WEBSAILOR-V2: BRIDGING THE CHASM TO PROPRIETARY AGENTS VIA SYNTHETIC DATA AND SCALABLE REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

To significantly advance the capabilities of open-source web agents, we present WebSailor-V2, a complete post-training pipeline encompassing data construction, Supervised Fine-Tuning (SFT), and Reinforcement Learning (RL). Our methodology features two key innovations: (1) On the data front, we developed SailorFog-QA-2, a novel dataset built from a densely interconnected knowledge graph that introduces a wide variety of uncertainties beyond simple obfuscation, fostering more sophisticated reasoning. (2) For training, we engineered a dual-environment RL framework, combining a high-fidelity simulator for rapid, low-cost algorithmic iteration with a robust, managed real-world environment for stable final policy training, all integrated within a symbiotic data-policy feedback loop. Trained on the Qwen3-30B-A3B model, WebSailor-V2 achieves state-of-the-art results, scoring 35.3 on BrowseComp-EN, 44.1 on BrowseComp-ZH, and 30.6 on Humanity's Last Exam (HLE). Notably, our 30B-A3B MOE agent significantly outperforms all existing open-source agents and surpasses even the 671B DeepSeek-V3.1, demonstrating performance competitive with leading proprietary systems.

1 INTRODUCTION

Figure 1: Performance on the BrowseComp-EN and xbench-DeepSearch benchmarks.

In the pursuit of Artificial General Intelligence (AGI), autonomous AI agents represent a critical milestone, with "Deep Research" emerging as a core paradigm for achieving more generalized capabilities. By leveraging external tools like search engines and web browsers, these agents can autonomously conduct systematic and in-depth analyses to tackle complex, multi-step research tasks through dynamic reasoning and iterative information retrieval (OpenAI, 2025a; AI, 2025). Despite recent advancements across the research community, spanning improvements from both perspectives of data and training (Wu et al., 2025b; Li et al., 2025b; Liu et al., 2025a; Nguyen et al., 2025; Li et al., 2025c; Wu et al., 2025a; Tao et al., 2025), a considerable performance gap still persists between open-source solutions and proprietary systems (e.g., OpenAI DeepResearch (OpenAI, 2025a)), leading to a bottleneck in democratizing powerful research capabilities.

055

056

057

058

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

079

080

081

082

083

084

085

086

087

880

089

090 091

092

093

096

097 098 099

100 101

102

103 104

105

106

107

This performance disparity primarily stems from fundamental challenges in two of the most critical stages for developing powerful agents: data and training. (1) Data: insufficient diversity and monolithic definitions of uncertainty. Information-seeking relies on the agent's ability to leverage existing information and logical relationships to infer or acquire new, reliable knowledge. If the training data lacks a sufficiently broad and complex range of logical structures, the model will struggle to generalize to novel and intricate problems. Existing methodologies often rely on a narrow set of uncertainty definitions, such as obfuscation (Li et al., 2025); Gao et al., 2025; Shi et al., 2025). A wider variety of uncertainty types is needed to elicit more diverse and sophisticated reasoning behaviors from the base model, better preparing it for the ambiguity inherent in real-world research. (2) Training: lack of scalable reinforcement learning (RL) training environment. Creating a scalable and robust RL training environment for agentic systems poses a significant challenge, which typically demands massive rollouts, each potentially involving numerous tool calls. The high cost and engineering complexity of high-concurrency requests to external APIs can lead to practical issues like tool latency, API failures, and inconsistent outputs. These issues would contaminate the training data, degrade the model's learned policies, and severely hinder iteration of RL training algorithms (Qin et al., 2025; Wang et al., 2025).

In this paper, we introduce our open-source solution for developing strong deep research agents: a complete post-training pipeline covering everything from data construction to Supervised Fine-Tuning (SFT) and RL. (1) On the data front, we introduce SailorFog-QA-V2, an enhanced dataset built upon SailorFog-QA (Li et al., 2025b). It features significant improvements in knowledge graph construction and sampling strategies, moving beyond conventional methods to ensure more comprehensive structural coverage. We also expand the diversity of our QA generation by incorporating a wider variety of uncertainty definitions beyond obfuscation, directly targeting the need for more sophisticated reasoning. (2) On the training front, we tackle the need for a scalable and robust RL platform from two angles. First, we develop a dedicated simulated environment from the ground up, based on a large-scale offline Wikipedia knowledge base (Vrandečić & Krötzsch, 2014). This environment is designed for high-frequency algorithmic experimentation and data curation, providing a low-cost, exceptionally fast, and fully controllable platform. Through meticulous design, it achieves high fidelity, ensuring that the agent's interaction dynamics, state transitions, and reward mechanisms closely mirror those of a real-world setting. Second, recognizing that RL training in a real environment is a complex engineering problem—especially concerning the consistency of tool returns after toolset expansion, the reproducibility of trajectory sampling, and the need for high concurrency and fault tolerance, we build a unified tool execution interface that utilizes a scheduling and management layer to incorporate different tools' quality measures and protocols. Finally, our data construction and RL training pipelines are integrated into a symbiotic feedback loop. This dynamic mechanism allows the system to synthesize and filter high-quality data based on training dynamics, enabling the model to continually refine its policies and learn from a stream of relevant information. This co-evolution of data and policy therefore promotes building deep research agents more effectively and efficiently.

To demonstrate the efficacy of SailorFog-QA-V2 and training strategies, we build our agent upon the foundational ReAct framework (Yao et al., 2023). Trained on Qwen3-30B-A3B (Yang et al., 2025), our WebSailor-V2-30B-A3B achieves scores of 35.3 on BrowseComp-EN (Wei et al., 2025) and 44.1 on BrowseComp-ZH (Zhou et al., 2025a), alongside a score of 30.6 on HLE (Phan et al., 2025), significantly outperforming all existing agents built on open-source models. Remarkably, our 30B-sized agent outperforms the previous best-performing agentic 671B-sized LLM DeepSeek-V3.1 (Team, 2025b), which achieves 30.0 on BrowseComp-EN and 29.8 on HLE, respectively.

2 AGENTIC FRAMEWORK

ReAct. We adopt the ReAct framework as the foundation for our agent's architecture (Yao et al., 2023):

$$\mathcal{H}_T = (\tau_0, a_0, o_0, \dots, \tau_i, a_i, o_i, \dots, \tau_T, a_T), \tag{1}$$

where τ_i , a_i , o_i represent **thought**, **action**, and **observation** in the *i*-th iteration, respectively. At step t, the agent's thought τ_t and subsequent action a_t are sampled from a policy π conditioned on the complete preceding context, defined as $\pi(a_t, \tau_t | \mathcal{H}_{t-1})$.

While more complex single and multi-agent paradigms have emerged, our choice of ReAct is a deliberate one, rooted in its simplicity and alignment with fundamental principles. This decision is heavily informed by "The Bitter Lesson" (Sutton, 2019), which posits that general methods leveraging scalable computation ultimately outperform approaches that rely on complex, human-engineered knowledge and intricate designs. Frameworks that require extensive, specialized prompt engineering or possess rigid operational structures risk becoming obsolete as the intrinsic capabilities of models scale (Li et al., 2025a).

Action space. The action space is composed of four primary tools: search, visit, Google Scholar, and Python interpreter, along with the terminal action final answer. Details of tools are provided in the Appendix B.

3 SailorFog-QA-V2

124 answe

This section focuses on the data construction of SailorFog-QA-v2, where we introduce how we construct a dense knowledge graph containing real internet information and how we generate question-answer (QA) pairs based on this data structure.

3.1 Graph Construction

An information retrieval problem, at its core, can be conceptualized as navigating a complex web of entities and their interrelationships. To effectively address such problems, especially in the context of advanced AI agents performing "Deep Research," it is crucial for models to comprehend and leverage these underlying structural connections. Therefore, to ensure our generated QA pairs encompass a rich and diverse spectrum of logical relationships, our foundational approach involves constructing a comprehensive knowledge graph. This graph serves as a robust substrate from which we can sample various structurally distinct subgraphs, each forming the basis for generating questions that probe different reasoning patterns.

Recent advancements in data construction for web agents have also aimed at acquiring such structured information. These methods typically initiate from a simple "seed" question, progressively expanding the graph by employing external tools (e.g., search or browsing) to discover related entities and facts (Gao et al., 2025; Liu et al., 2025a; Tao et al., 2025). However, a significant drawback of this "easy-to-hard" or iterative expansion strategy is its inherent tendency to produce predominantly tree-like or acyclic logical structures. While effective for certain types of information retrieval, this approach inherently struggles to capture or generate scenarios involving complex cyclic relationships, feedback loops, or intricate interdependencies that are common in real-world knowledge graphs.

Building upon the foundational framework of SailorFog-QA (Li et al., 2025b), V2 still starts with a seed entity and leverages web tools to discover related entities and extract their corresponding information. However, to achieve a more comprehensive topological coverage to overcome the limitations of acyclic graphs,we introduce significant enhancements to the graph expansion phase. Specifically, we actively seek out and establish more dense connections between nodes, intentionally creating cyclic structures. This ensures that the resulting graph is not merely a sprawling tree but a richly interconnected web, more accurately reflecting the complex, non-linear nature of real-world knowledge. Beyond these structural improvements, we now preserve more complete procedural information, such as the specific search queries used and the source URLs that led to a new discovery. Furthermore, we compute and store various statistical features for each entity, which are instrumental for the subsequent QA generation phase, enabling us to craft more nuanced and challenging questions.

3.2 Subgraph Extraction

In the previous version, our subgraph sampling strategy relied on random sampling, with an attempt to enumerate all possible substructures of a fixed edge count. However, as the graph in V2 has become substantially denser, such an exhaustive enumeration is computationally infeasible due to combinatorial explosion. To overcome this scalability issue, we adopt a random-walk based approach for subgraph extraction. Ultimately, this strategy enables us to efficiently gather a sufficient quantity of non-isomorphic (verified by Weisfeiler-Leman algorithm (Weisfeiler & Leman, 1968)),

Figure 2: An overview of our Reinforcement Learning framework. The agent is trained in a closed loop where the policy is continuously updated through interactions with simulated or real-world environments. A key component is the automated data synthesis and filtering pipeline, which dynamically curates training data based on the training dynamics.

connected subgraphs that collectively represent the full spectrum of structural complexities, without the prohibitive cost of a brute-force search.

