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ABSTRACT

Recent advances in large vision-language models have led to impressive perfor-
mance in visual question answering and multimodal reasoning. However, it remains
unclear whether these models genuinely perform grounded visual reasoning or
rely on superficial patterns and dataset biases. In this work, we introduce MAGIC,
a comprehensive benchmark designed to evaluate grounded multimodal cogni-
tion—assessing not only answer accuracy but also the quality of step-by-step
reasoning and its alignment with relevant visual evidence. Our benchmark includes
5,534 weakly supervised QA examples generated from strong model outputs and
896 human-curated examples with fine-grained annotations, including answers,
rationales, and bounding box groundings. We evaluate 15 vision-language models
ranging from 7B to 70B+ parameters across four dimensions: final answer correct-
ness, reasoning validity, grounding fidelity, and self-correction ability. MAGIC
further includes diagnostic settings to probe model robustness under adversarial
visual cues and assess their capacity for introspective error correction. We intro-
duce new metrics such as MagiScore and StepSense, and provide comprehensive
analyses that reveal key limitations and opportunities in current approaches to
grounded visual reasoning.

1 INTRODUCTION

Recent advances in large vision-language models (LVLMs) have substantially improved visual ques-
tion answering and reasoning. Proprietary models such as GPT-4V (OpenAlL 2023), Gemini (Googlel
2023)), and Claude-3 (Anthropic||2024), along with open-source counterparts like LLaVA (Liu et al.|
2023)), Qwen-VL (Bai et al., |2023), and DeepSeek-VL (Lu et al., 2024)), exhibit strong capabilities in
perception, object recognition, and complex visual understanding. However, these successes raise a
deeper question: Do current multimodal models genuinely reason over visual content, or do they rely
on superficial patterns and dataset biases?

Addressing this question requires a closer examination of grounded multimodal cognition—the ability
to selectively attend to relevant visual inputs and integrate them into coherent, multi-step logical
reasoning. This ability is central to human intelligence and is critical for building interpretable,
trustworthy Al systems. For instance, as illustrated in our example in robust reasoning
requires the model to justify its answer by explicitly referencing the correct visual regions and
following a logical inference path.

Yet, most existing benchmarks primarily focus on end-task performance, offering limited insight
into whether models truly "understand" the image or simply exploit dataset biases. They rarely
examine how models arrive at answers, whether intermediate reasoning steps align with relevant
visual regions (Li et al.| [2023aj [Liu et al., 2024} |Yue et al.|[2024} |Yu et al.| |2024) Recently, increasing
attention has been given to the reasoning processes of VLMs, with several works examining their
chain-of-thought reasoning (Zhang et al.| 2024a}|Zhao et al.| 2025} |(Chen et al.,[2023)), intermediate
rationale generation (Chen et al., [2023)), and visual grounding consistency (Yang et al., 2023 [He
et al.,|2024). However, these efforts remain fragmented, often lacking unified evaluation protocols
and comprehensive grounding diagnostics.

In this work, we introduce a comprehensive benchmark, MAGIC (BenchMArkinG MultImodal
Cognition), designed to evaluate grounded multimodal cognition. As illustrated in the right section of
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MagiC: A fine-grained evaluation of LVLMs' reasoning chain

Question:
What is the appliance on the counter?

Answer:
The appliance is a coffee maker.

Correction:

The counter is
near the center
of the photo in
R1,notR2.

There's a lot of detail outside the window in
“R1", like buildings and pedestrians.(X)
The question asks about something on the
counter, | should scan for a counter
first.(%)

The counter is to the right of the window in
*R2".(X)

There's a microwave on the counter of
*R3.(X)

Model Answer: | think the appliance on the
counter is a microwave. (X)

Ineed to locate the counter first. Based on
the angle of the photo, the kitchen seems to
be behind the half wall,in "R1" ().

In "R1’, scanning from left to right, | can
spot a stove and a coffee maken(u)

I also notice a kettle in “R1°, which might
also count as an appliance, but it's sitting on
top of the stove—not the counter.(a)

Model Answer: | think the appliance here is
the coffee maker. ()

Figure 1: Example scenarios from MAGIC. Existing work mainly focuses on evaluating the final
answer for a given task ignoring the steps model takes to answer.

our framework goes beyond conventional question answering by measuring a model’s ability
to (1) generate correct final answers, (2) articulate coherent, interpretable step-by-step reasoning,
(3) ground each reasoning step in the appropriate visual evidence, and (4) intervene upon and revise
faulty reasoning when possible.

To support this evaluation, we construct a dual-sourced dataset consisting of 5,534 weakly-supervised
visual reasoning instances and 896 human-curated instances with over 15,000 annotated reasoning
steps. The weakly supervised data is automatically derived from the outputs of high-performing
vision-language models across 78 diverse question types, enabling broad coverage with minimal
annotation cost. In contrast, the human-curated set includes fine-grained annotations—answers,
reasoning rationales, and bounding box groundings—with a held-out test set of 698 instances for
rigorous evaluation.

We evaluate 15 vision-language models ranging from 7B to 70B+ parameters, including both open-
source and proprietary systems. Our evaluation framework captures four dimensions of model
performance: short-form and long-form answer correctness, reasoning validity, grounding quality,
and self-correction ability. Grounding quality is quantified using MAGISCORE, which measures the
overlap between predicted and reference bounding boxes. To assess models’ introspective capabilities,
we further analyze their ability to detect and revise intermediate reasoning errors.

In addition to standard performance metrics, MAGIC introduces several diagnostic settings that
probe robustness and interpretability. The adversarial grounding setting evaluates models under
misleading or irrelevant visual cues to test their reliance on correct evidence. The self-correction
analysis examines whether a model can recognize and revise its own reasoning errors. Finally, we
conduct a human evaluation of reasoning quality on a subset of four models, deriving the StepSense
score that captures coherence and factual consistency.

In summary, our contributions are as follows:

* First, we introduce a novel task that jointly evaluates answer correctness, step-by-step
reasoning quality, and visual grounding fidelity.

» Second, we construct a benchmark dataset comprising 5,534 weakly supervised interleaved
bounding-box QA examples and 896 high-quality human-curated examples with detailed
annotations for answers, rationales, and bounding boxes.

