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Abstract

Authorship attribution is the task of identifying001
the author of a given text. Most existing ap-002
proaches use manually designed features that003
capture a dataset’s content and style. How-004
ever, this dataset-dependent approach yields005
inconsistent performance. Thus, we propose to006
fine-tune pretrained language representations007
using a combination of contrastive learning and008
supervised learning (Contra-X). We show that009
Contra-X advances the state-of-the-art on mul-010
tiple human and machine authorship attribu-011
tion benchmarks, enabling improvements of up012
to 6.8%. We also show Contra-X to be con-013
sistently superior to cross-entropy fine-tuning014
across different data regimes. Crucially, we015
present qualitative and quantitative analyses of016
these improvements. Our learned representa-017
tions form highly separable clusters for differ-018
ent authors. However, we find that contrastive019
learning improves overall accuracy at the cost020
of sacrificing performance for some authors.021
Resolving this tension will be an important022
direction for future work. To the best of our023
knowledge, we are the first to analyze the effect024
of combining contrastive learning with cross-025
entropy fine-tuning for authorship attribution.1026

1 Introduction027

Authorship attribution (AA) is the task of identify-028

ing the author of a given text. AA systems are com-029

monly used to identify the authors of anonymous030

email threats (Iqbal et al., 2010) and historical texts031

(Mendenhall, 1887), and to detect plagiarism (Gol-032

lub et al., 2013). With the rise of neural text gener-033

ators that are able to create highly believable fake034

news (Zellers et al., 2019), AA systems are also035

increasingly employed in machine-generated-text036

detection (Jawahar et al., 2020). When performed037

on texts generated by human and machine writers,038

AA can also act as a type of Turing Test for Natural039

Language Generation (Uchendu et al., 2021, 2020).040

1Code will be made available at <redacted>

(a) BERT (b) Contra-BERT

Figure 1: t-SNE visualization of the fine-tuned rep-
resentations (a: baseline; b: Contra-X). Each color
denotes one author in the Blog10 dataset. Our con-
trastive method effectively creates a tighter represen-
tation spread for each author and increased separation
between authors. Best viewed in color.

Traditional AA methods design features that 041

characterize texts based on their content or writ- 042

ing style (Jafariakinabad and Hua, 2019; Zhang 043

et al., 2018; Sapkota et al., 2015b; Sari et al., 2018). 044

However, the features useful for distinguishing au- 045

thors are often dataset-specific, yielding inconsis- 046

tent performance under varying conditions (Sari 047

et al., 2018). In contrast, learning features from 048

large corpora of data aims to produce general pre- 049

trained models (Devlin et al., 2018) that improve 050

performance on many core natural language pro- 051

cessing (NLP) tasks, including AA (Fabien et al., 052

2020). However, it is unclear if basic fine-tuning 053

makes full use of the information in the training 054

data. We seek to augment the learning process. 055

Contrastive learning is a technique that pulls sim- 056

ilar samples close and pushes dissimilar samples 057

apart in the representation space (Gao et al., 2021). 058

It has proven useful in tasks that require distinguish- 059

ing subtle differences (Tian et al., 2020; Kawakami 060

et al., 2020). This makes it highly suited to en- 061

couraging the learning of distinct author subspaces. 062

However, no prior work has investigated its rele- 063

vance to the AA task. To this end, we seek to under- 064
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stand its impact on the learning of author-specific065

