
Published as a conference paper at ICLR 2022

FEDBABU: TOWARD ENHANCED REPRESENTATION
FOR FEDERATED IMAGE CLASSIFICATION

Jaehoon Oh∗
Graduate School of KSE, KAIST
jhoon.oh@kaist.ac.kr

Sangmook Kim∗, Se-Young Yun
Graduate School of AI, KAIST
{sangmook.kim, yunseyoung}@kaist.ac.kr

ABSTRACT

Federated learning has evolved to improve a single global model under data het-
erogeneity (as a curse) or to develop multiple personalized models using data
heterogeneity (as a blessing). However, little research has considered both direc-
tions simultaneously. In this paper, we first investigate the relationship between
them by analyzing Federated Averaging (McMahan et al., 2017) at the client level
and determine that a better federated global model performance does not constantly
improve personalization. To elucidate the cause of this personalization performance
degradation problem, we decompose the entire network into the body (extractor),
which is related to universality, and the head (classifier), which is related to per-
sonalization. We then point out that this problem stems from training the head.
Based on this observation, we propose a novel federated learning algorithm, coined
FedBABU, which only updates the body of the model during federated training
(i.e., the head is randomly initialized and never updated), and the head is fine-tuned
for personalization during the evaluation process. Extensive experiments show con-
sistent performance improvements and an efficient personalization of FedBABU.
The code is available at https://github.com/jhoon-oh/FedBABU.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017), which is a distributed learning framework with
personalized data, has become an attractive field of research. From the early days of this field,
improving a single global model across devices has been the main objective (Zhao et al., 2018;
Duan et al., 2019; Li et al., 2018; Acar et al., 2021), where the global model suffers from data
heterogeneity. Many researchers have recently focused on multiple personalized models by leveraging
data heterogeneity across devices as a blessing in disguise (Chen et al., 2018; Dinh et al., 2021; Zhang
et al., 2020; Fallah et al., 2020; Shamsian et al., 2021; Smith et al., 2017). Although many studies
have been conducted on each research line, a lack of research remains on how to train a good global
model for personalization purposes (Ji et al., 2021; Jiang et al., 2019). In this study, for personalized
training, each local client model starts from a global model that learns information from all clients
and leverages the global model to fit its own data distribution.
Jiang et al. (2019) analyzed personalization methods that adapt to the global model through fine-
tuning on each device. They observed that the effects of fine-tuning are encouraging and that training
in a central location increases the initial accuracy (of a single global model) while decreasing the
personalized accuracy (of on-device fine-tuned models). We focus on why opposite changes in the
two performances appear. This suggests that the factors for universality and personalization must be
dealt with separately, inspiring us to decouple the entire network into the body (i.e., extractor) related
to generality and the head (i.e., classifier) related to specialty, as in previous studies (Kang et al., 2019;
Yu et al., 2020; Yosinski et al., 2014; Devlin et al., 2019) for advanced analysis. Kang et al. (2019)
and Yu et al. (2020) demonstrated that the head is biased in class-imbalanced environments. Note
that popular networks such as MobileNet (Howard et al., 2017) and ResNet (He et al., 2016) have
only one linear layer at the end of the model, and the head is defined as this linear layer whereas the
body is defined as all of the layers except the head. The body of the model is related to representation
learning and the head of the model is related to linear decision boundary learning. We shed light on
the cause of the personalization performance degradation by decoupling parameters, pointing out that
such a problem stems from training the head.

∗Equal Contribution

1

https://github.com/jhoon-oh/FedBABU

Published as a conference paper at ICLR 2022

Client 1 Client 2 Client 3

Central Server

Client 1 Client 2 Client 3

Central Server Central Server

Client 1 Client 2 Client 3

Broadcasting Local Update Aggregation

Different classifiers

(a) FedAvg.

Client 1 Client 2 Client 3

Central Server Central Server

Client 1 Client 2 Client 3

Same classifier

Broadcasting Local Update Aggregation

Client 1 Client 2 Client 3

Central Server

(b) FedBABU.

Figure 1: Difference in the local update and aggregation stages between FedAvg and FedBABU.
In the figure, the lines represent the decision boundaries defined by the head (i.e., the last linear
classifier) of the network; different shapes indicate different classes. It is assumed that each client
has two classes. (a) FedAvg updates the entire network during local updates on each client and then
the local networks are aggregated entirely. Therefore, the heads of all clients and the head of the
server are different. Whereas, (b) FedBABU only updates the body (i.e., all of the layers except the
head) during local updates on each client and then the local networks are aggregated body-partially.
Therefore, the heads of all clients and the head of the server are the same.