* Third, we introduce novel evaluation metrics, MAGISCORE tailored to multimodal cognition,
with StepSense and Self-Heal which measures model reasoning quality and self-correction
ability.

* Lastly, we conduct a comprehensive analysis of 15 state-of-the-art models, uncovering key
insights into both the limitations and potential of current approaches to grounded visual
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reasoning. Our findings indicate that models exhibiting precise region focus are generally
more likely to answer questions correctly.

We hope this benchmark will catalyze future research toward building more interpretable, robust, and
cognitively aligned multimodal systems.

2 RELATED WORK

2.1 BENCHMARKS FOR LARGE VISION-LANGUAGE MODELS

Ever since the introduction of large vision-language models (LVLMs) such as BLIP (Li et al.,[2023b)
and LLaVA (Liu et al., [2023), the field has seen rapid advancements in both model scaling and
evaluation methodologies. Researchers have increasingly focused on scaling models at test time to
push the boundaries of what these systems can achieve. Alongside these developments, there has been
a notable surge in the creation of new benchmarks specifically designed to assess the visual reasoning
capabilities of LVLMs, moving beyond traditional vision tasks like Visual Question Answering
(VQA). Recent benchmarks such as MMBench (Liu et al., [2024), MMMU (Yue et al.| [2024), SEED-
Bench (Li et al., 2023al), and MM-Vet (Yu et al.| 2024)) now provide more comprehensive and
fine-grained evaluations, covering a wider variety of visual reasoning challenges. However, most of
these benchmarks still primarily measure end task performances and do not delve deeply enough into
the quality of LVLMs’ reasoning process. Despite efforts on visual chain of thought (CoT) (Chen
et al., 2023 Rose et al., 2024} |[Zhang et al., [2024ab; |Chen et al., 2024; Menon et al., 2024} Shao
et al., 2024} Zhao et al., 2025} [Wu et al.| 2025 Xu et al.|2025; Thawakar et al.| 2025), evaluating
their explicit reasoning quality remains an extremely challenging problem and the current methods
leave substantial room for improvement.

2.2  GROUNDING IN VISION TASKS

In order to address the gap in existing benchmarks, we examine in particular how well textual
reasoning steps remain grounded in visual input. Visual grounding has typically been studied in
relation to the internal activations of vision encoders and/or in the context of specific visual task
(Khan et al., 2022; [Yang et al.,[2023; He et al.| |2024; [Reich & Schultz, [2024; |Cheng et al.l|2024; |Wan
et al., [2024; |Chen et al., 2025) However, our work examines visual grounding more generally in the
context of LVLMs’ explicit reasoning - if the textual reasoning loses its connection to visual reality,
the generated explanations and answers, no matter how fluent, may be incorrect or irrelevant. Our
work aims to provide methods for tracing and evaluating this connection throughout the reasoning
process.

3 THE MAGIC BENCHMARK

We introduce MAGIC, the first benchmark dataset specifically designed to evaluate a model’s ability
to selectively attend to relevant visual information and integrate it into coherent, multi-step logical
reasoning. MAGIC contains 698 test question-and-reasoning pairs, each densely annotated with step-
wise correctness labels and corresponding natural-language corrections. The test set encompasses 41
distinct question subtypes derived from the GQA dataset (Hudson & Manning| |2019)), categorized into
five primary question types: 1) Verify: Binary yes/no questions. 2) Query: Open-ended questions. 3)
Choose: Questions offering a choice between two alternatives (e.g., “Is it red or blue?”). 4) Logical:
Questions requiring logical inference. 5) Compare: Questions involving comparisons between two
or more objects.

Detailed statistics of the dataset are summarized in[Table 1} In total, we collected 896 annotated
questions, comprising correctness annotations for 8403 individual reasoning steps and 2700 natural-
language corrections. In which, 198 are reserved for development and 698 for test, and the test set is
used as the MAGIC benchmark. The distribution of the question types of the test set can be found at
Figure[2]

The construction of MAGIC involves three main steps: task-input processing, response collection,
and human correction collection. Examples of the dataset, are available in the
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Compare

st 90 (12.9%) Set WS#* Dev Test
196 (28.1%) choose # of Instances 5534 198 698
100 (14.3%) # of Steps 69523 2373 8403

Avg. Words/Step 23 18 19
ogiat Avg. Steps/Inst. 12.00 11.98 12.03
zzeliisiiz) # of Correction N/A 641 2700
Avg. Words N/A 18 19

Query
186 (26.6%)

Table 1: Dataset statistics.
WS: Weakly supervised split
Figure 2: Question type distributions. De-
tailed distribution of detailed types can be
found in Figurel6]

Image Human Saliency

Question:
What is the
device that is to
the right of the
lamp?

@o + a b it e Irrelevant Final Image

Regions

Relevant Region Discovery Adversarial Region Discovery

Figure 3: Illustration of Task-Input Data Construction Processing. Human saliency maps are used
only during construction to identify relevant regions and are never provided to LVLMs at evaluation
time.

3.1 TASK-INPUT CONSTRUCTION

We obtain images (I), questions (Q), and short/full ground-truth answers (GTsport, G1'ry11) from
the GQA dataset (Hudson & Manning|, 2019). We restrict our selection to the public val splits
aim to minimize the likelihood of dataset overlap with existing model knowledge. Additionally, we
incorporate human saliency maps (Saliency,) from AiR-D (Chen et al.,|2020), which are based
on human eye-tracking data, providing higher quality saliency regions compared to pointer-based
counterparts. Although AiR-D contains saliency maps corresponding to both correct and incorrect
human answers, we only utilize those maps associated with correct responses.

As illustrated in the relevant region discovery section in for each question ) and its
associated saliency map Saliency,, we identify candidate “hotspot” regions that received significant
human attention. Bounding boxes for these regions are extracted and merged with the annotated
objects from GQA, forming an initial set of relevant regions. These regions are further processed to
eliminate overlaps or merge boxes where necessary, resulting in the final set of relevant bounding
boxes, RBox,, for question (.