features under the supervised learning paradigm.066

To achieve this, we combine CONTRAstive067

learning with CROSS-entropy finetuning (Contra-068

X) and demonstrate its efficacy via evaluation on069

multiple AA datasets. Unlike previous AA work,070

we evaluate not only on human writing corpus, but071

also on machine-generated texts. There are three072

major reasons. First, this can show the general-073

ity of our approach. Secondly, performing AA on074

human and machine authors reflects the increased075

importance of identifying machine-generated text076

sources. Thirdly, this potentially reveals informa-077

tion about how differently machines write com-078

pared to humans. In addition, we study the perfor-079

mance of our method under different data budgets.080

We find Contra-X to consistently improve model081

performance and yield distinct author subspaces.082

Finally, we analyze the performance gains vis-à-vis083

a number of AA-specific stylometric features. To084

the best of our knowledge, we are the first to inves-085

tigate the use of contrastive learning for authorship086

attribution.087

2 Related Work088

Authorship attribution. AA techniques fall un-089

der two broad categories: feature-based or learning-090

based approaches. Traditional methods manually091

engineer stylometric features relevant for identify-092

ing authors (Sari et al., 2018). These include term093

frequency–inverse document frequency (TF-IDF)094

(Rahgouy et al., 2019), letter and digit frequency095

(Sari et al., 2018), and character n-grams (Sapkota096

et al., 2015a). However, as various datasets have097

different latent properties, e.g., topical or content098

biases, dataset-specific design is often required for099

optimal performance (Sari et al., 2018).100

In contrast, we use a more general solution101

of learning task-specific feature representations.102

BertAA (Fabien et al., 2020) showed that sim-103

ply fine-tuning pre-trained language models with a104

cross-entropy loss can produce excellent AA perfor-105

mance. This suggests that pre-trained general repre-106

sentations are a promising starting point. However,107

there remains the challenge of learning represen-108

tations that effectively model author-specific char-109

acteristics. Our work makes use of a contrastive110

learning objective to achieve this goal.111

Contrastive Learning. Contrastive learning112

aims to learn discriminative features by pulling113

semantically similar samples close and pushing dis-114

similar samples apart. This encourages the learning 115

of highly separable features that can be easily oper- 116

ated on by a downstream classifier. Unsupervised 117

contrastive learning has been used to improve the 118

robustness and transferability of speech recogni- 119

tion (Kawakami et al., 2020) and to learn semanti- 120

cally meaningful sentence embeddings (Gao et al., 121

2021). It has also been combined with supervised 122

learning for intent detection (Zhang et al., 2021), 123

punctuation restoration (Huang et al., 2021), ma- 124

chine translation (Gunel et al., 2021), and dialogue 125

summarization (Tang et al., 2021). However, to the 126

best of our knowledge, we are the first to study its 127

efficacy and limitations on authorship attribution. 128

Detection of Machine Generated Text. Natural 129

Language Generation (NLG) models can generate 130

texts indistinguishable from human writings (Rad- 131

ford et al., 2019; Brown et al., 2020; Zellers et al., 132

2019). Given the potential for malicious use (So- 133

laiman et al., 2019), identifying machine-generated 134

text sources has become increasingly important. 135

Detecting artificial texts can be viewed as a spe- 136

cial case of authorship attribution where there is a 137

mix of human and non-human authors. In addition, 138

authorship attribution models can serve as Turing 139

tests for the NLG models (Uchendu et al., 2021), 140

and advances in AA can also improve the evalua- 141

tion of NLG models. We hence also evaluate our 142

approach on TuringBench, which contains texts 143

from both human and machine authors. 144

3 Methodology 145

3.1 Problem formulation 146

Authorship attribution is a classification task where 147

the input is some text, t, and the target is the author, 148

a. Formally, given a corpus D, where each sample 149

is a text-author pair ⟨t, a⟩, we aim to learn a pre- 150

dictor, p, that maximizes the prediction accuracy: 151

152

Acc = E
⟨t,a⟩∈D

1argmax(p(t))=a (1) 153

Conventionally, this is achieved by optimizing 154

a surrogate cross-entropy loss function via mini- 155

batch gradient descent. Assuming we have a mini- 156

batch containing N texts {ti}i=1:N and correspond- 157

ing authors {ai}i=1:N , the loss function is: 158

LCE = −
∑
i

ai log(p(t)ai) (2) 159

However, we hypothesize that LCE does not ade- 160

quately reflect the key challenge of the task, which 161
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is to learn highly discriminative representations for162

the input texts such that authorship can be clearly163

identified. Thus, we propose to augment the loss164

with a contrastive learning objective.165

3.2 Contra-X for Authorship Attribution166

We conjecture that the key to the authorship attri-167

bution task is to learn highly author-specific repre-168

sentations that capture each author’s characteristics.169

Specifically, this requires representations to be sim-170

ilar for samples from the same authors, but distinct171

for samples from different authors. We adopt two172

specific strategies to achieve this goal:173

• Unlike most previous work that hand-crafts fea-174

tures and then learns a predictor p from scratch,175

we fine-tune the general representations acquired176

from the large-scale unsupervised pre-training.177

Specifically, we decompose p as p = ϕ◦h where178

ϕ is the pre-trained language model and h is a179

classifier layer. As shown by BertAA (Fabien180

et al., 2020), the learned representation is a de-181

cent starting point for the task.182

• However, different to BertAA that fine-tunes the183

model p = ϕ ◦ h with cross entropy, we use an184

additional contrastive objective to encourage ϕ185

to capture the idiosyncrasies of each author. We186

conjecture that this can better utilize the infor-187

mation in the training data.188

We use an additional contrastive objective to189

more fully utilize the information in the training190

data. Intuitively, the contrastive loss encourages the191

model to maximize the representational similarity192

of texts written by the same author, i.e., positive193

pairs, and minimize the representational similarity194

of texts written by different authors, i.e., negative195

pairs. Formally, given a mini-batch containing N196

texts {ti}i=1:N and their authors {ai}i=1:N , we197

feed them into a pre-trained language model ϕ to198

obtain a batch of embeddings {ei}i=1:N , where199

ei = ϕ(ti). Embeddings of two samples by the200

same author ⟨ei, ej⟩ai=aj are a positive pair, and201

embeddings of two samples by different authors202

⟨ei, ej⟩ai ̸=aj are a negative pair. We construct a203

similarity matrix S in which the entry (i, j) denotes204

the pairwise similarity between ei and ej . Formally,205

206

Si,j = cos(ei, ej) =
ei · ej

∥ei∥∥ej∥
(3)207

To encourage the abovementioned pairwise con-208

straints, we define the contrastive objective as:209

LCL =−
∑
i

log(

∑
ai=aj

exp(cos(ei, ej)/τ)∑
k exp(cos(ei, ek)/τ)

) 210

=−
∑
i

log(

∑
ai=aj

exp(Si,j/τ)∑
k exp(Si,k/τ))