Inspired by the above observations, we propose an algorithm to learn a single global model that can
be efficiently personalized by simply changing the Federated Averaging (FedAvg) (McMahan et al.,
2017) algorithm. FedAvg consists of four stages: client sampling, broadcasting, local update, and
aggregation. In the client sampling stage, clients are sampled because the number of clients is so large
that not all clients can participate in each round. In the broadcasting stage, the server sends a global
model (i.e., an initial random model at the first broadcast stage or an aggregated model afterward) to
participating clients. In the local update stage, the broadcast model of each device is trained based
on its own data set. In the aggregation stage, locally updated models are sent to the server and are
aggregated by averaging. Among the four stages, we focus on the local update stage from both the
universality and personalization perspectives. Here, we only update the body of the model in the
local update stage, i.e., the head is never updated during federated training. From this, we propose
FedBABU, Federated Averaging with Body Aggregation and Body Update. Figure 1 describes the
difference during the local update and aggregation stages between FedAvg and FedBABU. Intuitively,
the fixed head can be interpreted as the criteria or guideline for each class and our approach is
representation learning based on the same fixed criteria across all clients during federated training.
This simple change improves the representation power of a single global model and enables the more
accurate and rapid personalization of the trained global model than FedAvg.
Our contributions are summarized as follows:

• We investigate the connection between a single global model and fine-tuned personalized
models by analyzing the FedAvg algorithm at the client level and show that training the
head using shared data on the server negatively impacts personalization.

• We demonstrate that the fixed random head can have comparable performance to the learned
head in the centralized setting. From this observation, we suggest that sharing the fixed
random head across all clients can be more potent than averaging each learned head in
federated settings.

• We propose a novel algorithm, FedBABU, that reduces the update and aggregation parts
from the entire model to the body of the model during federated training. We show that
FedBABU is efficient, particularly under more significant data heterogeneity. Furthermore,
a single global model trained with the FedBABU algorithm can be personalized rapidly
(even with one fine-tuning epoch). We observe that FedAvg outperforms most of preexisting
personalization FL algorithms and FedBABU outperforms FedAvg in various FL settings.

• We adapt the body update and body aggregation idea to the regularization-based global
federated learning algorithm (such as FedProx (Li et al., 2018)). We show that regularization
reduces the personalization capabilities and that this problem is mitigated through BABU.

2

Published as a conference paper at ICLR 2022

2 RELATED WORKS
FL for a Single Global Model Canonical federated learning, FedAvg proposed by McMahan et al.
(2017), aims to learn a single global model that collects the benefits of affluent data without storing
the clients’ raw data in a central server, thus reducing the communication costs through local updates.
However, it is difficult to develop a globally optimal model for non-independent and identically
distributed (non-IID) data derived from various clients. To solve this problem, studies have been
conducted that make the data distribution of the clients IID-like or add regularization to the distance
from the global model during local updates. Zhao et al. (2018) suggested that all clients share a
subset of public data, and Duan et al. (2019) augmented data to balance the label distribution of
clients. Recently, two studies (Li et al., 2018; Acar et al., 2021) penalized local models that have a
large divergence from the global model, adding a regularization term to the local optimization process
and allowing the global model to converge more reliably. However, it should be noted that the single
global model trained using the above methods is not optimized for each client.
Personalized FL Personalized federated learning aims to learn personalized local models that are
stylized to each client. Although local models can be developed without federation, this method
suffers from data limitations. Therefore, to maintain the benefits of the federation and personalized
models, many other methods have been applied to FL: clustering, multi-task learning, transfer
learning, regularized loss function, and meta-learning. Two studies (Briggs et al., 2020; Mansour
et al., 2020) clustered similar clients to match the data distribution within a cluster and learned
separate models for each cluster without inter-cluster federation. Similar to clustering, multi-task
learning aims to learn models for related clients simultaneously. Note that clustering ties related
clients into a single cluster, whereas multi-task learning does not. The generalization of each model
can be improved by sharing representations between related clients. Smith et al. (2017) and Dinh
et al. (2021) showed that multi-task learning is an appropriate learning scheme for personalized
FL. Transfer learning is also a recommended learning scheme because it aims to deliver knowledge
among clients. In addition, Yang et al. (2020) and Chen et al. (2020b) utilized transfer learning to
enhance local models by transferring knowledge between related clients. T Dinh et al. (2020) and Li
et al. (2021) added a regularizer toward the global or average personalized model to prevent clients’
models from simply overfitting their own dataset. Unlike the aforementioned methods that developed
local models during training, Chen et al. (2018) and Fallah et al. (2020) attempted to develop a good
initialized shared global model using bi-level optimization through a Model-Agnostic Meta-Learning
(MAML) approach (Finn et al., 2017). A well-initialized model can be personalized through updates
on each client (such as inner updates in MAML). Jiang et al. (2019) argued that the FedAvg algorithm
could be interpreted as a meta-learning algorithm, and a personalized local model with high accuracy
can be obtained through fine-tuning from a global model learned using FedAvg. In addition, various
technologies and algorithms for personalized FL have been presented and will be helpful to read; see
Tan et al. (2021) and Kulkarni et al. (2020) for more details.
Decoupling the Body and the Head for Personalized FL The training scheme that involves de-
coupling the entire network into the body and the head has been used in various fields, including
long-tail recognition (Kang et al., 2019; Yu et al., 2020), noisy label learning (Zhang & Yao, 2020),
and meta-learning (Oh et al., 2021; Raghu et al., 2019).1 For personalized FL, there have been
attempts to use this decoupling approach. For a consistent explanation, we describe each algorithm
from the perspective of local update and aggregation parts. FedPer (Arivazhagan et al., 2019), similar
to FedPav (Zhuang et al., 2020), learns the entire network jointly during local updates and only
aggregates the bottom layers. When the bottom layers are matched with the body, the body is shared
on all clients and the head is personalized to each client. LG-FedAvg (Liang et al., 2020) learns the
entire network jointly during local updates and only aggregates the top layers based on the pre-trained
global network via FedAvg. When the top layers are matched with the head, the body is personalized
to each client and the head is shared on all clients. FedRep (Collins et al., 2021) learns the entire
network sequentially during local updates and only aggregates the body. In the local update stage,
each client first learns the head only with the aggregated representation and then learns the body
only with its own head within a single epoch. Unlike the above decoupling methods, we propose a
FedBABU algorithm that learns only the body with the randomly initialized head during local updates
and aggregates only the body. It is thought that fixing the head during the entire federated training
provides the same guidelines on learning representations across all clients. Then, personalized local
models can be obtained by fine-tuning the head.