Next, building upon the identified relevant regions (RBoz,) and GQA’s image-level object anno-
tations, we select additional image regions relevant to other GQA questions but irrelevant to the
current question (), as demonstrated in [Figure 3 These are termed adversarial regions. We randomly
sample adversarial regions that do not overlap with any region in RBozx,, creating the set ABox,,.
To ensure sufficient adversarial content, we sample three adversarial regions per question; if fewer
than three such regions exist, additional regions are generated randomly. We henceforth refer to
Box, = RBoxy U ABoz, as the candidate box set and to the labels indicating which boxes are
relevant as the ground-truth relevance. A detailed implementation can be found in [algorithm 1]

This step yields tuples of the form (I, Box,, @, A4) for each question ¢.
3.2 LVLM RESPONSE COLLECTION

Using the processed input data, we collect responses from four LVLMs representing four different
model families: INTERNVL-2.5 8B, GEMMA 3 27B, QWEN2.5-VL 7B, and OPENAI GPT-40.
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Each model is prompted using in-context learning (ICL) examples created in-house, provided with
inputs (I, @), and tasked to generate step-by-step reasoning from the first-person perspective,
concluding with a final answer.

Responses exhibiting invalid formatting or repetitive reasoning loops are filtered out. Remaining
valid responses are segmented into individual sentences, each representing a distinct reasoning step
S;. From these valid responses, we randomly select one reasoning sequence per question (.S;), which
is then densely annotated by human annotators.

3.3 REASONING CORRECTION COLLECTION

We recruit four expert annotators (computer science students with relevant experience) to evaluate
and correct the sampled model responses. Annotators begin by annotating ten practice examples,
which serve as training materials and are discarded thereafter. In the annotation phase, annotators
first verify the quality of each question and compare the model’s final answer against the ground
truth. Subsequently, they assess the correctness of each individual reasoning step .S;. This annotation
archives a substantial inter-annotator agreement of 0.72 Cohen’s Kappa. Annotators are required to
document any ambiguities, poorly formulated questions, or reasoning steps requiring reconsideration.
A discussion session is conducted after every 100 annotated examples to resolve disagreements and
collectively refine annotations.

For each incorrect reasoning step .5;, annotators will also provide a corrected natural-language version.
These corrections are complete rewrites rather than simple critiques, intended to maintain coherent
and logical reasoning when replacing the original step.

After completing this annotation step, each question () is associated with an annotated reasoning
sequence S, = {s1, $2,...,$n}, where each element s,, consists of the original reasoning step, a
correctness label, and its corresponding correction s,, = (original, correctness, correction).

3.4 WEAKLY SUPERVISED DATASET

In addition to the human-annotated dataset, we also created a weakly supervised dataset following the
pipeline similar to that described in Section [3.1] The weakly-supervised split omits human saliency
but derived its boxes from GQA’s object bounding boxes. To avoid overlap with our test set, images
included in this dataset are distinct from those in the primary annotated set. Model responses in
this version were collected using inputs (I, Q4, A,) without adversarial regions to produce cleaner
reasoning data.

4 TASK OVERVIEW

Using an image-question pair (I, Q)) from the MAGIC benchmark, we sample model responses from
Large Vision-Language Models (LVLMs), denoted by S a¢. The response from a given model can
be represented as Spaq = [s1, S2, - - -, Sn], Where n is the number of reasoning steps generated by
the model, along with the model’s final answer A, 4. Additionally, the dataset provides ground-
truth bounding boxes Box, and corresponding ground-truth answers in both short and long form,
denoted by (GTsnort, GTrun). Each question @) also includes a human-corrected reasoning chain,
Sy. Utilizing the tuple (1, Q, Boxq, Scats Aeats GLshort; GT i, Sq), we evaluate LVLMs on the
following three tasks:

4.1 REGION Focus

For each question (), a LVLM generates a reasoning chain Sga = [s1, S2, - - ., $,]. We introduce
the region extractor function ¢(-) that maps each reasoning step s; to a set of bounding box indices
from Box,, defined as ¢(s;) C {1,...,|Boz,|}. By taking the union of these regions across all
reasoning steps, we derive the complete set of regions the model focused on as part of its reasoning:

We can then represent the set of unique regions explored by the model as a binary vector: y €
{0, 1}‘3"%‘,where v = L[k € R]. Here, y, = 1 indicates that at least one reasoning step
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utilizing the k-th bounding box. Analogously, we have the ground-truth vector from the benchmark:
y* € {0,1}!Bo%al 'where y; = 1 if and only if the k-th box in Boz,, is labeled as relevant.

Using y and y*, we evaluate two variants of region-focus scores:

MAGISCORE (micro): Aggregating predictions across all images, we calculate precision, recall,
and Fj scores based on cumulative totals of true positives, false positives, and false negatives.
MAGISCORE (macro): For each question @), we first compute image-level precision, recall, and F;
individually. The macro-level score is then obtained by averaging these metrics across all questions.

Note that the primary goal of MAGISCORE is to assess visual grounding and reasoning capabilities
independently of object detection performance, making the metrics distinct from the detection-
oriented measures such as Intersection over Union (IoU). Detailed illustration of the score calculation
is in[Appendix D

4.2 LLM-ASSISTED FINAL ANSWER ACCURACY

While Hudson & Manning| (2019) propose exact match as the evaluation metric for answer accuracy,
this approach has notable limitations when evaluating natural language responses generated by
LVLMs. Specifically, exact match fails to recognize synonymous or semantically equivalent responses
(e.g., "tan" vs. "brown") and may incorrectly reward random occurrences of the ground-truth term
within longer responses. Therefore, we propose an LLM-assisted evaluation approach by leveraging
a large language model as a judge to more effectively assess correctness.

The LLM-based judge is modeled as the following: fzaq : P(Aza, GTrun) — {0,1}

This function classifies a model’s predicted answer A, x4 against a provided ground-truth answer.
Using this function, we define two accuracy measures:

1. Short Answer Accuracy (Accshort): evaluates whether the predicted answer captures essential
elements indicated by the short ground-truth answer: Accgon = ﬁ > (1.@)ep fem (Azrms GTipor)

2. Full Answer Accuracy (Accy,): evaluates whether the predicted answer aligns comprehensively
with the detailed ground-truth answer: Accpy = \%I > .@yep fem (A GTran)

The short-answer accuracy measure can be viewed as a more permissive evaluation metric compared
to full-answer accuracy, as it only requires capturing core semantic elements identified by the concise
ground-truth answer.

