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Abstract

State-of-the-art neural network (NN) verifiers demonstrate that applying the branch-
and-bound (BaB) procedure with fast bounding techniques plays a key role in
tackling many challenging verification properties. In this work, we introduce the
linear constraint-driven clipping framework, a class of scalable and efficient meth-
ods designed to enhance the efficacy of NN verifiers. Under this framework, we
develop two novel algorithms that efficiently utilize linear constraints to 1) reduce
portions of the input space that are either verified or irrelevant to a subproblem
in the context of branch-and-bound, and 2) directly improve intermediate bounds
throughout the network. The process novelly leverages linear constraints that often
arise from bound propagation methods and is general enough to also incorporate
constraints from other sources. It efficiently handles linear constraints using a
specialized GPU procedure that can scale to large neural networks without the use
of expensive external solvers. Our verification procedure, Clip-and-Verify, consis-
tently tightens bounds across multiple benchmarks and can significantly reduce the
number of subproblems handled during BaB. We show that our clipping algorithms
can be integrated with BaB-based verifiers such as «,3-CROWN, utilizing either
the split constraints in activation-space BaB or the output constraints that denote
the unverified input space. We demonstrate the effectiveness of our procedure on
a broad range of benchmarks where, in some instances, we witness a 96% reduc-
tion in the number of subproblems during branch-and-bound, and also achieve
state-of-the-art verified accuracy across multiple benchmarks. Clip-and-Verify is
part of the |, 5-CROWN verifier, the VNN-COMP 2025 winner. Code available at
https://github.com/Verified-Intelligence/Clip_and_Verify.

1 Introduction

The neural network (NN) verification problem is imperative in mission-critical applications [70, 63,
58L 116475, [72] where formally proving properties such as safety and robustness over a specified input
domain is essential. Recent approaches make neural network verification more tractable by relaxing
the original non-convex problem into convex formulations that are amenable to linear programming
(LP) [25}168]], semidefinite programming (SDP) [[12} 26} 50, 40l [18} [19], and bound propagation-
based solvers [[77} 29, 155! 167, 241166, 164]]. These convex relaxations can be further strengthened by
tightening single-neuron relaxations through convex geometric analysis [55], constructing convex-
hull approximations to capture multi-input dependencies [48], and introducing cutting planes that
encode inter-neuron dependencies [76,/9]]. To handle properties that cannot be certified by a single
relaxation, state-of-the-art verifiers couple bound propagation methods with the branch-and-bound
(BaB) paradigm [14, 166} 53| [13]] as this technique can be efficiently parallelized and scaled on
GPUs. Linear bound propagation methods such as CROWN [77] recursively compute bounds on the
activations of each layer, referred to as intermediate bounds, which serve as critical building blocks
for determining the tightness of the overall relaxation and for guiding the BaB search.
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While BaB and cutting-plane techniques can further refine the relaxation by incorporating additional
constraints at the final layer, they cannot directly and efficiently improve the intermediate bounds
themselves. In BaB, where the number of subproblems grows exponentially, loose intermediate
bounds weaken the relaxation, resulting in deeper branching and longer verification times. Although
algorithms such as 3-CROWN [66] theoretically support optimizing bounds at intermediate layers,
doing so in practice is prohibitively expensive as the number of hidden neurons typically outnumber
the output neurons used for property verification by several orders of magnitude. Consequently,
updating bounds for all intermediate layers introduces significant computational overhead that far
outweigh the gains brought from their tighter convex relaxations. As a result, existing implementations
fix the global intermediate bounds computed at initialization (e.g., via a-CROWN [74]) and focus
their optimization efforts solely at the final layer. While this design choice preserves scalability, it
limits the ability to tighten the relaxation throughout the network, motivating methods that can refine
intermediate bounds both effectively and efficiently.

To this end, we introduce Clip-and-Verify, a verification pipeline designed to enhance NN verifiers
by opportunistically refining bounds at any layer with minimal computational overhead. Our
core insight is that the bounding planes generated by linear bound propagation at all layers naturally
align with our pipeline, enabling us to exploit their geometry to eliminate infeasible regions of
the input domain and prune redundant subproblems early in verification. We formalize the task of
tightening any layer’s bounds as the objective of our linear constraint-driven clipping framework,
and we propose two novel algorithms: complete clipping, which directly optimizes neurons’ bounds
via a specialized coordinate ascent procedure, and relaxed clipping, which refines the input domain
to enhance the intermediate relaxations and consequently improves the NN’s bounds. An intuitive
illustration of this refinement is given in Figure[I] and our main contributions are as follows:

* We propose two specialized GPU algorithms within our novel linear constraint-driven clipping
framework for tightening bounds at any layer, preserving the scalability of state-of-the-art NN
verifiers without relying on external solvers. Relaxed clipping optimizes the input domain bounds
as a proxy, offering good improvements with little costs, while complete clipping employs a
customized coordinate ascent solver to directly refine the bounds at every layer of the NN.

We show that linear bound propagation methods produce linear constraints that can be obtained
“for free” during both input and activation BaB procedures. By leveraging these cheaply available
constraints and integrating our two efficient clipping algorithms, we introduce Clip-and- Verify, a
verification pipeline that tightens the all neurons bounds with minimal computational overhead.

* Across a large number of benchmarks from the Verification of Neural Networks Competition
(VNN-COMP) [[11}10] and existing literature, we demonstrate that our Clip-and-Verify framework
is capable of reducing the number of BaB subproblems by as much as 96% and consistently
verifying more properties on benchmarks from the Verification of Neural Networks Competition.

2 Preliminaries

The NN Verification Problem. Given some input « belonging to the set X, and a feed-forward
network f(-) with general activation functions, the goal of NN verification can be formulated as
verifying f(x) > 0 for all inputs in X. One manner of verifying this property involves solving
mingeyx f(x), which is challenging due to the non-convexity of the NN and is generally NP-complete
[35]. On the other hand, convex-relaxation algorithms compute a sound, approximate lower bound,
f (), to the network’s true minimum such that when f () > 0, the property is sufficiently verified,
otherwise the problem is unknown without further refinement or falsification.

Bound Propagation. Linear bound propagation methods [56} (55} 64 5 [77] approximate neuron
bounds layer by layer by relaxing the nonlinearities of activation functions, making these techniques
a fast and popular approach for NN verification. For an L-layered, feedforward network, the bounds
for the j™ neuron at the 5™ layer may be expressed as:
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When X is an £ box (i.e. {x | || — &| oo < €}), we may “concretize” the lower and upper bounds
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Once concretized, the post-activation neuron, 2 jl , may be bounded (e.g. via Planet relaxation [25] for
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Figure 1: @) Linear bound propagation produces linear bounds on all neurons w.r.t. the input. These
linear bounds are later used as linearly relaxed constraints. In figure (a), the blue and the red lines are
used as the linearly relaxed boundary of constraint zo < 0 and y; < 0. Our goal is to further tighten
the lower bound of z; via these constraints; (b) Linear constraints (e.g. split constraint zo < 0 and
output constraint y; < 0) can be applied to shrink the input region and provide tighter bounds. In
Relaxed Clipping, the feasible region is relaxed to its tightest covering box. In complete clipping, the
infeasible region is completely cropped off, leaving the exact feasible region to improve bounds on.
Both two clipping methods improve the bound to z5'P7*?, but due to the relaxation nature, Relaxed

Clipping yields a looser z¢"""P*? A detailed numerical example is given in Appendix

ReLU). The lower/upper bounding planes, AW /Z(i) and c(¥) / €@, are produced via backpropagation,
and their definitions are given in Appendix |Al The lower bound at the final layer, 2z (L) is used to
determine if the problem is verified.

Branch-and-Bound. The BaB paradigm [14}166,53761[79,121}165,125,/45]] systematically partitions
the verification problem into smaller subproblems, X = X; U &5, enabling tighter bounds on each
subdomain. BaB can split upon the input space (e.g. axis-aligned constraints) or the activation
space (e.g. split activation neurons). See Appendix [A.T]for the formal definition and complexity
implications. The exponential growth of subdomains can lead to high computational cost but can be
mitigated by verifying domains early and often, a direct consequence of Clip-and-Verify.

3 Enhancing Neural Network Verification with Clip-and-Verify

3.1 Motivation and Overview

BaB-based verifiers manage complexity by partitioning the input or activation space into tractable
subproblems. Within each branch, linear relaxations provide bounds on the network’s neurons which
can guide branching decisions and verify properties. Crucially, the constraints introduced at each
BaB split implicitly define a tighter feasible input domain and offer opportunities to refine the bounds
at any layer. As shown in Fig. linear constraints can shrink an ¢.,,-norm ball during robustness
verification, yielding tighter intermediate bounds and enabling more effective search-space pruning.

In large NN, full linear bound propagation is often limited to an initial pass for efficiency. Alternative
methods like using LPs to update intermediate bounds [S1] or full re-propagation after each split also
prove too costly. Such overhead restricts frequent bound updates in deep NNs or extensive branching.

To fully exploit these opportunities, we propose Clip-and-Verify, a pipeline which tightens the input
box and re-concretizes intermediate bounds at each BaB node using linear constraints (e.g. activation
split and final layer bound), without running a full pass. It contains two algorithms: Complete
Clipping, which performs a fast coordinate-wise dual search with sorted breakpoints per constraint
to obtain near-LP tightening at a fraction of the cost, and Relaxed Clipping, which performs per-
constraint exact tightening for axis-aligned boxes by solving the one-dimensional dual in closed form
and then re-concretizing cached linear constraints over the shrunk box.

3.2 Complete Clipping: Optimizing Intermediate Bounds Directly via Linear Constraints

Exact Bound Refinement with a Single Constraint via Optimized Duality. Suppose we wish to
improve the lower bound of a linear function a ' « + ¢ over an input domain X, given a new linear



constraint g "« + h < 0. The primal optimization problem is:
L*=min{a'z+c:g'x+h<0} 2)
reX

Instead of directly solving this potentially high-dimensional LP, we formulate its Lagrangian dual.
The key advantage and insight is that, for a fixed dual variable 5 € R, the inner minimization over
x can be solved analytically for box domains, transforming the problem into a simpler optimization
over a single dual variable. This leads to the following theorem:

Theorem 3.1 (Exact Bound Refinement under a Single Linear Constraint). Let a € R"”, ¢ € R,
g € R™, h € R, and the input domainbe X = {x | & — € < & < & + €}. The optimal value L* of
the constrained minimization problem ({2)) is given by the solution to the dual problem:

L 7£%x(a+ﬂg :c—gzl|a+ﬂg) jl€;j +c+ Bh 3)

Dual Objective D((3)

D(B) in (3) is concave and piecewise-linear in 8 € R. Its maximum L* and the optimal 3* can be
determined exactly and efficiently by identifying its breakpoints (values of 3 where (a + 8g); =0
for some j € [n]) and analyzing the super-gradients within the resulting linear segments.

For proof, see Appendix Theorem [3.1] converts a potentially expensive n-dimensional LP into
a 1D concave maximization problem (D(()) that can be solved without iterative gradient methods.
The process of finding breakpoints and the optimal segment (detailed below and in Algorithm [I] for
the multi-constraint case) is highly amenable to efficient computation, making it suitable for refining
bounds across many neurons and subdomains in parallel. An analogous theorem holds for tightening
the upper bound by solving maxgzex{a'x +c|g'z+h <0}.

Before optlmlzlng Eq. (3). infeasibility can be detected a priori: the problem is infeasible iff
g'z+h— Z 1 lgilei > 0. Such a scenario arises when the property being verified imposes
constraints unsatlsﬁable within the current input domain X (e.g., contradictory ReLU assignments),
and may be considered verified without further refinement.

Note that our primal optimization problem is mathematically equivalent to a continuous knapsack
problem which can be obtained via a change of variables as detailed in Appendix[B.3] The breakpoints
B; = —a;/g; in our dual formulation are identical to the efficiency ratios r;/s; used in the standard
greedy knapsack algorithm. Thus, our dual-based solver and the greedy knapsack algorithm are
equivalent, both finding the provably optimal solution with O(nlogn) complexity.

Coordinate Ascent for Multiple Constraints When multiple linear constraints Gx + h < 0
(where G € R™*™ h € R™) are available, the dual problem involves optimizing multiple Lagrange
multipliers 3 € R’}:

* T T
L 7ﬁrré%x(a+ﬁ G)" ]Zl|a+ﬁ G)jlej +c+B"h (4)

The single constraint problem (3) is easy to solve using Theorem [3.1} thus we can use coordinate
ascent to solve (). Algorithm [I] details a single pass of this coordinate ascent procedure. This
iterative approach optimizes one dual variable (3 at a time, keeping others fixed. Each step thus
reduces to solving the 1D problem described in Theorem (with a replaced by a + Zp 2k BpG
and g replaced by G, .). Since the dual objective remains concave and piecewise-linear along
each coordinate 3, we can efficiently exploit the breakpoint structure for each update. An order
dependency is discussed in Appendix [B.5] Algorithm[I]is significantly more efficient and scalable
than using general-purpose LP solvers, even when those solvers are used as fast heuristics to get
a bound rather than converge to optimal.We conducted a detailed comparison in Appendix
integrating a state-of-the-art LP solver (Gurobi) into our BaB framework. The results show that even
when running dual simplex with 10-iteration limit, the LP solver was over 880 x slower than our
GPU-parallelized coordinate ascent (0.0028s vs. 2.47s per round) while achieving comparable bound
accuracy (0.00085 vs 0.0007 mean error).



