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ABSTRACT

This paper considers the computer source code editing with few exemplars. The
editing exemplar, containing the original and modified support code snippets,
showcases a certain editorial pattern, and code editing adapts the common pattern
derived from few support exemplars to a query code snippet. In this work, we
propose a novel deep learning approach to solve this code editing problem auto-
matically. Our learning approach combines edit representations extracted from
support exemplars and compositionally generalizes them to the query code snippet
editing via multi-extent similarities ensemble. Specifically, we parse the support
and query code snippets using language-specific grammar into abstract syntax
trees. We apply the similarities measurement in multiple extents from individual
nodes to collective tree representations for query and support sample matching,
and ensemble the matching results through a similarity-ranking error estimator. We
evaluate the proposed method on C# and Python datasets, and show up to 8.6%
absolute accuracy improvements compared to non-composition baselines.

1 INTRODUCTION

In recent years, a surge of interest has been witnessed in applying machine learning techniques to
code editing (Zhao et al., 2019; Chen et al., 2019; Dinella et al., 2020; Chakraborty et al., 2020;
Yasunaga & Liang, 2020). Code editing in software engineering intends to revise the design, structure,
functionality, or implementation of existing programming codes into a desirable pattern. To maintain
high-quality code projects or merge several repositories, the programmers typically fix one or few
code snippets, and expect the same revision automatically applied to other places in demand over
the whole project. Automating this process can facilitate a broad range of programming applications
such as code migration, refactoring, version update, and bug repair.

The problem of code editing with exemplar(s) aims to adopt the common editorial pattern from given
exemplar(s) to a query code snippet. The editorial pattern describes the type of change between two
code snippets, and implies the underlying intent of making a kind of edit for a specific purpose, e.g.,
updating some keywords or reformatting redundant codes. Pink rectangles in Figure 1 provide an
example of editorial patterns with comparisons between original and edited code snippets. We also
present a list of editorial patterns that appear in our dataset in Appendix A for readers’ understanding.
This problem is conceptually similar to programming by example in software engineering (Menon
et al., 2013; Meng et al., 2013), and recently has been studied by Yin et al. (2019); Brody et al. (2020);
Yao et al. (2021) with deep learning. Technically, their methods parse the source code as an abstract
syntax tree using language-specific grammar, apply one-time or sequential edit actions over the tree,
and always keep the modified code snippet satisfying grammatical rules. In particular, all these works
focus on performing code editing with exact one editing exemplar, i.e., the one-shot setting.

While the above studies have demonstrated interesting results, simply adapting the editorial pattern
from one single exemplar can lead to poor generalization or even incorrect editing. Figure 1 presents
two cases. In Case (a), when a model observes only the Support #1 exemplar, it may intuitively
interpret the code refactoring rule as replacing the conditional expression (“if (s==null)...”) by
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Figure 1: Two illustrative cases of our motivation for code editing learning with few exemplars, rather
than with only one. The blue rectangles on the right part show the incorrect and correct solutions
without or with multiple exemplars composition, respectively in Case (a) and (b). The editing with
one exemplar may be dominated by the inductive bias learned from limited samples and thus lead to
an infeasible solution. With few support exemplars, the desirable solution can be reached.

a coalesce one (“...??...;”) only for a newly-declared variable (“string s=...”). Consequently,
applying the model to a query input could mistakenly transform the newly-declared variable (“string
title=...”) rather than its re-assigned correspondence (“title=ReformatTitle(...)”; see
Solution #1). In contrast, Case (b) demonstrates a situation where two editing exemplars turn out to be
sufficient to capture the logical transformation. The foregoing articulates the necessity of leveraging
few but not one exemplar to adapt an editorial pattern to a new code snippet. The few exemplars
help the editing escape from the inductive bias learned from one exemplar, and enhance generalized
capacity for other snippets with various contexts.

In light of this, in this paper, we consider the computer source code editing with few exemplars. The
editing of a query code snippet is triggered by few editing exemplars that containing the original
and modified support code snippets. Different from the above one-shot code editing scenario, few
exemplars, even within the same editorial pattern, perform divergent coding contexts and edit actions.
Therefore, it is not eligible to adapt the edit actions directly from an arbitrary exemplar. For this
scenario, the major challenge lies in how to identify and match helpful support exemplars for a query
input and compose them to guide the editing.

To address this challenge, we propose a novel approach that combines edit representations extracted
from exemplars and compositionally generalizes them to the query code snippet editing via multi-
extent similarities ensemble. Specifically, we parse the support and query code snippets using
language-specific grammar into abstract syntax trees, where editing actions are executed on nodes in
the tree. Based on this, we model the similarity between the representations of support and query
abstract syntax trees. We notice that among few exemplars, some editing actions only happen in a
local region, while concurrently some editing actions rely on more coding context. This inspires us to
consider multi-extent similarities between the representations of support and query abstract syntax
trees. We design a λ-softmax function by scaling the importance of nodes in an abstract syntax tree,
i.e., λ → 0 means the support/query code snippet is denoted by tree representation, while λ → ∞
means the support/query code snippet is denoted by one single node representation in the abstract
syntax tree. By controlling λ, the intermediate position between individual nodes and a collective tree,
we provide multiple representational query-support matchings, then adaptively ensemble outcomes
from these extents through a similarity-ranking error estimator for a robust composition. We use the
term multi-extent to describe the scope of query-support matching at various levels from nodes to a
collective tree representation.
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We evaluate the performance on two code editing datasets, one in C# (Yin et al., 2019) and one in
Python (collected by us). We implement the proposed multi-extent exemplar composition mechanism
on top of the state-of-the-art Graph2Edit model (Yao et al., 2021). On both datasets, our model
outperforms baseline methods by 8.0-10.9% in terms of absolute accuracy. In addition, our experi-
mental results show that (1) enabling few support exemplars can greatly improve code editing; (2)
compared with equally treating all support exemplars, precisely capturing the code snippet similarity
and compositing support exemplars are crucial for code editing; and (3) the multi-extent approach
offers better performance compared to its single-extent counterpart and other existing methods.