1Although there are more studies related to decoupling parameters (Rusu et al., 2018; Lee & Choi, 2018;
Flennerhag et al., 2019; Chen et al., 2019b), we focus on decoupling the entire network into the body and head.

3

Published as a conference paper at ICLR 2022

3 PRELIMINARIES

FL training procedure We summarize the training procedure of FL following the aforementioned
four stages with formal notations. Let {1, · · · , N} be the set of all clients. Then, the participating
clients in the communication round k with client fraction ratio f is Ck = {Ck

i }
⌊Nf⌋
i=1 . By broadcasting,

the local parameters of the participating clients {θki (0)}
⌊Nf⌋
i=1 are initialized by the global parameter

θk−1G , that is, θki (0)← θk−1G for all i ∈ [1, ⌊Nf⌋] and k ∈ [1,K]. Note that θ0G is randomly initialized
first. On its own device, each local model is updated using a locally kept data set. After local epochs
τ , the locally updated models become {θki (τIki)}

⌊Nf⌋
i=1 , where Iki is the number of iterations of one

epoch on client Ck
i (i.e., ⌈

n
Ck
i

B ⌉), nCk
i

is the number of data samples for client Ck
i , and B is the

batch size. Therefore, τIki is the total number of updates in one communication interval. Note
that our research mainly deals with a balanced environment in which all clients have the same size
data set (i.e., Iki is a constant for all k and i).2 Finally, the global parameter θkG is aggregated by∑⌊Nf⌋

i=1

n
Ck
i

n θki (τI
k
i), where n =

∑⌊Nf⌋
i=1 nCk

i
, at the server. For our algorithm, the parameters θ are

decoupled into the body (extractor) parameters θext and the head (classifier) parameters θcls ∈ RC×d,
where d is the dimension of the last representations and C is the number of classes.

Experimental setup We mainly use MobileNet on CIFAR100.3 We set the number of clients to
100 and then each client has 500 training data and 100 test data; the classes in the training and test
data sets are the same. For the heterogeneous distribution of client data, we refer to the experimental
setting in McMahan et al. (2017). We sort the data by labels and divide the data into the same-sized
shards. Because there is no overlapping data between shards, the size of a shard is defined by |D|

N×s ,
where |D| is the data set size, N is the total number of clients, and s is the number of shards per user.
We control FL environments with three hyperparameters: client fraction ratio f , local epochs τ , and
shards per user s. f is the number of participating clients out of the total number of clients in every
round and a small f is natural in the FL settings because the total number of clients is numerous.
The local epochs τ are equal to the interval between two consecutive communication rounds. To
fix the number of total updates to ensure the consistency in all experiments, we fix the product of
communication rounds and local epochs to 320 (e.g., if local epochs are four, then the total number
of communication rounds is 80). The learning rate starts with 0.1 and is decayed by a factor of 0.1
at half and three-quarters of total updates. τ is closely related to the trade-off between accuracy
and communication costs. A small τ provides an accurate federation but requires considerable
communication costs. s is related to the maximum number of classes each user can have; hence, as s
decreases, the degree of data heterogeneity increases.

Evaluation We calculate the initial accuracy and personalized accuracy of FedAvg and FedBABU
following the federated personalization evaluation procedure proposed in Wang et al. (2019) to
analyze the algorithms at the client level: (1) the learned global model is broadcast to all clients and
is then evaluated on the test data set of each client Dts

i (referred to as the initial accuracy), (2) the
learned global model is personalized using the training data set of each client Dtr

i by fine-tuning
with the fine-tuning epochs of τf ; the personalized models are then evaluated on the test data set of
each client Dts

i (referred to as the personalized accuracy). In addition, we calculate the personalized
accuracy of other personalized FL algorithms (such as FedPer, LG-FedAvg, and FedRep). Algorithm
2 in Appendix A describes the evaluation procedure. The values (X±Y) in all tables indicate the
mean±standard deviation of the accuracies across all clients, not across multiple seeds. Here,
reducing the variance over the clients could be interesting but goes beyond the scope of this study.

4 PERSONALIZATION OF A SINGLE GLOBAL MODEL

We first investigate personalization of a single global model using the FedAvg algorithm, following
Wang et al. (2019) and Jiang et al. (2019), to connect a single global model to multiple personalized
models. We evaluate both the initial accuracy and the personalized accuracy, assuming that the test
data sets are not gathered in the server but scattered on the clients.