3.3 QA GENERATION

When generating QA, we do not directly feed the subgraph into the LLM end-to-end to produce the result. Instead, we first analyze how many non-isomorphic nodes exist in a given topology, so that the QA focus can be evenly distributed across all orbit nodes (i.e., nodes that occupy different structural roles). Moreover, obfuscation has become one of the most common methods for introducing uncertainty and eliciting high-order reasoning patterns in the construction of challenging information-seeking tasks (Li et al., 2025b; Gao et al., 2025; Shi et al., 2025; Liu et al., 2025a; Geng et al., 2025). Specifically, obfuscation corresponds to the reasoning behavior required when a query's key elements—such as specific entities, dates, or values—are replaced with more general or ambiguous descriptions. Answering such questions compels the model to move beyond simple keyword matching, engaging in contextual inference to disambiguate underspecified entities, generating and verifying hypotheses through iterative information gathering, and synthesizing evidence from multiple sources to converge on a conclusive answer. However, this set of skills, while crucial, represents only a subset of the capabilities required for a truly super-human web agent. To this end, we introduce a wider array of defined uncertainties, aiming to elicit a more diverse and comprehensive suite of advanced reasoning abilities from the model.

4 AGENTIC POST-TRAINING

4.1 SFT COLD START

The initial phase of our agentic post-training pipeline is a Supervised Fine-Tuning (SFT) stage, designed to provide the base model with a robust initial policy before the commencement of reinforcement learning. To ensure a controlled and high-quality training regimen, our SFT dataset is constructed entirely from synthetic data derived from the SailorFog-QA-V2 generator. The training trajectories are produced by high-performing, open-source models solving the generated QA tasks, with quality maintained via rejection sampling. In a key architectural decision, and a departure from prior work like WebSailor, our agent is built upon the Qwen3-30B-A3B-Thinking-2507 foundation model (Yang et al., 2025), with the context length deliberately extended to 128k.

4.2 AGENTIC REINFORCEMENT LEARNING

Our RL strategy employs a dual-environment approach, leveraging the benefits of both controlled simulation and real-world deployment.

Simulated Environment. The practice of training in simulation for subsequent policy transfer or algorithm validation is a common and essential strategy in research and development (Da et al., 2025), successfully applied across domains like robotics and perception (Osiński et al., 2020; Haiderbhai et al., 2024; Ho et al., 2021). Reliance on commercial real-world web APIs (e.g., SerpAPI (SerpAPI, 2025) or Jina (Jina.ai, 2025)) introduces significant practical constraints, including high operational costs, restricted Queries Per Second (QPS), and output inconsistencies. During the critical initial stages of algorithm research and data curation, these real-world limitations can severely decelerate the development cycle and compromise the reliability of ablation studies.

To circumvent these issues, we constructed a fully controllable simulated environment utilizing an offline Wikipedia database and a corresponding suite of simulated web tools. We adapted the SailorFog-QA-V2 generation pipeline to operate exclusively on this offline corpus, thereby synthesizing a dedicated, structurally complex training and testing dataset that is perfectly aligned with the simulation's capabilities. This methodology provides a cost-efficient, fast, and fully observable platform, significantly accelerating our high-frequency algorithmic experimentation and iteration process.

Real Environment. While simulation is invaluable for rapid prototyping, the ultimate objective is real-world performance. Transitioning to a real environment, however, introduces considerable engineering challenges. Our agent relies on a multifaceted toolkit integrating various search sources, diverse webpage parsers, and a code execution sandbox. The inherent volatility of external APIs (e.g., latency, failure, or inconsistent returns) within this composite system poses a significant risk of data contamination, which can obscure the true source of performance degradation—making it difficult to isolate algorithmic deficiencies from environmental instability. To ensure stability, we architected a robust, unified tool execution interface. This interface includes a scheduling and management layer that orchestrates tool execution and incorporates sophisticated concurrency handling and fault-tolerance mechanisms. These include QPS constraints, result caching, automated timeout-and-retry protocols, service degradation strategies for non-critical failures, and seamless switching to backup data sources. This multi-layered design effectively abstracts the tool invocation process into a deterministic and stable interface from the agent's perspective, successfully insulating the training loop from real-world stochasticity while simultaneously optimizing operational costs.

Data Curation. Data quality is the central driver of enhanced model capability; its importance often surpasses that of the algorithm itself. The quality of the training data directly establishes the upper bound for the model's ability to generalize to out-of-distribution scenarios through self-exploration. To address this, we implemented a data optimization loop guided by real-time training dynamics. This optimization is achieved via a fully automated data synthesis and filtering pipeline that dynamically curates the training set. By establishing this closed loop between data generation and model training, our approach not only ensures training stability but also yields substantial performance gains by continually feeding the model with the most informative trajectories.

RL algorithm. Our RL algorithm is a tailored adaptation of GRPO (Shao et al., 2024):

$$\mathcal{J}(\theta) = \mathbb{E}_{(q,y)\sim\mathcal{D},\{o_{i}\}_{i=1}^{G}\sim\pi_{\theta_{\text{old}}}(\cdot|context)} \left[\frac{1}{\sum_{i=1}^{G}|o_{i}|} \sum_{i=1}^{G} \sum_{t=1}^{|o_{i}|} \min\left(r_{i,t}(\theta)\hat{A}_{i,t}, \operatorname{clip}\left(r_{i,t}(\theta), 1 - \varepsilon_{low}, 1 + \varepsilon_{high}\right)\hat{A}_{i,t}\right) \right],$$
(2)

where (q, y) is the question-answer pair, $r_{i,t}(\theta)$ is the importance sampling ratio, and $\hat{A}_{i,t}$ is an estimator of the advantage at time step t:

$$r_{i,t}(\theta) = \frac{\pi_{\theta}(o_{i,t} \mid context)}{\pi_{\theta_{\text{old}}}(o_{i,t} \mid context)}, \quad \hat{A}_{i,t} = R_i - \text{mean}(\{R_i\}_{i=1}^G).$$

$$(3)$$

We employ a strictly on-policy training regimen, where trajectories are continuously sampled using the most up-to-date policy, ensuring that the learning signal is always relevant to the model's current capabilities. Following DeepSwe (Luo et al., 2025) and DAPO (Yu et al., 2025b), the training objective is optimized using a token-level policy gradient loss. Second, to further reduce variance

in the advantage estimation, we adopt a leave-one-out strategy (Chen et al., 2025). Furthermore, we employ a conservative strategy for negative samples, having observed that an unfiltered set of negative trajectories significantly degrades training stability. This can manifest as a "format collapse" phenomenon after extended training. To mitigate this, we selectively exclude certain negative samples from the loss calculation, for instance, those that do not yield a final answer because they exceed a length limit. For the sake of efficiency, we do not employ dynamic sampling. We instead leverage larger batch and group sizes, which serve to maintain smaller variance and provide adequate supervision.

However, we consider that the algorithm is important but not the only decisive factor in the success of Agentic RL. We have experimented with many different algorithms and tricks, and find that data and stability of the training environment are likely the more critical components in determining whether the RL works. Interestingly, we have tested to train the model directly on the BrowseComp testing set, but the results are substantially poorer than when using our synthetic data. We hypothesize that this disparity arises because the synthetic data offers a more consistent distribution, which allows the model to be more effectively tailored. Conversely, the human-annotated data (such as BrowseComp) is inherently noisier. Given its limited scale, it is difficult to approximate a learnable underlying distribution, which consequently hinders the model to learn and generalize from it.

5 EXPERIMENTS

5.1 SETUP

Models and Benchmarks We perform SFT and RL training on Qwen3-30B-A3B-2507 (Yang et al., 2025). We mainly evaluate our method on six representative and challenging benchmarks:

- **BrowseComp-EN** (Wei et al., 2025): One of the most challenging benchmarks introduced by OpenAI to evaluate the proficiency of AI agents in locating hard-to-find, often multi-faceted, information across the internet, which demands sophisticated browsing strategies and reasoning capabilities.
- BrowseComp-ZH (Zhou et al., 2025a): Similar to BrowseComp-EN, but the QAs are in Chinese.
- **GAIA** (Mialon et al., 2023): A benchmark that requires multi-modality and tool-use abilities. We only use a subset of 103 cases from the text-only validation subset (Li et al., 2025c; Wu et al., 2025a).
- **xbench-DeepSearch** (Xbench-Team, 2025): A new, dynamic, professionally-aligned benchmark that focuses on evaluating AI agents' tool usage capabilities, specifically in deep information retrieval and complex search tasks.
- **Humanity's Last Exam (HLE)** (Phan et al., 2025): HLE is a global collaborative effort, with questions from nearly 1,000 subject expert contributors affiliated with over 500 institutions across 50 countries comprised mostly of professors, researchers, and graduate degree holders.
- **DeepResearch Bench** (Du et al., 2025): This benchmark is comprised of numerous PhD-level research tasks designed to evaluate the performance of deep-research agents, specifically focusing on the quality of their generated research reports and their proficiency in information retrieval and collection.

Baselines We compare our method with the following paradigms:

- Proprietary Browsing Agents: We test Gemini-2.5-pro-DeepResearch (Team, 2025c), Claude-Research (Team, 2025a), Doubao-Deepresearch (Doubao, 2025), Perplexity-Research (Team, 2025g), Grok-Deeper-Search (Team, 2025d), Claude-4-Sonnet (anthropic, 2025), OpenAI-o3 (OpenAI, 2025b), OpenAI DeepResearch (OpenAI, 2025a); however, as not all of them are fully accessible via API, they were not tested across all benchmarks and experiments.
- Open-Source Agents: We compare our method with recent open-source web/search agents, including ASearcher-Web-QwQ (Gao et al., 2025), MiroThinker-32B-DPO-v0.2 (Team, 2025e), WebSailor-72B, WebExplorer-8B, DeepDiver-V2-38B (Team, 2025f), DeepDive-32B (Lu et al., 2025), Kimi-K2-Instruct (Team et al., 2025), GLM-4.5 (Zeng et al., 2025), DeepSeek-V3.1 (Team, 2025b).

Table 1: Main results on four challenging benchmarks. [‡] indicates that these proprietary methods are manually evaluated through their websites (some are reported in the corresponding papers). - means that we do not have the results due to cost constraints.