2 PRELIMINARY

In what follows we shall use C− and C+ to represent the abstract syntax trees of the input (previous)
and the output (edited) code snippets. We address the problem of code editing learning with few
exemplars. Giving a set of K support exemplars with an identical editorial pattern {(Csk

− , Csk
+ )}Kk=1,

the goal is to adapt the editing from support set to a query snippet Cq
− and obtain its desirable Cq

+.

Here we introduce one of the state-of-the-arts edit learning models Graph2Edit (Yao et al., 2021),
which builds a one-shot code editing framework with three major components. (1) A tree encoder
based on Gated Graph Neural Networks (Li et al., 2015) to embed the input abstract syntax tree C−
into node representations Z ∈ RN×D, where N is the number of nodes in the tree and D is the latent
feature dimension. The whole tree embedding t can be obtained by a graph pooling operation over all
node representations; (2) An editing encoder to embed input C− and corresponding output C+ into a
vector f∆(C−, C+) ∈ RD to represent the entire L sequential editing actions (four types of actions:
add/delete a node, add a subtree, or stop editing) from C− to C+ as well as the procedural editorial
pattern; (3) A decoder for editing action prediction working conditionally on the tree embedding t and
editing representation f∆(C−, C+). Predictions include the operational type, the executive location
on abstract syntax tree, and associated action values, e.g., to be replaced by which node. Denote
t1:l = (t1, . . . , tl) as the tree embedding history along the sequential editing, and a1:l = (a1, . . . , al)
as the editing action history until step l. Formally, the whole predictions of actions can be represented
as a conditional likelihood Pr (a1:L|f∆(C−, C+), t1) =

∏L
l=1 Pr (al|f∆(C−, C+), t1:l). An earlier

model Graph2Tree (Yin et al., 2019), where Graph2Edit derives from, shares the same paradigm but
edits the input in one-pass, instead of sequentially predict and apply the edit actions.

The Graph2Edit framework is trained with self-reconstruction. The training feeds the tree encoder and
the editing encoder with a pair of C− and C+, and maximizes the likelihood of the whole predictions
of actions towards the shortest sequential actions produced by dynamic programming. The training
details with the dynamic programming algorithm can be found in Yao et al. (2021). The training only
sends the vanilla editing encoder with the ground-truth from one exemplar, while {(Csk

− , Csk
+ )}Kk=1

with an identical editorial pattern are hard to collect from a wild code dataset.

Based on the training, Graph2Edit is mainly designed for code editing with only one support exemplar.
It is struggled to directly tackle few supports since few exemplars, even within the same editorial
pattern, perform divergent coding contexts and edit actions. We argue the one-exemplar case lacks
the capacity for compositional generalization on editorial patterns as we discussed in the introductory
part. We also empirically evidence this claim in our experimental section. Our method composites
f∆(C

sk
− , Csk

+ ) from support set based on a multi-extent query-support matching to form the query
edit representation fq

∆ for decoding purpose which done by the code editing frameworks. In the
next section, we elaborate on our proposed adaptive multi-extent similarity ensemble on exemplar
composition to address the foregoing challenges.

3 ADAPTIVE MULTI-EXTENT COMPOSITION

We assume that if the input tree of a support exemplar enjoys more similarity with the query input
tree, the query snippet is more likely to adopt the support exemplar’s edit representation towards
correct code editing. Based on this, we address compositional learning from a query-support matching
perspective. Deriving from the basis of code editing reference, some editing can be adapted depending
on individual node representation and regardless of its neighbor nodes and context. For instance,
the removal of a redundant bracket should partially be independent of the inside context, or the
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change of some outdated function calling mode in a previous language version should be invariant
to the host object. On the other hand, some editing highly relies on the contextual information
among several objects and connections therein, leading the editing learning to be determined by a
collective representation. Continuing with this analysis, we design a multi-extent measurement to
perform multiple intermediate query-support matching between individual nodes and the collective
tree. Specifically, we measure the multi-extent similarities between query and support snippets in
the tree embedding space, where we can define the coverage of nodes in a tree we want to involve
for matching (from a single node to every node), then ensemble and learn a convex combination
of the editing representations from the support set to maximize the adaptability for query snippet
editing. In the coming subsections, we introduce the query-support matching over abstract syntax tree,
extend it with multi-extent representation in an ensemble mechanism, then illustrate the meta-learning
paradigm and inference procedure.

3.1 QUERY-SUPPORT MATCHING: FROM COLLECTIVE TREE TO INDIVIDUAL NODE

Instead of treating each node equally, our model softly emphasizes some nodes in the query snippet
when meet a similar node in a support exemplar, and vice versa. Considering one query snippet and
a set with K support exemplars, let zqn and zskn denote the n-th node representation in the abstract
syntax tree of the query and k-th support snippet, respectively. Let φθ(·, ·) : Z × Z → R be a
query-support node matching similarity function (e.g., a neural network) with a learnable parameter
θ that takes the node representation from both sides as input. Note that φθ(·, ·) does not have to
be non-negative or symmetrical since the measurement across query and support can be deemed as
directional. We compute the initial query-support node matching activation mqsk

n and msk
n as follows:

mq,sk
n := max

{
φθ

(
zqn, z

sk
i

)}Ns

i=1

and msk,q
n := max

{
φθ

(
zqi , z

sk
n

)}Nq

i=1

, (1)

where Nq and Ns are the numbers of nodes in the query and support abstract syntax trees. The
maximum operation over the set of one-to-all node emphasizes the matching between individual
nodes, and returns a high activation when there is at least one good match in the counterpart. The
activation represents the likelihood that a query node appears in a support snippet and vice versa.

