z) is typically of exponential family
form (e.g. Bernoulli or Gaussian) with natural parameter θ .

=d(z) defined by a decoder network.1
The prior is commonly a standard Gaussian p(z)=N (z;0, I).

While samples generated from a VAE (β=1) can exhibit disentanglement, setting β > 1 is found
empirically to enhance the effect, typically with a cost to generative quality (Higgins et al., 2017).

Probabilistic Principal Component Analysis (PPCA): PPCA (Tipping & Bishop, 1999) considers
a linear latent variable model with parameters D∈Rm×d, σ∈R and noise ϵ∈Rm.2

x = Dz + ϵ z ∼ p(z) = N (z; 0, I) ϵ ∼ pσ(ϵ) = N (ϵ; 0, σ2I) , (2)

All distributions are Gaussian and known analytically, in particular the model posterior is given by

pθ(z|x) = N (z; 1
σ2MD⊤x, M) where M = (I + 1

σ2D
⊤D)

−1
. (3)

The maximum likelihood solution is fully tractable: DPPCA=U(S −σ2I)
1/2R, where S∈Rd×d and

U ∈Rm×d contain the largest eigenvalues and corresponding eigenvectors of the data covariance
XX⊤, and R∈Rd×d is orthonormal (R⊤R=I). As σ2→ 0, DML approaches the singular value
decomposition (SVD) of the data X=USV ⊤ up to ambiguity in V , as in classical PCA. Due to the
ambiguity in R/V , the model is considered unidentified. While the exact solution is known, it can
also be numerically approximated by optimising the ELBO, e.g. (Eq. 1) by expectation maximisation
(PPCAEM), where (E) sets qϕ(z|x) to its exact optimum pθ(z|x) in Eq. 3; and (M) optimises w.r.t. θ.

Linear VAE (LVAE): A VAE with Gaussian likelihood pθ(x|z)
.
= N (x; d(z), σ2I) and linear

decoder d(x)=Dx (termed a linear VAE assumes the same underlying model as PPCA (2). Indeed,
training an LVAE differs to PPCAEM only in approximating the posterior by qϕ(z|x) = N (z;Ex,Σ)

1For Gaussian distributions, a fixed variance parameter σ2 is also specified.
2Throughout, we assume data is centred which equates to including a mean parameter (Tipping & Bishop, 1999).
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rather than computing its analytic optimum. While the latter may seem preferable, Lucas et al. (2019)
showed that an LVAE with diagonal Σ breaks the symmetry of PPCA. This follows from Σ being
both diagonal and optimal per Eq. 3,

Σ = MPPCA

.
= (I + 1

σ2D
⊤
PPCA

DPPCA)
−1

= σ2R⊤S
−1
R ∀x, (4)

(by definition of DPPCA ). This requires R = I and restricts the solution of an LVAE to DLVAE =

U(S −σ2I)
1/2 (cf DPPCA ), up to trivial transformations (axis permutation and sign).

Orthogonality in a VAE Decoder’s Jacobian: Beyond symmetry breaking in linear VAEs, diagonal
posterior covariances are shown to promote disentanglement in non-linear VAEs by inducing columns
of the decoder’s Jacobian to be mutually orthogonal (Rolinek et al., 2019; Kumar & Poole, 2020).
The generalised argument of Kumar & Poole (2020) reparameterises around the encoder mean,
z = e(x)+ϵ, ϵ∼N (0,Σx), and Taylor expands to approximate a deterministic ELBO (det-ELBO):

ℓ(x) = Eϵ|x

[
log pθ(x|z=e(x) + ϵ) − β log p(ϵ)

p(z= e(x)+ϵ)︸ ︷︷ ︸
KL

]
(Reparameterise)

= Eϵ|x

[
log pθ(x|z=e(x)) + ϵ⊤je(x)(x) + 1

2ϵ
⊤He(x)(x)ϵ+O(ϵ3) − β KL

]
(Taylor)

≈ log pθ(x|z=e(x))︸ ︷︷ ︸
AE

+ 1
2 He(x)(x)⊙ Σx︸ ︷︷ ︸

gradient regularisation

− β
2

(
∥e(x)∥2 + tr(Σx)︸ ︷︷ ︸

prior

− log |Σx| − d︸ ︷︷ ︸
entropy

)
. (5)

Here, jz∗(x)
.
=(∂ log pθ(x|z)

∂zi
)i and Hz∗(x)

.
=(∂

2 log pθ(x|z)
∂zi∂zj

)i,j are the Jacobian and Hessian of log pθ
evaluated at z∗∈Z; and ⊙ is the Frobenius (dot) product. Notably, Eϵ|x[O(ϵ3)] terms are dropped.
Differentiating Eq. 5 w.r.t. Σx suggests a connection between the Hessian and encoder variance:

∇Σx
ℓ(x) ≈ 1

2

(
He(x)(x)− β(I−Σ

−1

x )
)

⇒ Σ−1

x ≈ I − 1
βHe(x)(x) . (6)