4.3 SELF-CORRECTION

For each question (), the benchmark provides human-corrected reasoning chains, denoted as S, =
[s1, 82, .., 8], Where each step has been labeled with correctness and natural language correction
if is incorrect. Given the annotated reasoning chain S;, we identify contiguous subsequences
of incorrect reasoning steps marked by human annotators as Syrong = [Si, . - -, 5], With indices
2<i<j<n-—2

To evaluate the self-correction ability of the LVLM, we design an intervention experiment. Specifi-
cally, we inject the initial reasoning steps up to and including the incorrect step, i.e., the subsequence

[s1,82,...,5;], into model’s response. With this partial reasoning chain as context, the LVLM
continues to generate subsequent reasoning steps, resulting in an extended reasoning chain defined as
Srest = [8541,85 19, 5,,]. Here, S,.cs represents the model’s attempt to self-correct previously

identified erroneous reasoning while continuing to answer the given question Q).

We again employ an LLM-based judge to identify the presence of these human corrections within
the model-generated steps in S,s;. The model returns 1 if any of the reasoning steps within S;.cs¢
semantically match the corresponding human correction steps from [s;, s;+1, - . . , §;], and 0 otherwise.

Aggregating across all the incorrect subsequences identified by annotators, we compute the score for
Self-Heal as the fraction of instances in which the LVLM successfully corrects the injected erroneous
reasoning step.
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5 EXPERIMENT AND RESULTS

In this section, we perform a series of experiments on multiple state-of-the-art LVLMs to examine
their visual grounding abilities and overall reasoning quality. We found that accuracy climbs almost
linearly with how model’s focus aligns to relevant regions, and scaling boosts its performance on
region focusing, reasoning and self-correction.

5.1 EXPERIMENTAL SETTINGS

We evaluate a total of 12 open-source, general-purpose LVLMs without test-time inference scaling
capabilities, including LLaVA-OneVision-Chat (Xiong et al.,|2024)), InternVL 2.5-MPO (Wang et al.}
2024), Qwen2.5-VL (Bai et al.l 2025), Llama-3.2 (Al@Metal, |2024), Aya Vision (CohereForAl,
2025)), and Gemma 3(Team), |2025)). Additionally, we evaluate the only open-source model equipped
with test-time inference scaling to the best of our knowledge, QvQ (QwenTeam, 2024ﬂ and two
proprietary LVLMs from OpenAl: GPT-40-mini (Hurst et al.,2024) and GPT-4.1 (OpenAl 2025).

As described in[section 4] for each image-question pair (I, Q) in the test set, models are instructed to
generate detailed reasoning steps required to answer the provided question, based on the associated
image with clearly marked bounding boxes. As constructed in section[3.1] the test set includes both
relevant and adversarial boxes by default, and models are evaluated under this mixed candidate set.
Both the reasoning steps and final answers produced by each model are extracted for evaluation.

Additional experimental details can be found in the

Model Size Think Final Answer MAGISCORE (Macro) MAGISCORE (Micro)
Capability | Full  Short | Precision Recall F1 Precision  Recall F1
Small (~7B) Open LVLM
LLaVA OneVision 7B No 49.00 54.01 48.31 3533 3779 77.78 3272 46.06
InternVL 2.5-MPO 8B No 49.86  50.00 65.61 53.50 54.12 66.61 5090 57.71
Aya Vision 8B No 45.13  50.00 78.63 50.32  56.74 89.02 43.83 58.74
InternVL 3 9B No 4943  56.45 69.62 58.09 58.31 66.60 5334  59.24
Qwen2.5-VL 7B No 51.00 55.30 53.49 42.60 43.15 67.93 38.51 49.15
Medium (11~32B) Open LVLM
Gemma 3 12B No 50.00 54.58 76.49 69.15  67.69 73.03 6445 6847
InternVL 2.5-MPO  26B No 36.39  40.69 71.47 58.17 59.44 76.59 5330 62.86
Gemma 3 27B No 5029 5244 69.46 7323 66.48 66.61 70.07 68.30
Aya Vision 32B No 4771 52.44 84.68 5723  63.15 87.74 5124 64.70
Qwen2.5-VL 32B No 59.74 63.32 73.85 57.03 59.18 69.07 51.42 5895
Large (72~90B) Open LVLM
Llama 3.2 Vision 90B No 35.67 39.97 46.28 37.55 38.29 83.35 3349 47.78
Qwen2.5-VL 72B No 61.03 66.05 60.80 80.95 63.37 56.82 7543  64.81
QvQ 72B Yes 59.89 64.04 47.43 89.35 60.26 53.51 88.46  66.69
Proprietary LVLMs

GPT 40 mini N/A No 51.72 55.01 69.03 79.14  66.77 63.88 67.71 65.74
GPT 4.1 N/A No 71.78 74.36 65.98 71.10 63.73 61.62 74.01  67.25

Table 2: Performance comparison. The best performing models for each metrics are shown in bold.

5.2 MAIN RESULTS

Focusing on the right place leads to higher answer performance. Across the 15 LVLMs evaluated
in we find that the models with higher MAGISCORE tend to perform better in answering
the question itself. This pattern holds for both small- and large-scales, suggesting that the ability to
selectively attend to relevant regions is a strong indicator for the correctness of models’ final answer.
For example, GEMMA 3 12B, which scored 67.7% in attention, achieved 54.6% in short answer
accuracy, while LLAMA 3.2-90B, scored 38.3% in attention only and subsequently achieved 39.97%
in answer accuracy. We notice that the QWEN2.5-VL models generally tend to have lower attention
scores than their peers despite high short-answer accuracies. We speculate that the attention scores
gap with other models probably comes from Qwen’s training recipe (Bai et al.,2025)), which includes
pre-training on various VQA datasets, and grounding data with absolute position references, which

"Note that we do not provide QvQ with ICL examples unlike other models, as by default QvQ explicitly
generates its intermediate reasoning towards the answer.
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may interfere with the models’ ability to make relative references using specific schemes such as our
bounding boxes.