To capture the multi-extent matching, we design a λ-softmax function by scaling the importance of
nodes in an abstract syntax tree, and seek the query-support matching at the intermediate position
between individual nodes and a collective tree:

σq,sk
n,λ :=

exp (λmq,sk
n )∑Nq

i=1 exp (λm
q,sk
i )

and σsk,q
n,λ :=

exp (λmsk,q
n )∑Nsk

i=1 exp (λmsk,q
i )

. (2)

σq,sk
n,λ denotes the parameterized node activation from the query snippet to the k-th support snippet,

and a similar expression can denote as σsk,q
n,λ . Based on the above normalized activation for individual

node representation, the collective tree representation of the query and support snippets can be
calculated using a weighted average pooling as follows:

tqλ :=
1

K

Nq∑
n=1

K∑
k=1

σq,sk
n,λ zqn and tskλ :=

Nsk∑
n=1

σsk,q
n,λ zskn . (3)

The representation of the query snippet has the summation of matching values on nodes from
all support exemplars. Combining Equation (2) and Equation (3), an intuitive interpretation on
variable λ raises: a larger λ denotes greater domination of matched individual nodes in the final tree
representation, i.e., the sharpness of the outcomes after λ-softmax normalization. λ → 0 preserves
the final query/support representation as to their initial tree representation, meaning it calculates a
more smoothly weighted average of node representations over the entire tree. λ → ∞ represents the
final query/support representation approximately with only one single node representation most of
the time, where the node is selected upon the maximum activation from Equation (1). Setting a large
λ value implies a smaller coverage over the tree. This coverage scaling property holds due to the
monotonous increase of the first-order gradient of the exponential function. We will tackle the λ value
selection problem in the next subsection. Currently, we reach the generation of edit representation for
query sample editing, and the updated tree representation yields the expression:

fq
∆ :=

K∑
k=1

ϕθ(t
q
λ, t

sk
λ )f∆(C

sk
− , Csk

+ ), (4)
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where ϕθ(·, ·) is a similarity measure over query and support tree representations and should satisfy
the convexity in the above combination. Note that for a simplified expression, we do not distinguish
the learnable parameter θ for each module but their parameters are isolated.

3.2 MULTI-EXTENT COMPOSITION AND ENSEMBLE

The λ-softmax in Equation (2) controls the matching extent from individual node to collective tree.
However, it is hard to access the optimal intermediate position, since code editing samples suffer from
a huge variance. Therefore, a single extent may not be robust enough to help the model generalize in
diverse editing scenarios. We hereby propose a multi-extent measurement to complement the above
weakness by setting λ with different continuous values, and ensemble all the results ϕθ(t

q
λi
, tskλi

) for
{λi}Nλ

i=1 to enhance the generalization on complicated code snippets. However, setting λ arbitrarily
and ensemble all perspectives linearly without selection may corrupt the overall tree representation,
and thus deteriorate the model. For a robust ensemble and aggregation, we consider assessing the
quality of ϕθ(t

q
λi
, tsλi

) towards different λi by using a marginal ranking error on edit representation.
Since we have the accessible ground-truth Cq

+ during training, we employ the ranking error eλi
to

explicitly reflect how good ϕθ(t
q
λ, t

sk
λ ) is under a certain λ with respect to the similarity between

query and K support exemplars. In the inference phase, due to the missing of Cq
+, we employ a

similarity-ranking error estimator êλi
= Rµ(t

q
λi
, ts1λi

, ts2λi
, . . . , tsKλi

;λi) : R(K+1)×D → R to predict
the quality of each λi, where µ is the learnable parameter in Rµ, and ensemble the outcomes. Training
details of Rµ will be elaborated on in the next subsection.

To achieve multi-extent composition and ensemble, we first measure the similarity between query
and support edit representations via the editing encoder:

wk :=

〈
f∆(C

q
−, C

q
+), f∆(C

sk
− , Csk

+ )
〉∥∥f∆(Cq

−, C
q
+)

∥∥ ·
∥∥f∆(Csk

− , Csk
+ )

∥∥ . (5)

Then we access the error for each λ by:

eλ :=

K∑
k=1

(
wΓ(1) − wΓ(k)

)
·max

{
0, γ −

(
ϕθ(t

q
λ, t

sΓ(1)

λ )− ϕθ(t
q
λ, t

sΓ(k)

λ )
)}

, (6)

where Γ(·) is the index mapping for K support exemplars that satisfy wΓ(1) ≥ wΓ(2) ≥ . . . ≥ wΓ(k),
i.e., the mapping to sort sk in a descending order, and γ is the margin set as a hyperparameter. The
formulation indicates how well the nearest support exemplars can outperform other support exemplars,
and the factor (wΓ(1) − wΓ(k)) reveals the error confidence. Note that the above error term depends
on the edit model f∆, which is only an approximate estimation. Then we extend Equation (4) by
involving multiple extents and the reciprocal of its error for adaptive ensemble:

fq
∆ :=

K∑
k=1

Nλ∑
i=1

1

eλi
+ ϵ

ϕθ(t
q
λi
, tskλi

)f∆(C
sk
− , Csk

+ ). (7)

where ϵ is a constant in denominator for numerical stability. We omit the normalization over
ϕθ(t

q
λi
, tskλi

)/(eλi
+ ϵ) in the equation. In practice, we apply a softmax function on this term to keep

the convexity of the combination. Note that in inference eλi
will be replaced by êλi

.

3.3 LEARNING AND INFERENCE

In the learning phase, we have a set of K support exemplars {(Csk
− , Csk

+ )}Kk=1 and one complete
query snippet {Cq

−, C
q
+} as inputs. Following the Graph2Edit framework (Yao et al., 2021), we

obtain the zqn and zskn of the n-th node representation of the query and k-th support snippet and the
edit representation f∆(C

sk
− , Csk

+ ) for each support exemplar. Lq is the number of steps towards the
shortest sequential actions from Cq

− to Cq
+, and a1:Lq denotes the corresponding action sequence.