Algorithm 1 Coordinate Ascent with Multiple Constraints

Require: Objective a' x + c: a € R", ¢ € R; Constraints Gz + h < 0: G € R™*", h € R™.
1: ﬂ(—[ﬁO,...,O]Ti
2E e T e T2

3: for constraint k in 1m] do

g —(a+B7G)/G,

I + argsort(q)

g < ‘Gk‘ ©e

Gsorted < g1 )

g ¢ = 51 (gsonal ). 5 € []
g g — g

10: Vg« gt +g) + G| &+ hy

11:  i* <« min{i € [n]: Vg, <0}

12: j* — Ii*

13: Bk + max{q;~, 0}

14: I« —|la+B7G|, e+ (a+B"G)z+B h+c
Ensure: [*

R A A

3.3 Relaxed Clipping: Optimizing Intermediate Bounds Indirectly via Input Refinement

Although the coordinate ascent is significantly efficient compared to LP solvers, it is still computa-
tionally expensive when there are various subproblems with many unstable neurons and multiple
constraints. To address this issue, we propose a more efficient Relaxed Clipping algorithm, which
shrinks the input domain by leveraging linear constraints (e.g., from final-layer outputs or activation
branchings) to shrink axis-aligned portions of the input. By adopting a box input domain as a proxy,
we avoid repeatedly solving linear programs for each intermediate-layer neuron, and can solve the
resulting optimization problem efficiently via the dual norm without relying on external solvers. The
remaining task is to determine the clipped box X’ C X’ that best respects the constraints.

Formulating Relaxed Clipping for a Hyper-Rectangle. We assume a hyper-rectangular input

region and a set of m linear constraints Az + ¢ < 0, with A € R"™*™ and ¢ € R™. To refine the

lower and upper bounds of the input along each input dimension i € [n], we solve:

= i i A < 5 71' = i A < . 5
:rcrgg{:c | Az + ¢ <0} T glea;({:n | Az + ¢ <0} 5)
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These refined bounds, z; and Z;, clip the original domain X to reflect only the portion that satisfies
all the linear constraints. We derive a simple closed-form solution when there is only one linear
inequality, a " + ¢ < 0, foregoing the need to solve (5] via LP solvers or gradient-based methods.
Theorem 3.2 (Relaxed clipping under a single constraint). Let x € X and a'x + c <0 be the sole
constraint. For brevity, denote the closed-form solution as «\"") = (— > izilajzi—lajlejt—c)/a
Then, for each coordinate i, the new upper (or lower) bound is updated as follows:

EEMW) = min {m(iclip)7fi} l'fai >0
L(.”ew) = max {wiﬁli”),gi} ifa; <0
no change otherwise

Appendix gives a proof showing that, for a single linear constraint @'« + ¢ < 0, we can clip
the box X to a new box X’ in one pass using the closed-form updates in Theorem 3.2} without any
external solvers. The resulting box is the tightest axis-aligned over-approximation of the feasible
set ¥ N{zx:a'xz+c<0} C X C X,anditis component-wise tight: no coordinate bound of
X' can be further refined while remaining a box that still contains the feasible set. The computation
costs only O(n) arithmetic operations. For example, re-propagating bounds for a network with 3
intermediate layers (4096, 2048, and 100 neurons respectively) and containing 800-1600 unstable
neurons can take 10s per subdomain, versus 0.3s when re-concretizing the intermediate bounds.

This Relaxed Clipping step complements Complete Clipping. Whereas Complete Clipping solves
problem (3)) for each neuron, Relaxed Clipping tightens the shared input box X’ once, and then



all intermediate bounds are cheaply re-concretized over this tighter box, yielding network-wide
bound improvements from a single cheap update. By keeping the shared domain as a box, we avoid
polyhedral operations and repeated per-neuron optimizations, substantially improving scalability.

Clipping for Multiple Constraints. When several linear constraints are present, we apply Theo-
rem[3.2]in parallel to each constraint in Az + ¢ < 0. Algorithm 2]outlines this procedure: Given the
original box bounds, x and T, we compute its center and radius, & and €. Then, for each constraint
k and dimension 4, we apply Theorem [3.2]independently and in parallel to refine x; and ;. After
processing all constraints, the resulting clipped bounds are aggregated, and the tightest bounds
are selected to form the final clipped domain. This formulation preserves scalability and supports
parallelization. We present a sequential variation in Appendix [C.2] that foregoes parallelization
for further refinement in which the box center and radius are recalculated after each constraint is
applied. Nonetheless, we emphasize our current formulation as a core strength of domain clipping,
maintaining both efficiency and effectiveness. Similar to direct clipping, Algorithm 2] may identify
infeasibility by returning clipped bounds where z is larger than T along some dimension(s).

Algorithm 2 Linear Constraint-Driven Relaxed Clipping (Parallel)

Require: z : Input lower bounds; Z : Input upper bounds; Az < c : Constraints.

10 &« 5%’ € — E%Q’ Q(clipped) “ clipped) =
2: for each constraint k € {1,...,rows(A)} do

3:  for each input dimension ¢ € {1,...,cols(A)} do

4: acgnew) — — 2 jti Ak ij+?y¢1z | Ak,jle;—ck D
5: if A;; > 0 then "

6: 5§°11pped) « min (Egchpped)7 :aneW))

7 se A

8: m(cl1pped) . max(zichpped)’ mgnew))

x, )
Ensure: Q(clipped)’ f(cllpped)

We have discussed how to use the linear constraints to tighten bounds, the next step is to find these
linear constraints. We can use output constraints or activation split constraints during BaB. The next
two sections we will discuss how to find the constraints and incorporate our algorithm into BaB.

3.4 Integrating Clipping into Input BaB Verification

In input BaB, the verifier partitions the network’s input region (often an /,-box) along axis-aligned
splits, generating multiple subdomains {X; }%_, . Each subdomain is then fed into a bound-propagation
verifier (e.g., CROWN) to obtain linear hyper-planes that are used to lower-bound the final-layer
output with respect to the input. Existing verifiers typically use these final-layer hyperplanes only to
compute the bounds and decide whether the entire subdomain can be immediately verified or must
be further subdivided. It may be the case that the hyperplanes used for computing the final layer
bounds are tight enough to verify a subset of the input, but not tight enough to verify the input in
its entirety (see Fig. |4|in Appendix). The key insight is that we can remove infeasible parts in a
subproblem via linear constraints and then consider a partially verified problem in the next iteration
of BaB. These already calculated hyperplanes can then be effectively re-used as constraints, making
them appropriate for our clipping paradigms.

Using Final-Layer Bounds for Clipping. After a subdomain has been bounded, the final-layer’s
bounding plane(s) are retained after concretization if the subdomain cannot be fully verified. For
the verification objective, f(x) > 0, it suffices to verify the input region, {x | alTg 4 L) > 0}.
In this case, the bounding plane acts as a constraint that separates this verified subset from the
complimentary subset of the input domain that requires further analysis, i.e., { | Q(L)T$+Q(L ) < 0}.
For verification problems with multiple output conditions in the form of fi(z) > 0 A fa(x) >
OA---A fr(x) > 0, we can have multiple linear bounds , one for each clause, and all of them
can be used. Rather than treating each property separately, we jointly collect all relevant final-layer
constraints and apply them using Algorithms|l|and [2| accelerating batch verification on a GPU.



Modifications to the Standard Input BaB Procedure. Algorithm 4{in Appendix outlines
our modification to the standard input BaB loop, highlighted in brown. Our first key modification
after bounding a batch of domains, is that we perform relaxed clipping after we split the domains.
This reordering allows two child domains to inherit their parent’s constraint after axis-aligned split.
The inheritance enables a more tailored domain clipping procedure for each child, which is often
more effective than clipping the parent domain directly. The resulting subdomains are reinserted
into the domain list along with their associated constraints. In the subsequent bounding step, we
perform complete clipping for the unstable neurons in each layer , where constraints are leveraged to
directly to tighten the lower/upper bound objectives. When the number of unstable neurons is large,
we heuristically select a subset of critical neurons for Complete Clipping; the selection heuristics are
detailed in Appendix Neurons not selected for complete clipping still benefit indirectly, as their
concretized bounds are refined due to the clipped domain inherited from the prior BaB iteration.

3.5 Integrating Clipping into Activation BaB Verification

We now demonstrate how our clipping framework naturally extends to branch-and-bound on the
activation space. Our method is activation-agnostic, as it operates on general linear constraints
derived from any activation split. For a given neuron z](l), BaB can introduce splits of the form
z]@ > s or zj(-l) < s, where s is a split point (s = 0 for a ReLU split)[53]]. This inequality
can be relaxed by bound propagation algorithms and expressed as a linear constraint on the input,
g"x + h < 0, which is directly usable by our algorithms. This flexibility allows our framework
to apply to networks with various activation functions, as demonstrated by our experiments on
Vision Transformer models in Section[d] By assigning certain unstable neurons to either regime, we
obtain linear relaxation split constraints that can further optimize the intermediate bounds, boosting
verification efficacy. A key insight is that many constraints from multiple activation assignments
can accumulate, potentially tightening intermediate bounds significantly.

Using Linear Constraints in Activation Space for Clipping. We prioritize neurons whose convex
envelopes incur the largest relaxation error; for ReLU this typically coincides with “unstable” units
(Appendix [A.T). At any BaB node with input box A, linear bound propagation yields, for each
neuron (4, 7),

(T (1) ~ @) AW &)
Aj x+c <z (m)gAj x+c;’ VeedX. 6)
Then we can validate of activation-space linear constraints. If a branch assigns z§i) > s, then any
feasible  must satisfy
A Tzl >, %)

) ; — ()T G . i ) ..
since z](-z) (x) < AE.Z) T+ cg-z). Symmetrically, for z](-z) < s we obtain the necessary condition
A§i)Tm + g@ < s. Thus the activation-branching provide sound linear constraints in the input space

that encode the assigned activation regime.

We can cache and reuse the initialized activation branching linear constraints. When bound initializa-
tion is executed at a node, we cache (A, ¢) and (A, €) for all “unstable” neurons, and further use the
constraints based on the branching domains during BaB to do (i) Relaxed Clipping: treat (/) (and its
lower-bound analogue) as box-consistency constraints and update X; — X/ in closed form following
Algorithm. . (ii) Complete Clipping: on a selected set C(P) of neurons, we directly tighten their
per-neuron affine bounds using the same constraints using Algorithm. |1, Neurons not in C(*) keep
their original bounds, but still tighten indirectly when re-concretized over X;.

Here, C(P) is the set of “critical neurons” that are heuristically expected to benefit most from bound
refinement. While one could apply our method to every neuron in the network, this may be challenging
for networks with high-dimensional hidden layers. To address this, we propose a top-k objective
selection heuristic that adaptively selects neurons based on the BaBSR intercept score [[13]. This
heuristic strategically prioritizes neurons whose refinement is most likely to tighten the overall
verification bounds. A detailed justification for this choice, including an ablation study comparing
BaBSR to other common heuristics, is provided in Appendix Neurons not selected by this
heuristic retain their standard bounds as computed by CROWN but may still benefit indirectly from
relaxed clipping. Since relaxed clipping is computationally lightweight and highly scalable, it should
always be applied to refine the input domain as effectively as possible.
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Table 1: Comparison of different toolkits on a few representative VNN-COMP benchmarks with input BaB.
“-” indicates that the benchmark was not supported. Time is calculated as the total time taken to verify verified
instances. The number of BaB subproblems by «, 3~-CROWN is set as the baseline, and the reduction rate is
calculated from this number. Complete clipping significantly reduces the number of subproblems during BaB,
while relaxed clipping is sometimes faster overall. Reordering generally helps reduce time and subproblems.

1lsnc acasxu nn4sys
Method ‘ time(s) subproblems # verified ‘ time(s) subproblems # verified ‘ time(s) subproblems # verified

nnenum™ [5J7 - - - 213.41 - 139 167.55 - 22
Marabout [36171] - - - 1342.03 - 134 151.31 - 24
PyRAT} [30 90.40 - 15 1484.39 - 137 704.55 - 53

Never2i [30] - - - 1368.78 - 121 - - -

NNVi[62] - - - 2631.49 70 - - -

Corai[1] - - - 1566.80 - 134 22.88 - 2

NeuralSAT[22] - - - 1316.85 - 138
a,B-CROWN{ 115.27 142,293,985 40 280.51 7,154,387 138 1580.66 4,440,252 194
Clip-and-Verify (Ours)

Relaxed clipping 99.12  92,402,227+35:1% 40 15137 3,124,100+56-3% 139 119389  2,691,750+39-4% 194
Relaxed + Reorder 9842  66,412,652+53:3% 40 15025  2,557,7154642% 139 1166.08  2,300,894+48-2% 194
Complete clipping 84.30 5,334,421+96:3% 40 168.57  1,533,068+73:6% 139 2846.06  2,141,288151:8% 194

Table 2: Performance of Clip-and-Verify on challenging control system verification tasks. Complete
clipping is essential for verifying the most difficult properties. The timeout is 3 days (259,200s).

cartpole Quadrotor-2D Quad-2D-Large
Method ‘ time(s) subproblems time(s) subproblems time(s) subproblems
«,3-CROWN (No clipping) 1602 54,260,909 timeout timeout
. . p . . 9 .
Clip-and-Verify (Relaxed clipping) 484 16,453,971 169.7% 209,504 2,630,043,050 timeout
. . . 5.59 5
Clip-and-Verify (Complete clipping) 142 2,438,359+95:5% 78,818 1,112,917,436+°7- 7% 104,614  1,472,433,971
24 200
—— op-CROWN —— a,p-CROWN T TBCROWN
20| —— Clip-and-Verify (Relaxed) 161 _ Clip-and-Verify (Relaxed) —— GCP-CROWN + mip cuts
Clip-and-Verify (Relaxed + Reorder) Clip-and-Verify (Relaxed + Reorder) 150 —— BICCOS
161 —— Clip-and-Verify (Complete) 12 Clip-and-Verify (Complete) Clip-and-Verify
H] g o Clip-and-Verify + mip cuts
g g £100+ —— Clip-and-Verify + BICCOS
s ---- Time Limit (200)
4 50+
4 (3«-4:/
[ R U S N S S [ S, o
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Figure 2: Representative benchmarks visualization. (a) and (b) are input BaB benchmarks with
timeout 120s and 100s respectively, (c) and (d) represent medium-size ReLU nets, whereas (e) and
(f) are substantially larger. These latter 4 benchmarks utilize ReLLU splitting, for which we use
complete clipping. Despite their differences in scale, our Clip-and-Verify algorithm demonstrates
strong performance on both. Please refer to appendix @ for a detailed interpretation.