As in the linear case, the ELBO with diagonal Σx is minimised if the likelihood’s Hessian is also
diagonal. For exponential family pθ(x|z) with natural parameter θ=d(z) defined by the decoder,

He(x)(x) = −D⊤
e(x)A

2
d◦e(x)De(x) + (x− x̂d◦e(x))

⊤De(x) , (7)

where Dz /Dz are the Jacobian /Hessian of the decoder evaluated at z∈Z , x̂θ=E[x|θ], and A2
θ=

− d2

dθ2 log pθ(x|z) =Var[x|θ]. Aθ is diagonal if dimensions xi of x are conditionally independent
given θ, e.g. if pθ(z|x) is Gaussian, Aθ=

1
σI . The key conclusion is that for Gaussian likelihoods

and commonly used decoders where the last term in Eq. 7 is small almost everywhere (e.g. ReLU
networks), Σ−1

x ≈ I+ 1
βσ2D

⊤
e(x)De(x), meaning columns of the decoder Jacobian Dz are orthogonal.

3 FROM DIAGONAL POSTERIOR COVARIANCE TO ORTHOGONALITY

Before building on it, we first make precise the relationship between posterior covariance and the log
likelihood’s Hessian in Eq. 6. Maximising the ELBO with a Gaussian posterior approximation is
equivalent to an averaged Laplace approximation (Opper & Archambeau, 2009). Hence at optimality,

Σ
−1

x = − d
dΣx

Eq(z|x)[log pθ(x, z)] = −Eq(z|x)[
d2

dz2 log pθ(x, z)] = I − 1
βEq(z|x)[Hz(x)] , (8)

which follows from: (i) differentiating the ELBO w.r.t. Σx; (ii) the link to Laplace approximation;
and (iii) the Gaussian prior. (This also follows from the deterministic ELBO (Eq. 5) by differentiating
the full Taylor series w.r.t. Σx.) Thus, Eq. 6 holds in expectation. Accordingly, for Gaussian
likelihoods and controlled higher decoder derivatives (e.g. ReLU networks or similar), columns of
the decoder Jacobian are orthogonal in expectation over each posterior qϕ(z|x). Although weaker
than Eq. 6 suggests, this relationship between column-orthogonality of the decoder Jacobian and
disentanglement is observed empirically (Rolinek et al., 2019; Kumar & Poole, 2020). We conjecture
that orthogonality holds more consistently the more posteriors overlap and regions of overlap are
subject to multiple simultaneous orthogonality constraints (see §5). This less rigid relationship may
also partly justify why disentanglement is observed variably in practice (e.g. Locatello et al., 2019).
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Comparing optimal covariances for PPCA (Eq. 3) and Gaussian VAE (dropping β for clarity),

Σ̂
−1

PPCA = I + 1
σ2D

⊤D Σ̂
−1

x,VAE = Eq(z|x)[I + 1
σ2D

⊤
e(x)De(x)] , (9)

reveals how the optimal posterior covariance for a non-linear VAE generalises the well-known
result for the linear case. This is insightful, since it is this relationship that enables an LVAE to
break the rotational symmetry of PPCA (Eq. 4) and, more pertinently, results in standard basis
vectors zi∈Z corresponding to, or identifying, independent principal axes of variance of the data:
DLVAEzi= U(S −σ2I)

1/2zi ∝ ui. In short, the relationship that disentangles independent factors of
variation in the linear case, is mirrored in the non-linear case.

Note (for future reference, §5) that higher Var[x|z]=σ2 corresponds to higher Var[z|x]=Σ, and
vice versa, i.e. uncertainty in one domain goes hand in hand with uncertainty in the other.

Linear det-ELBO: Lastly, we comment briefly on Eq. 5 for an LVAE (dropping β for clarity),

2ℓLVAE = Ex

[
− 1

σ2 ∥x−DEx∥2 − (I + 1
σ2D

⊤D)⊙ Σ + log |Σ| − ∥Ex∥2 + d
]

= Ex

[
− 1

σ2 ∥x−DEx∥2 − ∥Ex∥2
]
− log |I + 1

σ2D
⊤D| , (10)

where we plug-in the optimal posterior covariance (Eq. 9). This gives a deterministic objective for
PPCA, that can also be seen as a regularised objective for deterministic PCA that removes ambiguity
from R (Eq. 4). This is of interest as variations of PCA are widely studied in terms of their optima
(Kunin et al., 2019; Bao et al., 2020) and learning dynamics (Saxe et al., 2014; Bao et al., 2020).

4 FROM ORTHOGONALITY TO DISENTANGLEMENT

Having clarified the connection between diagonal posterior covariance and column-orthogonality of
the Jacobian, we now develop our main result to show why such orthogonality causes disentanglement.
This relates two different notions of “independence”: orthogonality pertains to linear independence, a
geometric property, while disentanglement relates to statistical independence of factors/components
of a distribution. These concepts do not always go hand-in-hand and it is not immediately clear why
a column-orthogonal Jacobian implies that different latent dimensions correspond to statistically
independent, often semantically meaningful, factors of variation in the data.