Let e = (eλ1
, eλ2

, . . . , eλN
) calculated by Equation (6) and ê = (êλ1

, êλ2
, . . . , êλN

) is its estimation
from the estimator Rµ. With Nλ extents, our objective function can be written as:

min
θ,µ

−Pr (a1:Lq |fq
∆, t

q) + ||e||1 + DKL(ê∥e), (8)
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where || · ||1 is the vector l1-norm to sum up the absolute values of all elements, DKL(·∥·) is the KL-
divergence, fq

∆ is the composition of edit representations in Equation (7), tq =
∑Nq

n=1 z
q
n/Nq is the

initial tree representation of Cq
−, θ and µ are the learnable parameters in the similarity measurement

ϕθ, φθ and the estimator Rµ. We omit the balanced factor for each term for a simplified expression.
The above objective function consists of three parts. The first term maximizes the likelihood between
the learned convex combination of edit representations and optimal editing actions, while the rest two
terms aim to minimize the ranking error between the query and support snippets at different extent
levels and train an estimator to accurately estimate the error for inference usage. The parameters for
tree encoder, editing encoder, and decoder are obtained via a pre-training stage on another data split
following the self-reconstruction paradigm from Graph2Edit, while their parameters are not tuned in
the meta-learning stage for optimization, since we observe a serve overfitting if doing so.

We follow the episode training mechanism (Snell et al., 2017) which is widely used in few-shot
learning to simulate the encounter of new editorial patterns in testing. For each training forward,
we sample a fixed number of editorial patterns with K support exemplars and one query snippet
per class and backpropagate the loss. In the inference phase, given a set of K support exemplars
{(Csk

− , Csk
+ )}Kk=1 and one input query snippet Cq

−, we replace eλi
with êλi

in Equation (7) and yield
the formulation.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTING

Dataset We include two code editing datasets for performance evaluation. (1) C#Fixer (Yin
et al., 2019) is a dataset containing 2,878 editing pairs, generated by applying two C# fixing tools
Roslyn (Microsoft, 2021) and Roslynator (Pihrt, 2020) on six projects. A fixer is building on top of
the C# compiler used to perform refactoring and modernization on codes. One fixer is designed for
one type of refactoring and 16 fixers are selected in this dataset. A pre-trained model for C#Fixer
is trained on GitHubEdits dataset using self-reconstruction. The dataset collects 54 C# projects on
GitHub which extract the source code before and after the commits from users. We use the data of
GitHubEdits only for pre-training and follow the training protocol in Yao et al. (2021) but not for
few-shot experiments. (2) Benefiting from the flexibility and generalized capacity of abstract syntax
description language, beyond C#, we collect another dataset PyFixer written in Python 2. We use
Python-Future (Ltd, 2019), a tool that edits the codes in 5,959 projects written in Python 2 to make
them compatible for Python 3. We obtain the code pairs by taking codes before and after applying the
tool and inspecting the changes. To simulate the pre-training and few-shot learning as in GitHubEdits
and C#Fixer, we select 12 types of fixers and extract a fixed number of each fixer from the main data
to form the dataset for few-shot learning, while the rest are preserved for pre-training. After data
cleaning, we have 14,941 code pairs for (pre) training, 1,664 for validation, and 2,319 for few-shot
experiments. The two datasets only contain source code but without any author’s name, contact
information, or offensive content.

Baseline We employ modifications on two abstract syntax tree-based code editing frameworks,
Graph2Tree (Yin et al., 2019) and Graph2Edit (Yao et al., 2021), to fit them into the few exemplars
editing setting and involve the following baselines. Note that all baselines are only different in
calculating the similarity measure ϕθ in Equation (4). RS (Random Selection): we randomly select
one support exemplar from the support set and use its edit representation for standard decoding on
query snippet; NN (Nearest Neighbor): we identify the nearest neighbor in the support set based on
the distance calculated by graph edit distance (Sanfeliu & Fu, 1983; Abu-Aisheh et al., 2015) over
AST trees (GED-NN), and cosine similarity over input tree representation (CS-NN). AE (Average
Edit Representation): we infer the edit representation of K support exemplars using editing encoder
respectively, and take the mean of these K representations for query decoding. This is equivalent to
setting ϕθ = 1/K in Equation (4). Moreover, we include two other baselines within our proposed
composition framework. GED-Comp (Composition via graph edit distance) employs the graph
edit distance metric as ϕθ when comparing the query and the support exemplar among every query-
support snippet pair; we take the reciprocal proportion of this metric and form a convex combination
over K edit representations. CS-Comp (Composition via cosine similarity) means that we employ
mean pooling over query and support trees, compute the similarity ϕθ by cosine similarity on tree
representations for every query-support snippet pair, normalize, and form a convex combination
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Table 1: Experimental results of code editing with 5 support exemplars on C#Fixer dataset. RS:
random select; AE: average edit representation; GED: graph edit distance; NN: nearest neighbor; CS:
cosine similarity; Comp: composition. Please refer to the experimental protocol for a full explanation.
The middle line in the table divides the methods into non-composition and composition ones.

Macro Accuracy Split #1 Split #2 Split #3 Split #4 Split #5 Avg.

Graph2Tree-RS 0.270 ± 0.027 0.360 ± 0.011 0.341 ± 0.029 0.243 ± 0.009 0.384 ± 0.017 0.320
Graph2Edit-RS 0.279 ± 0.022 0.423 ± 0.008 0.413 ± 0.018 0.225 ± 0.007 0.396 ± 0.017 0.347
Graph2Edit-GED-NN 0.282 ± 0.022 0.450 ± 0.005 0.444 ± 0.018 0.260 ± 0.011 0.434 ± 0.036 0.374
Graph2Edit-CS-NN 0.291 ± 0.010 0.454 ± 0.010 0.453 ± 0.019 0.270 ± 0.020 0.442 ± 0.018 0.382

Graph2Tree-AE 0.381 ± 0.022 0.363 ± 0.008 0.372 ± 0.011 0.275 ± 0.014 0.349 ± 0.028 0.348
Graph2Edit-AE 0.336 ± 0.025 0.471 ± 0.012 0.465 ± 0.022 0.267 ± 0.018 0.402 ± 0.023 0.388
Graph2Edit-GED-Comp 0.363 ± 0.019 0.479 ± 0.012 0.487 ± 0.021 0.302 ± 0.012 0.457 ± 0.026 0.418
Graph2Edit-CS-Comp 0.387 ± 0.016 0.500 ± 0.004 0.501 ± 0.016 0.337 ± 0.008 0.507 ± 0.009 0.447
Ours 0.416 ± 0.015 0.514 ± 0.021 0.522 ± 0.015 0.352 ± 0.018 0.539 ± 0.023 0.468

Micro Accuracy Split #1 Split #2 Split #3 Split #4 Split #5 Avg.