Region focus as an emergent ability of larger models. As shown in we observe that
scaling model sizes could lead to better performance in utilizing the relevant regions. Medium-sized
(11-32B) LVLMs are on the sweet spot in terms of both region attention performance and final
answer performance, as we can see that they generally tend to have higher region attention scores
than smaller models. This is followed by higher final answer scores, in terms of both full and short
answers. Large-sized (72B+) models seem to provide further performance gains over medium-sized
models. For QWEN2.5-VL models (7B, 32B, 72B) with lower attention scores than their respective
peers, we can still see that the overall trend still holds within these three models.

Attention capabilities of test-time scaling models. It is interesting to note that the only vision
test-time scaling model we test, QVQ, achieves comparable performance to QWEN2.5-VL 72B,
despite not being provided with our in-context learning examples of utilizing bounding boxes for
reasoning. We can see that as part of its test-time scaling, QvQ could already generate reasoning that
effectively considers the bounding boxes we inject into test images. However, the model tends to
perform exhaustive coverage of all bounding boxes, as evidenced by low precision in micro and macro
attention scores. While it remains to be seen whether this would be the case for other comparable
models, we see a great potential of better visual grounding to be achieved with test-time scaling.

Model Size Step SeAnCsCeura?nswer Model Size | Self-Heal
QwenVL25 7B 5133 5903 LLaVA OneVision 7B 25.99
Gemma 3 12B 31.5
InternVL 2.5 8B 48.99 48.69
Qwen2.5-VL 7B 35.03
Gemma 3 27B 52.13 55.1
GPT4omini N/A | 5380 5926 Qwen2.5-VL 328 | 4138
: : Qwen2.5-VL 72B 46.89
Table 3: StepSense and final answer accuracy Table 4: Self-Heal accuracy

mmas12bit — wtaomn
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gemma3-12bit @
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%
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Figure 4: Scaling curve for MAGISCORE

Sound intermediate reasoning, sound final answer. Human-annotated evaluation from [Table 3|
shows that models with higher sentence-level reasoning accuracy almost always enjoy higher final-
answer accuracy - for example, QWEN2.5-VL 7B leads both metrics (61.4% vs. 70.0%), while
INTERNVL 8B trails on both. Together with our findings in region focus, this supports a three-step
chain: a precise perception with reliable reasoning can result in correct answers. Improving any links
in that chain, and especially the visual grounding link, therefore remains a direct path to better overall
performance.

Stronger models correct themselves better. The self-correction results in[Table 4]echo the same
scaling story. Each jump in QWEN2.5-VL size yields roughly a six-point boost in correction
accuracy. We also tested two models, LLaVA-OneVision 7B and Gemma 3 12B, which achieved
short answer performance similar to QWEN2.5-VL 7B. However, we can see that both models lag
noticeably behind QWEN2.5-VL 7B, showing that stronger model’s tend to have better self-correction
capabilities. as well.

5.3 ERROR ANALYSIS

We randomly sample 100 instances of failed reasoning from all 15 LVLMs we have tested and analyze
their failure points. [Figure 5|shows a list of failed examples. We identify the following common error
patterns:
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I'm looking for

furniture, so | should Let me start by checking
look at the base of the bounding boxes. In
this TV.There's a 'R4°,1see adispenser
.. large dark wooden mounted on the wall. It
- W looks to be a soap or
underneathit, in lotion dispenser. Next, |
L IEZEETRiE should search for any

be a cabinetora
console of some
sort.

Incorrect object location (Gemma 3) Incorrect region description (GPT 40-mini)

‘ painting nearby.

Looking at the bounding boxes:

1. Box 1is around a wooden bowl on a
countertop to the right.

2. Box 2 is near some hanging utensils.
3.Box 3 is around a wooden cabinet or
dresser.

.| 4.Box 4 is near a chair close to the

Next, I'll look at
region ‘R2°, which
is to the right of

region 'R1°. This ; S5 & window.

. ) B G BN 5. Box 5 is on a wall cabinet to the left.
reglon may be part 4 u 6. Box 6 is around a hanging spatula or
of a shelf or similar utensil.
another segment of 7.Box7 i_s around a samovar or tea pot on

the left side.
| the tabletop. oo
. The question mentions a wood bowl and a
utensil on the right. So, | need to identify
the positions of these specific items.
Incorrect spatial orientation (InternVL2.5) Exhaustive use of bounding boxes (QVQ)

Figure 5: Examples of failed reasoning. Adversarial boxes are labeled in green.

Exhaustive coverage of all regions In many cases, the models tend to exhaustively consider all
bounding boxes that appear in the image, despite our instruction to selectively utilize bounding boxes
that are relevant for answering the question. Moreover, it is often found that models decide to continue
iterating through every single bounding boxes, even though it has already inspected other bounding
boxes and realized the answer to the question. This is a potentially problematic behavior as it is not
only inefficient to consider irrelevant regions, but also could increase the chances of hallucination
over analysis into regions that are actually relevant. We find that this is especially the case for QvQ,
which is trained to generate longer chains of reasoning by default.

Incorrect object location Another pattern we have identified is that even though the models
correctly identified relevant details required to answer the question, they often hallucinate by claiming
that such details appear in unrelated bounding boxes. For example, in the top left example of
it is true that there is a dark wood piece of furniture under the TV. However, the model incorrectly
claims that it is located in R2, not R5.

Wrong spatial relations between the bounding boxes Related to the issue of incorrect object
location, we also see that the models often seem to experience issues with spatial orientation, as
evidenced by the bottom left image of While R2 is actually located to the left of region R1,
the model incorrectly claims that it is actually to the right of R1.

Incorrect region description Even when the model has identified and analyzed relevant bounding
boxes, we found that the model output incorrect details of the region. In the bottom right image of
the model was able to correctly choose R4 as part of its analysis and identifies the soap
dispenser in the region. However, it fails to see that the painting in question is also in R4.