The generative model of a VAE can be decomposed into stochastic and deterministic steps: sample
the prior z∼p(z); apply a deterministic function x̂ = µ ◦ d(z) (composing the decoder d :z 7→ θ and
mean function µ :θ 7→ x̂

.
=E[x|z]); and add element-wise noise, x ∼ p(x|x̂). For continuous data,

e.g. images, element-wise noise often serves only as “blur” and is omitted when generating synthetic
data. Thus, samples come from the “push-forward” distribution of mean parameters p(x̂) over a
d-dimensional manifold defined by the decoder. Note that if data are truly generated under the VAE
model for some ground truth decoder parameters θ∗ and small σ,3 then as pθ(x)

D→ p(x), the model
push-forward distribution tends to the ground truth push-forward distribution, pθ(x̂)

D→ p(x̂) (proof:
by contradiction). We now consider such push-forward distributions (X = Rm, Z = Rd, d ≤ m).

Definition 1 (push-forward distribution). For a function f : Z → X and prior distribution over Z ,
pZ(z), the push-forward distribution p#f, pZ

(x) is defined implicitly over {x=f(z) | z∼p(z)}⊆X .

Unless stated otherwise, we assume:

A#1. Latent variables are sampled from independent standard normals, pZ(z)=
∏d

i=1 N (zi; 0, 1).4

A#2. f :Z → X is injective, continuous and differentiable almost everywhere.5

Note that under A#2, f :
(i) defines a d-dimensional manifold Mf ={f(z) | z∈Z} ⊆ X embedded in Rm supporting p#f ;

(ii) is bijective between Z and Mf ; and
(iii) has full-rank Jacobian J evaluated at z∗, ∀z∗∈Z (by injectivity).

3Relative to variance of the mean parameters over the manifold, in effect the signal-to-noise-ratio.
4Since we assume A#1 throughout, pZ(z) is generally dropped from the subscript of p#f to lighten notation.
5We refer to this as “quasi-differentiable” and note that this includes piece-wise linear functions.
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Figure 1: Translating linear independence to statistical independence (linear f , with Jacobian
J=USV ⊤ and manifold Mf ⊆X ): A point in Z is denoted z when in the standard basis {zi, zj}
and v in the V -basis (columns of V : vi,vj , solid blue). V(i)

v∗ ⊆Z are lines passing through v∗ as each
co-ordinate vi varies (dashed blue). Each V(i)

v∗ maps to a sub-manifold M(i)
f,v∗ ⊆Mf (dashed red)

passing through f(z∗) parallel to the U -basis (columns of U : ui,uj , solid red). V(i)
v∗ are statistically

independent: p(v∗) =
∏

i p(v
∗
i ). f induces push-forward distributions p

#(i)
f,v∗ over M(i)

f,v∗ and for

x= fV (v
∗)≡ f(z∗), the density over the manifold p(x) =

∏
i p

#(i)
f,v∗ (x) factorises as a product of

independent components.

Letting J =USV ⊤ denote the SVD of J ( U⊤U = I , V ⊤V =V V ⊤= I), we note that columns
vi∈Z of V define a (local) orthonormal basis for Z , while columns ui∈X of U define a basis for
the tangent space to Mf at f(z∗). Since Jvi = siui (where si

.
=Si,i, the ith singular value), at each

z∗∈Z the Jacobian identifies (local) basis vectors in Z with (local) basis vectors in X .

4.1 LINEAR f

For intuition, we first consider the linear case f(z) = Dz (satisfying A# 2). Here, Mf is a d-
dimensional linear manifold (hyperplane through the origin) describing the mean parameters in
PPCA/LVAE. The Jacobian J =D (and SVD components U,S,V ) is constant ∀z∗ ∈Z , and the
density of the push-forward distribution

p#f (x=f(z)) = |D|−1
p(z) =

∏
i

|si|−1
p(zi) (11)

factorises. We now interpret factors |si|−1p(zi). We express z in the V -basis as v=V ⊤z under a
transformation with Jacobian ∂v

∂z =V ⊤. Thus p(v) = |V |p(z) = p(z) (as expected given only the
basis/perspective has changed) and, by rotational symmetry of the Gaussian prior, p(v) =

∏
i p(vi)

and p(vi) = N (0, 1). We can consider x as a function of z expressed in the V -basis (i.e. of v),
x= f(z) =USv

.
= fV (v), for which the partial derivatives (columns of fV ’s Jacobian) are now

orthogonal: ∂x
∂vi

⊤∂x
∂vj

= sisju
⊤
i uj = {s2i if i=j, o/w 0}; and ∥ ∂x

∂vi
∥= |si|. Eq. 11 thus becomes

p#f (x=fV (v)) =
∏

|si|−1
p(vi) =

∏
∥ ∂x
∂vi

∥−1
p(vi) , (12)

where factors now have the form of uni-variate probability distributions under a change of variables.
In simple terms, the V -basis is a “natural” way to view the data, hence the Jacobian factorises.