Graph2Tree-RS 0.290 ± 0.024 0.490 ± 0.008 0.332 ± 0.032 0.166 ± 0.008 0.619 ± 0.010 0.380
Graph2Edit-RS 0.281 ± 0.018 0.538 ± 0.010 0.417 ± 0.022 0.167 ± 0.010 0.599 ± 0.010 0.400
Graph2Edit-GED-NN 0.282 ± 0.020 0.559 ± 0.003 0.450 ± 0.019 0.183 ± 0.006 0.616 ± 0.016 0.418
Graph2Edit-CS-NN 0.289 ± 0.010 0.563 ± 0.010 0.459 ± 0.021 0.186 ± 0.010 0.624 ± 0.006 0.424

Graph2Tree-AE 0.391 ± 0.017 0.546 ± 0.006 0.353 ± 0.013 0.177 ± 0.005 0.673 ± 0.010 0.428
Graph2Edit-AE 0.343 ± 0.019 0.603 ± 0.011 0.460 ± 0.025 0.184 ± 0.012 0.590 ± 0.020 0.436
Graph2Edit-GED-Comp 0.367 ± 0.014 0.607 ± 0.014 0.485 ± 0.024 0.200 ± 0.008 0.606 ± 0.022 0.453
Graph2Edit-CS-Comp 0.388 ± 0.010 0.616 ± 0.008 0.500 ± 0.018 0.209 ± 0.003 0.625 ± 0.015 0.467
Ours 0.411 ± 0.011 0.636 ± 0.030 0.524 ± 0.017 0.218 ± 0.011 0.653 ± 0.039 0.488

over the entire available edit representations from support set. Finally, Ours is the proposed model
which learns the similarity measure ϕθ as described in Section 3, where we additionally consider an
ensemble of multi-extent similarity scores, as shown in Equation (7). Note that we find Graph2Tree
contains numerous C# specific implementations and is currently not applicable for Python, so we do
not include this baseline on PyFixer. All the baselines are under MIT license for public usage.

Protocol We randomly split fixers for few-shot experiments into meta-train and meta-test sets. For
C#Fixer, the meta-train set contains 12 types of fixers and the meta-test set has the rest 4 fixers.
The meta-train set of PyFixer contains 8 fixers and the meta-test set takes the rest 4. To perform a
comprehensive empirical evaluation, we repeat the random split procedure and obtain 5 different
splits denoted from Split #1 to Split #5. For meta-training, to simulate the low-resource scenario
and mitigate the imbalance in samples per fixer, we take 10 samples for each fixer and follow a
standard episode training strategy. Every time we construct the support set to train on one query
sample, we randomly select the exemplars who are sharing the same fixing type with the query
sample in the sampled data. For meta-testing, we iterate through all samples and each of them as
a query snippet at a time, then randomly sample from the rest of its fixer peer to build its support
set. All numerical results are run with 5 different random seeds. Mean and standard deviation are
reported. Note that the variance not only stems from the training per se, but also is affected by the
random sampling of support set in testing. Since we fix the random seed every time, all methods
are guaranteed to encounter identical query-support combinations in the evaluation under the same
seed. All configurable hyperparameters are tuned on a validation split outside the five evaluative
splits. We defer the model architecture and configurable hyperparameters to supplementary material.
The accuracy per pair is a binary value obtained by whether the model edits C− to meet the exact
ground-truth C+. Following Yao et al. (2021), we report both Macro and Micro accuracy since there
is a significant fixer imbalance in C#Fixer. K is set to 5 and λ is set to the ensemble over (1.0,
2.0, 4.0, 10.0) by default if no specification is noted. We instantiate φθ (in Equation (1)) as neural
networks and ϕθ (in Equation (4)) as cosine similarity. Experiments are run on one NVIDIA RTX
3090. We complement more technical details in Appendix B.

4.2 RESULT AND ANALYSIS

Main numerical results of code editing with 5 support exemplars on C#Fixer and PyFixer are presented
in Table 1 and Table 2. Compared to baseline methods, we nearly achieve the best results on all splits
of two datasets, across macro and micro accuracy. We outperform the second-best baseline method by
bringing an absolute improvement range from 8.0% (Macro accuracy on C#Fixer) to 10.9% (PyFixer).
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Table 2: Experimental results of code editing with 5 support exemplars on PyFixer dataset. Macro
and micro accuracy are identical on this dataset. The middle line in the table divides the method into
non-composition and composition method.

Macro/Micro Accuracy Split #1 Split #2 Split #3 Split #4 Split #5 Avg.

Graph2Edit-RS 0.408 ± 0.017 0.381 ± 0.015 0.498 ± 0.033 0.293 ± 0.007 0.206 ± 0.006 0.357
Graph2Edit-GED-NN 0.366 ± 0.019 0.400 ± 0.015 0.535 ± 0.011 0.337 ± 0.005 0.229 ± 0.006 0.373
Graph2Edit-CS-NN 0.446 ± 0.017 0.425 ± 0.016 0.541 ± 0.006 0.346 ± 0.012 0.239 ± 0.010 0.399

Graph2Edit-AE 0.297 ± 0.012 0.347 ± 0.008 0.488 ± 0.010 0.276 ± 0.008 0.194 ± 0.009 0.320
Graph2Edit-GED-Comp 0.337 ± 0.014 0.368 ± 0.007 0.509 ± 0.012 0.297 ± 0.013 0.219 ± 0.012 0.346
Graph2Edit-CS-Comp 0.441 ± 0.020 0.409 ± 0.011 0.543 ± 0.011 0.347 ± 0.010 0.276 ± 0.014 0.403
Ours 0.510 ± 0.036 0.429 ± 0.021 0.544 ± 0.022 0.369 ± 0.021 0.294 ± 0.018 0.429

Figure 2: Performance of code editing with various K support exemplars, where the integer K ∈ [3, 7]
along the x-axis. Left is on C#Fixer dataset Split #1, and right is on PyFixer dataset Split #1. An
estimated regression model is plotted for every group of data by the seaborn package, showing as the
straight line with deviations. Our approach consistently benefit from adding more support exemplars
and is capable to find a better composition, while the other two baselines do not enjoy that.