Backbone	BrowseComp-EN	BrowseComp-ZH	xbench-DeepSearch	GAIA	HLE		
Proprietary Agents							
Claude-4-Sonnet	12.2	29.1	64.6	68.3	20.3		
Claude-4-Opus [‡]	18.8	-	-	-	-		
OpenAI-o3	49.7	58.1	66.7	70.5	20.2		
OpenAI DeepResearch [‡]	51.5	42.9	_	67.4	26.6		
Kimi-Researcher [‡]	-	-	69.0	-	26.9		
Open-Source Agents							
ASearcher-Web-32B	5.2	15.6	42.1	52.8	12.5		
MiroThinker-32B-DPO-v0.2	13.0	17.0	_	64.1	11.8		
WebSailor-72B	12.0	30.1	55.0	55.4	-		
WebExplorer-8B	15.7	32.0	53.7	50.0	17.3		
DeepDiver-V2-38B	13.4	34.6	53.0	-	-		
DeepDive-32B	14.8	25.6	50.5	-	-		
Kimi-K2-Instruct-1T [‡]	14.1	28.8	50.0	57.7	18.1		
GLM-4.5-355B [‡]	26.4	37.5	70.0	66.0	21.2		
DeepSeek-V3.1-671B [‡]	30.0	49.2	71.2	63.1	29.8		
WebSailor-V2-30B-A3B (SFT)	24.4	28.3	61.7	66.0	23.9		
WebSailor-V2-30B-A3B (RL)	35.3	44.1	73.7	74.1	30.6		

Training Data Our training data is primarily composed of SailorFog-QA (Li et al., 2025b) and SailorFog-QA-V2. In addition, we supplement this data with IterBench (Qiao et al., 2025) to bolster the model's proficiency in mathematical and academic reasoning.

Metric and Hyper-parameters We default to pass@k evaluation (Chen et al., 2021) and report pass@1, and temperature and top-p are set to 0.85 and 0.95. For accuracy, we use LLM as a judge (Liu et al., 2024; Wang et al., 2024). The pass@1 is computed as:

pass@1 =
$$\frac{1}{n} \sum_{i=1}^{n} p_i$$
, (4)

where p_i denotes the correctness of the *i*-th response. For pass@k that k > 1 we repeatedly generate for k times.

5.2 Main Results

Our main experimental results, summarized in Table 1, unequivocally demonstrate the superior performance of WebSailor-V2-30B-A3B. Across a diverse suite of web-agent benchmarks, our model consistently achieves state-of-the-art results among open-source solutions and proves highly competitive with top-tier proprietary agents. On the extremely complex BrowseComp-EN and BrowseComp-ZH benchmarks, which demand sophisticated, multi-step reasoning and information synthesis, WebSailor-V2 scores 35.3 and 44.1 respectively, significantly outperforming all other open-source agents. On relatively more straightforward but still challenging benchmarks like xbench-DeepSearch and GAIA, our agent not only leads the open-source field but surpasses even the strongest proprietary systems.

Another compelling result is on HLE, a benchmark designed to test deep academic and logical reasoning. Here, WebSailor-V2 achieves a score of 30.6, establishing a new state-of-the-art. This is particularly noteworthy as it exceeds the performance of much larger and more powerful models, including the 671B parameter DeepSeek-V3.1 and proprietary models like OpenAI-o3. This result strongly validates our core hypothesis: equipping a model with exceptionally strong information

retrieval and synthesis capabilities can profoundly enhance its logical reasoning abilities, allowing it to effectively "reason over" externally acquired knowledge and overcome the limitations of its intrinsic scale. We believe agentic paradigm is a good way to close the gap between strong and weak models.

Furthermore, these results highlight the indispensable role of the SFT cold-start stage, especially for relatively small-scale models. As evidenced in Table 1, our model after SFT alone already exhibits formidable capabilities, achieving a score of 24.4 on BrowseComp-EN and 23.9 on HLE, surpassing many fully-trained open-source agents. This strong initial policy is not merely an intermediate checkpoint but a critical prerequisite for the success of reinforcement learning. The complex, open-ended nature of these tasks means that rewards are often sparse. Without a competent initial policy from SFT, an agent would struggle to conduct meaningful exploration, rarely completing tasks successfully and thus failing to receive the positive feedback needed for learning. The SFT phase ensures the agent starts with a robust enough policy to explore the problem space effectively, providing a sufficiently dense reward signal for the RL algorithm to stabilize and converge towards a superior final policy.

5.3 More Comparison with Proprietary Agents in Deep-research Task

Evaluating proprietary agents is inherently challenging, particularly for those available exclusively through web interfaces. To validate that WebSailor-V2 (based on Qwen3-30B-A3B) performs on par with much larger proprietary models, we select the DeepResearch Bench. This benchmark is ideal as its leaderboard provides direct comparisons to leading closedsource agents and assesses key capabilities in both information retrieval and report generation. The results (Figure 3) underscore our model's competitive performance. WebSailor-V2 achieve a score of 47.7, ranking second only to the state-of-the-art Gemini-2.5-pro-DeepResearch (49.7). We attribute this narrow gap to our training strategy, which prioritizes core information retrieval and reasoning over the stylistic polish of the final report. Therefore, this gap reflects a targeted area for improvement

Figure 3: Comparisons with proprietary agents. The metric here is the overall score defined in DeepResearch Bench.

in the presentation layer, rather than a fundamental limitation in its research capabilities.

5.4 DETAILED ANALYSES

Training dynamics. The training dynamics of our RL process are depicted in Figure 4. As illustrated, the training reward exhibits a clear and significant upward trend as the number of training steps increases, indicating that the agent is effectively learning and refining its policy within the training distribution. This improvement successfully translates to our validation benchmarks, where performance on both BrowseComp-EN and BrowseComp-ZH shows a corresponding, albeit oscillating, upward trajectory.

However, we observe a noteworthy divergence in learning patterns between difficult and simpler benchmarks. On challenging benchmarks like BrowseComp, both pass@1 and pass@3 scores demonstrate a distinct and concurrent rise (shown in Fig. 6). This suggests that for complex tasks, RL is genuinely expanding the model's fundamental problem-solving capabilities, increasing the overall likelihood of finding a correct solution path within a few attempts. In contrast, for simpler benchmarks such as xbench-DeepSearch and GAIA, we see a significant improvement in pass@1, while the gains in pass@3 are marginal. This indicates that for tasks already well within the model's base capabilities, the primary role of RL is to enhance sampling efficiency—teaching the agent to more reliably select the optimal path on its first attempt (Yue et al., 2025). For these simpler problems, the model is already likely to find a solution, so RL's main contribution is making that initial attempt

more robust. This also implies that for truly difficult problems, even pass@3 may not be sufficient to fully reflect the upper bounds of the model's enhanced capabilities.

Figure 4: Training dynamics of rewards curve and performance on testing benchmarks.

Figure 5: Effects of context and tool call budget for agent.

Figure 6: Accuracy improvements by RL across four benchmarks.

Context scaling of WebSailor-V2. Figure 5 illustrates the relationship between accuracy, context length, and the number of tool calls on the BrowseComp-EN. In this setup, cases where the context length or the tool call budget exceeds the predefined limit are all counted as incorrect answers. The results show a clear positive correlation: as the available context length increases, the agent's accuracy progressively rises before gradually converging. We observe that nearly 90% of the correctly solved instances are completed within a context of 64k. Notably, at a 32k context limit, WebSailor-V2 achieves an accuracy of around 16 on BrowseComp-EN. This marks a significant improvement over its predecessor, WebSailor-V1. The advancement is particularly compelling given that WebSailor-V1 is built on a 72B dense model, which, in principle, possesses greater intrinsic capacity than the 30B MoE model used here. This highlights the profound impact of our improved data and training pipeline on the agent's fundamental reasoning and tool-use capabilities, allowing a smaller model to achieve superior performance.

6 CONCLUSION

In this work, we propose WebSailor-V2, a comprehensive solution featuring a novel data construction scheme, SailorFog-QA-V2, and a refined training strategy. By building upon the Qwen3-30B-A3B model, our agent has achieved a level of performance that rivals the most advanced proprietary Deep Research agents, while significantly surpassing previous open-source solutions, especially those also trained on Qwen families. We believe that constructing a high-quality agent is a complex system engineering challenge; if this entire development process is viewed as a "reinforcement learning" loop, any instability or lack of robustness in its components can lead to erroneous "reward" signals. Therefore, we argue that high-quality data and a stable training environment are more critical than the specific algorithm itself. It is based on this conviction that we construct SailorFog-QA-V2 and a suite of simulated environments. Through the successful development of WebSailor-V2, we hope this work provides valuable insights that can inspire future endeavors in this field.