Modifications to the Standard Activation BaB Procedure. Our activation space BaB Algorithm 3]
shown in Appendix [C.4] iteratively uses activation split constraints to optimize the intermediate
bounds via Complete Clipping (Theorem [3.T)) . This strategy fully exploits accumulated constraints
through complete clipping on intermediate bounds directly, bypassing costly LP solves.

4 Experiments

We evaluate the effectiveness of Clip-and-Verify on several benchmarks from VNN-COMP 2021-
2024 (16,149,111, 110]. We first demonstrate its benefits on three benchmarks and three hard NN control
system problems that are commonly solved with the input BaB procedure, then evaluate our approach
on challenging activation space BaB benchmarks in VNN-COMPs, as well as SDP-FO benchmarks



Table 3: Comparison of different toolkits and Clip-and-Verify on VNN-COMP benchmarks with activation
split BaB. Results of -CROWN and BICCOS were from the same hardware of our experiments for a direct
comparison; other results are from VNN-COMP reports. “-” indicates the benchmark was not supported.

oval22 cifar10-resnet cifar100-2024 tinyimagenet-2024
Method | time(s) #verified | time(s) # verified | time(s)  # verified | time(s) # verified
nnenum™ [31 7] 630.06 3 - - - - - -
ERAN™ [47]146] 233.84 6 24,74 43 - - - -
OVAL™* [211120] 393.14 11 - - - - - -
Venus?2 [94139] 386.71 17 - - - - - -
VeriNett [321133]) 73.65 17 8.11 48 - - - -
MN-BaB1 [27] 137.13 19 } } B, N N .
Marabouti [36L[71] 5.33 19 40.42 39 - 0 - 0
PyRATY [30] - - - - 42.38 68 55.64 49
B-CROWN [771166] 29.39 20 9.17 60 8.15 119 8.65 135
BICCOS [764179] 31.72 25 16.73 63 8.75 121 9.73 138
Clip-and-Verify with 5-CROWN 28.15 22 6.06 63 6.59 126 9.48 140
Clip-and-Verify with BICCOS 46.48 27 11.81 64 8.17 131 10.48 144
Upper Bound 29 72 168 157

* Results from VNN-COMP 2021 report [6]]. T from VNN-COMP 2022 report [49] 1 from VNN-COMP 2024 report [10]

Table 4: Verified accuracy (Var.%), avg. per-example verification time (s) on VNN-COMP benchmarks and
other commonly used benchmarks. The average time is calculated on verified images only. Clip-and-Verity
consistently outperforms all baselines when combined with state-of-the-art BaB verifiers such as BICCOS [/9]

Dataset Model B-CROWN GCP-CROWN BICCOS Clip-and-Verify | Clip-and-Verify | Clip-and-Verify | Upper
with MIP cuts with 3-CROWN with MIP cuts with BICCOS bound

e=0.3and € = 2/255 Ver.% Time (s) | Ver.% Time(s) | Ver.% Time(s) | Ver.% Time(s) | Ver.% Time(s) | Ver.% Time(s)
MNIST CNN-A-Adv 71.0 4.28 71.5 6.64 76.0 6.91 74.0 3.33 735 5.15 76 6.39 76.5
CNN-A-Adv 455 526 48.5 481 48.5 391 455 1.35 48.5 3.59 48.5 3.08 50.0
CNN-A-Adv-4 46.5 1.25 48.5 2.64 48.5 1.55 46.5 0.62 48.5 2.26 48.5 1.31 49.5
CIFAR CNN—AfN.Iix 42.0 4.00 475 10.49 48.0 9.00 43.0 4.24 475 10.53 48.0 7.45 53.0
CNN-A-Mix-4 51.0 1.05 55.0 5.94 56.0 9.22 51.0 0.84 55.0 4.44 56.5 5.12 575
CNN-B-Adv 47.0 8.25 49.5 12.16 51.0 10.79 49 7.54 51.5 11.68 51.5 7.68 65.0
CNN-B-Adv-4 55.0 291 58.5 7.01 59.5 4.7 56.5 0.82 60.0 6.67 60.5 5.55 63.5
cifar10-resnet 8333 9.17 875 17.99 875 16.73 | 86.11 6.06 | 88.89 16.73 | 88.89 11.80 | 100.0
oval22 66.66 29.39 | 83.33 63.53 | 83.33 31.72 | 73.33 28.15 | 90.00 45.52 | 90.00 46.48 | 96.67
cifar100-2024 59.5 8.15 - 60.5 8.75 63.0 6.59 - 65.5 8.17 84.0
tinyimagenet-2024 67.5 8.65 - - 69.0 9.73 70.0 9.48 - - 72.0 10.48 78.5
vision-transformer 2024 [53 59.0 22.04 - - - 61.0 10.81 - - - 100.0

introduced in previous studies [19,66]]. Fig.[2]shows the overview of results of selected benchmarks.
All results visualization and details about the configuration see Appendix [D.T]

Verification Results on Input Split Benchmarks and Hard NN Control Systems. For evaluation,
we focus on the following benchmarks from VNN-COMP 23 and VNN-COMP 24: acasxu, 1snc,
and nn4sys. we have considered all input benchmarks and these three are the mostly challenging ones
when solved using input BaB. We compare our approach to other baseline tools as shown in Table [T}
Overall, Clip-and-Verify reduces the number of branches by over 50% and accelerating the verification
process. For 1snc, we reduced the number of domains by 96%. We further tested our method on
three challenging verification tasks from a recent study on provably stable neural network control
systems [75| 41, 42]]: cartpole, Quadrotor-2D, and Quadrotor-2D-Larger-R0OA. These tasks
require certifying Lyapunov-based stability over high-volume state domains, and can not be solved
by existing verifiers. The challenge of the verification problem is that we need to verify inside the
intersection of a large box and a level set of its Lyapunov function. Detailed settings see Appendix[D.1]
These instances therefore test whether a verifier can reason about Lyapunov decrease and boundary
non-escape over large, physically meaningful state ranges, rather than over small adversarial balls.
While general-purpose robustness verifiers are not designed for such volumes, our method targets
exactly this regime. As shown in Table [2] baseline methods without clipping fail to solve these
problems within the time limit. Both relaxed and complete clipping enable verification, with complete
clipping demonstrating superior performance by drastically reducing both the number of visited BaB
subproblems and the total runtime, turning previously intractable problems into verifiable ones.

Verification Results on General Activation Split Benchmarks Shown in Table 3} we further
compare the proposed methods against a wide range of existing neural network verification toolk-
its on six challenging VNN-COMP benchmarks: oval22, cifar10-resnet, cifar100-2024,
tinyimagenet-2024, and vit-2024 Each method is evaluated in terms of average runtime (sec-
onds) and the number of verified properties (# verified). A dash (-) denotes that the corresponding tool



was not applicable or did not support that particular benchmark. Clip-and-Verify with BICCOS attains
state-of-the-art verification coverage on the evaluated VNN-COMP benchmarks, pushing closer to
the theoretical upper bound in terms of the number of properties verified. When combined with
BICCOS, whose tight bounding routines complement Clip-and-Verify’s efficient splitting, coverage
reaches to 131 and 144, underscoring the method’s broad applicability and scalability. Besides of
the ReLU nets, we further evaluated our method on a Vision Transformer (ViT) model [53]], which
contains non-ReL U layers such as Softmax. Verifying such architectures is challenging due to the
complex, non-linear constraints introduced by these operators. The model tested has approximately
76k parameters and an input dimension of 3072. Tables [4] [6] show that Clip-and-Verify significantly
outperforms the baseline, verifying more properties in about half the time and with nearly 45% fewer
subproblems in ViT. This demonstrates the applicability of our framework on general networks.

Ablation Studies. We compare the BaB baseline without clipping, Relaxed Clipping only, and the
full pipeline (Relaxed + Complete) in Table|l} We further vary the comparison of complete clipping
and LP solvers in Section[D.3] and scoring rule for choosing critical neurons (e.g., BaBSR intercept,
envelope gap, bound width) in Complete Clipping in Section[D.4] For each configuration we report
time and visited subproblems under identical branching/timeout settings in Table 4] and Table [6}
detailed breakdowns, per-model trends, and ablation protocols are in Appendix

5 Related Work

Verification becomes easier when we tighten the base relaxations that bound intermediate layers and
contract the input region, so that a subsequent branch-and-bound (BaB) search explores fewer and
easier subproblems. BaB frameworks unify many complete verifiers and show that stronger node
bounds reduce tree size [[14} 13,155,164, [77,15]. Subsequent improvements include faster dual/active-
set solvers and better branching [20} 66, 27]. Our clipping steps make each node strictly easier
(smaller box and tighter intermediate relaxations) without spawning additional subproblems, and
are therefore complementary to any branching heuristic. Our method contracts the box domain
using linear constraints and injects the same constraints to tighten intermediate affine bounds, thus
improving the node-wise base problem before any additional branching is introduced.

For tighter base relaxations, linear-relaxation-based bound propagation (e.g., CROWN [77]] and
DeepPoly [56]) provide fast base bounds. Beyond this, early single-neuron triangle relaxations such
as PLANET [235]] and the convex adversarial polytope/Wong—Kolter line [69] underpin modern propa-
gation methods; symbolic/abstract-interpretation variants (DeepZ [55]/AI2 [29]]/Neurify [64]]/OSIP
[31]]) further improve hidden-layer bounds in practice. Multi-neuron relaxations overcome single-
neuron limits by coupling activations [54} 2| 148.|57]]. Beyond k-ReLU and PRIMA [54} 48]}, tightened
layer-wise convex relaxations [59] and barrier-oriented analyses (e.g., for simplex inputs or active-set
scaling) show how to systematically overcome single-neuron limits. Beyond pure LP, SDP-based
relaxations with linear cuts capture neuron coupling when affordable [} 40} 44, [18]]. Orthogonal to
envelopes, NN-specific cutting planes have been injected directly into bound propagation e.g., general
cutting planes (GCP-CROWN [76]) and conflict-driven cuts (BICCOS [79]) to strengthen node-wise
relaxations before or alongside BaB. Exact formulations (MILP/SMT) and their strengthened variants
remain an important baseline and hybrid component [60, 2| 35 136], though scalability constraints
often shift emphasis toward stronger relaxations and BaB. Recent work also tightens bounds via
optimization-driven rolling-horizon decomposition, effectively performing layerwise optimization-
based bound tightening to improve intermediate bounds [78]. Our Complete Clipping is orthogonal:
instead of inventing new global envelopes, we reuse existing linear constraints produced during
verification to tighten per-neuron affine bounds inside the same bound-propagation framework. On
the other hand, Contract-Simple [7] contracts a zonotope using one output inequality. We generalize
this in a way tailored to bound propagation: Relaxed Clipping applies arbitrary linear constraints
from final-layer bounds or activation branchings to a box proxy with closed-form updates, avoiding
repeated LP solves while yielding globally useful domain reductions reused across all neurons.

6 Conclusion

We proposed Clip-and- Verify, a framework that enhances the Branch-and-Bound paradigm in neural
network verification through our novel linear constraint-driven domain clipping algorithms. An
efficient and light-weight paradigm for tightening intermediate-layer bounds has been a remaining
gap in neural network verification that has finally been addressed by our framework. Limitation and
broader impacts discussed in Appendix [E]
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A Formulations

A.1 Unstable Neurons and Complexity

)

Unstable neurons for General Activations Let zj(Z be the pre-activation of neuron (¢, j) in layer 4

number j with interval bounds [gﬁ-i) , Zy)], and let the component-wise activation be ¢(*)(-). Given
RORC)

(i 0y ; R -

i j& (Ef)) and u; (z) its lower and upper affine bounds, and define the envelope gap (or relaxation

a sound linear relaxation (convex envelope) for the scalar graph of ¢(*) over | , denote by

82 max  (ul(2) — 17(2)). ®)
z€l2{? 79

We call neuron (4, j) stable if 5](»i) = 0 (the relaxation is exact on the interval), and unstable if
5]@ > 0. This definition is activation-agnostic: for piecewise-linear (PWL) activations, stability is
equivalent to [gy) , Eg-i)
ggi) > 0); for smooth nonlinear activations one typically adopts a PWL relaxation, in which case
instability means the interval spans at least two segments (hence a nonzero envelope gap).

] lying inside a single linear piece (e.g., for ReLU it reduces to 25.” < 0or

Complexity. Let U be the number of unstable neurons at a BaB node. Once every unstable neuron
has its activation region (piece) fixed, the network reduces to an affine map over the input box, and
the remaining subproblem is convex. For PWL activations where each unstable neuron has at most
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K admissible piecesE] the number of global activation patterns is bounded by KV. Consequently,
any exact verifier that distinguishes activation pieces (e.g., MILP/SMT encodings with one discrete
choice per unstable neuron, or BaB that branches on activation pieces) faces, in the worst case,

# subproblems € Q(K U) and hence time = Q(Tbound - K U),

where Toung 18 the per-node cost to evaluate/tighten bounds. In particular, for ReLU networks
K = 2, yielding the familiar exponential scaling 2(2); thus any mechanism that reduces U (e.g.,
by stabilizing neurons via tighter pre-activation intervals) produces a multiplicative reduction in
worst-case search, by a factor of K2V when U decreases by AU.