6 CONCLUSION

This paper introduced MAGIC, a novel benchmark designed to evaluate grounded multimodal
cognition. We evaluated 15 LVLMs ranging from 7B to 70B+ parameters across four dimensions:
final answer correctness, reasoning validity, grounding fidelity, and self-correction ability. Our
analysis shows that the models that could focus better on relevant regions tend to achieve better task
performance, and such focusing ability improves with increased model sizes. However, we also found
that current SOTA LVLMs all suffer from various types of region focus failures, including incorrect
object location, wrong spatial relations, and inaccurate region descriptions.
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A DATA STATISTICS

Detailed Types
existRelS (9.5%)
4 relVerify (6.9%)
4 existRelSC (3.2%)
/ VerifyAttrkC (2.1%)
relVerifyCr (1.9%)
/ relVerifyCo (1.7%)
Y existRelSRC (1.7%)
materialVerifyC (0.4%)
verifyAttrK (0.4%)
materialVerify (0.3%)
categoryRelS (8.5%)
relS (5.7%)
relO (4.3%)
Verify categoryRelO (2.4%)
196 (28.1%) directWhich (2.3%)
directOf (1.6%)
Choose sameRelate (0.9%)
100 (14.3%) material (0.7%)
activity (0.3%)
existAnd (4.2%)
existAndC (3.7%)
existAttrorC (3.0%)
existor (2.7%)
eXiStALtrOr (1.4%)
. verifyAttrsC (1.3%)
Logical existThatOrC (0.7%)
126 (18.1%) existThator (0.4%)
Query VerifyAttrs (0.4%)
186 (26.6%) verifyAttrAnd (0.1%)
relChooser (12.0%)
chooseAttr (1.4%)
materialChoose (0.4%)
categoryRelOChoose (0.3%)
m= activityChoose (0.1%)
twoDifferent (3.9%)
twoSameC (3.3%)
twoSame (2.7%)
twoDifferentC (2.1%)
twoSameMaterialC (0.4%)
twoSameMaterial (0.3%)
twoCommon (0.1%)

Compare
90 (12.9%)

Figure 6: Detailed question type distributions for MAGIC benchmark.

B DATA EXAMPLES

Reasoning Steps:
1. Okay, so the question asks if there's a snowboard or a helmet in the picture.

2. Let's start by looking at the whole image to get a sense of the scene.

3. It looks like an outdoor setting with a person on a bicycle and some buildings
nearby.
4. | should start by scanning the image for either a snowboard or a helmet.

5. Since bicycles are usually associated with helmets, I'll start by looking at the

person in the image.

6. | see a person riding a bicycle in the center of the image, near Region 1.

Question: Is there a snowboard
or a helmet in the picture?

7. Let me take a closer look at them.

8. Zooming in on Region 1, | can see the person is wearing a helmet.

Ground Truth: Yes, there is a 9. That answers the question—there is definitely a helmet in the picture!

helmet.
10. | don't see any snowboards anywhere in the image, though.

Model Answer: Yes, there is a 11. So, no need to look further.

helmet. . — — -
12. | can confirm that the question is answered with just the helmet, since there
isn't a snowboard in sight.

Legend:  cCorrect Wrong

Figure 7: Example where both reasoning and answer are correct
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Reasoning Steps:
1. Okay, | need to figure out what is in the pot to the right of the person.
2. Let me first take a look at the image to see what we've got.

3. It looks like there's a body of water, a bench, and people sitting around tables
under umbrellas.

4. Now, | need to find a person and then look to their right for a pot.
5. | start by scanning for people.

6. There are several people gathered around region Region 2, which seems to
be the main activity area.

Question: What is in the pot to 7.They are seated and standing around tables with umbrellas.
the right of the person? 8. | focus on the main activity area and notice a person sitting close to region
Region 2.

Ground Truth: The flowers are
inthe pot. 9. To their right, there is a table, and on top of that table, there is a pot.

Correction: To their right, there is a big pot on the ground in Region 1.

Model Answer: The pot 10. | see some greenery in the pot that appears to be flowers.
contains flowers.
11. So, there is a pot on the table to the right of the person, and it contains flowers.

Correction: So, there is a pot on the ground to the right of the person, and it
Legend:  Correct Wrong contains flowers.

Figure 8: Example where reasoning is partially incorrect and answer are correct

Reasoning Steps:
1. Okay, | need to figure out what appliance is on top of the counter.
2. Let me take a look at the image.
3. It looks like a room with a kitchen area visible.

4. There’s a person sitting and another one standing, so it seems like it’s
someone’s house.

5. Now, let’s see where the counter is located.

6. It’s probably in the middle of the room.

7.1 can see a white counter in the image, and it’s located in the center part of
the picture, starting around Region 1.

Question: What is the 8. The question asks about an appliance on top of the counter.

appliance on top of the 9. Scanning Region 1, | can spot a microwave.

counter? Correction: Scanning Region 2, | see a white toaster on top of the counter.
Ground Truth: The appliance is 10. It seems to be placed directly on top of the counter.

atoaster. 11. It's a black microwave oven.

Model Answer: The appliance 12. There’s also a toaster on the counter to the left of the microwave.

is a microwave. . ) .
Samicrowave 13. | should probably focus on the microwave as that seems like the primary

Legend:  Correct Wrong appliance.
14. I’'m pretty confident now.

15. The appliance on top of the counter is a microwave.
Correction: Thus, the appliance is a toaster.

Figure 9: Example where both reasoning and answer are incorrect, red boxes without correction
means manual steer of reasoning from annotator.
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Question: Which color is the
bottle the plate is to the right
of?

Ground Truth: The bottle is red.

Model Answer: The bottle is
red.

Legend:  cCorrect Wrong

Reasoning Steps:
1. Okay, | need to find the color of the bottle that is to the right of the plate.
2. Let me take a look at the image.
3. This appears to be a kitchen scene, with a counter and some appliances.
4. | need to locate the plate and then identify the bottle immediately to its right.

5. Looking around, | see a counter with a lot of items on it in Region 1 and
Region 2.

6. So, I'm going to start scanning there.

7. From that perspective, | see a white plate in Region 2.
Correction: From that perspective, | see a white plate in Region 1.