REFERENCES

- Perplexity AI. Introducing perplexity deep research, 2025. URL https://www.perplexity.ai/hub/blog/introducing-perplexity-deep-research.
- anthropic. Introducing claude 4, 2025. URL https://www.anthropic.com/news/claude-4.
 - Kevin Chen, Marco Cusumano-Towner, Brody Huval, Aleksei Petrenko, Jackson Hamburger, Vladlen Koltun, and Philipp Krähenbühl. Reinforcement learning for long-horizon interactive llm agents. arXiv preprint arXiv:2502.01600, 2025.
 - Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.
 - Longchao Da, Justin Turnau, Thirulogasankar Pranav Kutralingam, Alvaro Velasquez, Paulo Shakarian, and Hua Wei. A survey of sim-to-real methods in rl: Progress, prospects and challenges with foundation models. *arXiv* preprint arXiv:2502.13187, 2025.
 - ByteDance Doubao. Doubao, 2025. URL http://www.doubao.com/.
 - Mingxuan Du, Benfeng Xu, Chiwei Zhu, Xiaorui Wang, and Zhendong Mao. Deepresearch bench: A comprehensive benchmark for deep research agents. *arXiv preprint arXiv:2506.11763*, 2025.
 - Jiaxuan Gao, Wei Fu, Minyang Xie, Shusheng Xu, Chuyi He, Zhiyu Mei, Banghua Zhu, and Yi Wu. Beyond ten turns: Unlocking long-horizon agentic search with large-scale asynchronous rl, 2025. *URL https://arxiv. org/abs/2508.07976*, 2025.
 - Xinyu Geng, Peng Xia, Zhen Zhang, Xinyu Wang, Qiuchen Wang, Ruixue Ding, Chenxi Wang, Jialong Wu, Yida Zhao, Kuan Li, et al. Webwatcher: Breaking new frontiers of vision-language deep research agent. *arXiv* preprint arXiv:2508.05748, 2025.
 - Mustafa Haiderbhai, Radian Gondokaryono, Andrew Wu, and Lueder A Kahrs. Sim2real rope cutting with a surgical robot using vision-based reinforcement learning. *IEEE Transactions on Automation Science and Engineering*, 22:4354–4365, 2024.
 - Daniel Ho, Kanishka Rao, Zhuo Xu, Eric Jang, Mohi Khansari, and Yunfei Bai. Retinagan: An object-aware approach to sim-to-real transfer. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 10920–10926. IEEE, 2021.
 - Jina.ai. Jina, 2025. URL https://jina.ai/.
 - Kimi. Kimi-researcher: End-to-end rl training for emerging agentic, 2025. URL https://moonshotai.github.io/Kimi-Researcher/.
 - Kuan Li, Liwen Zhang, Yong Jiang, Pengjun Xie, Fei Huang, Shuai Wang, and Minhao Cheng. Lara: Benchmarking retrieval-augmented generation and long-context llms—no silver bullet for lc or rag routing. *arXiv preprint arXiv:2502.09977*, 2025a.
 - Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baixuan Li, Zhengwei Tao, Xinyu Wang, et al. Websailor: Navigating super-human reasoning for web agent. *arXiv preprint arXiv:2507.02592*, 2025b.
- Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research capability. CoRR, abs/2504.21776, 2025c. doi: 10.48550/ARXIV.2504.21776. URL https://doi.org/10.48550/arXiv.2504.21776.
 - Junteng Liu, Yunji Li, Chi Zhang, Jingyang Li, Aili Chen, Ke Ji, Weiyu Cheng, Zijia Wu, Chengyu Du, Qidi Xu, et al. Webexplorer: Explore and evolve for training long-horizon web agents. *arXiv* preprint arXiv:2509.06501, 2025a.

```
Yuxuan Liu, Tianchi Yang, Shaohan Huang, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei Deng, Feng Sun, and Qi Zhang. Calibrating llm-based evaluator. In Nicoletta Calzolari, Min-Yen Kan, Véronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC/COLING 2024, 20-25 May, 2024, Torino, Italy, pp. 2638–2656. ELRA and ICCL, 2024. URL https://aclanthology.org/2024.lrec-main.237.
```

- Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint arXiv:2503.20783*, 2025b.
- Rui Lu, Zhenyu Hou, Zihan Wang, Hanchen Zhang, Xiao Liu, Yujiang Li, Shi Feng, Jie Tang, and Yuxiao Dong. Deepdive: Advancing deep search agents with knowledge graphs and multi-turn rl. arXiv preprint arXiv:2509.10446, 2025.
- Michael Luo, Naman Jain, Jaskirat Singh, Sijun Tan, Ameen Patel, Qingyang Wu, Alpay Ariyak, Colin Cai, Tarun Venkat, Shang Zhu, Ben Athiwaratkun, Manan Roongta, Ce Zhang, Li Erran Li, Raluca Ada Popa, Koushik Sen, and Ion Stoica. Deepswe: Training a state-of-the-art coding agent from scratch by scaling rl, 2025. URL https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-Notion Blog.
- Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia: a benchmark for general ai assistants. In *The Twelfth International Conference on Learning Representations*, 2023.
- Xuan-Phi Nguyen, Shrey Pandit, Revanth Gangi Reddy, Austin Xu, Silvio Savarese, Caiming Xiong, and Shafiq Joty. Sfr-deepresearch: Towards effective reinforcement learning for autonomously reasoning single agents. *arXiv preprint arXiv:2509.06283*, 2025.
- OpenAI. Deep research system card, 2025a. URL https://cdn.openai.com/deep-research-system-card.pdf.
- OpenAI. Introducing openai o3 and o4-mini, 2025b. URL https://openai.com/index/introducing-o3-and-o4-mini/.
- Błażej Osiński, Adam Jakubowski, Paweł Zięcina, Piotr Miłoś, Christopher Galias, Silviu Homoceanu, and Henryk Michalewski. Simulation-based reinforcement learning for real-world autonomous driving. In 2020 IEEE international conference on robotics and automation (ICRA), pp. 6411–6418. IEEE, 2020.
- Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity's last exam. *arXiv* preprint *arXiv*:2501.14249, 2025.
- Zile Qiao, Guoxin Chen, Xuanzhong Chen, Donglei Yu, Wenbiao Yin, Xinyu Wang, Zhen Zhang, Baixuan Li, Huifeng Yin, Kuan Li, et al. Webresearcher: Unleashing unbounded reasoning capability in long-horizon agents. *arXiv preprint arXiv:2509.13309*, 2025.
- Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native agents. *arXiv preprint arXiv:2501.12326*, 2025.
- SerpAPI. Serpapi: Google search api, 2025. URL https://serpapi.com/?gad_source=1&gad_campaignid=1061187028&gbraid=0AAAAADD8kqObrG_Yhfov4tkhegHlcAW-v&gclid=CjwKCAjwz5nGBhBBEiwA-W6XRPAgJXyoTwlsU-elg7bW5iIjUA8btM6oK3A_sp2D95exzIyaNjNmPRoCw6cQAvD_BwE.
- Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

- Wenxuan Shi, Haochen Tan, Chuqiao Kuang, Xiaoguang Li, Xiaozhe Ren, Chen Zhang, Hanting Chen, Yasheng Wang, Lifeng Shang, Fisher Yu, et al. Pangu deepdiver: Adaptive search intensity scaling via open-web reinforcement learning. *arXiv* preprint arXiv:2505.24332, 2025.
 - Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language models using model parallelism. *arXiv preprint arXiv:1909.08053*, 2019.
 - Liangcai Su, Zhen Zhang, Guangyu Li, Zhuo Chen, Chenxi Wang, Maojia Song, Xinyu Wang, Kuan Li, Jialong Wu, Xuanzhong Chen, et al. Scaling agents via continual pre-training. *arXiv* preprint *arXiv*:2509.13310, 2025.
 - Richard Sutton. The bitter lesson. *Incomplete Ideas (blog)*, 13(1):38, 2019.
 - Sijun Tan, Michael Luo, Colin Cai, Tarun Venkat, Kyle Montgomery, Aaron Hao, Tianhao Wu, Arnav Balyan, Manan Roongta, Chenguang Wang, Li Erran Li, Raluca Ada Popa, and Ion Stoica. rllm: A framework for post-training language agents. https://github.com/rllm-org/rllm, 2025. Notion Blog.
 - Zhengwei Tao, Jialong Wu, Wenbiao Yin, Junkai Zhang, Baixuan Li, Haiyang Shen, Kuan Li, Liwen Zhang, Xinyu Wang, Yong Jiang, et al. Webshaper: Agentically data synthesizing via information-seeking formalization. *arXiv* preprint arXiv:2507.15061, 2025.
 - Claude Team. Claude research, 2025a. URL https://www.anthropic.com/news/research.
 - DeepSeek Team. Introducing deepseek-v3.1: our first step toward the agent era!, 2025b. URL https://api-docs.deepseek.com/news/news250821.
 - Gemini Team. Gemini deep research, 2025c. URL https://gemini.google/overview/deep-research/.
 - Grok Team. Grok-3 deeper search, 2025d. URL https://x.ai/news/grok-3.
 - Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. *arXiv preprint arXiv:2507.20534*, 2025.
 - MiroMind AI Team. Mirothinker: An open-source agentic model series trained for deep research and complex, long-horizon problem solving, 2025e. URL https://github.com/MiroMindAI/MiroThinker.
 - OpenPangu Team. Openpangu deepdiver-v2: Multi-agent learning for deep information seeking, 2025f. URL https://ai.gitcode.com/ascend-tribe/openPangu-Embedded-7B-DeepDiver.
 - Perplexity Team. Perplexity research, 2025g. URL https://www.perplexity.ai/hub/blog/introducing-perplexity-deep-research.
 - Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. *Communications of the ACM*, 57(10):78–85, 2014.
 - Haoming Wang, Haoyang Zou, Huatong Song, Jiazhan Feng, Junjie Fang, Junting Lu, Longxiang Liu, Qinyu Luo, Shihao Liang, Shijue Huang, et al. Ui-tars-2 technical report: Advancing gui agent with multi-turn reinforcement learning. *arXiv preprint arXiv:2509.02544*, 2025.
- Minzheng Wang, Longze Chen, Fu Cheng, Shengyi Liao, Xinghua Zhang, Bingli Wu, Haiyang Yu, Nan Xu, Lei Zhang, Run Luo, Yunshui Li, Min Yang, Fei Huang, and Yongbin Li. Leave no document behind: Benchmarking long-context llms with extended multi-doc QA. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024, Miami, FL, USA, November 12-16, 2024*, pp. 5627–5646. Association for Computational Linguistics, 2024. URL https://aclanthology.org/2024.emnlp-main.322.

- Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet challenging benchmark for browsing agents. *arXiv preprint arXiv:2504.12516*, 2025.
 - Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra which appears therein. *nti*, *Series*, 2(9):12–16, 1968.
 - Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu Zhang, Zekun Xi, Yong Jiang, Pengjun Xie, et al. Webdancer: Towards autonomous information seeking agency. *arXiv preprint arXiv:2505.22648*, 2025a.
 - Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang, Zekun Xi, Runnan Fang, Linhai Zhang, Yulan He, Deyu Zhou, Pengjun Xie, et al. Webwalker: Benchmarking llms in web traversal. *arXiv* preprint arXiv:2501.07572, 2025b.
 - Xbench-Team. Xbench-deepsearch, 2025. URL https://xbench.org/agi/aisearch.
 - An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025.
 - Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React: Synergizing reasoning and acting in language models. In *International Conference on Learning Representations (ICLR)*, 2023.
 - Hongli Yu, Tinghong Chen, Jiangtao Feng, Jiangjie Chen, Weinan Dai, Qiying Yu, Ya-Qin Zhang, Wei-Ying Ma, Jingjing Liu, Mingxuan Wang, et al. Memagent: Reshaping long-context llm with multi-conv rl-based memory agent. *arXiv preprint arXiv:2507.02259*, 2025a.
 - Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale. *arXiv preprint arXiv:2503.14476*, 2025b.
 - Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does reinforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv* preprint arXiv:2504.13837, 2025.
 - Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang, Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation models. *arXiv preprint arXiv:2508.06471*, 2025.
 - Peilin Zhou, Bruce Leon, Xiang Ying, Can Zhang, Yifan Shao, Qichen Ye, Dading Chong, Zhiling Jin, Chenxuan Xie, Meng Cao, et al. Browsecomp-zh: Benchmarking web browsing ability of large language models in chinese. *arXiv preprint arXiv:2504.19314*, 2025a.
 - Zijian Zhou, Ao Qu, Zhaoxuan Wu, Sunghwan Kim, Alok Prakash, Daniela Rus, Jinhua Zhao, Bryan Kian Hsiang Low, and Paul Pu Liang. Mem1: Learning to synergize memory and reasoning for efficient long-horizon agents. *arXiv preprint arXiv:2506.15841*, 2025b.