), (4) 211

where τ is the temperature. The loss could be 212

viewed as applied on a softmax distribution to max- 213

imize the probability that ei and ej come from a 214

positive pair, given ai = aj . However, it is differ- 215

ent from LCE in that it explicitly enforces pairwise 216

constraints in the representation space ϕ(·). During 217

training, we jointly optimize LCE and LCL: 218

L = LCE + λ · LCL, (5) 219

where λ is a balancing coefficient. This joint opti- 220

mization, Contra-X, improves upon LCE by min- 221

ing richer knowledge in the training data via encour- 222

aging meaningful pairwise relations in the repre- 223

sentation space ϕ(·). We conjecture that the model 224

learn discriminative features in alignment with the 225

classification objective. The effectiveness will be 226

empirically examined (Section 4 and Section 5) 227

and qualitatively analyzed (Section 6.2). 228

3.3 Implementation Details 229

We implement ϕ with two pre-trained transformer 230

encoders, BERT (Devlin et al., 2018) and De- 231

BERTa (He et al., 2021). BERT is a com- 232

monly used text classification baseline and De- 233

BERTa, its more recent counterpart. We use 234

the bert-base-cased and deberta-base 235

checkpoints from the transformers library 236

(Wolf et al., 2019). For all datasets, the input length 237

is set to 256 and the embedding length per token is 238

768. The transformer generates embeddings which 239

are then passed to the classifier h. 240

We implement the classifier h as a 2-layer Multi- 241

Layer Perceptron (MLP) with a dropout of 0.35. 242

As described in Section 3.2, the final model p is a 243

composition of the pre-trained language model and 244

the MLP classifier, i.e., p = ϕ ◦ h. 245

In all experiments, we use the AdamW optimizer 246

(Loshchilov and Hutter, 2019) with an initial learn- 247

ing rate of 2e− 5 and a cosine learning rate sched- 248

ule (Loshchilov and Hutter, 2017). We train for 8 249

epochs with a batch size of 24. We set λ to 1.0 and 250

τ to 0.1. Training takes 2-12 hours depending on 251

the dataset size with 4 × RTX2080Ti. No model- 252

or dataset-specific tuning was done for fair compar- 253

ison and to show the robustness of the approach. 254
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Model Blog10 Blog50 IMDb62

Token SVM (Seroussi et al., 2014) - - 92.5
Char-CNN (Ruder et al., 2016) 61.2 49.4 91.7

Continuous N-gram (Sari et al., 2017) 61.3 52.8 95.1
N-gram CNN (Shrestha et al., 2017) 63.7 53.1 95.2

Syntax CNN (Zhang et al., 2018) 64.1 56.7 96.2
BertAA (Fabien et al., 2020) 65.4 59.7 93.0

BERT (our baseline) 60.4 55.2 97.2
Contra-BERT 66.3 (5.9↑) 62.0 (6.8↑) 97.9 (0.7↑)

DeBERTa (our baseline) 69.1 64.7 98.1
Contra-DeBERTa 69.7 (0.6↑) 68.4 (3.7↑) 98.2 (0.1↑)

Table 1: Results on human AA datasets, measured in accuracy.2 Results in top section are from their respective
papers. Improvements over the baselines are indicated in parentheses. The best model for each dataset is bolded.