8. To the right of that plate, there is a red bottle.
Correction: To the left of that plate, there is a red bottle.

9. | think the color of the bottle to the right of the plate is red.
Correction: | think the color of the bottle to the left of the plate is red.

Figure 10: Example where reasoning is partially incorrect and answer are correct

C REPRODUCIBILITY

We evaluate 13 open LVLMs and 2 proprietary LVLMs as shown in[Table 2] We use v11m on all
models except LLaVA, Aya Vision, and InternVL which uses transformers library. We
set the sampling temperature with the default temperature provided with the each model for the three

main tasks. All experiments are performed on either a single Nvidia A100-80GB GPU or Nvidia

A100-40GB GPU.

LLM-assisted evaluation uses Qwen/Qwen2.5-72B-Instruct-AWQ with greedy decoding
(temp=0) using v11lm on a single Nvidia A100-SXM-80GB GPU.

D MAGISCORE CALCULATION EXAMPLE

Relevant regions: [1, 4]
y*=11,0,0,1,0]

Used regions: [1, 2, 3]
y=1[1,1,1,0,0]
TP=1,FP=2;TN=1,FN =1
1 1
Precision = 5; Recall = E; F1=0.4

Figure 11: Example on how MAGISCORE are calculated.
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E DETAILS ON TASK-INPUT PROCESSING

Algorithm 1: Generate and Save Relevant Bounding Boxes

Function FindBboxes (s_path, img_size) :
M <« load_gray(s_path) — resize(img_size) — [0,1]
B+ (M > thresh)
B + morph_clean(B)
return all bbox(r) for each connected region r with area(r) > arean
return
Function RemoveOverlap (B):
\ return 53 pruned by IoU / coverage / temporal rule at threshold
return
Function AdvBoxes (id, G, S) :
C < cached_adv(id)
C «+RemoveOverlap (CUG)
C < size_filter(C)
return sample or synthesize boxes so that |C| meets the required quota
return

foreach question (qid, q) in gquestions do
I < read_image(q.imageld)
S+ o
fort € {0,1,2} do

m < load_saliency_map(qid, t)

S + SUFindBboxes (m, I.size)
end
label S as non_adv
G < ground-truth objects (gqa objects)
B + merge(G, S)
B <RemoveOverlap (B, coverage, user_thr)
B + BUAdvBoxes (q.imageld, B, I .size)
drawssave(I, B)

end

// binarize

F LIMITATION

A primary limitation of this work is its reliance on the GQA dataset, largely due to the limited
availability of publicly accessible eye-tracking data and richly annotated scene graphs. Consequently,
the findings may be influenced by certain dataset-specific characteristics and may not encompass the
entire spectrum of real-world scenarios, such as answering math questions in images or OCR tasks.
While this study offers an important first step toward understanding LVLMs’ multimodal cognition

abilities, this limitation highlights opportunities for future research.
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Model Answer

Yes, there is a helmet. # Correct

Model Reasoning

Okay, 50 the question asks if there's a snowboard or a helmet in the picture.
¥ Correct
Let's start by looking at the whole image to get a sense of the scene.
# Correct
tlooks like an outdoor setting with a person on a bicycle and some buildings nearby.
¥ Correct
1should start by scanning the image for either a snowboard or a helmet.
¥ Correct
Since bicycles are usually associated with helmats, I'll start by looking at the person i the image.
¥ Correct
1see a person ridi i in the center of the image, near Region 1.
# Correct
Lot me take a closer look at them.
¥ Correct
e A T AT i T T T Zooming in on Region 1, | can see the person is wearing a helmet.
Ground Truth: Yes, there is a helmet. W Correct
That answers the question—th in the picture!

Previous

¥ Correct
Item 12 of 311 - Progress: 100%
1don't see any snowboards anywhere in the image, though.
# Correct
So, no need to look further.
¥ Correct

1 can confirm that the ques answered with just the helmet, since ther

# Correct

Submit

Figure 12: Annotation User Interface
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*In-Context Learning examples go herexx
Slmllarly to the examples pr0v1ded above, please imagine [h1§ person’s thought process behind the areas of the image the person looked at in
order to solve the question, which are marked with the red bounding boxes.
The thought process should meet the following conditions:
- It should describe the broader setting of the image and how that context informs the search for specific details.
- It should explain how the bounding boxes (e.g., ‘R1°, ‘R2°) were used to narrow down the areas of interest. For instance, it should mention
how the image’s orientation or the placement of objects guided the focus to certain regions.
- It should only consider the bounding boxes that does appear in the image and not refer to any bounding boxes that actually do not exist.
Note that all bounding boxes are numbered sequentially, so if we have 4 bounding boxes in the image, there are exactly the following
bounding boxes: ‘R1°, ‘R2°, ‘R3‘, and ‘R4"‘.
- It should list specific visual cues noticed within each highlighted region and how these observations lead to identifying the relevant subject
(e.g., a man with a backpack).
- It should clearly connect each observation to the final answer. It should explain how, based on the evidence gathered from the image, the
conclusion was reached (e.g., identifying the man holding a cell phone).

Write as if you are this person, in a similar style as above examples.

## Image {im_num} ({num_bbox} bounding box(es))
**Question**: {question}

**Thought Process**:

#* Answer**:

Figure 13: Prompt for reasoning and answer generation.

*In-Context Learning examples go herexx
Slmllarly to the examples pr0v1ded above, please imagine this person’s thought process behind the areas of the image the person looked at in
order to solve the question, which are marked with the red bounding boxes.
The thought process should meet the following conditions:
- It should describe the broader setting of the image and how that context informs the search for specific details.
- It should explain how the bounding boxes (e.g., ‘R1°, ‘R2°) were used to narrow down the areas of interest. For instance, it should mention
how the image’s orientation or the placement of objects guided the focus to certain regions.
- It should only consider the bounding boxes that does appear in the image and not refer to any bounding boxes that actually do not exist.
Note that all bounding boxes are numbered sequentially, so if we have 4 bounding boxes in the image, there are exactly the following
bounding boxes: ‘R1°, ‘R2¢, ‘R3*, and ‘R4*.
- It should list specific visual cues noticed within each highlighted region and how these observations lead to identifying the relevant subject
(e.g., a man with a backpack).
- It should clearly connect each observation to the final answer. It should explain how, based on the evidence gathered from the image, the
conclusion was reached (e.g., identifying the man holding a cell phone).
- If you realize you wrote something wrong in your thought process previously, you should identify and correct the mistakes you have made.