A.2 MIP Formulation and LP & Planet Relaxation

Early approaches pursue exact guarantees for verification through Mixed-Integer Linear Programming
(MILP) [17,143] 23} 128} 161, [73] and Satisfiability Modulo Theories (SMT) [52} 135 [15} 25].

The MIP Formulation The mixed integer programming (MIP) formulation is the root of many
NN verification algorithms. Given the RELU activation function’s piecewise linearity, the model
requires binary encoding variables, or ReLU indicators § only for unstable neurons. We formulate
the optimization problem aiming to minimize the function f(x), subject to a set of constraints that
encapsulate the DNN’s architecture and the perturbation limits around a given input x, as follows:

= mn(ls f(x) st f(x) =20,20 =xex (9a)
700 = Wz 1 b0, e [L] (9b)
7t = {5 : z@ > 0} (%)
IU—{J ul! <o} (9d)
70 = {5 19 <, u ) > 0} (%e)
IOy~ UUZ“ =J (9f)
2> 0,5 €10,ie L 1] 9g)
20 > 205 e1® ie[L -1 (9h)
D < 050 e e D1 o)
0 <20 0169y e 10 ie [L -1 o)
() ¢ (i) _
6,7 €{0,1};5 € IV i € [L 1] (9k)
20 =205 eTt e L -1 9l
2 =0 ez Vel 1] (9m)

To initialize intermediate bounds for each neuron, we replace the original objective f(x) with the

neuron’s pre-activation value z](z) This lets us solve the following bounds for every neuron j in layer

i, withi € [L — 1] and j € J:

@) _ (i) @) _ (i)
L7 =min f;(x), u;” = max f;" (x).

Here, the set 7Y comprises all neurons in layer i, which can be categorized into three groups:
‘active’ (Z1(*), “inactive’ (Z~ (")), and ‘unstable’ (Z(V).

Next, the MIP formulation is initialized with the constraints

(4) (@) (@)
;7 <z7 <wuy;7,

"For ReLU, K = 2 (inactive/active). For HardTanh or ReLU6, K < 3. For smooth activations under an
S-segment relaxation, take K = S.
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across all neurons and layers ¢. These bounds can be computed recursively, propagating from the first
layer up to the ¢-th layer. However, since MIP problems involve integer variables, they are generally
NP-hard, reflecting the computational challenge of this approach.

The LP and Planet relaxation. By relaxing the binary variables in @) to 5§i) €[0,1],5 €1W,ie
[L — 1], we can get the LP relaxation formulation. By replacing the constraints in (91), (9j), (9k) with

A0y, jez®ie L1 (10)

we can eliminate the § variables and get the well-known Planet relaxation formulation [25]. Both of
these two relaxations are solvable in polynomial time to yield lower bounds.

A.3 Formulating Bounding Hyperplanes in Linear Bound Propagation

In a feedforward network, A*) , Z(i) , ¢ and %) must be derived for every linear layer preceding an
activation layer, as well as the final layer of the network. In order to derive the hyperplane coefficients
(A(i) /Z(Z)) and biases (c(¥) /E(i)), at this ¢ layer, all preceding activation layers must have already
had their inputs bounded. The following lemma describes how a ReLU activation layer may be
relaxed which will be useful for defining bounding hyperplanes, AW , Z(z) , ) and e

Lemma A.1. (Relaxation of a ReLU layer in CROWN). Given the lower and upper bounds of z§i71),

denoted as l§i71) and u§i71), respectively, the linear layer proceeding the ReLU activation layer

may be lower-bounded element-wise by the following inequality:
20 — W(i)a(z(i—l)) > w (@ pi-1) ,(i-1) + W(i)b(ifl) (1)

where D=V is a diagonal matrix with shape R™~*"i~1 whose off-diagonal entries are 0, and
on-diagonal entries are defined as:

1, 1Y >0
0 w7 <o
=1 ._ )] 7 Ty i i
3i a(-l 1), l; b <0< ug b and Wj( ) >0 (12)
w' ™ (i-1) (i-1) (i)
W, ljz <0<’Llez andeZ <0

J

and ng_l) is a vector with shape R™i—1 whose elements are defined as:

0, l;iil) > 0or ugifl) <0
pli-b ._ )0, lgl_l) <0< u;l_l) and Wj(z) >0 (13)
=J : O PICES . . .
i b WY <o <ul™V ana w <0

T oG- _,G-1)> 7 5
u; lj

(i—1)

In the above definitions, o; is a parameter in range [0, 1] and may be fixed or optimized as in

[74].
Proof. For the j ReLU at the (i — 1)" layer, it’s result may be bounded as follows:

(@-1)
(i=1) (i-1) (i-1) % (i=1) _ (-1
a; Yz T <o(zy ) S (B G ) (14)
u: AN
J J
The right-hand side holds as this is the Planet-relaxation defined by equation (I0). For the left-hand
side, we first consider when z](-zfl) < 0. For every input in this range, the result of the ReLU
is O’(Zj(i_l)) = 0. ag-i_l)z§i) forms a line for which inputs in this range will always produce a

19



non-positive result when a;ifl) € [0, 1]. For inputs in the range zj(-ifl) > 0, the result of the ReLU

is a(zj(.i_l)) = z§i_1). This result is never exceeded by a§i_1)z§i_l) when ay_l) € [0,1].

When the result, U(z<i_1)), is multiplied by a scalar such as Wj(i), a valid lower-bound of

. . -7 . .
Wj(z)a(zj(-kl)) requires a lower bound on a(z](-zfl)) when Wj(l) > 0, and an upper bound on

a(zj(i_l)) when Wj(i) < 0. Such lower and upper bounds are indeed produced by D(.fj_ Y and Qy_l),
whose definitions are derived from the inequality displayed in equation (I4). This concludes the

proof. O

Lemma suggests a recursive approach to bounding a neural network as the bounds at the i layer
depends on the bounds of the layer preceding it due to the dependence on ly*l) and uy*l). This is

indeed the case, and we may define our hyperplane coefficients as AW = QEHW Q) where

. @ pt-HQt-1)
Q(z,k) — WD Q 5 Z >k (15)
I, 1=k

To collect the remaining terms, we set ¢(?) = 22:2 <Q(i’k)W(k)b(k_l)> + 2221 (b)) To
obtain an upper bound, Lemma(A.T|and its proof may be adjusted accordingly where appearances
of the inequalities W) > 0 and W) < 0 are flipped. In doing so, we may repeat this recursive
@ and €.

Though we have described how a ReLU feedforward network may be bounded, appropriately updating

the definitions of D® and Q(Z) allows feedforward networks with general activation functions (that
act element-wise) to be bounded. Such a general formulation is described in [77] that is similar to the
template described above, and goes into further detail on how this formulation may be extended to
quadratic bound propagation.

process in order to obtain A

A4 Verification Properties Given as Boolean Logical Formulae
f(x) >0, Ve e X (16)

Equation (T6) is referred to as the canonical formulation [14}[13] as it is general enough to encompass
any property involving boolean logical formulas over linear inequalities. To make this idea clear,
consider a neural network whose output dimension is n;, = 3. We may wish to verify that the output
corresponding to the true label, yo, is always greater than all other outputs, y; and y», for every input
in X. Explicitly, we want to verify:

(Yo >y1) A (Yo >1vy2), Vel an

To represent this formula, we may first introduce a new linear layer whose weight matrix is defined
as C, sometimes referred to as a specification matrix:

(13)

1 -1 0
1 0 -1

This specification matrix allows the output neurons to be compared against one another. Applying

this matrix to the output vector of the network, denoted as y := [yo, Y1, y2] | , results in the following
new output:
Yo — Y1
=Cy. 19
[Z’Jo - yQ} y (19

Next, we append a MinPool layer to the network which returns the minimum of these two results.
Now, we may define a new neural network, f’(x), which appends the aforementioned MinPool and
linear layer to f (), resulting in the final output, min{yo — y1, Yo — y=}. It should now be apparent
that if the property described by equation can be verified as true, then the following must hold:

20



iréig(l f(x) > 0. (20)

We may now proceed to produce a lower bound, f'(x), and only until f'(x) > 0, can we formally
state that the network will correctly classify all inputs in X. In the scenario that we instead want
to verify the property (yo > y1 V yo > y2) for all inputs in X', we may simply redefine f’(x) by
replacing the MinPool layer with a MaxPool layer which would return max{yo — y1, Yo — Y2}

Finally, suppose we want to verify that the output corresponding to the true label is greater than all
other outputs with some additional margin m such that (yo > y1 + m Ayp > ya + m),Ve € X
where m > 0 (i.e. the network should always classify the first label with additional relative confidence
defined by m). Then the only modification is to also incorporate a bias vector, ¢ := [—m, —m] T, at
the final linear layer where C' was defined. This bias vector is sometimes referred to as the threshold.
This results in the final output, f'(x) = min{yo — y1 — m, yo — y2 — m}. Hence, equation is
general enough to encompass more complex queries.

B Proofs

B.1 Statement and proof of Lemma [B.1|

We first introduce a preparatory result that establishes a closed-form solution for a linear optimization
problem over a hyper-rectangular feasible set.

Lemma B.1 (Dual Norm Concretization for Hyper-Rectangular Domains). Let € € R™ withe; > 0
Sor alli € [n], and define the hyper-rectangular domain:
X={zxeR":2—e<xz<E+e€}.
For any vector v € R", the following hold:
max v'x=v' &+ |v| e,

xreX

minv' x=v'z — |v|'e,

xeX

where |v| € R’} denotes the component-wise absolute value of v.

Proof. We begin by rewriting the feasible set as
X={xeR":d—e <x<zt+e}={F+eox :xeR", ||z| <1},
where o denotes the Hadamard (component-wise) product. Then, the maximization problem becomes

maxv' €= max v &+ (voe) x

xeX [[2]loo <1
n
—v'd+ Z lvile; = v @+ |v| e,
i=1
where the final equality follows from the definition of the dual norm of the co-norm. The derivation

for the minimization problem follows analogously by replacing the maximization with a minimization,
which flips the sign of |v| "e. Thus, the claim follows. O

B.2 Proof of Theorem 3.1l

Proof. The problem (2) is a linear program over a compact convex set X with an additional linear
constraint. Let feasible set F = {x € X' : g« + h < 0} be the feasible set for .

Case 1: F = (), then by definition, L* = +oco. In this case, it implies that for all x € X', gT:L'—i—h > 0.

Case 2: F is non-empty. Since X’ is compact and F is a closed non-empty subset of X (as it’s the
intersection of X’ with a closed half-space), F is also compact. The objective function a '« + c is
continuous. Therefore, L* is finite and attained. We introduce the Lagrangian for problem (2) by
partially dualizing the constraint g "« + h < 0:

Lx,B)=(a"'z+c)+B(g z+h) forxeX,3>0.
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The primal problem can be written as:

L* = minsup L(x
iy sup (z, B)

To swap the min and sup, we can apply Sion’s Minimax Theorem. Let K = X" (a compact convex
setinR™) and M = {8 € R : 8 > 0} (a closed convex set in R). The function £L(x, 3) has the
following properties: 1) For any fixed 3 € M, L(x, 3) = (a+ 3g) "x + (c+ Bh) is linear in z, and
thus convex and continuous on K. 2) For any fixed x € K, L(x,3) = (g'x +h)3+ (a @ +¢) is
linear in (3, and thus concave and continuous on M. Since these conditions are met, Sion’s Minimax
Theorem states:
i L(xz,B) = in L(zx,
SRS A D) = S )
Therefore,
L* = sup min L(x,
sup iy (z,5)
Since F is non-empty, L* is finite, implying that the supremum is attained (or is the limit if
approached at infinity, but D(3) is continuous), so we can write max instead of sup. Let d() =
minge v L(x, 8).

d(B) = ;DGIE (a'z+c+Bg x+ Bh)
= min ((a + Bg) @) +c+ Bh

The inner minimization is optimizing a linear function (a 4 $g) " x over the hyper-rectangle X'
Using Lemma[B.T|(with v = a + 3g):

min ((a+ fg) @) = (a+ 49) @ — |a+ Bg| e
where |a + Bg| e = Z?‘Zl la; + Bgj|e;. Substituting this into the expression for d(3), we get:

d(B) = (a+Bg) & —|a+ Bg| e+ c+ph

This is exactly the dual objective function D(3) defined in the theorem statement . Thus, we have
established that L* = maxg>o D(5). Then we analyze the properties of the dual objective D(/3):

1. Concavity: The dual function d(3) is always concave, as it is the pointwise minimum of a
family of functions that are affine in 5 (indexed by € X).

2. Piecewise-Linearity: The term —|a + 3g| e = — > i1 la; + Bgj|e; involves the absolute
value function. Each term —|a; + (g, |€; is concave and piecewise-linear, with a breakpoint
(a point where the slope changes) at 5 = —a;/g; (if g; # 0). The other terms in D(/3) are
linear in 3. Since D(/3) is a sum of concave piecewise-linear functions and linear functions,
it is itself concave and piecewise-linear. The breakpoints of D(3) are the collection of all
values 3 = —a;/g; > 0 where g; # 0.