4 Human Authorship Attribution255

We first investigate the impact of contrastive learn-256

ing on models for human authorship attribution.257

4.1 Experiment setup258

Models. We experiment with four different mod-259

els: two baselines BERT and DeBERTa, fine-tuned260

with cross-entropy, and their Contra-X versions,261

where X is the model name. These baselines allow262

us to isolate the effect of the proposed contrastive263

learning objective LCL.264

Datasets. Following prior work (Ruder et al.,265

2016; Zhang et al., 2018; Fabien et al., 2020),266

we use the Blog (Schler et al., 2006) and IMDb267

(Seroussi et al., 2014) corpora for evaluation. For268

Blog, we take the top 10 and 50 authors with269

the most entries to form the Blog10 and Blog50270

datasets respectively. For IMDb, we take a stan-271

dard subset of 62 authors (Seroussi et al., 2014)272

(IMDb62). More details are in Appendix A.273

Evaluation. Following standard evaluation proto-274

col, we divide each dataset into train/validation/test275

splits with an 8:1:1 ratio, and report the test split276

results here. Hyperparameter tuning, if any, is per-277

formed on the validation set. For easy comparison,278

we also present results on the 8:2 train/test splits279

used by Fabien et al. (2020) in Appendix B. We do280

not observe any significant differences.281

4.2 Results282

From Table 1, we observe that the inclusion of con-283

trastive learning improves the baseline performance284

across the board, allowing us to beat the previous285

state-of-the-art on all human AA datasets. We ob- 286

serve that the largest performance improvements 287

come from Blog10 and Blog50 datasets where there 288

is substantial room for progress, i.e., up to 6.8% 289

for BERT and 3.7% for DeBERTa. In contrast, the 290

performance gains on IMDb62 are marginal due 291

to diminishing returns, with the baseline models 292

already achieving close to 100% accuracy. These 293

results suggest that contrastive learning is empir- 294

ically useful for fine-tuning pre-trained language 295

models on the authorship attribution task, when 296

the baseline performance is not approaching an 297

asymptotic maximum. 298

5 Synthetic Text Authorship Attribution 299

We investigate our proposed models on authorship 300

attribution datasets with neural-generated text. 301

5.1 Experimental Setup 302

Models. We test the same four models from 303

Section 4: BERT, Contra-BERT, DeBERTa, and 304

Contra-DeBERTa. 305

Dataset. We use the TuringBench (Uchendu 306

et al., 2021) dataset. This corpus contains human- 307

written news articles, collectively categorized as a 308

single human author, and machine-generated texts 309

from 19 different neural language generators. The 310

models generate the texts based on the titles of 311

the human-written articles. This controls for topic 312

differences between samples by different authors. 313

There are a total of 200,000 texts from 20 authors. 314

Additional statistics are available in Appendix A. 315

Evaluation. We use the 7:1:2 train/validation/test 316

splits provided by Uchendu et al. (2021) and report 317

4



Model TuringBench

Random Forest 61.47
SVM (3-grams) 72.99
WriteprintsRFC 49.43
OpenAI Detector 78.73

Syntax CNN 66.13
N-gram CNN 69.14

N-gram LSTM-LSTM 68.98
BertAA 78.12
BERT 80.78

RoBERTa 81.73

BERT (our baseline) 79.46
Contra-BERT 80.59 (1.13↑)

DeBERTa (our baseline) 82.00
Contra-DeBERTa 82.53 (0.53↑)

Table 2: Results on human and machine authorship at-
tribution (accuracy). Results in top section are from the
TuringBench paper. Improvements over the baselines
are indicated in parentheses. Best model is bolded.

the results on the test set.318

5.2 Results319

Table 2 shows the results of the synthetic author-320

ship attribution benchmark.3 Contrastive learning321

provides a small improvement in accuracy over322

the baseline models, in particular allowing Contra-323

DeBERTa to set a new state-of-art. These results324

suggest that the use of general language represen-325

tations and contrastive learning is generalizable to326

synthetic authorship attribution.327

6 Discussion328

In this section, we study the following questions:329

• How does data availability affect the perfor-330

mance with and without contrastive learning?331

• How does contrastive learning qualitatively af-332

fect the representations learned?333

• When does Contra-X succeed and fail?334

6.1 Performance vs. Dataset Size335

Due to the often-adversarial nature of real-world336

AA problems, the availability of appropriate data is337

a concern. Therefore, it is important to examine the338

impact of data availability on potential AA systems.339

3Results of previous methods are from TuringBench
(Uchendu et al., 2021). For consistency, we report results
to 2 decimal places. For full results for other metrics, i.e.,
precision, recall, and F1-score, see Appendix F.

Figure 2: Comparison of performance between BERT
and Contra-BERT under different data regimes.

To do this, we construct 4 subsets of the Blog10, 340

Blog50, and TuringBench datasets with stratified 341

sampling by author. Each subset is 25%, 50%, 342

75%, and 100% the size of the original dataset. We 343

use the same setup as in Section 4.1 to train BERT 344

and Contra-BERT on each subset. 345

Figure 2 plots accuracy vs. dataset size to illus- 346

trate the performance under different dataset sizes. 347

On Blog10, Contra-BERT maintains a surprisingly 348

consistent level of accuracy while BERT suffers 349

significant degradation in performance as data de- 350

creases. On Blog50, Contra-BERT shows more 351

substantial performance gains compared to BERT 352

as the dataset size increases. We hypothesize that 353

the task is intrinsically harder due to the larger 354

number of authors, requiring a larger amount of 355

data to learn well. Even so, Contra-X improves 356

the performance of both BERT and DeBERTa by 357

6.8% and 3.7%, respectively, on the full dataset. 358

On TuringBench, the difference in accuracy is less 359

obvious, although Contra-BERT maintains the ad- 360

vantage. A possible explanation is that even the 361

smaller subsets are sufficiently large. 362

From the above statistics, we notice consistent 363

improvements across different data regimes. A pos- 364

sible explanation is that the contrastive objective 365

explicitly encourages the model to focus on inter- 366

author differences as opposed to irrelevant features. 367

6.2 Qualitative Representational Differences 368

Next, we visualize the learned representations to 369

understand the qualitative effect of the contrastive 370

learning objective. We embed the test samples from 371

the Blog50 dataset and visualize the result using 372

t-SNE (van der Maaten and Hinton, 2008). 373

Qualitatively, it is clear that Contra-BERT pro- 374

duces more distinct and tighter clusters compared 375
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Feature Type Performance Improvement (Acc.)
Dataset Content Style Hybrid Topic BERT DeBERTa

Blog10 0.82472 0.33766 0.59218 0.85465 5.9 0.6
Blog50 1.0000 1.0000 1.0000 0.81145 6.8 3.7

TuringBench 0.60842 0.56926 0.91988 1.0000 1.13 0.53

Table 3: Inter-author difference on different feature metrics (improvements from each contrastive model listed for
reference). The smaller the value, the higher the similarity measured by that feature. For consistency, each column
is linearly scaled such that the maximum is 1. The smallest value for each feature is bolded.