2Appendix H reports the results under unbalanced and non-IID derived Dirichlet distribution.
3We also use 3convNet on EMNIST, 4convNet on CIFAR10, and ResNet on CIFAR100. Appendix I, F, and

G report results, respectively. Appendix A presents the details of the architectures used.

4

Published as a conference paper at ICLR 2022

Table 1: Initial and personalized accuracy of FedAvg on CIFAR100 under various FL settings
with 100 clients. MobileNet is used. The initial and personalized accuracy indicate the evaluated
performance without fine-tuning and after five fine-tuning epochs for each client, respectively.

FL settings s=100 (heterogeneity ↓) s=50 s=10 (heterogeneity ↑)

f τ Initial Personalized Initial Personalized Initial Personalized

1.0
1 46.93±5.47 51.93±5.19 45.68±5.50 57.84±5.08 37.27±6.97 77.46±5.78
4 37.44±4.98 42.66±5.09 36.05±4.04 47.17±4.26 24.17±5.50 70.41±6.83
10 29.58±4.87 34.62±4.97 29.57±4.29 40.59±5.23 17.85±7.38 63.51±7.38

0.1
1 39.07±5.22 43.92±5.55 38.20±5.73 49.55±5.36 29.12±7.11 71.24±7.82
4 35.39±4.58 39.67±5.21 33.49±4.72 43.63±4.77 21.14±6.86 67.14±6.72
10 28.18±4.83 33.13±5.22 27.34±4.96 38.09±5.17 14.40±5.64 62.67±6.52

Table 2: Initial and personalized accuracy of FedAvg on CIFAR100 under a realistic FL setting
(N=100, f=0.1, τ=10) according to p, which is the percentage of all client data that the server also
has. Here, the entire (or, full) network or body is updated on the server using the available data.

p
s=100 (heterogeneity ↓) s=50 s=10 (heterogeneity ↑)

Initial Personalized Initial Personalized Initial Personalized

0.00 28.18±4.83 33.13±5.22 27.34±4.96 38.09±5.17 14.40±5.64 62.67±6.52

0.05 (Full) 29.23±5.03 32.59±5.24 27.13±4.34 34.34±4.78 18.22±5.64 54.68±6.77
0.05 (Body) 28.50±4.93 33.03±5.36 27.96±4.86 39.10±5.55 14.78±5.59 60.19±6.46

0.10 (Full) 30.59±4.93 33.34±5.30 29.62±4.27 35.50±4.84 19.24±5.15 49.62±7.48
0.10 (Body) 32.90±4.77 36.82±4.66 32.81±4.97 40.80±5.62 18.35±6.75 60.94±7.30

Table 1 describes the accuracy of FedAvg on CIFAR100 according to different FL settings (f , τ ,
and s) with 100 clients. The initial and personalized accuracies indicate the evaluated performance
without fine-tuning and with five fine-tuning epochs for each client, respectively. As previous studies
have shown, the more realistic the setting (i.e., a smaller f , larger τ , and smaller s), the lower the
initial accuracy. Moreover, the tendency of the personalized models to converge higher than the
global model observed in Jiang et al. (2019) is the same. More interestingly, it is shown that the
gap between the initial accuracy and the personalized accuracy increases significantly as the data
become more heterogeneous. It is thought that a small s makes local tasks easier because the label
distribution owned by each client is limited and the number of samples per class increases.
In addition, we conduct an intriguing experiment in which the initial accuracy increases but the
personalized accuracy decreases, maintaining the FL training procedures. In Jiang et al. (2019), the
authors showed that centralized trained models are more difficult to personalize. Similarly, we design
an experiment in which the federated trained models are more difficult to personalize. We assume
that the server has a small portion of p of the non-private client data of the clients4 such that the
non-private data can be used in the server to mitigate the degradation derived from data heterogeneity.
We update the global model using this shared non-private data after every aggregation with only one
epoch. Table 2 describes the result of this experiment. We update the entire network (F in Table 2)
on the server. As p increases, the initial accuracy increases, as expected. However, the personalized
accuracy decreases under significant data heterogeneity (s=10). This result implies that boosting
a single global model can hurt personalization, which may be considered more important than the
initial performance. Therefore, we agree that the development of an excellent global model should
consider the ability to be adequately fine-tuned or personalized.
To investigate the cause of personalization performance degradation, we hypothesize that unnecessary
and disturbing information for personalization (i.e., the information of similar classes that a certain
client does not have) is injected into the head, when a global model is trained on the server.5 To
capture this, we only update the body (B in Table 2) on the server by zeroing the learning rate
corresponding to the head. By narrowing the update parts, the personalization degradation problem
can be remedied significantly without affecting the initial accuracy. From this observation, we argue
that training the head using shared data negatively impacts the personalization.6

4Non-private data are sampled randomly in our experiment, which can violate the FL environments. However,
this experiment is conducted simply as a motivation for our study.

5We also investigate personalization of centralized trained models such as (Jiang et al., 2019), and the results
are reported in Appendix C. Even in this case, training the head also has a negative impact on personalization.

6Zhuang et al. (2021) and Luo et al. (2021) posed a similar problem that the head can be easily biased because
it is closest to the client’s label distribution. Zhuang et al. (2021) proposed a divergence-aware predictor update
module, and Luo et al. (2021) and Achituve et al. (2021) proposed a head calibration method.