A RELATED WORK

The field of autonomous web agents has witnessed a surge of progress in recent months, with the open-source community rapidly advancing capabilities along three primary axes: data construction, training methodologies, and inference paradigms.

Data construction for web agents. High-quality data is the bedrock of capable agents. Recent methodologies for constructing agent training data can be broadly categorized into two main approaches. The first, pioneered by WebSailor (Li et al., 2025b) with its SailorFog-QA dataset, is graph-based. This approach begins with seed entities and uses web tools to build a knowledge graph, from which complex question-answer pairs are sampled. The second, an "easy-to-hard" paradigm, is employed by works like WebShaper (Tao et al., 2025), ASearcher (Gao et al., 2025), and WebExplorer (Liu et al., 2025a). These methods typically start with a simple seed question and iteratively expand its complexity, resulting in tree-like logical structures. A common thread connecting many of these recent efforts, starting with WebSailor, is the integration of live web tools into the data generation process and the introduction of uncertainty, most notably through obfuscation, to elicit more advanced reasoning. In contrast to these works, our SailorFog-QA-V2 achieves a more comprehensive coverage of complex logical relationships that better mirror real-world information webs and more definitions of uncertainty.

Agent training strategies. A two-stage training pipeline has become the de facto standard for developing powerful agents: a SFT "cold start" phase followed by a RL phase for policy refinement. The majority of recent RL implementations are based on variants of GRPO (Shao et al., 2024), often incorporating algorithmic enhancements and tricks from methods like DAPO (Yu et al., 2025b) and Dr.GRPO (Liu et al., 2025b). While these algorithmic nuances exist, our extensive experimentation suggests that the specific RL algorithm is not the primary bottleneck for agentic RL at this stage. Instead, we find that the quality and distribution of the training data fundamentally determine the upper bound of the training's effectiveness. The careful selection of training samples, particularly how negative trajectories are handled, appears to be one of the most critical factors for stable and effective learning. Continual pre-training is another specialized training paradigm that can further enhance reasoning abilities (Su et al., 2025).

Inference paradigms. The choice of inference paradigm significantly impacts an agent's performance. WebSailor and WebShaper are built upon the vanilla ReAct framework (Yao et al., 2023) for its simplicity and effectiveness. Concurrently, context engineering (Yu et al., 2025a; Zhou et al., 2025b) has emerged as a crucial area of innovation. Works such as ASearcher and Kimi-Researcher (Kimi, 2025), as well as GUI-focused agents like UI-TARS-2 (Wang et al., 2025), have demonstrated that sophisticated context management strategies built on top of ReAct can yield significant performance improvements. For WebSailor-V2, we deliberately adopt the standard ReAct framework. This choice is intended to isolate and evaluate the intrinsic capabilities of the model itself, minimizing the confounding effects of intricate prompt engineering or framework design. By establishing this strong baseline, we pave the way for future work to explore how advanced context strategies or plug-in modules can further unlock the model's full potential.

Despite the rapid proliferation of open-source agents, a considerable performance gap has persisted when compared to proprietary systems like OpenAI's DeepResearch (OpenAI, 2025a). WebSailor-V2 represents a dedicated effort to bridge this divide, demonstrating for the first time that a meticulously trained agent built on a moderately-sized open-source model can achieve performance that is highly competitive with, and in some cases superior to, its closed-source counterparts.

B EXPERIMENTAL DETAILS

Tools WebSailor-V2 uses four types of tools, search, visit, Google Scholar, and Python interpreter:

• **Search** is used to access the Google search engine for information retrieval. The parameters of Search are the search queries. It allows searching multiple queries simultaneously and returns the top-10 results for each query. Each result contains a title, a snippet, and the corresponding URL.

- Visit is used to access specific web pages. The input consists of several web pages and their corresponding visit goals, with each page having a dedicated goal. First, Jina (Jina.ai, 2025) is used to retrieve the full content of the web page, and then a summary model extracts relevant information based on the goal. In this work, we use Qwen3-30B-A3B Yang et al. (2025) as the summary model.
- Google Scholar is a specialized search tool that accesses the Google Scholar search engine. It is designed for information retrieval within the academic domain, allowing the agent to find and access scholarly literature such as articles, theses, books, and conference papers.
- **Python interpreter** is a sandboxed environment that allows the agent to write and execute Python code. This tool enables the agent to perform complex computational tasks, such as mathematical calculations, data analysis, and logical reasoning, by running self-generated code in a secure and isolated setting.

Training hyper-parameters We use Megatron (Shoeybi et al., 2019) for SFT and rLLM (Tan et al., 2025) for RL training. For SFT, we use a batch size of 64, learning rate of 5e-6 with a minimum of 1e-10, warmup plus cosine decay schedule, and a weight decay of 0.1. For RL training, the temperature is 1.0, $top_p = 1.0$, the batch size is 128, and the learning rate is 1e-6.

C ENTROPY DYNAMICS

The entropy dynamics, shown in Fig. 7, provide further insights into the learning process. We find that the policy entropy remains at a consistently high level throughout the training process, indicating that the agent maintains a strong capacity for exploration and avoids premature convergence to a deterministic policy. This behavior contrasts sharply with trends observed in tasks like mathematical RL training, where entropy often decreases significantly as the model learns to exploit a narrow set of solution paths. In our case, the entropy oscillates without a clear upward or downward trend. Consequently, our algorithm design intentionally omits any explicit entropy

Figure 7: Training entropy dynamics

regularization or bonus, as the agent naturally sustains sufficient exploration. We hypothesize that this sustained high entropy is a direct consequence of the environment's non-stationary nature. Unlike closed-world problems, the observations returned by web tools (e.g., search results, webpage content) do not follow a fixed distribution. This inherent stochasticity and complexity of the real-world web environment prevent the policy from fully converging to a stable, low-entropy state, instead fostering a more robust and adaptive policy.

D CASE STUDY

We present a case from the BrowseComp benchmark, wherein the agent successfully identified the correct company after a comprehensive reasoning process spanning 29 steps. This case demonstrates a series of advanced reasoning patterns executed through efficient tool invocation.

- Clue Decomposition and Structuring: In its initial step, the agent deconstructed the user's
 unstructured, multi-faceted query into a set of clear, verifiable, and structured conditions.
 This foundational process of decomposition is essential for solving complex problems by
 breaking them down into manageable sub-tasks.
- 2. **Initial Exploration and Strategy Adjustment:** The agent did not arrive at the correct answer immediately. Its initial search queries were broad and exploratory, such as "former employee class action settlement \$1.5 million 2015". These searches returned irrelevant results pertaining to companies like McDonald's and FedEx, which were too generic to be

812 813

814 815 816

817 818 819

820

821 822 823

824

828 830 831

832 833 834

835

836

837

838 839 840

841 842 843

852 853 854

855 856

857 858

859 861 862

correlated with the other specific clues. This demonstrates the agent's ability to recognize unproductive search paths and adjust its strategy accordingly.

- 3. **Identifying the "Golden Clue":** Following the unsuccessful initial attempts, the agent identified the need to pivot to a more targeted approach. It reasoned that the most effective strategy was to focus on the most unique and easily locatable piece of information: the leadership change. Consequently, it constructed a highly precise search query: "founder" "will become" "Chairman" "effective" "third quarter" "2008". This query targets a specific corporate event within a narrow timeframe, significantly increasing the probability of a relevant hit.
- 4. Target Acquisition (The Breakthrough): This precise query successfully identified the target. The search results pointed directly to two press releases from FormFactor, Inc., detailing that its founder, Igor Khandros, would become Executive Chairman while a new CEO would be appointed at the beginning of the third fiscal quarter of 2008. At this juncture, the agent had identified a high-potential candidate.
- 5. Systematic Verification: Identifying a candidate was merely the first phase. The subsequent steps showcased the agent's rigorous and methodical verification capabilities. Instead of prematurely concluding, the agent systematically validated every other clue against FormFactor, Inc. This involved a series of targeted searches and document analyses to confirm details about its incorporation, financial history (customer concentration), and legal proceedings.
- 6. **Synthesis and Final Response:** Only after every clue was independently and irrefutably verified did the agent synthesize all the evidence. It then constructed a coherent, logically structured final answer, complete with citations and summaries of the source material for each key fact.

This case perfectly illustrates the core competencies of an advanced AI research assistant. The process highlights its ability to engage in strategic adaptation and learn from initial failures—hallmarks of a true reasoning process rather than a simple answer-retrieval mechanism. The entire workflow—decomposing the problem, identifying key pivots, executing precise searches, and performing cross-verification—mirrors the sophisticated research methodologies employed by human experts.

Case Trajectory in BrowseComp-en

Ouestion: A publicly traded company reported that, in a single fiscal year between January 1, 2004, and December 31, 2006, three customers contributed between 27% and 74% of its revenue. In a different fiscal year, between January 1, 2004, and December 31, 2006, four customers accounted for between 55% and 89% of its revenue. - In a month that falls between January 1, 2011, and December 3,1 2019, a former employee of the same company filed a class action lawsuit. The court later certified the plaintiff's class. The settlement was somewhere between 1.2 and 1.9 million dollars. - According to a source published in 2008, the founder of the company changed roles within the company, with this change set to take effect at the beginning of the fiscal third quarter, which falls between January 1, 2007, and December 31, 2008. - The change mentioned above also instates a new person as CEO. - The company was formed in the jurisdiction of Delaware. - The company was founded sometime between January 1, 1988, and December 31, 1995. - What is the name of the publicly traded company?

Step 1

<think>

We need to find the name of a publicly traded company that matches these clues.