Write as if you are this person, in a similar style as above examples.
## Image {im_num} ({num_bbox} bounding box(es))
*##Question™*: {question}

**Thought Process**:

#* Answer**:

{generation_prompt}

Figure 14: Prompt for self correction. is the injected incorrect sub-
reasoning.
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**Evaluation Task Instructions:**

You will be given three pieces of information:

1. A **Question**

2. A *#*Model Output®* (the answer and rationale generated by a language model)
3. A #*Ground Truth Answer** (the correct answer)

Your task is to find model’s final conclusion of the question and determine if the final conclusion from **Model Output** is essentially
equivalent to the **Ground Truth Answer** and correctly answers the **Question**. Consider the following guidelines when evaluating:
- If the final conclusion includes extra details, omissions, or slight wording differences but the overall meaning and essential information
match the ground truth, consider it **Correct**.

- If the final conclusion provides incorrect information, adds unrelated details, or misses critical parts of the ground truth, consider it
**Incorrect™*.

**Qutput Format (follow this exactly):**

e

Reasoning: [Provide a brief explanation of why you judged the answer as Correct or Incorrect. Be explicit about which details match or
differ.]
Correctness: [Write only one word: Either "Correct” or "Incorrect"]

e

* % In—Cc

—ext Learning examples go T

**Instance to Evaluate:**
*Question:* {question}

*Model Output:* {model_output}
*Ground Truth:* {ground_truth}

Figure 15: Prompt for long-form answer judgment.

You will be given three pieces of information:

1. A **Question**

2. A *#*Model Output** (the answer generated by the model)
3. A #**Ground Truth Answer** (the correct answer)

**Your task**: Determine if the **Model Output** correctly answers the **Question** by checking whether it aligns or essentially matches
the **Ground Truth Answer**, considering meaning rather than exact wording.

Follow these expanded guidelines carefully:

- Mark as **Correct** if the meaning or essential details in the Model Output closely align with the Ground Truth Answer, even if different
wording, synonyms, or minor descriptive variations are used.

- #*Example**: "Beige," "tan," "cream," or "light brown" are considered close enough to be marked as **Correct**.

- Similarly, minor differences like "couch" vs "sofa," or "silver-colored" vs "metallic grey" should still be considered **Correct** if they
describe essentially the same thing.

- Mark as **Incorrect** only if the Model Output significantly differs from the Ground Truth Answer, changing the core meaning or
providing substantially different or contradictory information.

"o

- #*Example**: If Ground Truth Answer is "wood," and Model Output is "metal," this would be marked **Incorrect** due to clear
contradiction.

**Qutput Format (follow this exactly):**

e

Reasoning: [Provide a brief explanation of why you judged the answer as Correct or Incorrect. Be explicit about which details match or
differ.]
Correctness: [Write only one word: Either "Correct” or "Incorrect"]

Learning examples go herexx

**Instance to Evaluate:**
*Question:* {question}

*Model Output:* {model_output}
*Ground Truth:* {ground_truth}

Figure 16: Prompt for short-form answer judgment.
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# Task Description:
You will be provided with three distinct pieces of information related to a reasoning task performed by another model:

1. **Initial Reasoning**: An incomplete original response provided by a model containing incorrect reasoning.

2. **Correction**: A concise statement explicitly pointing out the specific mistake or incorrect reasoning in the Initial Reasoning and
providing the correct information.

3. **Model’s Continued Reasoning®*: The model’s new attempt at correcting the previously identified incorrect reasoning while complete
the initial reasoning.

Your job is to carefully evaluate whether the **Model’s Continued Reasoning** successfully identified and corrected the incorrect reasoning
based on the provided **Correction**.

# Evaluation Steps:

When evaluating, strictly follow these steps:

### Step 1: Identify the Incorrect Reasoning

* Carefully read the **Initial Reasoning** and note exactly what mistake was made based on the provided **Correction**.
##H# Step 2: Verify the Provided Correction

* Clearly understand the correction, noting specifically which detail from the **Initial Reasoning** was incorrect and what the accurate
information is.

### Step 3: Evaluate the Model’s Continued Reasoning

* Read the **Model’s Continued Reasoning** carefully to verify if the model explicitly identifies the original mistake.

* Ensure the model incorporates the corrected information provided by the **Correction**.

* Check whether the revised reasoning removes the previous mistake and accurately resolves it, not simply ignoring or sidestepping the
original error.

### Step 4: Provide Clear Reasoning for Your Judgement

* Explicitly state how the revised model output relates to both the initial incorrect reasoning and the provided correction.
* Clearly explain whether or not the original error was addressed and resolved.

### Step 5: Final Judgement
* Clearly state your final judgement as either **"YES"** or **"NO"**:

* #x"YES"** if the revised output explicitly corrects the initial error based on the provided correction.
* #E"NO"#* if the revised output either does not identify the initial mistake explicitly, fails to correct it, or leaves the incorrect reasoning
intact.

*x*In-Context Learning examples go herexx

# Final Notes for Your Judging:

* Be meticulous and explicit in your reasoning.
* Your evaluation must precisely check whether the revised output aligns correctly with the provided correction.
* Ensure the final judgement ("Yes" or "No") directly and clearly corresponds to your detailed reasoning.

**Qutput Format (follow exactly):**

Reasoning: [Provide a clear explanation of your judgment, explicitly mentioning the details or synonyms that align or differ.]
Correctness: [Write exactly one word: Either "Yes" or "No"]

**Instance to Evaluate:**

*Initial Reasoning:* { false_reasoning}
*Correction:* {model_output}

*Model’s Continued Reasoning:* {ground_truth}

Figure 17: Prompt for self-correction judgment.
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