5

Published as a conference paper at ICLR 2022

5 FEDBABU: FEDERATED AVERAGING WITH BODY AGGREGATION AND
BODY UPDATE

We propose a novel algorithm that learns a better single global model to be personalized efficiently.
Inspired by prior studies on long-tailed recognition (Yu et al., 2020; Kang et al., 2019), fine-tuning
(Devlin et al., 2019), and self-supervised learning (He et al., 2020), as well as our data-sharing
experiment, we decouple the entire network into the body and the head. The body is trained for
generalization and the head is then trained for specialization. We apply this idea to federated learning
by never training the head in the federated training phase (i.e., developing a single global model) and
by fine-tuning the head for personalization (in the evaluation process).

5.1 FROZEN HEAD IN THE CENTRALIZED SETTING

0 20 40 60 80 100 120 140 160
0.0

0.1

0.2

0.3

0.4

0.5

0.6

full
head
body

Figure 2: Test accuracy curves according to
the update part in the centralized setting.

Before proposing our algorithm, we empirically
demonstrate that a model with the initialized and
fixed head (body in Figure 2) has comparable perfor-
mance to a model that jointly learns the body and the
head (full in Figure 2). Figure 2 depicts the test ac-
curacy curve of MobileNet on CIFAR100 for various
training scenarios in the centralized setting, where
total epochs are 160 and learning rate starts with 0.1
and is decayed by a factor of 0.1 at 80 and 120 epochs.
The blue line represents the accuracy when all layers
are trained, the red line represents the accuracy when
only the body of the model is trained, and the green
line represents the accuracy when only the head of
the model is trained. The fully trained model and the
fixed head have almost the same performance, whereas the fixed body performs poorly. Thus, we
claim that the randomly initialized fixed head is acceptable, whereas the randomly initialized fixed
body is unacceptable; initialized head is thought to serve as guidelines. This characteristic is derived
from the orthogonality on the head, as is explained in Appendix B. These results are the reasons we
can update only the body during local training in FL settings.

5.2 FEDBABU ALGORITHM Algorithm 1 Training procedure of FedBABU.
1: initialize θ0

G = {θ0
G,ext, θ

0
G,cls}

2: for each round k = 1, · · · , K do
3: m← max(⌊Nf⌋, 1)
4: Ck ← random subset of m clients
5: for each client Ck

i ∈ Ck in parallel do
6: θk

i (0)← θk−1
G = {θk−1

G,ext, θ
0
G,cls}

7: θk
i,ext(τI

k
i)← ClientBodyUpdate(θk

i (0), τ)

8: end for

9: θk
G,ext ←

∑m
i=1

n
Ck
i

n θk
i,ext(τI

k
i), n =

∑m
i=1 n

Ck
i

10: end for
11: return θK

G = {θK
G,ext, θ

0
G,cls}

12: function CLIENTBODYUPDATE(θk
i , τ)

13: Ik
i ← ⌈

n
Ck
i

B ⌉
14: for each local epoch 1, · · · , τ do
15: for each iteration 1, · · · , Ik

i do
16: θk

i,ext ← SGD(θk
i,ext, θ

0
G,cls)

17: end for
18: end for
19: return θk

i,ext

20: end function

Based on the insights and results in Section
5.1, we propose a new FL algorithm called
FedBABU (Federated Averaging with Body
Aggregation and Body Update). Only the body
is trained, whereas the head is never trained dur-
ing federated training; therefore, there is no need
to aggregate the head. Formally, the model pa-
rameters θ are decoupled into the body (extrac-
tor) parameters θext and the head (classifier)
parameters θcls. Note that θcls on any client is
fixed with the head parameters of a randomly
initialized global parameters θ0G until a single
global model converges. This is implemented
by zeroing the learning rate that corresponds to
the head. Intuitively, it is believed that the same
fixed head on all clients serves as the same crite-
ria on learning representations across all clients
despite the passage of training time.

Algorithm 1 describes the training procedure of FedBABU. All notations are explained in the
FL training procedure paragraph in Section 3. Lines 3-4, Line 6, Line 7, and Line 9 correspond
to the client sampling, broadcasting, local update, and aggregation stage, respectively. In the
ClientBodyUpdate function, the local body parameter θki,ext is always updated based on the same
head θ0G,cls (Line 16). Then, only the global body parameter θkG,ext is aggregated (Line 9). Therefore,
the final global parameter θK

G (Line 11) and the initialized global parameter θ0G (Line 1) have the
same head parameter θ0G,cls.

6

Published as a conference paper at ICLR 2022

In this section, we first investigate the representation power after federated training (Section 5.2.1).
Next, we demonstrate the ability related to personalization (Section 5.2.2 to Section 5.2.4). We further
show our algorithm’s applicability (Section 5.2.5).

5.2.1 REPRESENTATION POWER OF GLOBAL MODELS TRAINED BY FEDAVG AND FEDBABU

Table 3: Initial accuracy of FedAvg and FedBABU
on CIFAR100 under various settings with 100
clients. The trained head is replaced with the near-
est template to calculate “w/o head” accuracy and
MobileNet is used.