- 1. It's a publicly traded company incorporated in Delaware, founded between 1988 and 1995.
- 2. In some fiscal year between 2004 and 2006 (inclusive), three customers contributed between 27% and 74% of its revenue. In another fiscal year between those years, four customers accounted for between 55% and 89% of its revenue.
- 3. A former employee filed a class action lawsuit between Jan 1, 2011, and Dec 31, 2019. The court later certified the plaintiff's class. The settlement was somewhere between \$1.2M

864 and \$1.9M. 865 4. According to a source published in 2008, the founder changed roles within the company, 866 with the change set to take effect at the beginning of the fiscal third quarter, which falls 867 between Jan 1, 2007, and Dec 31, 2008. The change also installed a new person as CEO. 868 Thus we need to identify a company where a founder stepped down from CEO or changed 869 role to something else, and a new CEO was appointed, effective early Q3 of fiscal year 870 2007-2008. The company must have been incorporated in Delaware, founded 1988-1995. 871 Also, financial data: three customers contributed 27% to 74% of revenue in one fiscal year 872 (2004-2006) and four customers contributed 55% to 89% of revenue in another year. That 873 suggests the company is perhaps a supplier to few major customers; maybe a semiconductor 874 company, defense contractor, etc. 875 The class action: a former employee filed a class action and settlement between \$1.2M-\$1.9M. 876 Could be about wage and hour claims, ERISA, securities fraud? Might be an ESG claim? Let's think. 877 Potential candidates: companies like "Burlington Resources", "Ciena", "Viatris"? No. 878 Let's parse timeline: The founding date range is 1988-1995. Many tech firms were founded 879 earlier (1970s, 1980s). Possibly small-to-mid cap. 880 The founder changed roles in 2008, effective O3 of fiscal year 2007-2008. So the new CEO 881 took over after that. Founder might have been originally CEO, but stepping down to become 882 chairman or something. 883 One known case: "American Tower" founder? No. "Amdocs"? Founded 1982. 884 Perhaps "Covance"? Not sure. 885 Better to search for "founder stepped down as CEO effective third quarter 2007 2008" 886 "Delaware corporation". Also include "class action former employee settlement \$1.5 887 million". Let's do web search. 888 </think> 889 <tool_call> 890 {"name": "search", "arguments": {"query": ["former employee class action settlement 891 \$1.5 million 2015", "founder stepped down as CEO effective Q3 2007 new CEO 2008 892 Delaware corporation", "three customers contributed 27% of revenue 2005 Form 10-K", 893 "four customers accounted for 55% of revenue 2006 Form 10-K"]}} 894 </tool_call> 895 <tool_response> Search Results are omitted... 897 </tool_response> 898 Step 2 899 <think> 900 The search results are generic; we need to refine. 901 Better approach: Identify a company where founder stepped down as CEO effective Q3 of fiscal year 2007-2008. Could be a technology or biotech firm that went public earlier (maybe 902 1990s). Look up "Q3 2007 founder becomes chairman new CEO". 903 Search for "founder will step down as chief executive officer and become chairman of the 904 board beginning in the third quarter of fiscal 2007". 905 </think> 906 <tool_call> 907 {"name": "search", "arguments": {"query": [""beginning of the third quarter" 2007 founder 908 CEO stepped down", ""effective" "third quarter" 2007 "new CEO"", ""founder" "stepped 909 down" "CEO" "July 2007" "Delaware""]}} 910 </tool call> 911 <tool_response> 912 Search Results are omitted... 913 </tool_response> 914 Step 3 915 <think> 916 We got a result: "sv1" (SEC filing) that might be relevant. Let's open that.

918 </think> 919 <tool call> 920 "name": "visit", "arguments": {"url": ["https://www.sec.gov/Archives/edgar/data/1255691/000 921 089102008000014/v28895orsv1.htm"], "goal": "Find information about founder and CEO 922 change in 2007, effective beginning of third quarter"} 923 </tool call> 924 <tool response> 925 Visit results are omitted... 926 </tool_response> 927 Step 4 928 <think> 929 The page may not have relevant info. Let's search more specifically: "founder will become 930 executive chairman effective third quarter 2007" 931 </think> 932 <tool_call> {"name": "search", "arguments": {"query": [""founder" "effective" "third quarter" "2007" 933 "CEO"", ""founder" "will" "become" "Chairman" "third quarter" 2007"", ""founder" 934 "transition" "CEO" "third quarter" 2007""]}} 935 </tool_call> 936 <tool_response> 937 Search Results are omitted... 938 </tool_response> 939 Step 5 940 <think> 941 Result #1: "National Interstate Corporation Announces Third Quarter 2007 Dividend and 942 CEO Promotion." That mentions a founder. Let's open. 943 </think> 944 <tool_call> 945 "visit", "arguments": {"name": {"url": ["https://www.globenewswire.com/news-946 release/2007/11/15/369309/8685/en/National-Interstate-Corporation-Announces-Third-947 Quarter-2007-Dividend-and-CEO-Promotion.html"], "goal": "Find details about founder, 948 CEO change, effective Q3 2007"}} </tool call> 949 <tool response> 950 Visit results are omitted... 951 </tool_response> 952 Step 6 953 <think> 954 This appears to match the founder change: founder Alan R. Spachman (founder of National 955 Interstate Corporation) stepped down as CEO effective Jan 1, 2008, which is the beginning 956 of fiscal Q3? Wait, what's National Interstate's fiscal year? It may be a calendar year or 957 something else. The date effective Jan 1, 2008 is effectively start of fiscal year 2008; Q3 958 might be July 2008? But they said "beginning of the fiscal third quarter", which falls between 959 Jan 1, 2007 and Dec 31, 2008. Possibly the effective date is the start of Q3 in fiscal year 2008 960 (e.g., July 1, 2008). However, the article says effective Jan 1, 2008. That is the start of the 961 fiscal year for a calendar-year company, but not necessarily Q3. 962 But perhaps the phrase "beginning of the fiscal third quarter" means the start of Q3 of the 963 fiscal year that begins in April (or earlier). For many insurance companies, the fiscal year ends December 31 (so Q3 starts July 1). If the change takes effect at the beginning of Q3, it 964 would be July 1, 2008 maybe. 965 Nevertheless, we have a founder stepping down and a new CEO taking over, which matches 966 part of the clues. Also, National Interstate Corp (NATL) is publicly traded, incorporated in 967 Delaware? Let's check. 968 Search "National Interstate corporation incorporated in Delaware". 969 </think> 970

<tool_call>

972 {"name": "search", "arguments": {"query": [""National Interstate Corporation" incorporated 973 in Delaware"]}} 974 </tool_call> 975 <tool response> 976 Search results are omitted 977 </tool response> 978 Step 7 979 <think> 980 Thus maybe it's not National Interstate Corp. Let's keep searching. 981 Also consider the founder change: The founder changed role effective beginning of fiscal Q3 982 2007-2008. That may refer to a different company. 983 Another candidate: "Roper Technologies"? Founder? Not sure. 984 Maybe a small biotech like "Cerus Corporation"? Or "Bio-Rad"? Or "Illumina"? No. 985 Let's think about companies founded between 1988 and 1995. 986 List of publicly traded companies founded within that period: - Netflix (founded 1997, out) - Salesforce (1999) - Intuit (1983) - Dell (1984) - HP (1939) -987 Apple (1976) - IBM (1911) - AMD (1969) - Qualcomm (1985) - Juniper Networks (1996) -988 Akamai (1998) - Red Hat (1993) but now part of IBM. - Goodyear? No. - MicroStrategy 989 (1989) but maybe. - VeriSign (1995). - Workday (2005). - Splunk (2003). - Etsy (1999). -990 PayPal (1998). - eBay (1996). - Google (1998). - Many others. 991 But need founder stepping down as CEO effective Q3 2007-2008 and new CEO appointed. 992 Also customers contributions to revenue percentages are relatively high (27% to 74% from 993 three customers; and 55% to 89% from four customers). That suggests maybe a B2B or 994 service provider with few large clients, possibly a contract manufacturer, a semiconductor 995 foundry, or a defense contractor. 996 Maybe the company is "Qualcomm"? But Qualcomm's customers are many. 997 Alternatively, a "contract research organization" or "clinical trials" firm. Could be "Perrigo"? Not sure. 998 Maybe the company is "Voya Financial"? Not likely. 999 Another possibility: "Avid Technology" (AVDL). Founded 1987. 1000 Or "VeriSign". Founded 1995. Founder is Jim Bidzos? Actually the founder is Dr. Roger D. 1001 Dierking? Not sure. Not aware of a CEO change at that time. 1002 We might need to search for "class action former employee settlement \$1.5 million 2015" 1003 plus "NATL"? But NATL had a class action? Not sure. 1004 Better to systematically examine each clue and search for relevant combos. 1005 Clue 1: "In a single fiscal year between Jan 1, 2004 and Dec 31, 2006, three customers contributed between 27% and 74% of its revenue. In a different fiscal year, between Jan 1, 1007 2004 and Dec 31, 2006, four customers accounted for between 55% and 89% of its revenue." 1008 Interpretation: In one year there were three major customers that contributed some portion of revenue between 27% and 74%. This is a range because maybe we don't have exact numbers. 1009 In another year there were four customers that contributed between 55% and 89% of revenue. 1010 So these percentages could be for the same company across years. 1011 Thus the company had heavy reliance on few customers. 1012 This is typical for companies that sell to government agencies (e.g., defense contractors), or 1013 to big telecoms (e.g., chip manufacturers selling to phone makers). Could be an aerospace 1014 parts supplier (e.g., "Spirit AeroSystems"). 1015 Clue 2: "In a month that falls between Jan 1, 2011, and Dec 31, 2019, a former employee of 1016 the same company filed a class action lawsuit. The court later certified the plaintiff's class. 1017 The settlement was somewhere between 1.2 and 1.9 million dollars." So a moderate-size 1018 class action, perhaps wage/hours or discrimination, not huge. Settlement \$1.2-\$1.9M. 1019 Clue 3: "According to a source published in 2008, the founder of the company changed roles within the company, with this change set to take effect at the beginning of the fiscal third 1020 quarter, which falls between Jan 1, 2007, and Dec 31, 2008. The change also instates a new 1021 person as CEO." Clue 4: Company formed in Delaware. 1023 Clue 5: Company founded between 1988 and 1995. 1024