With the same base architecture (exclude Graph2Tree), compared to GED and CS, our improvements
show the significance of multi-extent composition learning of edit representations from support set.
Quantitative results demonstrate the effectiveness of treating nodes in abstract syntax tree differently
and ensemble learning by the meta-learning strategy. We present extra experiments in this subsection
as well as in Appendix C to further investigate our approach. We attach a failure case analysis and a
visualization diagram in Appendix D and Appendix E, respectively.

More Support Exemplars Figure 2 shows the performance trends when enlarging the size of
support set, i.e., offering more resources for code editing. An estimated regression with uncertainty
is plotted from K = 3 to K = 7. It is relatively straightforward that the performance on random
selection is not affected by the scale of support set. The average edit representation performs
differently on two datasets. Adding more exemplars into support set can help to improve the
robustness of the weighted mean representation, or lead it to deviate from the representational
manifold if high variances exist among exemplars. Our approach consistently benefits from more
support exemplars and gradually enlarges the margin towards the two baselines. This demonstrates
our model is capable to find a better composition when there are more options, therefore preserving
the possibility of capability enhancement when more resources are available.

Investigation of Multi-Extent Ensemble Figure 3 shows the functional analyses on multi-extent
measurement and its ensemble, where we investigate seven possible options on extent parameter λ,
four in a single extent, three in a double extent ensemble, and compare to the full model with four
levels of extents plotting in red. A single extent in the first four rows underperforms the ensemble
when using two or four extents. This confirms our methodological hypothesis that a single extent
may not be enough to express the similarity between the query-support snippet pair due to the high
variances and that ensembling multiple extents helps the model robustness. The full model with four
extents also performs better than the double extent ensemble shown by the median line of the box
plot. However, adding more extents implies increasing computational costs and hence a trade-off.
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Figure 3: Experiments on multi-extent parameter λ and its ensemble. The y-axis represents the
instantiated value of λ, where the plus symbol denotes the ensemble of the two extents, and ’Ensemble’
includes all these four. Left: C#Fixer dataset Split #1; Right: PyFixer dataset Split #1.

5 RELATED WORK

Machine Learning for Code Editing Code editing using machine learning has been developed for
a long time and is receiving increasing attention in recent years (Menon et al., 2013; Zhang et al.,
2019; Tian et al., 2020). Depending on how a code snippet is represented, the research can be roughly
summarized into two categories, i.e., performing code editing over code token sequences or abstract
syntax tree. In the former category, Yin et al. (2019); Chen et al. (2019); Yasunaga & Liang (2020)
directly generate the expected edited code token sequence, while Shin et al. (2018); Vu & Haffari
(2018); Dong et al. (2019); Zhao et al. (2019) predict the editing operational sequence, which has
been demonstrated to bear more sample efficiency. On the other hand, works in the second category
(Yin et al., 2019; Chakraborty et al., 2020; Tarlow et al., 2020; Dinella et al., 2020; Brody et al.,
2020; Yao et al., 2021) attempt to edit the trees of programs similarly by either directly generating the
edited trees or predicting the tree edit operations. The problem addressed in this paper is conceptually
related to ‘programming by example’ in software engineering that finds the sharing edit operations
among different exemplars and applies it to query snippet (Menon et al., 2013; Osera & Zdancewic,
2015; Ferdowsifard et al., 2020; Meng et al., 2013). Recently, Yin et al. (2019); Yao et al. (2021)
tackle this problem using deep learning techniques. Nonetheless, both of the two works have focused
on code editing from one shot of exemplar, which may not be sufficient for learning generalizable
editing, as we elaborated in Section 1. This inspires us to investigate few-shot code editing.

Few-shot Learning Few-shot learning has been developed in many low-resource scenes (Vinyals
et al., 2016; Snell et al., 2017; Finn et al., 2017), and with advance in meta seq2seq learning
considering the concept of generalized composition (Gu et al., 2018; Lake, 2019; Nye et al., 2020).
Our work conceptually relates to the matching principle in few-shot learning (Vinyals et al., 2016;
Snell et al., 2017) but with a different compositional task and a specific design for robust multi-
extent abstract syntax tree matching. To our best knowledge, we are the first to consider few-
shot compositional generalization in code editing, which we believe can inspire development in
programming-related applications like code transfer, refactoring, and migration.

6 CONCLUSION

In this work, we considered code editing with few exemplars. Based on previous frameworks on code
editing using abstract syntax tree to present the computer code snippets, we proposed an adaptive
multi-extent composition method to perform varying intermediate representations between a collective
tree and individual nodes. We leveraged an ensemble approach to gather the query-support matching
from multiple extents and delivered a robust composition over support editing representations for the
query snippet decoding. Evaluations on two code editing datasets demonstrated the effectiveness of
our method over baselines by a large margin. To develop this framework into a product, we consider
letting the user collect a few exemplars showing their own purpose. The tool requests an interaction
but also offers full flexibility to the user, and is more adapted to a personal development environment.
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7 ETHICS STATEMENT

We discuss the potential ethical considerations in this section. We do not discover a noteworthy
negative societal impact originating from our work. One minor concern is the research in machine
learning for source code may encourage and facilitate the code data collection from open-source
projects. The data may unintentionally involve user privacy like the author’s name, organization, or
file date, and the collection process may violate the usage license.
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A EDITING EXAMPLES FOR FIXERS IN PyFixer

We list the 12 kinds of fixer names in PyFixer in Table 3.