With reference to Figure 1, let v∗ = V ⊤z∗ be an evaluation point expressed in the V -basis and
let {V(i)

v∗ ⊆Z}i be lines passing through v∗ as co-ordinate i in the V -basis varies (dashed blue),
i.e. V(i)

v∗ = {(v∗1 , ..., vi, ..., v∗d) | vi ∈R}. The image of each V(i)
v∗ under fV forms a line (or linear

sub-manifold) M(i)
f,v∗ ={fV (v) | v∈V(i)

v∗ }⊆Mf (dashed red). As V(i)
v∗ follow right-singular vectors

in Z (the V -basis), M(i)
f,v∗ follow left-singular vectors in X (the U -basis). Since in the linear case

U , V are constant and define global bases (solid red/blue), M(i)
f,v∗ are parallel (∀v∗).

Just as we considered z in the V -basis, we can consider x in the U -basis, u=U⊤x, ui=u⊤
i x, to see

J = USV ⊤= dx
du

du
dv

dv
dz = U du

dvV
⊤ ⇒ du

dv = S ⇒ p(u) =
∏
i

|si|−1
p(vi) =

∏
i

p(ui) (13)
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showing that each component ui depends only on independent variable vi, so {ui}i are independent.
Since only the basis changes, p#f (x) = p(u) and by comparing Eqs. 12 and 13, we see that the
push-forward distribution over the manifold factorises into independent components in the U -basis.
As the final step, note that the push-forward distributions defined by f restricted to each line v∈V(i)

v∗

are supported on sub-manifolds M(i)
f,z∗ with density p

#(i)
f,v∗ (x)

.
= ∥ ∂x

∂vi
∥−1p(vi) = p(ui). Thus,

independent components of v (and so of z) are “pushed-forward” to independent components of u
(and so of x). In summary, for x = fV (v)∈Mf , the probability density

p#f (x) =
∏
i

p
#(i)
f,v (x) =

∏
i

p(ui) , (14)

factorises as a product of densities over 1-D sub-manifolds in X , analogously to how p(z) factorises
into 1-D Gaussians in Z . We state this result formally (with proof steps summarised in A.1) as:

Theorem 1. Assuming A#1 (independent Gaussian latent variables) and a linear function f : Z→X ,
f(z) = Dz, the push-forward distribution p#f factorises as a product of statistically independent
components in X (Eq. 14). Statistically independent vectors in Z parallel to right singular vectors of
D map to statistically independent vectors in X parallel to left singular vectors of D.

Remark 1. The probability density over each V(i)
v∗ ⊆Z is a standard Gaussian N (v; 0, 1). The density

p
#(i)
f,v∗ (x) = s−1

i p(f−1

V (x)i) over each sub-manifold, M(i)
f,z∗ ⊆X , is also Gaussian N (x; 0, s2i ).

Remark 2. The SVD of the Jacobian J = USV ⊤ can be interpreted in terms of the chain rule
J = ∂x

∂u
∂u
∂v

∂v
∂z ; and as U ,V ⊤ transforming the basis in each domain (termed the independent bases

of f ), and diagonal S = ∂u
∂v is the Jacobian of f for elements expressed in the independent bases. A

basis vector in one domain uniquely affects one basis vector in the other: ∂ui

∂vj
= {si if i=j; 0 o/w}.

Remark 3. Since right singular vectors V are a basis, or matter of perspective, they have no effect
on the model and can never be recovered. Thus PPCA is identified if U and S are recovered.

Corollary 1.1. For data generated under the linear PPCA model (Eq. 2), an LVAE identifies
statistically independent components of the data. If singular values of ground truth D are distinct,
the model is uniquely identified (up to column permutation and sign).

Proof (sketch, see A.2). The PPCA model satisfies the assumptions of Theorem 1. Columns of DLVAE

identify left singular vectors of ground truth D, which, by Theorem 1, define statistically independent
components of the data. Identifiability follows from uniqueness of p#(i)

f,v∗ (x).

4.2 NON-LINEAR f , COLUMN-ORTHOGONAL JACOBIAN

Theorem 1 for a linear function may not seem surprising, but notably its proof does not rely on
linearity of f . We now follow a similar argument for f that may be non-linear, assuming instead

A#3. (∀ z∗∈Z) columns of J are mutually orthogonal, i.e. ∂x
∂zi

⊤ ∂x
∂zj

=0, i ̸=j; equivalently V =I .

Theorem 2. Assuming A#1-3, the push-forward distribution p#f factorises as a product of statistically
independent components in X (Eq. 17). At each point z∗∈Z , statistically independent vectors in Z
parallel to the standard basis map to statistically independent vectors in X parallel to left singular
vectors of the Jacobian J evaluated at z∗.