FL settings FedAvg FedBABU

s f τ w/ head w/o head w/ head w/o head

100

1.0
1 46.93±5.47 46.23±4.53 48.61±4.75 49.97±4.69
4 37.44±4.98 33.48±5.09 37.32±4.39 37.20±4.35

10 29.58±4.87 25.11±4.60 26.69±4.50 27.70±4.51

0.1
1 39.07±5.22 36.69±5.82 41.02±4.99 41.19±4.96
4 35.39±4.58 32.58±4.37 36.77±4.47 36.61±4.64

10 28.18±4.83 24.34±4.58 29.38±4.74 29.36±4.46

50

1.0
1 45.68±5.50 53.87±5.39 47.19±4.77 55.70±5.48
4 36.05±4.04 42.65±4.76 37.27±5.25 45.25±5.45

10 29.57±4.29 34.13±4.44 28.43±4.72 36.19±4.93

0.1
1 38.20±5.73 44.57±5.34 41.33±5.10 49.18±5.73
4 33.49±4.72 40.01±5.49 34.68±4.58 42.43±5.11

10 27.34±4.96 33.10±5.08 27.91±5.27 36.49±5.37

10

1.0
1 37.27±6.97 67.18±7.27 45.32±8.52 71.23±6.71
4 24.17±5.50 58.70±6.74 32.91±7.07 64.41±7.44

10 17.85±7.38 51.72±7.65 22.15±5.72 55.63±7.24

0.1
1 29.12±7.11 60.42±7.89 35.05±7.63 65.98±6.43
4 21.14±6.86 54.91±6.72 25.67±7.31 59.44±6.43

10 14.40±5.64 50.25±6.27 18.50±7.82 54.93±7.85

Higher initial accuracy is often required because
some clients may not have data for personaliza-
tion in practice. In addition, the representation
power of the initial models is related to the per-
formance of downstream or personal tasks. To
capture the representation power, the “without
(w/o) head” accuracy is calculated by replacing
the trained head with the nearest template fol-
lowing previous studies (Kang et al., 2019; Snell
et al., 2017; Raghu et al., 2019; Oh et al., 2021):
(1) Using the trained global model and training
data set on each client, the representations of
each class are averaged into the template of each
class. Then, (2) the cosine similarity between
the test samples and the templates are measured
and the test samples are classified into the near-
est template’s class. Templates are created for
each client because raw data cannot be moved.

Table 3 describes the initial accuracy of FedAvg
and FedBABU according to the existence of the
head. Because all clients share the same criteria
and learn representations based on that criteria during federated training in FedBABU, improved
representation power is expected.7 When evaluated without the head, FedBABU has improved
performance compared to FedAvg in all cases, particularly under large data heterogeneity. Specifically,
when s = 100 (i.e., each client has most of the classes of CIFAR100), the performance gap depends
on whether the head exists in FedAvg, but not in FedBABU. This means that the features through
FedBABU are well-represented to the extent that there is nothing to be supplemented through the
head. When s is small, the performance improves when there is no head. Because templates are
constructed based on the training data set for each client, it is not possible to classify test samples into
classes that the client does not have. In other words, restrictions on the output distribution of each
client lead to tremendous performance gains, even without training the global model. Therefore, it is
expected that fine-tuning the global models with a strong representation can boost personalization.

5.2.2 PERSONALIZATION OF FEDAVG AND FEDBABU

Table 4: Personalized accuracy of FedAvg and FedBABU on CIFAR100 according to the fine-tuned
part. The fine-tuning epochs is 5 and f is 0.1.

(a) FedBABU.

FL settings Update part for personalization

s τ Body Head Full

100
1 44.26±5.12 49.76±5.03 49.67±4.92
4 39.61±4.68 44.74±5.02 44.74±5.10

10 32.45±5.42 36.48±5.04 35.94±5.06

50
1 48.54±5.23 56.76±5.68 56.69±5.16
4 41.27±5.04 49.45±5.41 49.55±5.58

10 35.42±5.60 42.55±5.70 42.63±5.59

10
1 72.81±7.32 75.97±6.29 76.02±6.29
4 69.12±6.70 70.74±6.47 71.00±6.63

10 64.77±7.14 66.28±6.77 66.32±7.02

(b) FedAvg.

FL settings Update part for personalization

s τ Body Head Full

100
1 41.00±5.35 43.18±5.34 43.92±5.55
4 37.43±4.98 38.29±4.96 39.67±5.21

10 30.62±4.95 31.92±5.04 33.13±5.22

50
1 43.61±5.54 47.51±5.61 49.55±5.36
4 37.99±4.68 41.48±4.61 43.63±4.77

10 32.20±4.92 36.06±5.31 38.09±5.17

10
1 56.00±8.66 69.70±7.88 71.24±7.82
4 34.49±7.92 65.32±6.81 67.14±6.72

10 27.94±6.96 60.24±6.16 62.67±6.52

7Appendix O provides the results of FedAvg with different learning rates between the head and the body,
which shows the freezing the head completely is critical. Appendix P further provides class-wise analysis during
federated training, which shows that freezing the head makes less damage to out-of-class during local updates.