to BERT (Figure 1). Since LCL is the only inde-376

pendent variable in the experiment, differences in377

representation can be attributed to the contrastive378

objective. The improvement is expected, because379

the objective LCL explicitly encourages the repre-380

sentation to be similar for intra-author samples (i.e.,381

tight clusters) and different for inter-author sam-382

ples (i.e., larger distance between clusters). This383

supports our conjecture in Section 3.2.384

However, we observe that some clusters still385

overlap and are inseparable by t-SNE. This sug-386

gests that the model still faces some difficulty in387

distinguishing between specific authors.388

6.3 When Does Contra-X Succeed and Fail?389

To understand the conditions in which Contra-X390

succeeds and fails, we follow Sari et al. (2018)391

and extract 4 stylometric features from the dataset:392

topic, style, content, and hybrid features. Detailed393

descriptions for each feature are in Appendix C.394

For this set of features, F , the corresponding fea-395

ture extractors are ϕf , f ∈ F . We can then rep-396

resent each author, Ai, with a feature. Given an397

author Ai with N documents {ti}i=1:N , we define398

the representation of Ai to be the mean of the vec-399

tor representations of the N documents:400

vfAi
=

1

N

N∑
i=1

ϕf (ti). (6)401

We analyze the relation between model perfor-402

mance and dataset characteristics below. We ex-403

clude IMDb62 from this analysis since the max-404

imum margin for improvement on the dataset is405

too small (< 3%). Performing analysis on these406

datasets may introduce confounding factors.407

Dataset-Level Analysis. Here, we wish to quan-408

tify the difficulty of distinguishing any two au-409

thors in each dataset and compare them against410

performance improvements. We define the inter-411

author dissimilarity of a dataset D in a feature space412

f ∈ F to be the mean pairwise difference across 413

all author pairs ⟨Ai, Aj⟩ measured by the feature 414

f : 415

vfD =
1

|A|2
∑

Ai,Aj∈D
d(vfAi

, vfAj
), (7) 416

where d is a distance metric for a pair of vectors: 417

418

d(vfAi
, vfAj

) =

{
JSD(vfAi

, vfAj
) iff = topic

1− cos(vfAi
, vfAj

) otherwise.
(8) 419

where JSD is the Jenson-Shannon Divergence 420

(Nathanson, 2013) and cos is the cosine similarity. 421

The lower the value, the harder it is to distinguish 422

the authors in a dataset in the corresponding feature 423

space, on average. 424

From Table 3, we observe that Blog50 has both 425

the highest degree of topical similarity and largest 426

improvement from contrastive learning, while Tur- 427

ingBench has the least topical similarity and also 428

the least improvement. This suggests that con- 429

trastive learning may be more useful when authors 430

in a dataset write about highly similar topics. On 431

the other hand, the opposite is true for content sim- 432

ilarity: TuringBench has the highest content simi- 433

larity and yet the least improvement. 434

Inadequacy of NLG Models? We also note the 435

high topical dissimilarity of TuringBench. This 436

is unexpected since this corpus is generated by 437

querying each NLG model with the same set of 438

titles as prompts (Section 5.1). Following Sari et al. 439

(2018), we model topical similarity using Latent 440

Dirichlet Allocation (LDA; Blei et al., 2003). LDA 441

represents a text as a distribution over latent topics, 442

where each topic is represented as a distribution 443

over words. This observation suggests that some 444

NLG models may struggle to write on topic.4 445

4See Appendix D for a brief analysis.
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Author-Level Analysis. Next, we analyze how446

author characteristics affect model performance on447

these authors. Specifically, we examine the correla-448

tion between the similarity of specific authors and449

how well the models distinguish between them. We450

define the distance between two authors to be the451

mean distance across all representation spaces:452

PD(Ai, Aj) =
1

|F|
∑
f∈F

1

Cf
d(vfAi

, vfAj
), (9)453

where Cf is a normalization term, defined as454

Cf = max
Ai,Aj∈D

d(vfAi
, vfAj

). (10)455

We plot the similarity matrix for selected Blog50456

authors in Figure 3a. The authors are selected such457

that they form pairs that are highly indistinguish-458

able by the above metrics. The cells numbered459

1-4 represent the most similar author pairs (i.e.,460

darker-coloured cells). Performance-wise, on each461

of these pairs, Contra-BERT shows significant im-462

provements in overall class-level accuracy over463

BERT.5 This is consistent with the intuition that464

contrastive learning is more useful for distinguish-465

ing author pairs that are more similar.466

Increased bias. The pairwise improvement men-467

tioned above shows a curious property of being468

biased towards one of the authors in the pair. To469

visualize this, we subtract the confusion matrix of470

BERT from that of Contra-BERT and name the re-471

sult the relative confusion matrix (Figure 3b). Each472

cell in the matrix indicates the increase in the prob-473

ability that an author Ai is classified as Aj from474

BERT to Contra-BERT. For example, the blue cell475

at (12, 43) shows that Contra-BERT confused A12476

as A43 less than BERT, while the orange cell at477

(43, 12) shows that Contra-BERT confused A43 as478

A12 more frequently.479

Note first the intuitive link between the similarity480

and confusion matrices: similar authors are more481

likely to be confused by one of the models for each482

other. Observe also that the pairs in the confusion483

matrix are always present in light-dark pairs. In484

other words, if BERT misclassifies more samples485

from Ai as Aj (e.g., A12 as A43), then Contra-486

BERT mislabels more samples from Aj as Ai (i.e.,487

A43 as A12). This suggests that as Contra-BERT488

learns to classify samples from Ai better, it sacri-489

fices the ability to identify Aj samples. Note that490

5See Appendix E.1 for exact values. This trend also holds
for Contra-DeBERTa and DeBERTa; see Appendix E.2.