Thus we need a Delaware-incorporated public company founded 1990ish, with a founder

```
1026
            stepping down around mid-2008.
1027
            Now let's search for "founder steps down as CEO effective July 1 2008".
1028
            </think>
1029
            <tool call>
1030
            {"name": "search", "arguments": {"query": [""effective July 1, 2008" "CEO" "founder""]}}
1031
            </tool call>
1032
            <tool response>
1033
            Search results are omitted
1034
            </tool_response>
1035
                                                     Step 8
1036
            <think>
1037
            No obvious hits.
            Search for "founder will become chairman of the board effective third quarter 2008"
1039
            </think>
1040
            <tool call>
            {"name": "search", "arguments": {"query": [""founder" "will become" "Chairman"
1041
            "effective" "third quarter" "2008""]}}
1042
            </tool call>
1043
            <tool_response>
1044
            Search results are omitted
1045
1046
            </tool_response>
1047
                                                     Step 9
1048
            <think>
1049
            Great! This appears promising: "FormFactor Board Appoints Mario Ruscev FormFactor
1050
            CEO". Let's open.
1051
            </think>
1052
            <tool call>
1053
            {"name": "visit", "arguments": {"url": ["https://investors.formfactor.com/news-releases/news-
1054
            release-details/formfactor-board-appoints-mario-ruscev-formfactor-ceo"], "goal": "Find
1055
            details about founder role change effective beginning of fiscal third quarter 2008, new CEO
1056
            appointment"}}
            </tool call>
1057
            <tool response>
1058
            Visit results are omitted
1059
            </tool_response>
                                                    Step 10
1061
            <think>
1062
            Great! This matches the clue: founder changed roles, effective at beginning of fiscal third
1063
            quarter 2008. Founder becomes executive chairman; new CEO appointed.
1064
            Now we need to verify other clues for FormFactor.
1065
            FormFactor is a publicly traded company on NASDAQ: ticker FORM. It was incorporated in
1066
            Delaware? Let's check.
1067
            </think>
1068
            <tool call>
1069
            {"name": "search", "arguments": {"query": [""FormFactor" "incorporated in Delaware""]}}
1070
            </tool_call>
1071
            <tool_response>
            Search results are omitted
1072
            </tool_response>
1073
                                                    Step 11
1074
1075
            <think>
            That matches the incorporation and founding date range: incorporated in Delaware in 1993,
            founded between 1988-1995.
1077
            Now need to verify the revenue concentration data for fiscal years 2004-2006.
1078
            Search FormFactor 2005 10-K "customers accounted for" etc.
1079
```

```
1080
            </think>
1081
            <tool call>
1082
            {"name": "search", "arguments": {"query": [""FormFactor" "three customers" "revenue"
            2005", ""FormFactor" "customers accounted for" 2005", ""FormFactor" "Revenue"
1084
            "customer" 2006"]}}
1085
            </tool call>
1086
            <tool response>
1087
            Search results are omitted
1088
            </tool_response>
1089
                                                    Step 12
1090
            <think>
1091
            Let's open the 2005 annual report PDF for FormFactor.
            </think>
1093
            <tool_call>
1094
            {"name": "visit", "arguments": {"url": ["https://www.annualreports.com/HostedData/AnnualRe
            portArchive/f/NASDAQ_FORM_2005.pdf"], "goal": "Find revenue concentration: number
1095
            of customers and % of revenue in fiscal 2005"}}
            </tool call>
            <tool_response>
1098
            Visit results are omitted
1099
            </tool_response>
1100
                                                    Step 13
1101
            <think>
1102
            Let's try another source: maybe the 10-K filing for 2005. Use SEC filing.
1103
            </think>
1104
            <tool call>
1105
            {"name": "visit", "arguments": {"url": ["https://www.sec.gov/Archives/edgar/data/1039399/000
1106
            0950134-05-004796.txt"], "goal": "Find revenue concentration information (customers) for
1107
            fiscal 2005 and 2004"}}
1108
            </tool_call>
1109
            <tool response>
1110
            Visit results are omitted
            </tool_response>
1111
                                                    Step 14
1112
1113
            <think>
            The SEC site might require proper path. Let's locate the 10-K for FormFactor for fiscal year
1114
            ended March 31? Actually FormFactor's fiscal year ends on December 28? Or something
1115
            like that. But we can search for "FormFactor 2005 10-K".
1116
            </think>
1117
            <tool_call>
1118
            {"name": "search", "arguments": {"query": [""FormFactor" "10-K" "2005""]}}
1119
            </tool_call>
1120
            <tool_response>
1121
            Search results are omitted
1122
            </tool_response>
1123
                                                    Step 15
1124
            <think>
1125
            Let's open the SEC filing for 2005 (ID 1).
1126
            </think>
1127
            <tool call>
            {"name": "visit", "arguments": {"url": ["https://investors.formfactor.com/sec-filings/sec-
1128
            filing/10-k/0000950134-05-004796"], "goal": "Extract revenue concentration data for fiscal
1129
            2005 and 2004"}}
1130
            </tool call>
1131
            <tool response>
1132
            Visit results are omitted
1133
```

1134 </tool_response> 1135 1136 Step 16 1137 <think> 1138 It may require navigation to view the HTML content. The link likely points to a page with a viewer that loads a PDF or separate HTML file. 1139 Let's click the "View HTML" maybe. 1140 Search for the HTML file with .htm after the hash. The earlier result #4 from search result 1141 had an external link to "content.edgar-online.com/ExternalLink/EDGAR/... .html". Let's 1142 open that. 1143 </think> 1144 <tool_call> 1145 {"name": "visit", "arguments": {"url": ["https://content.edgar-1146 online.com/ExternalLink/EDGAR/0000950134-05-004796.html?hash=6ab10d32f6a6e00a2977 1147 a11c0d98d6be4d5d17b1cca8b53365dafe21faf7034e&dest=f06542exv10w48_htm"], "goal": 1148 "Find revenue concentration: customers accounted for X% of revenues"}} </tool call> 1149 <tool_response> 1150 Visit results are omitted 1151 </tool_response> 1152 Step 17 1153 <think> 1154 The API may have restrictions for SEC content. Let's maybe try to view the PDF file directly 1155 (annual report PDF). The PDF may contain revenue concentration. 1156 Open the PDF via annual reports.com. Maybe we can extract text. 1157 </think> 1158 1159 {"name": "visit", "arguments": {"url": ["https://www.annualreports.com/HostedData/Annual 1160 ReportArchive/f/NASDAQ_FORM_2005.pdf"], "goal": "Extract revenue concentration 1161 details"}} 1162 </tool_call> 1163 <tool response> 1164 Visit results are omitted </tool response> 1165 Step 18 1166 1167 <think> Great! This gives us the revenue concentration. 1168 Now we need to verify the other year: maybe 2004 had three customers contributed between 1169 27% and 74%? Wait the clue: "In a single fiscal year between Jan 1, 2004, and Dec 31, 2006, 1170 three customers contributed between 27% and 74% of its revenue." Actually the phrase: 1171 "three customers contributed between 27% and 74% of its revenue" – it's ambiguous: maybe 1172 that in some fiscal year three customers contributed 27% and 74% (range?). Or maybe there 1173 is a single fiscal year where the three customers' combined contribution fell somewhere 1174 between 27% and 74%. The range suggests that the figure could be anywhere within that 1175 range, but not exact. For FormFactor, we see four customers contributed 72.8% in 2005, 1176 which falls within the range 55-89% for four customers; also four customers contributed 1177 64.8% in 2004, within 55-89%; and in 2003 they contributed 66.2% as well. However, 1178 the clue mentions one year with three customers, not four. But maybe there is a year with three customers? Let's check the 2006 or 2003? The PDF shows 2005 and 2004 have four 1179 customers. Could there be a year earlier like 2003 where only three customers accounted for 1180 some percentage? Let's open the 2004 annual report (maybe the 2003 10-K). Alternatively 1181 check 2006 10-K. 1182 </think> 1183 <tool_call> 1184 {"name": "visit", "arguments": {"url": ["https://www.annualreports.com/HostedData/Annual 1185 ReportArchive/f/NASDAQ_FORM_2004.pdf"], "goal": "Find revenue concentration for 1186

fiscal 2004"}}

```
1188
            </tool call>
1189
            <tool_response>
1190
            Visit results are omitted
1191
            </tool_response>
1192
                                                    Step 19
1193
            <think>
1194
            Thus, 2004 has four customers contributing 64.8% of revenue.
1195
            Now the clue says "In a single fiscal year between January 1, 2004, and December 31, 2006,
1196
            three customers contributed between 27% and 74% of its revenue." This could refer to a year
1197
            where three customers accounted for something within that range. Possibly 2005 had three
1198
            customers? Actually 2005 had four customers; but perhaps there is another year where only
1199
            three customers contributed? Let's check 2006 10-K.
            Search "FormFactor 2006 10-K revenue concentration".
1201
            </think>
1202
            <tool call>
            "name": "search", "arguments": {"query": [""FormFactor" "2006" "four customers"
1203
            "revenue"", ""FormFactor" "2006" "revenue" "customers""]}}
            </tool call>
1205
            <tool_response>
1206
            Search results are omitted
1207
            </tool_response>
1208
                                                    Step 20
1209
            <think>
1210
            Let's open the PDF for 2011 but it mentions fiscal 2006. Probably the 2011 annual report
1211
            includes 2006 data.
1212
            Open link #1.
1213
            </think>
1214
            <tool call>
1215
            {"name": "visit", "arguments": {"url": ["https://www.annualreports.com/HostedData/Annual
1216
            ReportArchive/f/NASDAQ_FORM_2011.pdf"], "goal": "Find revenue concentration for
1217
            fiscal 2006"}}
1218
            </tool_call>
            <tool response>
1219
            Visit results are omitted
            </tool_response>
                                                    Step 21
1222
            <think>
1223
            The 2011 annual report doesn't have the data for 2006. Let's find a separate 2006 annual
1224
            report.
1225
            Search "FormFactor 2006 annual report PDF".
1226
            </think>
1227
            <tool_call>
1228
            {"name": "search", "arguments": {"query": [""FormFactor" "2006" "annual report" "pdf""]}}
1229
            </tool call>
1230
            <tool_response>
1231
            Search results are omitted
1232
            </tool_response>
1233
                                                    Step 22
1234
            <think>
1235
            The "AnnualReports.com" page may list multiple years. Let's open it and see if we can view
1236
            the 2006 report.
1237
            </think>
            <tool_call>
            {"name": "visit", "arguments": {"url": ["https://www.annualreports.com/Company/formfactor"],
1239
             'goal": "Find link to FormFactor 2006 annual report (10-K) or PDF"}}
1240
            </tool_call>
1241
```