Proof. The push-forward distribution of f satisfies

p#f (f(z)) = |J |−1
p(z) =

∏
i

|si|−1
p(zi) =

∏
i

∥ ∂x
∂zi

∥−1
p(zi) , (15)

equivalent to Eq. 12 but without the need for a change of basis. As illustrated in Figure 2 (left)
and analogously to the linear case, let Z(i)

z∗ ⊂Z denote orthogonal lines passing through z∗ parallel
to the standard basis, Z(i)

z∗ = {(z∗1 , ..., zi, ..., z∗d) | zi ∈R} (dashed blue). To isolate the action of
f over each Z(i)

z∗ , we define f
(i)
z∗ :Z(i)

z∗ →Mf , f (i)
z∗ (zi)

.
= f(z∗1 , . . . , zi, . . . , z

∗
d), which each map

the line Z(i)
z∗ to a 1-D sub-manifold M(i)

f,z∗
.
= {f (i)

z∗ (zi) | zi ∈ Rd} ⊂ Mf passing through f(z∗)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: Translating linear independence to statistical independence: (left) non-linear f , orthogonal
Jacobian J =USV ⊤ (evaluated at z∗), manifold Mf ⊆X : Z(i)

z∗ ⊆Z are lines passing through
z∗ by varying co-ordinate i in the standard basis (dashed blue). Each Z(i)

z∗ maps to a sub-manifold
M(i)

f,z∗ ⊆Mf (dashed red) passing through f(z∗) parallel to the local U -basis (columns of U : ui,uj ,

red). Z(i)
z∗ are statistically independent: p(z∗) =

∏
i p(z

∗
i ). f induces push-forward distributions

p
#(i)
f,z∗ over M(i)

f,z∗ and for x=f(z∗), the density over the manifold p(x)=
∏

i p
#(i)
f,z∗ (x) factorises as

a product of independent components. (right) Relaxing the orthogonality requirement: paths defined
by following right singular vectors of the Jacobian (V ) need not be linear and need not correspond to
independent components of z.

(dashed red). Given f
(i)
z∗ is a restriction of f , vectors d

dzi
f
(i)
z∗ = ∂x

∂zi
are tangent to the manifold

and sub-manifold M(i)
f,z∗ (solid red), and since ∂x

∂zi
are orthogonal (by assumption), sub-manifolds

M(i)
f,z∗ are orthogonal at z∗. Considering how density is mapped (from dashed blue to dashed

red), f (i)
z∗ together with the marginal p(zi) over its domain Z(i)

z∗ define a push-forward distribution
p
#(i)
f,z∗ (x) = ∥ ∂x

∂zi
∥−1p(zi), over x=f(z)∈M(i)

f,z∗ . Denoting x in the U -basis by u = U⊤x,

J = US = dx
du

du
dz = U du

dv ⇒ du
dz = S ⇒ p(u) =

∏
i

|si|−1
p(zi) =

∏
i

p(ui) (16)

where ui are independent. Thus p(ui) =
∏

i p
#(i)
f,z∗ (x) and by Eq. 15, for x∈Mf ,

p#f (x) =
∏
i

p
#(i)
f,z∗ (x) =

∏
i

p(u⊤
i x) (17)

factorises into independent uni-variate distributions, i.e. statistically independent components, sup-
ported over sub-manifolds M(i)

f,z∗ that are mutually orthogonal where they meet.

Remark 4. The independent basis of f is the standard basis of Z and ∥ ∂x
∂zi

∥ = |si|.

Remark 5. The density restricted to Z(i)
v∗ is a standard Gaussian N (z; 0, 1). The density p#(i)

f,v∗ (x) =

|si|−1p(f−1(x)i) over M(i)
f,z∗ is not Gaussian in general since si can vary arbitrarily over x∈M(i)

f,z∗ .

Corollary 2.1. For data generated from a push-forward distribution p#f , where p(z) satisfies A#1
and f satisfies A#2 and A#3, a Gaussian VAE identifies statistically independent components of the
data with distinct latent dimensions. If ground truth singular values si as a function of z∈Z(i)

v∗ are
unique, the model is fully identified (the analogue of distinct singular values).

Proof. The data distribution and an optimised Gaussian VAE each satisfy A#1, A#2 and (from §2)
A#3, so by Theorem 2 data lie on a manifold with statistically independent sub-manifolds. The VAE
defines a similar manifold and its objective is maximised iff pθ(x) = p(x), hence when distributions
over VAE sub-manifolds match those over ground truth sub-manifolds. VAE sub-manifolds map
1-to-1 to latent dimensions by Theorem 2. Identifiability follows from uniqueness of p#(i)

f,v∗ (x).

7
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4.3 NON-LINEAR f

Having seen that column orthogonality (A#3) is sufficient for independent factors to manifest in X ,
we consider if it is necessary. We relax A#3 and consider a general push-forward distribution under
A#1 and A#2 (independent latent variables, f injective) for fully differentiable f .