Thus, we need to maximize the concave, piecewise-linear function D(3) over the interval [0, c0).
Since D(f) is concave, its maximum over a convex set occurs either at a point where the super-
gradient contains zero, or potentially at the boundary point 3 = 0. Because D(/3) is piecewise-
linear, its super-gradient 9 D(3) is constant within the linear segments between breakpoints. At a
breakpoint 3y, the super-gradient is an interval [0D(8;, ), D(B;")] (the range between the left and
right derivatives). The maximum occurs at a point 5* such that 0 € 9D(3*). This 8* must be either
B = 0 (if the derivative is non-positive for > 0) or one of the breakpoints 5; > 0 where the
derivative changes sign from positive to non-positive (i.e., 0 € [0D(53; ), 0D(B;")] ), or the function
increases indefinitely (which corresponds to an infeasible or unbounded primal, but we assumed
feasibility and the primal is bounded over the compact X', so L* is finite, thus the dual maximum is
finite).

Therefore, the maximum L* can be found non-iteratively by:

1. Identifying all non-negative breakpoints 8, = —a;/g; > 0.
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2. Sorting these unique breakpoints 0 = Sy < 1 < - -+ < f3.

3. Evaluating the derivative (slope) of D(/3) within each segment (5, Sr+1) and potentially at
g =0.

4. Finding the point 5* (either O or some Jj,) where the slope transitions from non-negative to
non-positive. The value D(/5*) is the maximum L*.

This process involves a finite number of analytical calculations (evaluating slopes and function values
at breakpoints) rather than iterative optimization, justifying the claim of efficiency. O

B.3 Equivalence to the Continuous Knapsack Problem

The primal problem in (2)) is mathematically equivalent to the continuous (or fractional) knapsack
problem. We can demonstrate this equivalence through a change of variables. Let xo = & — € be the
lower bound and 1 = & + € be the upper bound. We transform x € [z, z1] to y € [0, 1]™ using:

T — X0, T; — (i.z - Q)
Yy = = = oz =0t 26y
T1, — To,i 2¢;

)

Substituting this into the primal problem min,cy{a 'z +c| g’z +h < 0} gives:

6%1111] a (o +2(e0y)+c st g (zo+2(e®@y)+h<0

rﬂ)irll] (2e0a) y+(a"zg+¢) st (2€09)Ty < (9 xz0+h)
yelo,1]n

Letr = —2c®a,s =2®g,andt = —(g' (& — €) + h). The problem becomes the standard
knapsack form:

max TTy S.t. sTySt
ye[o,1]™

This problem, even with negative coefficients, can be solved with a greedy algorithm [37]. The
efficiency ratios 7;/s; used for sorting in the greedy algorithm are:

T‘j 72€jaj
- - JJ ,a,/g,
Sj 26jgj J13

These ratios are identical to the breakpoints in our dual objective function D(3). This confirms a
line-by-line correspondence: our dual optimization algorithm, which sorts breakpoints to find where
the super-gradient contains zero, is algorithmically equivalent to the greedy knapsack algorithm,
which sorts by efficiency ratios. Both have the same O(nlogn) time complexity.

B.4 Proof of Theorem[3.2]

Direct Intuitive Proof A more direct and intuitive proof for Theorem exists. We wish to

solve finew) = maxgex{7; | a'x + ¢ < 0}. Since only ; is in the objective, we can set all other

variables x; (for j # 1) to values within their box domain [Z; — €;, Z; + €;] that make the constraint
a'x + ¢ < 0 as loose as possible, thereby maximizing the “budget” for x;.

To loosen the constraint, we must minimize the term >, _; a;x;. This is achieved by setting each
to its extreme:

* If a; > 0, we set z; to its lower bound, x; = ; — ¢;.

* If a; < 0, we set x; to its upper bound, z; = Z; + ¢;.

This worst-case minimum for the sum can be written compactly as 3_;_;(a;%; — |a;le;). We
substitute this minimum sum back into the constraint:

a;x; + Z(aj:&j — |aj\ej) +c<0
J#i
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Assuming a; > 0, we can solve for x; to find its new upper bound:

—Zj#ajﬁ:j +Z]#Z |G,j|6j —C
a;

ZCZ‘<

This value is 2", as defined in Theorem The final bound """ is the minimum of this
value and the original upper bound 7;. The case for a; < 0 (updating the lower bound z,) follows
analogously. A detailed proof is shown below:

Proof. We consider the upper bound; the lower bound can be derived analogously. First, we rewrite
the input region as

X={zeR":z<zx<Z}={xeR":2—€ <x<I+e€}

where & = E% and € = E%@ Suppose the linear inequality constraint is given by a "2 + b < 0,

where @ € R™ and b € R. We note that the intersection X N {x € R" : a"x + b < 0} is nonempty
if and only if

n
T _ T _ e
Ozrmnelga r+b=a'&+b 2:|az\ez
i=1
by Lemma B.1] Henceforth, we will assume this inequality is satisfied.
‘We now compute

,(new)

z; =max{e;/z:a’'x+b<0}
zeEX

= max min e/ x — A\(a'x + b)

TEX NERy

= min maxe; x — A\(a'x + b)
AERy xeX

— min e/ & —ANa'&+b)+|e; — \a| €,
AER L

where third line follows from Sion’s minimax theorem since X" is a compact set, and the final line
follows from Lemma [B.1]

Rearranging the term yields

_(ne T4 T4
wgnmv):){g]g}rei a-:_|_)\ %é:ieﬂaﬂ—a Tz —b +ei|1—)\ai|. (21)

We now analyze three cases for a; and derive a closed-form expression for the scalar minimization.
Recall that we have assumed 0 > a '@ + ¢ — >_"_ | a;¢; or equivalently > Eilagl — a'z —b>
—é¢;|a;|. We have:

1. a; > 0: The function ¢;|1 — A\a;| attains its minimum at A = ai > 0, with slope €;a; on the
right and —e¢;a; on the left. Thus:

« I >0, €l — a'z — b| < €;a; then the minimum of 1| is attained at \* = ai
and

Zj;éi ¢jlaj| —al@ —b . Zj;éi €5las] — Zj;éi a;jj —b

Q; %

Egnew) _ i‘i +

. Ifzj# ¢jlaj| —a'® — b > €;a; then \* = 0 and

E(new) = ﬁ?l + € = EZ‘.
2. a; < 0: In this case, the minimizing A\ = ai < 0 is infeasible to . Hence, \* = 0 and

,(new)

=T
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3. a; = 0: Here, the objective function in becomes affine in A. Since >, €;]a;| —

new)

a'# — b >0, we again have \* = 0 and T; =7;.

In summary, ife"|a| —a'2 —b<O0then) = X N{x € R": a'x + ¢ < 0}; otherwise,

L €Eilaq] — i — b
min{Z;;ﬁz .7‘ ]‘ Z];ﬁz 777 ,l'i} ifa/i >0
a;

f(new) _

?

This completes the proof. O

B.5 Proof of Order Dependency

Here we briefly introduce Theorem [B.2]to demonstrate why sequential processing the constraints for
clipping achieving better results.

Theorem B.2 (Order Dependency of Constraint Intersection). Let X = {x e R" : 2z <z < ay}
be a box domain, and let F; = {x € X : a;-ras +c¢; < 0} denote the feasible set for the j-th constraint.
Define the full feasible set as F' = n;n:1 F;.

Letw: {1,...,m} — {1,...,m} be a permutation (i.e., a reordering) of the constraints. For
sequential intersection, define:

k
F(k)ZHFﬂ.(t), k‘:l,...,m,

t=1
with FO) = X.
(Order-Independent Bounds): The variable-wise bounds satisfy:

maxx; < minmaxx; and minx; > max min x;.
TzEF J xz€F; el J z€EF;

These bounds are independent of T if computed via F' = ﬂ;’;l F;.

(Order-Dependent Refinement): If constraints are intersected sequentially (i.e., F' (%) depends on ),
then there exist permutations 7, # T such that:

FTgn) ;é F,,E.Zl) )

Proof. Order-Independent Bounds. Same as Corollary [B.2] The inequalities follow from F' C F} for
all 7. Simultaneous intersection satisfies:

maxz; < minmaxz; and minz; > max min x;,
z€F Jj xz€F; zeF Jj xEF;

as the intersection F' cannot exceed the tightest bound from any F}.

Order-Dependent Refinement. Let F'(*) = ﬂle Fr(+)- For dependent constraints (e.g., 1 bounds

x1, F» depends on z1), the sequence F®) depends on 7. A counterexample with Fj : 1 + x5 < 2
and F5 : x1 — x9 < 0 shows:

1. Intersecting F7 first gives x1 < 2 — x9, then F further tightens 1 < xs.

2. Intersecting F5 first gives x1 < a9, then F tightens z; < 1.

The final bounds differ: 1 < min(2 — xo, x2) vs. 21 < 1. O

C Algorithms

C.1 Overview

Fig.[3|shows the pipeline of our algorithm.
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Figure 4: Simple 1D visualization of relaxed clipping reducing the input interval, potentially enabling
a second pass of bound propagation to produce a tighter bound.

C.2 Sequential Clipping for Multiple Constraints

When several linear constraints are present, we apply Theorem [3.2] sequentially to each row of
Az + ¢ < 0. Algorithm[3|outlines this procedure: First, for each constraint &, compute & and € from
the current bounds, x and . Then, use Theorem @] to refine x, and T; for all ¢. Finally, proceed
to the next constraint, using the newly clipped bounds as the domain. Note that if £, > T; occurs
in any dimension, the input region of this subproblem is infeasible, and we can directly verify this
subproblem without performing further verification.

Because the bounds are updated after each constraint, the final domain is an over-approximation of
the true feasible region under all constraints simultaneously. However, it is still far more efficient
than solving a multi-constraint system in one shot, making it well suited for large-scale verification
where we repeatedly clip domains across many subproblems.

By clipping the domain repeatedly, Algorithm [3|retains enough precision to prune large regions yet
remains computationally lightweight enough for repeated invocation on many subdomains during
verification. It may even be the case that the constraints passed to our domain clipping algorithm
reveal the region is entirely infeasible. Such a scenario may occur when two Activation assignments
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Algorithm 3 Linear Constraint-Driven Relaxed Clipping (sequential)

Require: z : Lower bounds; T : Upper bounds; A : Constraint matrix; ¢ : Constraint vector.
1: m < rows(A), n < cols(A)

2: for for each constraint k € {1, . m} do
3: for each input dlmenswn i€ {1 .,n} do
4: B TEE e T2
5: if Ay ; # 0 then
6: wgnew) o D Ak,]’¢”y’2‘§j¢i | Ak, jle;—b
7: if A, > 0 then !
8: Z"Y « min(Z;, ")
9: else
10: 2™« max(z;, z"")
1: @ « max(z;, z"™")

12 & min(Z;, 7V)

Ensure: Clipped z, ©

admit an infeasible domain, or when the desired property admits multiple constraints that produce
infeasibility. In such scenarios, Algorithm 3] will return clipped bounds where = will be smaller than
@ along some dimension(s). In the context of branch-and-bound, this subdomain may be effectively
pruned, avoiding the process of running bound propagation once more on the domain, avoiding
unnecessary computations

C.3 Algorithms for Clip-and-Verify in Input Branch-and-bound Scheme

Algorithm 4 Clip-and-Verify for Input Branch-and-bound

Require: f : model to verify; n : batch size; timeout : time-out threshold
I: DUnknown, [  Init(f, ) {Initialize the set of unknown subdomains Dynknown and global
bound f}

2: while |Dynknown| > 0 and not timed out do

3 {x, AV P+ Batch_Pick_Out(Duynknownsn) {Pick up to n subdomains X; and
their associated hypelplanes (AP ) from the previous iteration. }

4:  {C;i}", + Top-K_Heuristic({X;, A7, "} |) {Determine critical neurons C; using a
top-k heuristic over each domain dnd its ple\ ious hypelpldnes }

5: (in’AX17QX1 Yo ’ixn’AXn’an) — Solve_Bound(f, {Xi, C; };;1) {Compute bounds

and plane coefficients on each subdomain; Refine critical neurons using planes as constraints
and Complete Clipping.}
6 {X7, X", A ¢}, + Batch_Split({X;, A, ¢, }7_,) {Split each subdomain; share hyper-
planes with both children. }
(+)

7: {:L‘( N Relaxed_Clipper ({X,”, X", A;, ¢, }" ;) {Refine input box on each

child subdomain using the plane coefficients. } /
. — >+H\n T ato (=) () n ate each ~hi ., ain’c in-
8 {X, X"}, + Domain_Update({x; ’,x; ’}_,) {Update each child subdomain’s in
put bounds. }
9:  DuUnknown — Dunknown U Domain_Filter([fX, X A(F'. Q(f)] .. ) {Filter out veri-
1

fied/infeasible subdomains. Retain unknowns and their bounding hyper-planes.}
Ensure: UNSAT if | Dunknown| = 0 else Unknown

Algorithm 4] describes our modifications to the standard BaB procedure. When all subproblems can
be verified, then the verification problem is referred to as UNSAT (i.e., the complementary property,
Jx e X, f(x) <0, is unsatisfiable), and the network is safe from counter-examples. Otherwise, it
is insufficient to determine if the property is UNSAT without further refinement or falsification.
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C.4 Algorithms for Clip-and-Verify in Activation Branch-and-bound Scheme

Algorithm 5 Clip-and-Verify for Activation Branch-and-bound

Require: f : model to Verlfy, n : batch size; timeout : time-out threshold
1: Dunknown, f < Init(f,0) {Initialize the set of unknown subdomains Dyyknown and global
bound f}

2: {A(j ), g(j),z(j),é(j ), unstable_neuron(idx)" )}3]:1 + Get_Constraints(f) {Retrieve the set
of coefficients and biases for each unstable neurons’ upper and lower bound and get the indices
of unstable neurons during Bound Propagation.}

3: Domain_Clipper «+ Init_Clipper({A(j),g(j),Z(J),E(j),idx(j)}jzl) {Initialize the Domain
Clipper with the set of constraints information. }

4: while |Dypnknown| > 0 and not timed out do

50 {2}, < Batch_Pick_Out(Dunknown, ) {Pick at most n subdomains from the unknown

set.}

6 {Z;,Z"}, + Batch_Split({Z;}1_,) {Split each subdomain (e.g., Activation split or

input split) into two child subdomains. }

7: {CZ-(f),Ci(H ™, « Top-K_Heuristic({X;} ;) {Determine critical neurons using a top-k

heuristic (e.g. BaBSR ) over each domain.}

8: {x( ) ,interm_ bds X(+) interm bds(+)}. < Domain Chpper({Z Zf,Cl C(Jr v )

Ei

{App]y Relaxed C]lpplm7 to chl]d subdomain’s mput and Complete C]lppln" on the Cl‘lthd]
neurons. Constraints are the Activation splits.}

9 {Z27,ZM, «+ Domain_Update({xz(-_), interm_bds
{Update each child subdomain’s input and intermediate bounds }
10: (izl_, e ’iz;’) < Solve_Bound (f, {xi, interm_bounds;, Zz}) {Compute bounds on
each newly clipped subdomain using a bound propagation solver. }
11:  Dunknown < DUnknown U Domain_Filter(MZ; , Zf] e ) {Filter out verified/infeasible

subdomains. Keep remaining unknown subdomains in Dypnknown- }
Ensure: UNSAT if | Dynknown| = 0 else Unknown

<)

7 Z

, interm bds(+)} 1)

Algorithm [5|begins by initializing the verification procedure. First, we call Init(f, })) to obtain an
empty set of partial Activation assignments (or subdomains) along with an initial global lower bound
f for the property to be checked. This global lower bound can, for example, be the result of a quick
bounding pass. The set Dynknown 18 then populated with a single “root” subdomain representing the
entire input domain.