7

Published as a conference paper at ICLR 2022

To investigate the dominant factor for personalization of FedBABU, we compare the performance
according to the fine-tuned part. Table 4a describes the results of this experiment. Global models are
fine-tuned with five epochs based on the training data set of each client. It is shown that fine-tuning
including the head (i.e., Head or Full in Table 4a) is better for personalization than body-partially
fine-tuning (i.e., Body in Table 4a). It is noted that the computational costs can be reduced by
fine-tuning only the head in the case of FedBABU without performance degradation.

However, in the case of FedAvg, a performance gap appears. Table 4b describes the personalized
accuracy of FedAvg according to the fine-tuned parts. It is shown that fine-tuning the entire network
(Full in Table 4b) is better for personalization than partial fine-tuning (Body or Head in Table 4b).
Therefore, for FedAvg, it is recommended to personalize global models by fine-tuning the entire
network for better performance. For consistency of the evaluation, for both FedAvg and FedBABU,
we fine-tuned the entire model in this paper.

5.2.3 PERSONALIZATION PERFORMANCE COMPARISON

Table 5: Personalized accuracy comparison on CIFAR100 under various settings with 100 clients and
MobileNet is used.

FL settings Personalized accuracy

s f τ
FedBABU

(Ours)
FedAvg
(2017)

FedPer
(2019)

LG-FedAvg
(2020)

FedRep
(2021)

Per-FedAvg
(2020)

Ditto
(2021) Local-only

100

1.0
1 55.79±4.57 51.93±5.19 51.95±5.30 53.01±5.26 18.29±3.59 47.09±7.35 39.36±4.78

20.60±3.15

4 44.49±4.91 42.66±5.09 40.87±5.05 43.09±4.74 15.32±3.79 39.07±7.59 31.58±5.00
10 33.20±4.54 34.62±4.97 32.91±4.97 34.64±5.03 13.45±3.26 30.22±6.59 21.18±4.54

0.1
1 49.67±4.92 43.92±5.55 45.17±4.70 40.91±5.50 23.84±3.92 48.10±7.42 45.46±4.73
4 44.74±5.10 39.67±5.21 39.30±4.92 37.87±4.99 16.01±3.48 33.70±7.04 32.46±5.42
10 35.94±5.06 33.13±5.22 32.08±4.97 30.08±5.34 11.11±3.13 25.82±5.83 23.96±4.64

50

1.0
1 61.09±4.91 57.84±5.08 57.16±5.26 58.44±5.53 24.75±5.02 43.75±7.94 42.70±5.46

28.02±4.01

4 51.56±5.04 47.17±4.26 48.89±5.40 47.78±4.72 21.55±4.36 37.59±7.87 36.57±5.11
10 42.09±5.12 40.59±5.23 39.90±5.54 40.32±4.70 19.92±4.50 28.75±6.40 27.27±5.04

0.1
1 56.69±5.16 49.55±5.36 51.63±5.27 42.64±5.55 32.88±5.09 43.96±7.40 43.22±5.82
4 49.55±5.58 43.63±4.77 46.31±5.63 38.54±4.71 21.13±3.96 28.67±6.98 31.65±5.08
10 42.63±5.59 38.09±5.17 39.81±4.88 30.79±6.12 15.15±4.01 21.64±6.16 22.16±4.67

10

1.0
1 79.17±6.51 77.46±5.78 74.71±6.35 77.49±5.60 61.28±8.27 36.59±8.98 65.33±7.49

61.52±7.22

4 74.60±6.69 70.41±6.83 65.61±7.13 69.97±6.42 50.59±7.94 18.31±10.57 64.47±7.45
10 66.64±6.84 63.51±7.38 59.71±7.35 61.50±7.28 42.13±7.53 11.54±8.87 51.68±7.44

0.1
1 76.02±6.29 71.24±7.82 69.36±6.77 51.75±9.32 60.13±7.72 31.21±11.66 31.91±15.10
4 71.00±6.63 67.14±6.72 62.62±7.63 35.80±10.55 45.91±7.68 14.34±9.51 23.70±15.84
10 66.32±7.02 62.67±6.52 59.50±7.33 25.04±12.02 34.30±7.84 9.17±6.95 14.24±15.67

We compare FedBABU with existing methods from the perspective of personalization. Appendix A
presents details of the evaluation procedure and implementations of each algorithm. Table 5 describes
the personalized accuracy of various algorithms. Notably, FedAvg is a remarkably strong baseline,
overwhelming other recent personalized FL algorithms on CIFAR100 in most cases.8 These results
are similar to recent trends in the field of meta-learning, where fine-tuning based on well-trained
representations overwhelms advanced few-shot classification algorithms for heterogeneous tasks
(Chen et al., 2019a; 2020a; Dhillon et al., 2019; Tian et al., 2020). FedBABU (ours) further outshines
FedAvg; it is believed that enhancing representations by freezing the head improves the performance.

In detail, when τ=1, the performance gap between FedBABU and FedRep demonstrates the impor-
tance of fixing the head across clients. Note that when τ=1, if there is no training process on the head
in FedRep, FedRep is reduced to FedBABU. Moreover, we attribute the performance degradation
of FedRep to the low epochs of training on the body. In addition, the efficiency of personalized
FL algorithms increases when all clients participate; therefore, FedPer (Arivazhagan et al., 2019)
assumes the activation of all clients during every communication round. The Per-FedAvg algo-
rithm might suffer from dividing the test set into a support set and query set when there are many
classes and from small fine-tuning iterations. In summary, FedAvg are comparable and better than
even recent personalized FL algorithms such as Per-FedAvg and Ditto, and FedBABU (ours)
achieves the higher performance than FedAvg and other decoupling algorithms.