In previous scenarios (linear, column-orthogonal Jacobian), sub-manifolds in Z (V(i)
v∗ , Z(i)

z∗ ) are linear,
defined by the right singular vectors of the Jacobian, and constant ∀z∈Z . Those sub-manifolds can
also be defined parametrically, as continuous paths that follow right singular vectors at each point (cf
integrating over a vector field, see Figure 2 (right)).6 In our now relaxed scenario, singular vectors
can vary over Z .

Since the SVD of a matrix M is continuous w.r.t. M (Papadopoulo & Lourakis, 2000), if J is
continuous w.r.t. z (by differentiability of f ) then right singular vectors vi (as a function of z)
trace continuous sub-manifolds V(i)⊆Z that are orthogonal everywhere. By definition of the SVD,
mutually orthogonal V(i)⊆Z map to mutually orthogonal sub-manifolds M(i)

f ⊆Mf (as previously),
thus the push-forward distribution over the manifold Mf again factorises as a product of component
push-forward distributions over each M(i)

f . Now, however, sub-manifolds V(i)∈Z need not be linear
and are not statistically independent in general, i.e. the density at z∗∈Z may not factorise as the
product of densities over V(i)⊆Z passing through z∗.

Thus, either: (1) sub-manifolds V(i)⊆Z are not statistically independent and p(x) does not factorise
as a product of independent components (in simple terms, “f entangles zi”); or (2) sub-manifolds
V(i)⊆Z are statistically independent (e.g. V(i) form an arbitrary orthogonal basis) and are mapped
by f to independent components in X . In case (2), since an optimal Gaussian VAE maps independent
components M(i)⊆X to the standard basis in Z , independent factors in X can be identified, but
sub-manifolds V(i)⊆Z are unidentifiable, analogous to V in the linear case. In other words, applying
local V -basis transformations everywhere (a continuous mapping) can be considered collectively as
a global non-linear basis transformation that doesn’t change the probability distribution, hence is
irrecoverable.

5 INTERPRETING β OF β-VAE

We now consider the role of β parameter in the β-VAE objective (Eq. 1), which is empirically
observed to affect disentanglement (Higgins et al., 2017). Previous works interpret β as re-weighting
the KL and reconstruction components of the ELBO, or serving as a Lagrange multiplier for a KL
“constraint”. We provide an interpretation more in keeping with the original ELBO.

To model data from a given domain, a (β-)VAE requires a suitable likelihood pθ(x|z), e.g. a Gaussian
likelihood for coloured images, and a Bernoulli for black and white images where pixel values
xk∈ [0, 1] are bounded (Higgins et al., 2017) . In the Gaussian case, dividing Eq. 1 by β shows that
training a β-VAE with encoder variance Var[x|z]=σ2 is equivalent to a VAE with Var[x|z]=βσ2

and adjusted learning rate (Lucas et al., 2019). We now interpret β for other likelihoods.

In the Bernoulli example mentioned above, black and white image pixels are not strictly black or
white (xk∈{0, 1}) and may lie between (xk∈ [0, 1]), hence the Bernoulli distribution appears invalid
as it does not sum to 1 over the domain of xk. That is, unless each sample is treated as the mean x̄ of
multiple (true) Bernoulli samples. Multiplying the likelihood by a factor κ>1 is then tantamount to
scaling the number of observations as though each were made κ times, lowering the variance of the
“mean” observation, Var[x̄]κ→∞−→ 0.7 Thus, multiplying the KL term by β in a β-VAE, or equivalently
dividing the likelihood by β, amounts to scaling the likelihood’s variance by β, just as in the Gaussian
case: higher β corresponds to lower κ (“fewer observations”) and so higher likelihood variance.
Since the argument holds for any exponential family likelihood, we have proved
Theorem 3 (β-VAEσ2≡VAEβσ2 ). If the likelihood pθ(x|z) is of exponential family form, a β-VAE
with Var[x|z]=σ2 is equivalent to a VAE with Var[x|z]=βσ2.

6e.g. define path i passing through z∗ ∈ Z by V(i)
v∗ = {v(i)(t) | v(i)(t) = v∗+

∫ t

0
∂vi
∂z

(v(t))dt }, where
dv
dt

= ∂vi
∂z

(v(t)) = vi is right singular vector of the Jacobian evaluated at v(t).
7A mode-parameterised Beta distribution could also be considered, but we keep to a more general argument.
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Figure 3: Effect of Var[x|z], or β, on reconstruction (blue = data, red = reconstruction): (l) For low β
(β=0.55), Var[x|z] is low, by Eq. 6 & 9, and data are closely reconstructed (see right, top). As β
increases, Var[x|z] and so Var[z|x] increase and posteriors of nearby data points {xi} increasingly
overlap (see right, bottom). For z in overlap of {q(z|xi)}, the decoder E[x|z] maps to a weighted
average of {xi}. Initially, close neighbours map to their mean (β = 2.2, 3.8), then small circles
“become neighbours” and map to their centroids, until finally all samples map to the global centroid
(β = 60). (reproduced with permission from Rezende & Viola, 2018) (r) illustrating posterior overlap,
(t) low β, (b) higher β.