(a) Feature dissimilarity matrix. Darker is more similar.

(b) Relative confusion matrix. This is obtained by subtracting
the confusion matrix of BERT from that of Contra-BERT.

Figure 3: Feature similarity matrix and relative confu-
sion matrix between BERT and Contra-BERT on se-
lected authors. In both figures, (i, j) denotes the cell at
the i-indexed row and j-indexed column. In (a), (i, j)
denotes d(Ai, Aj), the feature dissimilarity between the
two authors. In (b), a lower value (blue) of (i, j) indi-
cates Contra-BERT confused Ai for Aj less than BERT.

although this sometimes stems from training on an 491

imbalanced dataset, in our case, Ai and Aj contain 492

similar numbers of samples.6 Thus, the observation 493

is unlikely to be due to class imbalance. 494

Nevertheless, the cumulative accuracy across Ai 495

and Aj is always higher for Contra-BERT com- 496

pared to the baseline, e.g., 33.6% vs 23.1% for A12 497

and A43 combined, leading to an overall perfor- 498

mance improvement on the whole dataset. This 499

shows that the model implicitly learns to make 500

trade-offs to optimize the contrastive objective, i.e., 501

it chooses to learn specialized representations that 502

6See Appendix E.1 for exact sample counts.
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are particularly biased against some authors but503

improve the average performance over all authors.504

This shows that Contra-X captures certain features505

that enable the model to distinguish a subset of the506

authors. However, to obtain consistent improve-507

ment, we need a deeper understanding of the dif-508

ference between easily-confused authors and in-509

corporate that insight into the contrastive learning510

algorithm (Wolpert and Macready, 1997). This can511

be potentially achieved by constructing more mean-512

ingful negative samples. However, this is beyond513

the scope of our paper and left to future work.514

6.4 Potential Ethical Concerns515

In this subsection, we discuss potential ethical con-516

cerns related to the previous discussion on the in-517

creased bias in author-level performance.518

Decreased Fairness? With classification models,519

fairness in predictions across classes is an impor-520

tant consideration. We want to, for instance, avoid521

demographic bias (Hardt et al., 2016), which may522

manifest as systematic misclassifications of authors523

with specific sociolinguistic backgrounds.524

Having observed increased bias against certain525

authors, we seek to find out if this trend holds526

across the entire dataset. We quantitatively eval-527

uate this by computing the variance in class-level528

accuracy across all authors. The results show that529

the improvements from our contrastive learning ob-530

jective appear to incur a penalty in between-author531

fairness. Contra-BERT on Blog10 and Blog50,532

and Contra-DeBERTa on Blog50 achieve substan-533

tial gains in accuracy, and also produce notably534

higher variance than their baseline counterparts.7535

In contrast, for models where the improvements are536

marginal, the differences in variance are insignif-537

icant. A potential direction for future work is in-538

vestigating whether the use of contrastive learning539

consistently exacerbates variances in class-level ac-540

curacy. Studying the characteristics of the classes541

that the model is biased against may boost not just542

overall performance, but also predictive fairness.543

7 Conclusion544

Successful authorship attribution necessitates the545

modeling of author-specific characteristics and id-546

iosyncrasies. In this work, we make the first547

attempt to study the effect of combining con-548

trastive learning with supervised learning on the549

7See Appendix G for exact values.

authorship attribution task. We jointly optimized 550

the contrastive and cross-entropy losses (Contra- 551

X), demonstrating empirical improvements in au- 552

thorship attribution on both human-written and 553

machine-generated text. We also showed the gen- 554

erality of the method across data regimes via con- 555

sistent improvement over conventional fine-tuning 556

across various dataset sizes. Critically, we con- 557

tributed analyses of how and when Contra-X works, 558

in the context of the AA task. At the dataset level, 559

we qualitatively showed that Contra-X creates a 560

tighter representation spread of each author and 561

increased separation between authors. Within each 562

dataset, at the author level, we found that Contra-X 563

is able to distinguish between highly similar author 564

pairs, at the cost of hurting the performance on 565

other authors. This points to a potential direction 566

for future work, as resolving it would lead to better 567

overall improvement and increased fairness of the 568

final representation. 569
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A Dataset Statistics806