Table 3: Fixer examples in PyFixer

Fixer 05: lib2to3.fixes.fix_filter
C− chunk = filter(lambda x: x.feature == feature, ichunk)
C+ chunk = [x for x in ichunk if x.feature == feature]

Fixer 08: lib2to3.fixes.fix_has_key
C− key = request.matchdict["key"] if request.matchdict.has_key("key") else ""
C+ key = request.matchdict["key"] if "key" in request.matchdict else ""

Fixer 09: lib2to3.fixes.fix_idioms
C− return type(self) == type(other) and self.__dict__ == other.__dict__
C+ return isinstance(self, type(other)) and self.__dict__ == other.__dict__

Fixer 15: lib2to3.fixes.fix_map
C− map(int, [a for a in kwargs.values() if a != kwargs[’releaselevel’]])
C+ list(map(int, [a for a in kwargs.values() if a != kwargs[’releaselevel’]]))

Fixer 18: lib2to3.fixes.fix_next
C− second_gff_chunk = second_gff.next()
C+ second_gff_chunk = next(second_gff)

Fixer 23: lib2to3.fixes.fix_raw_input
C− raw_input("Start the server on 0:1 and press enter.".format(str(parsed.ip), str(parsed.p)))
C+ input("Start the server on 0:1 and press enter.".format(str(parsed.ip), str(parsed.p)))

Fixer 34: lib2to3.fixes.fix_zip
C− context.update(zip(inlines_names, kwargs.get(’inlines’, [])))
C+ context.update(list(zip(inlines_names, kwargs.get(’inlines’, []))))

Fixer 34: lib2to3.fixes.fix_absolute_import
C− from elks import Elks
C+ from .elks import Elks

Fixer 41: lib2to3.fixes.fix_future_standard_library
C− import urlparse
C+ import urllib.parse

Fixer 42: lib2to3.fixes.fix_future_standard_library_urllib
C− from urllib2 import HTTPError, urlopen, Request
C+ from urllib.request import urlopen, Request

Fixer 42: lib2to3.fixes.fix_print_with_import
C− print(’site_data_dir’, app.locations.site_data_dir)
C+ print((’site_data_dir’, app.locations.site_data_dir))

Fixer 49: lib2to3.fixes.fix_unicode_keep_u
C− username = unicode(origin.getFrom()).split(’/’)[1].replace(" ","")
C+ username = str(origin.getFrom()).split(’/’)[1].replace(" ","")

B EXPERIMENTAL DETAILS

We collect the PyFixer dataset by separately applying 51 fixers in Python-Future (Ltd, 2019) over
5,959 projects written in Python 2 to make them compatible with Python 3. We obtain the code pairs
by inspecting the changed lines and get the source code before and after the refactoring. We select
12 types of fixers and extract 200 samples for each fixer from the main data to build the dataset for
few-shot learning, while the rest are preserved for model pre-training.
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For training, we set the batch size to 16, epochs to 15, learning rate to 1e-4, with a gradient
accumulation for every 2 optimized steps. The extent parameter λ for main experiments are set as an
ensemble for 10, 5, 2, and 1. The architectural parameters are set the same as Graph2Edit (Yao et al.,
2021). The predictor R is implemented with neural networks in two layers with Leaky ReLU. The
learnable function φθ(·, ·) is implemented with one linear layer followed by cosine similarity between
the two input terms. The function ϕ(·, ·) is a cosine similarity function on edit representation.

The following equation describes the calculation of macro and micro accuracy. Consider a set of
class C, Tc is the number of correctly edited samples in class c, Nc is the total number of samples in
class c. These two metrics can be expressed by

Macro accuracy =
1

|C|
∑
c∈C

Tc

Nc
, Micro accuracy =

∑
c∈C Tc∑
c∈C Nc

. (9)

Note that, in our experiments, an edited code is considered “correct” only when it is exactly the same
as the ground truth in both syntax and semantics.

The PyFixer are working under Python 3.8, having the abstract syntax tree grammar from
https://docs.python.org/3.8/library/ast.html. We list the choice of splits for the two datasets be-
low.

Table 4: Fixer Splits on C#Fixer

Split #1 CA2007, IDE0004, RCS1015, RCS1021, RCS1032, RCS1058,
RCS1077, RCS1097, RCS1118, RCS1123, RCS1197, RCS1206 RCS1146, RCS1207, RCS1202, RCS1089

Split #2 IDE0004, RCS1015, RCS1032, RCS1058, RCS1077, CA2007,
RCS1089, RCS1146, RCS1202, RCS1206, RCS1207, RCS1097 RCS1118, RCS1123, RCS1021, RCS1197

Split #3 RCS1015, RCS1021, RCS1032, RCS1058, RCS1077, RCS1097,
CA2007, IDE0004, RCS1118, RCS1146, RCS1202, RCS1207 RCS1123, RCS1197, RCS1206, RCS1089

Split #4 RCS1123, RCS1021, RCS1032, RCS1058, RCS1206, RCS1097,
CA2007, IDE0004, RCS1118, RCS1146, RCS1202, RCS1207 RCS1015, RCS1197, RCS1077, RCS1089

Split #5 RCS1077, RCS1021, RCS1032, RCS1058, RCS1206, RCS1097,
CA2007, IDE0004, RCS1197, RCS1146, RCS1089, RCS1207 RCS1118, RCS1015, RCS1123, RCS1202

Table 5: Fixer Split on PyFixer

Split #1 08, 15, 18, 23, 34, 42, 47, 49 05, 41, 09, 35

Split #2 08, 09, 35, 23, 34, 42, 47, 05 41, 49, 15, 18

Split #3 41, 09, 15, 23, 49, 42, 47, 05 08, 18, 34, 35

Split #4 41, 09, 34, 23, 49, 42, 08, 05 47, 15, 18, 35

Split #5 15, 09, 34, 23, 49, 35, 08, 47 05, 41, 18, 42

We use the fixer’s name in Table 4 and the fixer’s index in Table 5 corresponding to the order in the
Python-Future package.