In the most general case, the β-ELBO (Eq. 1) is maximised if q(z|x) ∝ pθ(x|z)1/βp(z), and β can be
interpreted as a temperature parameter: high β dilates the likelihood towards a uniform distribution
(high Var[x|z]), low β concentrates it towards a delta distribution (low Var[x|z]).
Figure 3, from Rezende & Viola (2018), nicely illustrates the effect of varying β and empirically
demonstrates the relationship to Var[x|z]. As variance increases, posteriors of nearby data points
{xi} (blue) increasingly overlap (by Eq. 6/9) and the decoder maps latents in regions of overlap to
weighted averages of xi (red). Since Var[x|z] governs how close data points need to be for this effect,
it acts as a “glue” over x∈X (see caption for details).

In §3, we saw that optimising the ELBO encourages Jacobian orthogonality, on which disentanglement
relies, in expectation over posteriors (Eq. 8). We conjecture that this justifies why increased β
enhances disentanglement (Higgins et al., 2017; Burgess et al., 2018): increasing β increases Var[x|z]
and so Var[x|z] (Eq. 8), which (i) encourages orthogonality over a broader region of Z; and (ii)
increases posterior overlap where multiple orthogonality constraints apply simultaneously (Fig. 3).

We note that Theorem 3 also allows clearer interpretation of other works that vary β. While setting
β > 1 can enhance disentanglement, setting β < 1 is found to mitigate “posterior collapse” (PC),
which describes when a VAE’s likelihood is sufficiently expressive such that it learns to directly
model the data distribution, p(x|z)=p(x), leaving latent variables redundant (Bowman et al., 2015).

Corollary 3.1 (β<1). Setting β<1 is expected to mitigate posterior collapse.

Proof. From Theorem 3, β<1 reduces Var[x|z], constraining the distributional family that pθ(x|z)
can describe. For some β, Var[x|z]<Var[x] and so p(x) ̸=pθ(x|z), ∀θ, making PC impossible.

6 RELATED WORK

Many works study aspects or variants of VAEs, or disentanglement in other modelling paradigms.
Here, we review those that offer insight into understanding the underlying cause of disentanglement
in VAEs. Higgins et al. (2017) first showed that disentanglement is enhanced by increasing β in
Eq. 1, and Burgess et al. (2018) hypothesised that diagonal posterior covariances may be the cause,
encouraging latent dimensions to align with generative factors of the data. Rolinek et al. (2019)
empirically showed and theoretically supported a link between diagonal posterior covariances and
orthogonality in the decoder Jacobian, deemed responsible for disentanglement. Kumar & Poole
(2020) simplified and generalised the argument. These works demonstrate that diagonal posteriors
provide an inductive bias that breaks the rotational symmetry of an isometric Gaussian prior, side-
stepping impossibility results related to independent component analysis (e.g. Locatello et al., 2019).

Several works investigate analytically tractable linear VAEs (Lucas et al., 2019; Bao et al., 2020;
Koehler et al., 2022). Zietlow et al. (2021) show that disentanglement is sensitive to perturbations
to the data distribution. Reizinger et al. (2022) relate the VAE objective to independent mechanism
analysis (Gresele et al., 2021), which encourages column-orthogonality in the mixing function
of ICA, similarly to that induced implicitly in the decoder of a VAE. Ramesh et al. (2018) trace
independent factors by following leading left singular vectors of the Jacobian of a GAN generator. In
the opposite direction, Chadebec & Allassonnière (2022) trace manifolds in latent space by following
a locally averaged metric derived from VAE posterior co-variances. Pan et al. (2023) claim that the

9
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data manifold is identifiable from a geometric perspective assuming Jacobian-orthogonality, which
differs to our focus on statistical independence. More recently, Bhowal et al. (2024) consider the
encoder/decoder dissected into linear and non-linear aspects, loosely resembling our view of the
Jacobian in terms of its SVD. However, the decoder function is quite different to its Jacobian and
dissecting a function into linear and non-linear components is not well defined whereas an SVD is
unique.

Recently, Buchholz et al. (2022) analysed several function classes identifiable by Independent
Component Analysis (ICA), including conformal maps. This relates closely to our analysis of a
decoder with column-orthogonal Jacobian (§4.2), which is a conformal map (see Def. 2, Buchholz
et al., 2022). Conformal maps are proved to be identifiable in abstract via Moebius transforms,
whereas we give a constructive proof for VAEs in terms of the SVD of the decoder’s Jacobian.
Combining these appears a promising direction to better understand the interplay between stochastic
and deterministic approaches to learning latent generative factors.