Table 4 presents statistics of the Blog10, Blog50,807

IMDb62, and Enron100 datasets.808

B Human Authorship Attribution Results809

with 8:2 Split810

Following Fabien et al. (2020), we divide the811

datasets into train-test splits at an 8:2 ratio for812

Blog10, Blog50, and IMDb62 and follow the de-813

fault split for TuringBench. We show the results on814

the test set in Table 5.815

C Similarity Metrics816

Following Sari et al. (2018), we use four key met-817

rics to analyze the characteristics of individual818

datasets (i.e., samples written by a particular au-819

thor, or all samples in a corpus). We describe these820

metrics in detail below:821

Content. We measure the frequencies of the822

most common word unigrams, bigrams, and tri-823

grams to produce a feature vector that represents an824

author’s content preferences over each document.825

Style. We combine multiple stylometric features,826

i.e., average word length, number of short words,827

percentage of digits, percentage of upper-case let-828

ters, letter frequency, digit frequency, vocabulary829

richness, and frequencies of function words and830

punctuation, into a feature vector representing an831

author’s writing style in a given document.832

Hybrid. We measure the frequencies of the most833

common character bigrams and trigrams, to capture834

both content and style preferences of the author835

(Sapkota et al., 2015a) in a given document.836

Topic. We use Latent Dirichlet Allocation837

(LDA) (Blei et al., 2003) to generate a probability838

distribution over an author’s possible topics. We839

run LDA with 20 topics, as in Sari et al. (2018),840

and fit the data over 500 iterations.841

D TuringBench Dataset Analysis842

Closer examination of the TuringBench dataset re-843

veals that some models appear to produce fairly844

incoherent text. Table 6 contains snippets from var-845

ious models. Qualitatively, it is difficult to identify846

what the topic of each text is supposed to be; there847

appear to be multiple topics referenced in each text.848

This suggests that some of these models do not849

write on-topic, and consequently may explain why850

LDA reflects a high degree of topical dissimilarity851

between models.852

On the other hand, at the phrase level, these mod- 853

els largely put out sensible phrases, e.g., “strong 854

economic growth”, “stunning game”, “suspicious 855

clicks”. We hypothesize that this is why the content 856

similarity on TuringBench is comparatively higher, 857

since the content metric measures word n-gram 858

frequencies. 859

E Analysis of Similar Author Pairs 860

E.1 BERT and Contra-BERT 861

Figure 4 shows the individual similarity matrices 862

for the four feature types. The general pattern of 863

the highlighted pairs being darker (i.e., more simi- 864

lar) than their surrounding cells can be seen across 865

all the matrices. Table 8 shows the exact predic- 866

tion accuracies for the four highlighted pairs. As 867

noted previously, Contra-BERT always achieves a 868

higher total accuracy (defined as total correct pre- 869

dictions over total samples) over both authors in a 870

pair compared to BERT. 871

E.2 DeBERTa and Contra-DeBERTa 872

Figure 5 shows the feature similarity matrices and 873

the relative confusion matrix for selected authors 874

for DeBERTa and Contra-DeBERTa. Note that 875

some of the author pairs are the same as those 876

shown for BERT (i.e., 6 & 44, 38 & 39) while 877

other pairs are different. Similar to Figure 3(b), 878

the colour of a given cell (i, j), i ̸= j, indicates 879

whether Contra-DeBERTa confused Ai for Aj 880

more or less often than DeBERTa. For instance, the 881

blue-coloured (1, 15) shows that Contra-DeBERTa 882

confused A1 as A15 less than DeBERTa, while the 883

orange (15, 1) shows that Contra-DeBERTa con- 884

fused A15 as A1 more times. 885

Table 9 shows the exact prediction accuracies 886

for the highlighted pairs. As with Contra-BERT, 887

Contra-DeBERTa achieves a higher total accuracy 888

on each pair than DeBERTa. 889

F Full TuringBench results 890

Table 7 shows the precision, recall, F1, and accu- 891

racy scores on TuringBench. 892

G Class-Level Accuracy Variance 893

Table 10 shows the exact class-level accuracy vari- 894

ances for our four models on Blog10, Blog50, and 895

TuringBench. 896
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Blog10 Blog50 IMDb62 TuringBench

# authors 10 50 62 20
# total documents 23498 73275 61973 149561

avg char / doc (no whitespace) 407 439 1401 1063
avg words / doc 118 124 341 188

Table 4: Statistics of the four datasets used in our experiments.

Model Blog10 Blog50 IMDb62

Token SVM (Seroussi et al., 2014) - - 92.5
Char-CNN (Ruder et al., 2016) 61.2 49.4 91.7

Continuous N-gram (Sari et al., 2017) 61.3 52.8 95.1
N-gram CNN (Shrestha et al., 2017) 63.7 53.1 95.2

Syntax CNN (Zhang et al., 2018) 64.1 56.7 96.2
BertAA (Fabien et al., 2020) 65.4 59.7 93.0

BERT 60.3 55.6 97.2
Contra-BERT 66.0 (5.7↑) 62.2(6.6↑) 97.7(0.5↑)

DeBERTa 68.0 65.0 98.1
Contra-DeBERTa 69.9(1.9↑) 69.7(4.7↑) 98.2(0.1↑)

Table 5: Results of human authorship attribution - 8:2 train/test split

Model Text

CTRL “apple gives tim cook $384 million stock grant... steve jobs is set to receive
an additional $1.4 billion in cash... recovery needs but it also requires p le
with skills not just on paper or through education training but, crucially,
real work experience. those are two things which can only come if we
have strong economic growth...”