Next, we retrieve the constraint information for all neurons (Line 2). Specifically,
Get_Constraints(f) returns the linear coefficients and biases used to bound each neuron’s acti-

vation, distinguishing between the lower-bounding (AY) )y and upper-bounding (Z(J),E(j )
linear functions. It also identifies indices of “unstable” Activation neurons whose ranges straddle
zero. These constraints will later be used to restrict the feasible input region using both our Relaxed
Clipping and Complete Clipping algorithms.

We then initialize the Domain Clipper (Line 3) with the gathered linear constraints. This Clipper
component will be invoked whenever we branch on a Activation neuron, so that the corresponding

partial assignment (e.g., x( 9) > 0) is “pushed back” onto the input domain. In doing so, we clip
the subdomain’s input box by applying Theorem [3.2] (or its extensions) to incorporate these newly
introduced constraints, thus discarding parts of the input space that violate them. In addition, when
given a set of critical neurons, these Activation split constraints will be used to directly refine the
intermediate neurons using Theorem 3.1}

The main loop (Lines 5—11) iterates until either no subdomains remain unknown or a time-out is
reached. In each iteration, we pick up to n unknown subdomains from Dypknown (Line 5) for batched
parallel processing. Each subdomain Z; is then split (Line 6) along one or more unstable Activation
neurons, creating child subdomains in which each split neuron is fixed to either the active (> 0) or
inactive (< 0) regime.
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At Line 7, we invoke a top-k heuristic (e.g. BaBSR) in order to determine the set of “critical neurons’
that would contribute the most to providing a stronger convex relaxation if their bounds were to be
refined.

At Lines 8-9, we invoke the Domain Clipper on these newly formed child subdomains. The Clipper
translates each Activation assignment into a linear constraint on the input, then refines (or “clips”)
the child subdomain’s input bounds, and the bounds of the “critical neurons” in each subdomain with
respect to the heuristic choices from the step prior. This ensures that any portion of the parent domain
that contradicts the new constraint is removed. Once clipped, the child subdomains’ intermediate
bounds are also updated (Line 10) so that subsequent bounding calculations reflect the tighter input
ranges.

We then compute bounds on the newly clipped subdomains (11) using a chosen method—often a fast
bound-propagation tool such as CROWN or a lightweight LP solver. This step yields lower bounds
f =+ on the network outputs for each subdomain. If these bounds confirm that the property holds

(e.g., a robustness margin remains non-negative), the subdomain is verified and can be pruned. If
the subdomain is infeasible (e.g., constraints are contradictory), it is also removed. All remaining
subdomains (still “unknown”) return to Dypknown for further splitting.

Finally, the loop terminates once there are no unknown subdomains left or the time-out is reached. If
DUnknown becomes empty, we conclude UNSAT, signifying that no violating input (counterexample)
exists within any subdomain. Otherwise, we return “Unknown,” indicating that verification was not
completed in time.

Overall, this procedure reflects a standard Activation BaB flow, except that an additional “domain
clipping” step (Lines 8-9) is inserted after each split, leveraging partial Activation assignments
to refine the input domain and select intermediate neurons before the next bounding pass. By
applying our linear constraint-driven clipping algorithms whenever new constraints appear, we gain
significantly tighter intermediate-layer bounds and thus reduce the branching burden throughout the
verification process.

C.5 2D Toy Example

To illustrate our clipping verification approach, we consider a simple two-layer ReL U feed-forward
network defined as
f@)=wPTo(WWg 4+ M), (22)
where w®, b(M) x € R?, W) € R?*2, and ¢(-) denotes the element-wise ReLU activation. We
aim to verify the property
f(x) >0, VeelX.

The input domain X is defined as an /.,-box centered at & = [0.5, —0.5] T with half-widths € =

[1.5,1.5] . Equivalently, the domain can be expressed using its endpoints z = [—1,—2]" and
T = [2,1]T. The network parameters are specified as
1 -7 6 1
1 _ 1 _ @) _ . >
e @

CROWN Bound. As a warm up, let’s bound the network using the CROWN algorithm without
utilizing relaxed nor complete clipping. We begin by computing the pre-activation bounds of the
intermediate layer which are obtained by concretizing the first layer’s affine transformation:

z=min Wz + b(l)7 z = max Wz 4+ b, (24a)
reEX TEX
z=WWi - Whle+ bV,  z=wWi+ W+ bW, (24b)
Substituting the parameters into equation (24b)) yields z = [~2, —13]" and Z = [22,5] . These

neurons are then passed to a ReLLU activation function, and one should notice that for each input,
we have that z; < 0 < Z; and 2, < 0 < Z3. In this scenario, we have that the ReLU neurons are
unstable, meaning that we cannot bound the non-linearity exactly, however, we can still get sound
linear bounds on the output of the ReLU activation. Using Lemmal[A.T] we construct the diagonal
matrices and corresponding vectors,

o 0 0
D= [01 QJ, b= M (252)
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B _E 0 _ —Z1z)
D= |* 631 = , b= i%;i; . (25b)
Z2—2z, Za—z,

D and b are used to create lower bounding planes on the output of the RelLU activation where
and s are real numbers limited to the range [0, 1]. These values may be optimized, however we will
always fix a; = as = 1 when lower bounding unstable neurons in this toy example. D and d are
upper bounding planes on the output of the ReLU activation, and its construction is derived from the
Planet relaxation [23]. It may be verified that for inputs z in the range [z, Z],

Dz+b>o0(z)>Dz+b. (26)

We next lower bound the network output. Because the post-activation vector o (z) is passed through
the final linear layer, a coordinate-wise sign on the final-layer weights determines whether to use
upper or lower affine bounds for each neuron. Concretely,

wo(z); > w (Q“z, +Qi) , ifw>0 27
wo(z); > w (Emzi —i—Ei) , ifw<0
so that the final-layer lower bound with respect to z is
w@To(2) > (W) (Dz +b) + (w? )" (Dz +b) (28)

where w(?)* zeros out entries which are negative and w(?)-~ zeros out entries which are positive. In
our example, these vectors are w(?* = [1,0]" and w®)~ = [0, —1]T. The final step is to produce
a lower bounding hyperplane of the final layer with respect to the network’s input. So far, we’ve only
related this lower bound to the intermediate input, 2. Our final step is quite simple as we know that
z = WMz + b(M). Using this relation, we can “back-propagate” our affine relaxations to the input
as follows,

(wP T (Dz+b) + (w? )" (Dz +b) (29a)
= (w7 (Q (W“):c + b(”) + Q) + (w® )T (ﬁ (W(l)a} + b<1>) + B) (29b)

(( @)D+ (w (%*)Tﬁ) W<1>)a:+((w<2>’+)TQ+(w<2>f)TE) bV
+ (wP b+ (wP )b (29¢)

Let us introduce the following variables,

{a — ((w(z),+)TQ+ (w(z),—)Tﬁ) w®

c:= (w®H)TD + (w®~)TD) 6D + (w® )b + (w® )b (30)

By construction, we have that the output of the network is lower bounded by the following linear
relaxation,

flx)>a'z+ec, xeX. (31)
Using Holder’s inequality, we can solve for the minima of this lower bounding plane,
19
> T =a's—|a|’ =—-—. 32
:rgrggf( x) > gléga r+c=a &—lal e+c 5 (32)

As this lower bound is too loose, we cannot verify our desired property, f(x) > 0,Vx € X.

Relaxed Clipping. We first tackle this example using our efficient yet approximate clipping algorithm
termed relaxed clipping. Given a set of constraints, the objective of relaxed clipping is to compute
the smallest input box representation that satisfies those constraints. This step is performed once per
round of branch-and-bound, and the resulting refined input box is shared by all neurons during the
concretization step. Consequently, this refinement has the potential to tighten bounds across multiple
neurons, including those in the final layer.

Consider a bound-propagation—based verifier executing branch-and-bound by splitting over the
activation space. For the remainder of this subsection, we focus on the case where the first ReLU
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neuron is split into its non-positive (inactive) region, i.e., z; < 0. This split decision can be
reinterpreted as a linear constraint on the input,

W)z +b{" <o. (33)

Since the input x is two-dimensional, our goal is to tighten the lower and upper bounds of each input
dimension under this constraint. Formally, we solve the following optimization problems:

2" = minz; st Wi T+ b)), <o, (34a)
o = maxa; st (W) Tz +b{" <0, (34b)
zf? = minz; st (Wi Tz + bV <0, (34c)
o = maxy st (W) a0l <o. (34d)

From Theorem [3.2] one potential solution along each dimension is given by

1) 5 (1) (1)
(clip) o 2276] {Wl1j Tj— ‘Wl,j ‘GJ} - bl
T, = o (35)
Wi

Each dimension is then updated as follows:

79 = min xflip),@} if Wit >0

2" = max {2 2,} W} <0 (36)

no change otherwise
For the first dimension (¢ = 1), since Wl(yll) > 0, the upper limit may be refined if azgdip) < .

For the second dimension (i = 2), where Wl(lz) < 0, the lower limit may be refined if méc“p) > z,.

Substituting the given parameters yields:

1) . 1 1
w(dip) . _Wf’z)w2 + |W1(,2)|€2 B bg : _ —(=7(=1/2) + |- 7[(3/2) — 6 -1 (37a)
L a w a 1 a
1,1
1) 1 1
Gt _ Wi+ Wile - @2 U2 -6 5 o
2 = 1 = — =
W1(2) 7 7
It is indeed the case that mgclip ) < % and mécup ) > ,, so the limits of the refined input domain are
now,
™ =[-1,5/71", & =[1,1]". (38)
The new box representation may also be characterized by its center and half-widths:
Q(TC) — (E(TC) +£(rc))/2, 6(rc) — (f(rc) _ Q(TC))/Z (39)
yielding the refined input domain
o) — {;c 1879 — ]| < eW)} - {a} 1209 <z < EW’)} . (40)

We now proceed to bound the network using the CROWN algorithm under X' (") in place of the
original domain, X'. Substituting this domain into Eq. produces 2" = [-2,—13]" and
z(re) = [2, —57/21]T. Both neurons exhibit tighter bounds, and notably, Eém) < 0, which ensures

that the input to the second ReLU neuron is strictly non-positive across X ("), Since the ReLU
function is piecewise linear, this implies an exact post-activation bound:

o(z)=o0(z) =7(2) =0, Veexl, (41)
One interesting observation to point out is that with this clipped domain, zYC) = 2 improves
dramatically from the original upper bound, Z; = 22. However, because our constraint originated
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from z; < 0, the true maximum is in fact zero. In this case, one could enforce this upper bound to
be zero, but keep in mind that relaxed clipping algorithm is designed for generality, thus constraints
may arise from split decisions at any neuron in the network where forcing zg’”) = 0 would not be
valid. This example illustrates that relaxed clipping, while lightweight and compatible with CROWN,

remains an approximation and may yield suboptimal yet informative bounds. Rather than enforcing
the true maximum, we retain the relaxed clipping result, EYC) =2

Applying Lemma[A.T] we derive the linear post-activation bounds with respect to the pre-activation
inputs:

0

7( ) E(l,,.c) 0 7( ) 72(1'r'c)5(1rc)

R el N R =l (@20)
0 0 0

For simplicity, let «; = 1. Notice that for the second neuron, we have that,

(DY) Tz 40 = 0(z)o = (Dy ) 2 +by " =0,  Vze 09209, (43)

rc 0 rc 0
Do — {al 0} , Q( ) [0} (42a)

confirming that this ReLU neuron is inactive and its output can be exactly bounded as zero.

Finally, performing the same backpropagation procedure as before yields

mlnf(m) > min Q(TC)THZ +Q(7’c) _ g(7"C)T',1A3(rc) - |Q(rc)|Te(rc) +Q(rc) ) (44)
zeX xeXx(re)

This represents an improvement over the previous bound, although the property remains unverified.