C ADDITIONAL EXPERIMENT

We extend our experiments by considering the ‘Hit-1-in-5’ and ‘Hit-5-in-5’ cases when editing with
one exemplar from the given few exemplars. In the ‘Hit-1-in-5’ case, we separately decode the
query code snippet using the K exemplars and obtain K results. We count the result of the query
sample as correct if any of these K decoding results match with the ground truth. Similarly, in
the ‘Worst’ case, we count it as correct when all of these K results are correct. Note that both the
‘Hit-1-in-5’ and ‘Hit-5-in-5’ cases are not real in practical usage since we only expect one output
from the editing system. Giving possible answers as many as it can is not user-oriented and not
scalable. The ‘Hit-1-in-5’ and ‘Hit-5-in-5’ cases can be understood as the upper and the lower bound
of results if we randomly select one exemplar from the support set but they are almost not achievable.
We include an experiment using every exemplar in Figure 4.
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Figure 4: Macro accuracy on C#Fixer dataset using Graph2Edit. ‘comp.’ is abbreviated for composi-
tion and ‘non-comp.’ is abbreviated for non-composition. Blue dots represented the average accuracy
over a split obtained by using one exemplar in the support set, indexing from 1 to 5, respectively. Or-
ange dots is the accuracy achieved by our proposed method. Our compositional method consistently
outperforms the results using only one exemplar that suffers from variance in code editing.

Table 6: Graph2Edit results of Hit-1-in-5 and Hit-5-in-5 with 5 support exemplars on C#Fixer dataset.

Macro Accuracy Split #1 Split #2 Split #3 Split #4 Split #5 Avg.

Ours 0.416 ± 0.015 0.514 ± 0.021 0.522 ± 0.015 0.352 ± 0.018 0.539 ± 0.023 0.468
Hit-1-in-5 0.462 ± 0.006 0.601 ± 0.007 0.605 ± 0.006 0.413 ± 0.016 0.660 ± 0.013 0.548
Hit-5-in-5 0.072 ± 0.019 0.154 ± 0.010 0.126 ± 0.020 0.045 ± 0.004 0.111 ± 0.013 0.102

Micro Accuracy Split #1 Split #2 Split #3 Split #4 Split #5 Avg.

Ours 0.411 ± 0.011 0.636 ± 0.030 0.524 ± 0.017 0.218 ± 0.011 0.653 ± 0.039 0.488
Hit-1-in-5 0.443 ± 0.008 0.721 ± 0.004 0.616 ± 0.006 0.312 ± 0.021 0.780 ± 0.007 0.574
Hit-5-in-5 0.074 ± 0.017 0.222 ± 0.012 0.126 ± 0.022 0.033 ± 0.003 0.260 ± 0.017 0.143

Hit-1-in-5 requests the ground-truth.

Table 7: Graph2Edit results of Hit-1-in-5 and Hit-5-in-5 with 5 support exemplars on PyFixer dataset.
Macro and micro accuracy are identical on this dataset.

Macro/Micro Accuracy Split #1 Split #2 Split #3 Split #4 Split #5 Avg.

Ours 0.510 ± 0.036 0.429 ± 0.021 0.544 ± 0.022 0.369 ± 0.021 0.294 ± 0.018 0.429
Hit-1-in-5 0.780 ± 0.011 0.580 ± 0.007 0.623 ± 0.011 0.742 ± 0.004 0.455 ± 0.011 0.636
Hit-5-in-5 0.059 ± 0.009 0.107 ± 0.012 0.165 ± 0.009 0.045 ± 0.007 0.013 ± 0.004 0.078

Hit-1-in-5 requests the ground-truth.

Table 8: A failure case from our method on C#Fixer dataset
Support set

C− Utils.AssertArgument(this.VAR0!= null && this.VAR0.Any(), LITERAL);
C+ Utils.AssertArgument(this.VAR0?.Any() == true, LITERAL);

C− bool VAR0= this.VAR1!= null && this.VAR1.Any();
C+ bool VAR0= this.VAR1?.Any() == true;

C− var VAR0= VAR1.Properties().Where(VAR2=> VAR2!= null && VAR2.Name != null
&& String.Equals(VAR2.Name, LITERAL, StringComparison.OrdinalIgnoreCase));

C+ var VAR0= VAR1.Properties().Where(VAR2=> VAR2?.Name != null
&& String.Equals(VAR2.Name, LITERAL, StringComparison.OrdinalIgnoreCase));

C− var VAR0= VAR1.AsEnumerable().FirstOrDefault(VAR2=> VAR2.Inline != null
&& VAR2.Inline.Tag == Syntax.InlineTag.String);

C+ var VAR0= VAR1.AsEnumerable().FirstOrDefault(VAR2=> VAR2.Inline?.Tag == Syntax.InlineTag.String);

C− var VAR0= VAR1.AsEnumerable().FirstOrDefault(VAR2=> VAR2.Inline != null
&& VAR2.Inline.LiteralContent == LITERAL);

C+ var VAR0= VAR1.AsEnumerable().FirstOrDefault(VAR2=> VAR2.Inline?.LiteralContent == LITERAL);

Query sample

C− var VAR0= (VAR1!= null) && (VAR1.NodeType == ExpressionType.Not);
C+ var VAR0= (VAR1?.NodeType == ExpressionType.Not);
Prediction var VAR0= (VAR1?.Any() == ExpressionType.Not);
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Figure 5: Visualization of normalized node activation with λ = 1.0 on query snippet and two support
exemplars. We plot the top six nodes with the highest activation for each tree and show them in
decreasing color saturation. Abstract syntax trees are plotted after pruning on insignificant parts.

D FAILURE CASE

We analyze the failure case in this section. A failure case on editing the ‘&&’ logical operation
is presented in Table 8. In this case, most of the exemplars showcase the editorial pattern with
complicated context, thus it is hard for our algorithm to extract the sharing editing. Meanwhile, two
of these exemplars concurrently edit with the attribute ‘Any()’ and consequently mislead the query
code editing.

E VISUAL DIAGRAM FOR NODE ACTIVATION ON QUERY-SUPPORT
MATCHING

We visualize the node activation in Figure 5. The value of activation is normalized within the query or
support snippet to show the relative magnitude of the value. Matching on individual nodes facilitates
query snippet to find the valuable reference in Support #1 under ‘BinaryExpression’ regardless of the
disturbing content under ‘ConditionalExpression.’ Also, there is a faint activation on the multiple
operators in Support #2 since the objects on this operation is under ‘MemberAccessExpression.’
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