7 CONCLUSION

Unsupervised disentanglement of independent factors of the data is a fundamental aim of machine
learning and significant recent progress has been made in the case of VAEs. We extend that work
by showing: (i) that the previously proposed approximate relationship can be defined precisely;
and (ii) that the choice of diagonal posterior covariances in a VAE causes statistically independent
components of the data to align with distinct latent variables of the model, i.e. disentanglement. In
the process, we provide a novel yet straightforward interpretation of β in a β-VAE, which plausibly
explains why increasing β promotes disentanglement but degrades generation quality; and why
decreasing β mitigates posterior collapse. We also supplement the proof of orthogonality by showing
that the likelihood’s Hessian is necessarily encouraged to be diagonal and giving a detailed analysis
of the Jacobian’s optimal singular values.

Neural networks are often considered too complex to explain, yet recent advances make their
deployment in everyday applications all but inevitable. Improved theoretical understanding is
therefore essential to be able to confidently take full advantage of machine learning progress in
non-trivial and potentially critical systems, and we believe that the body of work that we add to here
is a useful step. Interestingly, our approach rests on the fact that, regardless of the model’s complexity,
its Jacobian, which transforms the density of the prior, can be considered in relatively simple terms.

Not only is a better understanding of VAEs of interest in itself, VAEs are often part of the pipeline in
recent diffusion models that achieve state-of-the-art generative performance (e.g. Pandey et al., 2022;
Yang et al., 2023; Zhang et al., 2022). Other recent works show that supervised learning (Dhuliawala
et al., 2023) and self-supervised learning (Bizeul et al., 2024) can be viewed from a latent variable
perspective and trained under a suitable variant of the ELBO, connecting VAEs to other learning
paradigms in a common mathematical language.

One limitation of our work and of current understanding more generally is that disentanglement
is observed in VAEs with non-Gaussian likelihoods (Higgins et al., 2017), whereas current work,
including ours, focus predominantly on the Gaussian case. We plan to address this in future work.
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A APPENDIX: PROOFS

A.1 PROOF OF THEOREM 1

We summarise the key logical steps outlined in §4.1 with notation as defined there: D=USV ⊤,
ui,vi are columns of U ,V (left/right singular vectors), si = Si,i are singular values.

Proof. .
• we can consider sampling z∼p(z) as sampling random variables vi with realisations defined in

the V -basis: vi = v⊤
i z;

• since p(v)=
∏

i p(vi) and p(vi)=N (vi; 0, 1), vi are independent standard normal;

• p
#(i)
f,v (x)= |si|−1p(vi) are push-forward distributions w.r.t. vi under f ;

• if we define u = U⊤x (x in the U -basis), then p(x) = p(u) and J = USV ⊤ = ∂x
∂u

∂u
∂v

∂v
∂z =

U ∂u
∂vV

⊤, which implies a simple relationship: ∂u
∂v =S, or ∂ui

∂vj
={si if i=j, o/w 0};

• thus p(u)=
∏

i |si|
−1p(vi) and also p(ui)= |si|−1p(vi), such that p(x)=

∏
i p(ui) factorises;

• comparing definitions above, we see that p(ui) = p
#(i)
f,v (x), i.e. the push-forward distribution of

z in the V -basis under f equates to a distribution over x in the U -basis;

• each ui is a function of only vi, hence ui (each co-ordinate of x considered in the U -basis), can
be treated as a realisation of an independent random variable.

Thus, samples vi of independent random variables in Z , map separably under f to samples ui of
independent random variables in X ; and basis vectors ui∈X identify independent components.

To perhaps illustrate the linear case more clearly, we also know u=Sv, ui=sivi and can explicitly
define the independent components of x: p(ui)=N (ui; 0, s

2
i ). It is thus clear that p(x) factorises as

a product of these independent factors:

p(x) = N (x; 0,DD⊤) = (2π)−D/2|DD⊤|−1
exp

{
− 1

2x
⊤(DD⊤)

−1
x
}

= (2π)−D/2|S2|−1
exp

{
− 1

2x
⊤US−2U⊤x

}
= (2π)−D/2

(∏
i

s−2
i

)
exp

{
− 1

2u
⊤S−2u

}
=

(∏
i

(2π)−1/2s−2
i

)
exp

{
−
∑

1
2s2i

u2
i

}
=

∏
i

(2π)−1/2s−2
i exp

{
− 1

2s2i
u2
i

}
=

∏
i

N (ui; 0, s
2
i )

A.2 PROOF OF COROLLARY 1.1

Proof. Noise parameter σ can be learned in PPCA (see Tipping & Bishop, 1999), which we assume
is well-approximated or otherwise known (σPPCA =σ).

• The PPCA model (Eq. 2) satisfies the assumptions of Theorem 1.

• By Theorem 1, for data generated under the PPCA model, the probability density over mean
parameters x̂ = Dz factorises as p(x̂) =

∏
i p

#(i)
f,v (x̂) with p

#(i)
f,v (x̂) = |si|−1p(vi) = p(ui),

where v=V ⊤z, u=U⊤x̂ and basis vectors ui correspond to independent components of x̂.

• With sufficient data, the ELBO of an LVAE is maximised when DLVAE = US, hence columns
siui of DLVAE identify independent components of the data.

• If all si are distinct, D is fully identified by its SVD, which is unique up to column permutation
and sign.
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