Complete Clipping. Relaxed clipping can be viewed as an indirect approach towards refining the
bounds of the neural network as a smaller input representation can potentially yield improvement in
the concretization step when forming the neurons’ bounds. Complete clipping on the other hand is a
direct approach towards refining the bounds on the network as the optimization objective specifically
targets the neuron’s bounds rather than the shared input representation.

In practice, relaxed clipping is extremely lightweight, and its operations are well-suited for GPUs.
Thus, it is often sensible to combine relaxed and complete clipping in the verification pipeline. In this
example, however, we aim to clearly distinguish the two methods. Therefore, we use the original
input domain, X, rather than the refined one, X’ (¢)_ and retain the ReLU split constraint z; < 0.

Complete clipping operates directly on the bounds of each neuron, refining them via constrained
optimization. The first step is to bound the preactivation bounds which may be formulated as:

;E-cc) = min Wi(_l)m + bz(-l) EECC) = max Wi(_l):c + bgl)
xeX ” rEX 5t
T T
.. (Wl(i)) z+b) <0 (45 .. (Wf})) z+b) <0 (45b)

For this two-dimensional problem, this amounts to targeting the lower and upper bound of both
neurons at the intermediate layer, resulting in a total of four constrained optimization subproblems.
However, we will only focus on refining the upper bounds as we will soon see that this will be
sufficient for verifying our desired property in this toy example.

As discussed earlier, the split constraint on the first neuron implies that its true upper bound is
trivially Z7 = 0. With a single constraint, Theorem guarantees optimality, i.e., zg‘”) =27 =0,
which can be verified using Algorithm For a single constraint, complete clipping attains the
exact optimal solution through enumeration, without relying on projected gradient methods or LP
solvers, no longer serving as an approximation such as the case with relaxed clipping. Even when
multiple constraints are present (where optimality is not guaranteed), this targeted refinement remains
a powerful mechanism for improving intermediate-layer bounds.

2Algorithrnperforms coordinate ascent on the dual objective when the primal is a minimization problem.
Since @3b) is a maximization problem, we can negate the primal objective to minimize it, then negate the
resulting solution. Furthermore, the algorithm assumes constraints of the form Gx + h < 0. For constraints of
the opposite form, Gz + h > 0, one may simply negate them. Hence, the algorithm is used without loss of
generality.
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Next, we consider the upper bound E(QCC). Complete clipping yields the optimal solution Z3, which

we derive analytically via Algorithm[I] According to Theorem [3.1] the dual form of this problem and
its solution is given by

L* = min (WQ({) — pwY ) @+ Z’ ) pw e +05) — oV | L @6

The dual objective is minimized with respect to the Lagrange multiplier, 3 € R+. One possible
solution occurs at 8 = 0, but since relaxed clipping already improved this bound, we expect that

p* #0.

Before solving for 8%, it is helpful to examine the structure of the dual objective D((3). Because the
primal objective maximizes 2z, minimizing the dual objective is equivalent. The function D(f) is
convex and piece-wise linear, so we analyze its sub-gradient, -2 55 D(p):

(W) @+ 52, fsien (Wi - W) (wiie, ) b L s¢g
[ D(87), &D(5)] Beq

where q is the vector of breakpoints [(WQ(?) / (W(l))] 5=1 = [5,1/7]. Thus, the gradient is uniquely
defined on the intervals 5 € (—o0,1/7), (1/7, ) and (5,00). Because D(f) is convex, its sub-
gradient is negative on the leftmost interval and positive on the rightmost one. The optimal S* occurs
at the break-point where the sub-gradient changes sign from negative to positive, i.e., the break-point
whose sub-gradient interval contains zero. The sub-gradients in each region are:

(47)

-
W er - WYle2 — (WiY) @ -l =21, <}
T
~Wiler+ WHlea - (W) @b =-1 L<p<s (48)
T
WY ler + WY €2 — (Wf})) g-bV=2 | B>5.

Note that when transitioning from the case where 5 € (—00,1/7) to 8 € (1/7,5), the term |W1(12) lea

switches sign while —|W1(_11) |€1 remains negative. This ordering follows because in our break-point

vector, we have that go < @i, and this ensures the sub-gradient is correctly calculated in each

sub-interval, providing intuition as to why argsort(q) is necessary in Algorithm For this example,

the sign change occurs at 8 = 5, giving the minimum of the dual objective at 5* = 5 and the solution
z() =z5 =L* = -3.

After performing complete clipping at the intermediate layer, we discover that the optimal upper
bounds under our split constraint are given as 2* = [0, —3] . There is clearly an inter-neuron depen-
dency between the two ReLU neurons such that forcing the first neuron to be in-active subsequently
causes the the second neuron to also become in-active. Consequently, the post-activation neurons can
be exactly bounded using the CROWN algorithm, and in particular, o(z) = 0 for all z € [2* ﬂ]
Since the last layer contains no bias vector, it is not necessary to perform complete clipping again,
and we have finally verified our desired property for this subproblem,

min f(z) = w®To(z) > 0, subject to z; < 0. (49)

xeX

D Experiments

D.1 Experiments Settings

To allow for comparability of results, all tools for input BaB were evaluated on equal-cost hardware
with a 32-vcore CPU, one NVIDIA RTX 4090 GPU with 24 GB memory, and 256 GB CPU memory.
For ReLU based BaB experiment, we use a cluster with one AMD EPYC 9534 64-core CPU and
the GPU is one NVIDIA RTX 5090 GPU with 32 GB memory and 512 GB CPU memory. Our
implementation is based on the open-source o,3-CROWN veriﬁelﬂ with Clip-and-Verify related

*https://github.com/huanzhang12/alpha-beta-CROWN
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code added. For input bab, three different set-ups of Clip-and-Verify are tested: Relaxed, Relaxed +
Reorder, and Complete. Here Relaxed, Reorder and Complete refers to the methodology discussed
in 3.2]and [3.3] All experiments use 32 CPU cores and 1 GPU. The MIP cuts are acquired by the
cplex [34] solver (version 22.1.0.0). We use the Adam optimizer [38]] to solve both «, 3, i, 7. For
the SDP-FO benchmarks, we optimize those parameters for 20 iterations with a learning rate of 0.1 for
o and 0.02 for 3, p, 7. We decay the learning rates with a factor of 0.98 per iteration. The timeout is
200s per instance. For the VNN-COMP benchmarks, we use the same configuration as «,3-CROWN
used in the respective competition and the same timeouts. For NN control systems, task details
are in [42, Appendix C]. For the Lyapunov function level set, we verify on V' (x) € [0.2,0.20001]
for CartPole and Quadrotor-2D, and on V (z) € [2.0,2.1] for Quadrotor-2D-Large-ROA. Let
Qiina1 denote the resulting (expanded) box used for training/evaluation once the generator stabilizes.
Concretely (all “£[-]” are per-coordinate half-widths), for CartPole, Qg = £[4.8,3.6,13.2,13.2].
For Quadrotor-2D, Qg = £[12,13.2,12,19.2,20.4, 83.8].

D.2 Ablation Studies

We conduct a detailed ablation study on multiple adversarially-trained models spanning MNIST,
CIFAR, and larger VNN-COMP benchmarks to evaluate Clip-and-Verify and its variants against
three baselines: 3-CROWN, GCP-CROWN, and BICCOS. Tables [4and [6| highlight three key metrics:
verified accuracy (Ver.%), average per-example verification time (Time), and average per-verified-
example domain visited (D.V.). Domain visited (D.V.) is a metric specific to branch-and-bound
(BaB) methods, indicating how many subproblems (domains) are explored to fully verify an instance.
Crucially, a higher D.V. count may reflect verifying more difficult instances or a larger overall
coverage, rather than inefficiency in the verification process. We also provide Figures 5]and [6] that
visualize these metrics across all benchmarks.

Overall Verified Accuracy and Time From Table 4] Clip-and-Verify variants nearly always
achieve higher verified accuracy than the baselines. For instance, on CNN-B-Adv (CIFAR), Clip-
and-Verify with BICCOS reaches 51.5% verified accuracy—surpassing the 47.0% (3-CROWN),
49.5% (GCP-CROWN with MIP cuts), and 51.0% (BICCOS alone) of the baselines. On cifar10-
resnet, Clip-and-Verify (with MIP cuts or with BICCOS) achieves up to 88.89% verified accuracy
(outperforming the 83.33% - 87.5% range from baselines). In terms of verification time on this
benchmark, Clip-and-Verify with 5-CROWN is the fastest overall (6.06s), and Clip-and-Verify with
BICCOS (11.80s) remains competitive with standalone BICCOS (16.73s) and GCP-CROWN (17.99s).
When scaling to deeper networks such as cifar100-2024 and tinyimagenet-2024, Clip-and-Verify with
BICCOS maintains the leading verified accuracy (65.5% and 72.0%, respectively) while sustaining
moderate average verification times (e.g., 8.17s for cifar100-2024 and 10.48s for tinyimagenet-2024),
underscoring its suitability for larger-scale verification tasks.

Domain Visited (D.V.) vs. Difficulty In Table[6] we further examine the average domain visited
(D.V.) across verified examples. While Clip-and-Verify variants may sometimes visit more domains
(e.g., on oval22, Clip-and-Verify with MIP cuts visits 18891.25 domains compared to 16614.72 for
GCP-CROWN with MIP cuts), this often correlates with achieving higher verified accuracy (90.00%
vs 83.33% in this case). This suggests that the method is effectively exploring the space to verify
more challenging instances or a broader set of inputs, leading to a net increase in verified accuracy.
For example, on CNN-A-Adv (CIFAR), Clip-and-Verify with MIP cuts visits 3704.86 domains on
average and attains 48.5% verified accuracy. While its D.V. is slightly higher than standalone BICCOS
(3622.71 D.V. for 48.5% accuracy), it’s notably lower than 3-CROWN (12621.38 D.V. for 45.5%
accuracy) and GCP-CROWN with MIP cuts (8186.11 D.V. for 48.5% accuracy), while achieving
comparable or better accuracy. In other scenarios (e.g., CNN-A-Adv-4 on CIFAR), Clip-and-Verify
with BICCOS achieves 48.5% accuracy with a D.V. of only 843.47. This is the same or higher
accuracy with a significantly smaller D.V. compared to standalone 5-CROWN (46.5%, 2066.39 D.V.),
GCP-CROWN with MIP cuts (48.5%, 3907.30 D.V.), and BICCOS (48.5%, 1319.56 D.V.). This
illustrates that when Clip-and-Verify effectively prunes the search space, verification efficiency can
improve even while tackling similarly challenging problems and achieving high accuracy.

A Breakdown Comparison between Verifiers Table [5]exhibits the instance-wise comparison on
acasxu benchmark, as also illustrated in Figure [2a] Most of the instances in acasxu benchmark are
easy to verify. On these instances, all the verifiers share similar verification time and D.V. . Instances
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Table 5: Instance-wise breakdown comparison on acasxu benchmark between o, 5~-CROWN and
Clip-and-Verify.

Method | Avg. on simpler instances | 65 \ 73

| Time D.V. | Time D.V. | Time D.V.
a, B-CROWN 1.0287 12615.35 timeout - 19.1899 5474527
relaxed 1.0087 6759.11 9.1839 1876495 | 2.7422 291855
relaxed + reorder | 1.0283 6467.96 7.6514 1416479 | 2.6385 229755
complete 1.0991 6350.11 6.8963 531381 3.5677 112431

Table 6: Ablation Studies on Verified accuracy (Var.%), avg. per-verified-example domain visited number (D.V.)
analysis for all method verified instances on different Clip-and-Verify components.

Dataset Model B-CROWN GCP-CROWN BICCOS Clip-and-Verify Clip-and-Verify Clip-and-Verify | Upper
with MIP cuts with 5-CROWN with MIP cuts with BICCOS bound

e=0.3and e = 2/255 Ver.% D.V. | Ver.% D.V. | Ver.% D.V. | Ver.% D.V. | Ver.% D.V. | Ver.% D.V. | bound
MNIST CNN-A-Adv 71.0  2712.72 71.5 444754 76.0  3081.50 740  2395.96 735 1495.07 76.0  2636.99 76.5
CNN-A-Adv 455 1262138 485  BI86.11 485 362271 455 1037.36 485 370486 | 485 2073.58 50.0
CNN-A-Adv-4 46.5  2066.39 48.5 390730 48.5 1319.56 | 465 298.89 48.5  2396.36 | 485 843.47 49.5

CIFAR CNN-A-Mix 420  6108.57 47.5  17609.84 48.0  8015.12 | 43.0  4462.48 47.5  9836.06 | 48.0  4189.92 53.0
CNN-A-Mix-4 51.0 482.43 550  8922.50 56.0  3319.90 51.0 150.46 550  4304.32 56.5  3501.06 57.5
CNN-B-Adv 470  7255.68 49.5  9846.32 51.0  5758.00 49 4951.07 51,5 6979.27 515 2677.94 65.0
CNN-B-Adv-4 550  1776.66 585  4688.22 59.5 271115 56.5 649.92 60.0  3565.74 60.5  1095.30 63.5
cifarI0-resnet 8333 2105.76 875 709130 875  5428.60 | 86.11 478.0 | 88.89 254528 | 88.89  2643.15 | 100.0
oval22 66.66 30949.95 | 83.33 16614.72 | 83.33 12730.08 | 73.33 20191.27 | 90.00 18891.25 | 90.00 14032.81 | 96.67
cifar100-2024 59.5 1535.60 - - 60.5 769.87 63.0 152.96 - 65.5 122.00 84.0
tinyimagenet-2024 67.5 830.92 - - 69.0 491.52 70.0 188.02 - - 72.0 118.34 78.5
vision-transformer 2024 [53 59.0 149.75 - - - 61.0 84.84 - - - 100.0

73 and 65 stand out as they’re significantly harder to verify. For instance 73, clipping is able to
cut down over 94% D.V. and over 80% verification time. While «, 3-CROWN is unable to verify
instance 65 within given timeout, Clip-and-Verify is able to verify it within 10 seconds. Cactus plots
Figures [5]and [6] are also able to give a instance-wise comparison. Please see the following paragraph
for a more detailed explanation.