FAIR_WMT19 “antoine helps real sociedad draw with valladolid... sociedad’s goal in a 1-1
was highlight of stunning game played on night terrorist bombing attack
manchester. tuesday, two bombs exploded central manchester arena during
popular outdoor concert, killing 22 p le and injuring hundreds more..."

GROVER_MEGA “...the messages, which along message some will choose avoid draft, ready
for qualification training are fake, according public affairs. do not respond
spoof, requires suspicious clicks, pictures, or notes function, an official
memo from issued thursday reads...”

TRANSFORMER_XL “carlos ghosn, mum on tokyo escape, unleashes a rambling defense of
the state student-teacher training program in japan... as 2015, three uni-
versities (hiroshima, izumo, kawachi) accept all two degrees; they have
also accepted each other. nevertheless, buddhist monks maintain that
their colleges provide admission hindu traditions rather than admitting any
religious instruction.”

Table 6: Sample text snippets from various NLG models in the TuringBench dataset.
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Model Precision Recall F1 Accuracy

Random Forest 58.93 60.53 58.47 61.47
SVM (3-grams) 71.24 72.23 71.49 72.99
WriteprintsRFC 45.78 48.51 46.51 49.43

OpenAI detector8 78.10 78.12 77.14 78.73
Syntax CNN 65.20 65.44 64.80 66.13
N-gram CNN 69.09 68.32 66.65 69.14

N-gram LSTM-LSTM 6.694 68.24 66.46 68.98
BertAA 77.96 77.50 77.58 78.12
BERT 80.31 80.21 79.96 80.78

RoBERTa 82.14 81.26 81.07 81.73

BERT (our baseline) 78.56 78.81 78.53 79.46
Contra-BERT 80.10 (1.66↑) 79.99 (1.88↑) 79.84 (1.31↑) 80.59 (1.13↑)

DeBERTa (our baseline) 82.16 81.84 81.82 82.00
Contra-DeBERTa 82.84 (0.68↑) 82.04 (0.20↑) 81.98 (0.17↑) 82.53 (0.53↑)

Table 7: Full results across four metrics on human and machine authorship attribution. Results in top section are
from the TuringBench paper. Improvements over the baselines are indicated in parentheses. Best model is bolded.

Figure 4: (Clockwise from top left) Similarity metrics between authors Ai (i-indexed row) and Aj (j-indexed
column) for content, topic, hybrid, and style features respectively for selected authors on Blog50.
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Author 1 Author 2 Total
Model # Samples Correct # Samples Correct Accuracy (%)
BERT

12 229
2

43 225
47 10.8

Contra-BERT 209 0 46.0
BERT

30 153
8

26 154
92 32.6

Contra-BERT 135 0 44.0
BERT

6 116
35

44 113
18 23.1

Contra-BERT 73 4 33.6
BERT

38 112
48

39 112
8 25.0

Contra-BERT 96 0 42.9

Table 8: Performance of BERT and Contra-BERT on selected author pairs of Blog50. Higher accuracy for each pair
is bolded.

Author 1 Author 2 Total
Model # Samples Correct # Samples Correct Accuracy (%)

DeBERTa
1 109

0
15 103

94 44.3
Contra-DeBERTa 107 0 50.5

DeBERTa
47 105

0
48 104

61 29.2
Contra-DeBERTa 102 4 50.7

DeBERTa
44 113

24
6 116

28 22.7
Contra-DeBERTa 108 3 48.5

DeBERTa
38 112

0
39 112

90 40.2
Contra-DeBERTa 81 12 41.5

Table 9: Performance of DeBERTa and Contra-DeBERTa on selected author pairs of Blog50. Higher accuracy for
each pair is bolded.

Blog10 Blog50 TuringBench

BERT 0.15494 0.10430 0.06747
Contra-BERT 0.17698 (Acc. +5.9) 0.12087 (Acc. +6.8) 0.06772 (Acc. +1.13)

DeBERTa 0.19735 0.13267 0.05191
Contra-DeBERTa 0.20029 (Acc. +0.6) 0.14343 (Acc. +3.7) 0.05126 (Acc. +0.53)

Table 10: Variance in class-level accuracy (accuracy increase by each contrastive model is listed for reference). The
higher the variance, the more the model performance varies between different classes. For each dataset, higher
variance for each baseline/contrastive pair is bolded.
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(a) Feature similarity matrix (left) and relative confusion matrix (right) between DeBERTa and Contra-DeBERTa on selected
authors. For both figures, (i, j) denotes the cell at the i-indexed row and j-indexed column. In the similarity matrix, (i, j)

denotes d(Ai, Aj), the dissimilarity between the two authors (darker = more similar). In the confusion matrix, a lower value of
(i, j) indicates Contra-DeBERTa confused Ai for Aj less than DeBERTa.

(b) (Clockwise from top left) Similarity metrics between authors Ai (i-indexed row) and Aj (j-indexed column) for content,
topic, hybrid, and style features respectively for selected authors on Blog50.

Figure 5: Visualizations for selected author pairs for DeBERTa and Contra-DeBERTa on Blog50.
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