1242 <tool response> 1243 Visit results are omitted 1244 </tool response> 1245 Step 23 1246 <think> 1247 Thus the PDF for 2006 may not be easily accessible. But we have revenue concentration 1248 numbers for 2004 and 2005 (four customers) and maybe for 2003 (four). The clue mentions 1249 both a year with three customers between 27-74% and a different year with four customers 1250 between 55-89%. In our data, 2005: four customers accounted for 72.8% (within 55-89%). 1251 Also 2004: four customers accounted for 64.8% (also within 55-89%). So both are 4 1252 customers. 1253 But the clue says "In a single fiscal year between January 1, 2004, and December 31, 2006, 1254 three customers contributed between 27% and 74% of its revenue." Could there be a year 1255 where three customers contributed, maybe 2006? Let's search again for 2006 revenue 1256 concentration details. Use the FormFactor 10-K for fiscal year ended December 31, 2006 (maybe filed in March 2007). Let's try to open the 10-K filing from 2006. 1257 Search "FormFactor 2006 10-K" </think> 1259 <tool call> 1260 {"name": "search", "arguments": {"query": [""FormFactor" "10-K" "2006" "FormFactor""]}} 1261 </tool call> 1262 <tool_response> 1263 Search results are omitted 1264 </tool_response> 1265 Step 24 1266 <think> 1267 Let's open the PDF for 2006. 1268 </think> 1269 <tool call> 1270 {"name": "visit", "arguments": {"url": ["https://www.annualreports.com/HostedData/Annual 1271 ReportArchive/f/NASDAQ_FORM_2006.pdf"], "goal": "Extract revenue concentration data 1272 for fiscal 2006"}} </tool call> 1273 <tool response> 1274 Visit results are omitted </tool_response> 1276 Step 25 1277 <think> 1278 Great! This matches the clue: In a single fiscal year between 2004-2006, three customers 1279 contributed 47.3% of revenue (which lies within 27-74%). In another fiscal year, four 1280 customers accounted for 72.8% or 64.8% etc. 1281 Thus this clue is satisfied. 1282 Now we need to verify the class action lawsuit filed by former employee between 2011 and 1283 2019, settlement \$1.2-\$1.9M. Let's search for FormFactor class action settlement. 1284 </think> 1285 <tool_call> 1286 {"name": "search", "arguments": {"query": [""FormFactor" "class action" "settlement" "million"", ""FormFactor" "lawsuit" "former employee""]}} 1287 </tool_call> <tool response> Search results are omitted 1290 </tool_response> 1291 Step 26 <think> 1293 Result #1: "Class Action Settlement and filed a General ... The stipulation provides for 1294

payment of \$1.5 million." That likely is the class action settlement we need.

Let's open result #1.
<pre></pre>
ctool_call>
name": "visit", "arguments": {"url": ["https://investors.formfactor.com/stat
files/603450c9-3fe1-4ca1-85dd-0db263b9ccdd"], "goal": "Find details about cla
ction settlement amount \$1.5 million"}} /tool_call>
ctool_response>
Visit results are omitted
Step 27
cthink>
Maybe the PDF is accessible via a different link. Let's open the 2016 annual report PDF
see if it mentions class action settlement.
<pre></pre>
ctool_call>
"name": "visit", "arguments": {"url": ["https://www.annualreports.com/HostedData/Annu
ReportArchive/f/NASDAQ_FORM_2016.pdf"], "goal": "Find class action settlement deta
in 2016 annual report"}}
<tool_response></tool_response>
Visit results are omitted
Step 28
cthink>
Great! This matches the class action clue: former employee filed class action in August 20
(which is within Jan 1, 2011 – Dec 31, 2019), court certified class on Jan 4, 2016, settleme
\$1.5M.
Thus all clues match FormFactor, Inc.
Now we can answer: The name of the publicly traded company is FormFactor, Inc.
But we should verify that FormFactor was founded between 1988-1995 (it was incorporate
in Delaware on April 15, 1993, according to SEC filings). Let's confirm. Search f
ncorporation date.
<pre> <pre> tool colls</pre></pre>
<tool_call> "name": "search", "arguments": {"query": [""FormFactor" "incorporated" "April 1</tool_call>
1993""]}}
<tool_response></tool_response>
Search results are omitted
Step 29
<think></think>
Thus the company was incorporated in Delaware on April 15, 1993.
Now we have all clues matched.
Thus answer: FormFactor, Inc.
We should provide a succinct answer with supporting references. Use citations from t
sources we visited.
We'll cite: Foundar shange and new CEO affective O2 2008 (source from press release). Jines sha
Founder change and new CEO effective Q3 2008 (source from press release) - lines about the change of the coming CEO and Ignr Khandros becoming executive chairman at beginning
Mario Ruscev becoming CEO and Igor Khandros becoming executive chairman at beginni of fiscal third quarter 2008.
Incorporation and founding date (source from prospectus) showing incorporation date Ap
15, 1993.
Revenue concentration: three customers contributed 47.3% of revenue in fiscal 2006 (sour

We have that information from 2006 PDF. - Class action settlement \$1.5 million (source 2016 annual report PDF). Thus answer. Now we can produce final answer. </think> <answer> The answer is a very long report with comprehensive analysis, so we provide it in the next 3 pages. </answer> √

The publicly traded company described in your question is **FormFactor**, **Inc.** Below is a comprehensive explanation as to how each part of your description matches FormFactor's history and disclosures.

Company Overview and Incorporation

FormFactor, Inc. is a semiconductor equipment manufacturer specializing in probe cards used to test integrated circuits during manufacturing. The company was **incorporated in the state of Delaware on April 15, 1993**, which falls within the 1988–1995 window you specified. It is headquartered in Livermore, California, and its shares are traded on NASDAQ under the ticker symbol "FORM."

Founding and Leadership Transition

FormFactor was founded in 1993 by Igor Khandros. In 2008, there was a significant leadership transition. According to publicly released statements and board resolutions, Igor Khandros stepped down as chief executive officer and assumed the role of Executive Chairman. This transition became effective at the beginning of FormFactor's fiscal third quarter of 2008. Simultaneously, Mario Ruscev, previously President, was appointed as the new Chief Executive Officer. This leadership shift fulfills the criteria regarding the founder changing roles with a new CEO taking over, set within the timeframe of January 1, 2007 to December 31, 2008.

Revenue Concentration Among Customers

A key element in your query concerns customer reliance—specifically, the proportion of the company's revenue coming from its top customers across two fiscal years between 2004 and 2006.

Detailed Breakdown of Customer Revenue Shares

The data below summarizes the contributions of the company's largest customers according to its annual reports and fillings:

Fiscal Year	Number of Customers	Total Revenue Contribution (%)	Notable Customers
2003	4	66.2	Intel, Spirox, Elpida, Infineon
2004	4	64.8	Intel, Spirox, Elpida, Infineon
2005	4	72.8	Intel, Spirox, Elpida, Samsung
2006	3	47.3	Elpida, Intel, Powerchip

- In fiscal 2006: Three major customers together accounted for 47.3% of total revenue, which fits your requirement of "three customers contributed between 27% and 74% of its revenue."
- In other fiscal years (2004 and 2005): Four customers accounted for 64.8% and 72.8% of revenue, respectively. These figures fall within your stated range of 55%–89%, matching the second customer concentration criterion.

 This shows that the company's business relied heavily on a small number of large clients during the mid-2000s—a common characteristic among certain B2B technology firms serving niche markets.

Figure 8: The answer of the case

Class Action Lawsuit Settlement

Your question references a class action lawsuit filed by a former employee within a specific period, with court-certified class status and a settlement amount ranging from 1.2to1.9 million.

Timeline and Settlement Details

- Lawsuit Filing: In August 2013, a former employee of FormFactor filed a class action lawsuit in the Superior Court
 of California, alleging violations of California wage and hour laws and other claims.
- Court Certification: On January 4, 2016, the court certified the plaintiff class for this lawsuit.
- Settlement Terms: By March 3, 2017, the parties signed a stipulation agreeing to settle the suit, requiring FormFactor to pay \$1.5 million in damages to resolve the matter.

The timeline, scope, and settlement figure (\$1.5 million) all match your requirements perfectly, confirming that this legal event took place after 2011 but before 2020, and involved a substantial but not enormous class action settlement typical for employment-related disputes.

Summary Table: Key Facts Matching Your Clues

Requirement	FormFactor, Inc. Evidence	
Formed in Delaware, founded 1988–1995	Incorporated in Delaware on April 15, 1993	
Founder changed roles; new CEO installed at start of Q3 2007–2008	Igor Khandros became Executive Chairman, Mario Ruscev became CEO effective Q3 2008	
Revenue dependence: 3 customers, 27%–74% in one year	2006: three major customers contributed 47.3% to revenue	
Revenue dependence: 4 customers, 55%–89% in another year	2004: 64.8%; 2005: 72.8% (four major customers)	
Former employee filed class action, certified class, $1.2 – 1.9 \mathrm{M}$	Class action filed in 2013, certified in 2016, settled for \$1.5M in 2017	
Publicly traded, NASDAQ: FORM	Yes, trades on NASDAQ since IPO	

Conclusion

All elements in your question align directly with FormFactor, Inc.'s documented corporate and financial history. The company's foundation and incorporation date, the timing and nature of leadership transitions, the high degree of customer concentration reflected in its public financial reports, and the details of the class action lawsuit—all match the parameters given in your query.

Therefore, the answer is FormFactor, Inc.

Figure 9: The answer of the case

Additional Context FormFactor has grown since the mid-2000s into a leading supplier of precision wafer probe cards and metrology solutions for the global semiconductor industry. Its business model historically involved intense customer concentration due to the highly specialized nature of the market, where only a handful of companies purchase high-end testing equipment. Leadership continuity and transitions, especially the founder moving into an executive chairmanship while promoting a long-term operating executive to CEO, are notable features highlighted in their governance documentation. The class action lawsuit, while relatively modest in size compared to some corporate settlements, demonstrates FormFactor's exposure to labor law risk and its commitment to settling disputes rather than prolonged litigation. If you require further details or specific document excerpts for any aspect above, please let me know. Figure 10: The answer of the case