Interpretation of the Cactus Plot Figures[5|and [6illustrate the number of instances verified as
runtime varies. Each line represents a method, with the x-axis showing the cumulative verified
instances under a given timeout (y-axis). This style, used in VNN-COMP reports captures the trade-
off between subproblem difficulty and runtime performance. The curve’s right end indicates total
solved instances—further right means more instances verified within the timeout. A flat initial curve
fragment reflects many easy instances solved quickly. A curve below and to the right of another shows
consistently faster solving. The x-axis ordering reflects instance difficulty, from easy (left) to hard
(right). For example, on the tinyimagenet benchmark (Figure [5d), our Complete Clipping + BICCOS
variant solves easy instances faster and solves more hard instances. Across these benchmarks, the
proposed Clip-and-Verify framework demonstrates a favorable balance: it reduces the number of
hard subproblems, leading to more instances being verified within moderate time thresholds. This
suggests that although our clipping procedures incur additional overhead that may be noticeable
in easy instances, the overall net gain is highlighted in its ability to solve more instances and hard
instances with shorter verification times.

Overall, these results show that Clip-and-Verify’s framework of enhanced linear bounding and
“clipping” robustly scales across varying network depths and adversarial training schemes. The
additional integration of MIP cuts or BICCOS bounding routines consistently pushes verified accuracy
closer to each benchmark’s upper bound while balancing verification time and domain exploration.
We plot and analyze these ablation studies across all benchmarks in Appendix [D.2} confirming that
our method not only raises coverage (Ver.%) but also leverages clipping and cutting plane methods to
verify some of the hardest instances encountered.

D.3 Detailed Comparison with LP Solvers
To validate our claim that coordinate ascent is more efficient than LP solvers for our task, we

integrated LP solvers directly into our BaB algorithm ] to solve the clipping optimization problem.
We compared our method (“Clip (ours)”) against the Gurobi solver using dual simplex with varying
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iteration limits. The experiment was run on the acasxu benchmark instance 65, and we report the
average time and bound error over 30 million LP calls during the entire BaB process. We report only
Gurobi’s optimize () time, ignoring all Python overhead for problem creation, giving an advantage
to the LP solver.

As shown in Table[/] our method is 740x faster than a 1-iteration LP heuristic and 880x faster than
a 10-iteration LP, while achieving comparable accuracy (0.00085 vs. 0.0007 mean error). The LP
solver only achieves near-zero error with 10+ iterations, at which point it is intractably slow. The
high fixed cost of LP solvers (even for 1 iteration) comes from presolve and initial basis factorization
routines, which are far more expensive than our simple O(n logn) sort.

Table 7: Comparison of our coordinate ascent ("Clip") vs. Gurobi dual simplex with iteration limits
on acasxu (instance 65). Time and error are averaged over 30M calls.

Method | Avg. Time per Call avg. Bounds Error std. Bounds Error
LP-simplex (1 iter) 2.08s 0.401 1.45
LP-simplex (10 iter) 2.47s 0.0007 0.0018
LP-simplex (20 iter) 2.49s 0.0 0.0

Clip (ours) 0.0028s 0.00085 0.0019
LP-full (ground truth) 2.50s 0.0 0.0

We also investigated modern GPU-based LP solvers, specifically Google’s PDLP [3| 4], which uses a
Primal-Dual Hybrid Gradient (PDHG) algorithm. As shown in Table[8] while PDLP achieves high
accuracy when it converges, it is not suitable for our use case. PDHG does not maintain a feasible
solution during iterations. Under strict iteration limits, it has a very high failure rate, returning
a NOT_SOLVED status and thus failing to provide a valid dual bound for our sound verification
procedure. In contrast, dual simplex (Gurobi) and our method always return a valid, feasible bound.
PDLP is designed for single, massive LPs, whereas our framework requires solving millions of
independent, small LPs in parallel, a setting where our specialized GPU solver excels.

Table 8: Comparison with Google’s PDLP. Our method is dramatically faster and, critically, always
returns a valid bound, unlike PDLP which frequently fails under iteration limits. B.E. means Bound
Error.

Method | Avg. Time per Call avg. BE std. B.E Failure Rate (%)
PDLP (1 iter) 2.23s 2e-8 4e-8 81.31%
PDLP (10 iter) 4.21s 1.4e-8 2.3e-8 48.26%
PDLP (20 iter) 6.02s 5.5e-8 le-8 38.38%
Clip (ours) 0.0028s 0.00085  0.0019 0.0%
Gurobi-full 2.50s 0.0 0.0 0.0%

D.4 Details of Heuristics

Neuron Selection Heuristic. The performance of Complete Clipping can be sensitive to the choice
of which intermediate neurons to refine. To guide this selection, we employ a heuristic based on the
Branch-and-Bound for Split Recommendation (BaBSR) score, originally designed to select which
neuron to branch on during BaB [[13]. Specifically, we use the intercept score from BaBSR, which
estimates the potential impact of refining a neuron’s bounds on the final output relaxation. The score
for a neuron k is calculated as:

max(0, —lj) - max(0, ug)

scorey, = -max(0, —meany, )

(e
where [, and uy, are the neuron’s pre-activation lower and upper bounds, and meany, relates to the
intercept of the neuron’s linear lower bound. A higher score indicates a looser relaxation and a greater
potential for improvement. For each layer, we compute this score for all unstable neurons and select
the top-k neurons for refinement with Complete Clipping.
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To validate this choice, we conducted an ablation study on the tinyimagenet-2024 and
cifar100-2024 benchmarks, comparing BaBSR against three alternative heuristics: random se-
lection, prioritizing neurons with the largest bound gap (U — L), and prioritizing neurons with the
largest bound product (—U x L). As shown in Tables[9)and [I0] the BaBSR heuristic consistently
achieves the best verification time and explores the fewest subdomains, especially for the balanced
top-20 setting. This confirms that BaBSR makes more effective choices, leading to earlier pruning
and a more efficient search.

Table 9: Average verification time (s) per instance for different top-k heuristics.
Benchmark | Top-k Setting | Random -UxL U-L BaBSR

Top-10 per layer 16.3 16.5 16.8 16.2

tinyimagenet | Top-20 per layer 18.1 17.9 17.2 151
All neurons 224 224 22.3 22.7

Top-10 per layer 26.2 26.6 27.0 26.1

cifar100 Top-20 per layer 29.1 28.8 27.7 24.3
All neurons 36.5 36.4 36.4 36.5

Table 10: Average number of visited domains per instance for different top-k heuristics.
Benchmark | Top-k Setting | Random -UxL U-L BaBSR

Top-10 per layer 485 453 420 388

tinyimagenet | Top-20 per layer 381 370 365 342
All neurons 278 278 278 278

Top-10 per layer 907 847 785 726

cifar100 Top-20 per layer 712 692 682 640
All neurons 521 521 521 521

Table 11: Ablation Study on Top-k Neuron Selection on cifar_cnn_a_mix

Top-k # Verified Avg. # Domain Visited Avg. Time (s)
0 (reduce to S-CROWN) 84 6108.57 4.20
20 86 4462.47 4.24
50 86 4372.79 4.83
all 85 (1 timeout) 1881.77 8.23

Table |1 1| shows the ablation study on the top-k neuron selection heuristic on cifar_cnn_a_mix
benchmark, reveals that strategically prioritizing neurons based on their FSB intercept scores sig-
nificantly enhances verification efficiency. Employing a moderate k (specifically top-k 20 and 50)
leads to the best outcomes, successfully verifying more properties (86) while substantially reducing
both the number of domains visited (by up to 28% compared to no heuristic) and the overall time
(by up to 19%). In contrast, not using the heuristic (top-k 0) results in a less efficient search, while
applying it to all unstable neurons (top-k “all") drastically cuts down visited domains but incurs a
prohibitive time cost and a timeout, indicating that the overhead of processing too many prioritized
neurons outweighs the benefits of more targeted branching. This demonstrates a crucial trade-off,
with intermediate k values striking an optimal balance between guided search and computational
overhead.

Constraint Importance Heuristic The constraint importance heuristic is to sort the constraints
for better performance. The constraints corresponding to hyperplanes closer to the center of the
current input domain might be more immediately relevant or impactful for tightening the bounds or
for cutting off a significant portion of the current feasible region X'.

First, for the current input box domain X', determine its centroid &. We can calculate gT:i: +h—
>or i lgile; > O (there is no x € X satisfy the constraint in ) to check the infeasibility and
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Table 12: Ablation Study on Top-k Neuron Selection on 1snc

Ratio of selected neurons \ Total time (s) Domains visited

0/6 13.37 18,073,174
1/6 11.25 7,254,214
2/6 10.54 4,914,243
3/6 9.70 3,072,863
4/6 9.23 2,088,198
5/6 8.69 1,739,412
6/6 7.66 871,14

g' &+ h+ > |gilei <0 (forall z € X satisfy the constraint in ) to remove redundancy.
Second, for each available linear constraint gTw + h = 0, calculate the geometric distance from the
centroid & to this hyperplane:

de lg " @o + h|
llgll2

Then, sort the constraints in ascending order based on these calculated distances to prioritize con-
straints that are closer to the centroid. In methods like Algorithm [T](Complete Clipping), processing
more impactful constraints earlier might lead to faster convergence or more significant bound im-
provements in the coordinate ascent. Such an important metric could also be relevant to Algorithm 3]
(Relaxed Clipping).

We tested the bound tightness improvement from the heuristic on acasxu instance 65. Clip-and-
Verify improves the intermediate bounds for 470,772,542 times during input BaB, and 3.962% of
them can be further tightened with constraint importance heuristic. For all these further improved
bounds, we computed the empirical quantiles of the relative improvements, shown in Table [D.4]

Percentile of problems Max 0.1th 1th 5th 10th 25th 50th 75th 90th
Bound Improvement ~ 4242.6% 270.79% 3.07% 0.64% 0.29% 0.10% 0.03% 0.01% 0.002%

These results reveal that the head of the distribution contains substantial refinements, with the
maximum observed improvement reaching up to 4000%. This indicates that the heuristic can produce
tightened bounds, potentially leading to earlier branch pruning or faster convergence.

E Limitation and Broader Impacts

Limitation. Our framework’s effectiveness is influenced by the trade-off between the precision of
clipping and its computational overhead. While Complete Clipping utilizes GPU acceleration, its
scalability can be impacted when networks have very large hidden layers combined with a high
number of unstable neurons and sparse constraints. The memory complexity scales as O(B x N x M),
where B is the number of BaB subproblems, N is the number of neurons in the largest layer, and M
is the number of linear constraints. To mitigate this, our top-k neuron selection heuristic (Appendix
D.3) strategically prioritizes the most critical neurons, balancing precision and cost.

Conversely, while Relaxed Clipping is highly efficient with a complexity of O(n) per input di-
mension, its effectiveness can diminish in very high-dimensional input spaces due to the curse of
dimensionality, where axis-aligned relaxations may become looser.

However, the ultimate scalability of our method is not fundamentally limited by input dimensionality
or layer width, but rather by the intrinsic difficulty of the verification query, which is an NP-
hard problem. As demonstrated by our experiments on neural network control systems [2| even
small networks with low-dimensional inputs can pose immense verification challenges. Clip-and-
Verify proved essential in solving these hard instances. The key insight is that our approach adapts
computational effort based on problem characteristics rather than being constrained by absolute
dimensional limits, ensuring practical applicability across diverse verification scenarios.
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Figure 5: Plots for hard instances need to be solved by BaB in VNN-COMP benchmarks. It is
important to note that in large-scale models with numerous properties to verify, the cutting plane
method often incurs significant overhead. This is because our current approach processes all properties
in batches, whereas the cutting plane method handles each property individually. Consequently, when
addressing datasets like CIFAR-100 (99 properties) and TinyImageNet (199 properties), integrating
with BICCOS introduces additional overhead.

Broader Impacts Neural network verification is crucial for ensuring the safety and reliability of
Al systems in critical applications such as autonomous vehicles, medical diagnosis, and financial
trading. By significantly accelerating the verification process through efficient domain reduction,
our work makes formal verification more practical for larger and more complex neural networks.
This advancement enables broader adoption of verification techniques in real-world applications,
potentially preventing catastrophic failures and building trust in Al systems. Clip-and-Verify’s
integration with existing frameworks ensures immediate applicability, allowing organizations to
implement stronger safety guarantees without substantial overhead. While this work strengthens the
safety of Al systems, it is important to note that verification tools should be part of an approach to Al
safety, including robust testing interpretability, and ethical guidelines.
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tances need to be solved by BaB in SDP benchmarks.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our claims match our theoretical and empirical results. We present results
across several benchmarks to demonstrate that they can generalize to other settings.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations have been explicitly discussed in Appendix [E}
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Theoretical results have been proven.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Algorithms have been clearly described with technical details discussed.
Parameters for experiments have been included in the appendix. The code will be open-
sourced.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Code will be open-sourced.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental details have been discussed in the Experiments section and also
in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Verification results are deterministic on the benchmarks, and no error bars
need to be provided.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Time has been reported in tables and we only need one machine and one GPU
to run all experiments. The specific hardware details are reported in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have read and acknowledged the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Societal impacts have been discussed explicitly in Appendix [E]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: No data or models are released.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We’ve cited the sources of the benchmarks we used, such as those from the
VNN-COMP

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are introduced in this paper.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not use LLMs for important, original, or non-standard compo-
nent of the core methods in this research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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