8Similar results were reported in the recent paper (Collins et al., 2021), showing that FedAvg beats recent
personalized algorithms (Smith et al., 2017; Fallah et al., 2020; Liang et al., 2020; Hanzely & Richtárik, 2020;
Deng et al., 2020; Li et al., 2021; Arivazhagan et al., 2019) in many cases. Appendix N further discusses the
effectiveness of FedAvg.

8

Published as a conference paper at ICLR 2022

5.2.4 PERSONALIZATION SPEED OF FEDAVG AND FEDBABU

Table 6: Performance according to the fine-tune epochs (FL setting: f=0.1, and τ=10).

s Algorithm Fine-tune epochs (τf)

0 (Initial) 1 2 3 4 5 10 15 20

50 FedAvg 27.34±4.96 29.17±5.01 32.39±4.77 34.97±5.13 36.78±5.13 38.09±5.17 40.56±5.43 41.20±5.51 40.86±5.13
FedBABU 27.91±5.27 35.20±5.58 40.60±5.47 42.12±5.61 42.74±5.60 42.63±5.59 41.94±5.68 41.19±5.52 40.61±5.28

10 FedAvg 14.40±5.64 27.43±6.46 48.63±7.30 58.08±6.11 61.27±6.15 62.67±6.52 63.91±6.49 64.56±6.45 64.89±6.53
FedBABU 18.50±7.82 63.29±7.55 66.05±6.93 66.10±6.54 66.40±7.24 66.32±7.02 66.07±7.57 66.24±7.67 66.32±7.71

We investigate the personalization speed of FedAvg and FedBABU by controlling the fine-tuning
epochs τf in the evaluation process. Table 6 describes the initial (when τf is 0) and personalized
(otherwise) accuracy of FedAvg and FedBABU. Here, one epoch is equal to 10 updates in our case
because each client has 500 training samples and the batch size is 50. It has been shown that FedAvg
requires sufficient epochs for fine-tuning, as reported in Jiang et al. (2019). Notably, FedBABU
achieves better accuracy with a small number of epochs, which means that FedBABU can personalize
accurately and rapidly, especially when fine-tuning is either costly or restricted. This characteristic is
explained further based on cosine similarity in Appendix K.

5.2.5 BODY AGGREGATION AND BODY UPDATE ON THE FEDPROX

Table 7: Initial and personalized accuracy of FedProx and FedProx+BABU with µ=0.01 on CIFAR100
with 100 clients and f=0.1.

Algorithm τ
s=100 (heterogeneity ↓) s=50 s=10 (heterogeneity ↑)

Initial Personalized Initial Personalized Initial Personalized

FedProx
1 46.52±4.56 50.95±4.65 42.20±4.90 51.29±5.20 28.16±9.00 66.39±7.79
4 36.54±4.74 39.83±4.71 33.59±4.80 40.17±5.11 18.20±7.62 41.56±9.34

10 28.63±4.40 31.90±4.16 26.88±4.59 32.92±5.00 13.62±7.73 43.48±9.32

FedProx
+BABU

1 48.53±5.15 57.44±4.72 46.25±5.31 63.12±5.25 33.13±8.11 78.86±5.70
4 37.17±4.41 45.26±4.76 33.86±5.44 50.18±5.14 22.94±9.90 75.71±5.33

10 27.79±3.95 35.68±4.34 27.48±5.22 42.37±6.10 15.66±8.29 67.15±7.10

FedProx (Li et al., 2018) regularizes the distance between a global model and local models to prevent
local models from deviating. The degree of regularization is controlled by µ. Note that when µ
is 0.0, FedProx is reduced to FedAvg. Table 7 describes the initial and personalized accuracy of
FedProx and FedProx+BABU with µ=0.01 when f=0.1, and Appendix M reports the results when
f=1.0. The global models trained by FedProx reduce the personalization capabilities compared
to FedAvg (refer to Table 1 when f=0.1), particularly under realistic FL settings. We adapt the
body aggregation and body update idea to the FedProx algorithm, referred to as FedProx+BABU,
which performs better than the personalization of FedAvg. Furthermore, FedProx+BABU improves
personalized performance compared to FedBABU (refer to Table 5 when f=0.1). This means that the
regularization of the body is still meaningful. Our algorithm and various experiments suggest future
directions of federated learning: Which parts should be federated and enhanced? Representation!

6 CONCLUSION

In this study, we focused on how to train a good federated global model for the purpose of person-
alization. Namely, this problem boils down to how to pre-train a better backbone in a federated
learning manner for downstream personal tasks. We first showed that existing methods to improve a
global model (e.g., data sharing or regularization) could reduce ability to personalize. To mitigate this
personalization performance degradation problem, we decoupled the entire network into the body,
related to generality, and the head, related to personalization. Then, we demonstrated that training the
head creates this problem. Furthermore, we proposed the FedBABU algorithm, which learns a shared
global model that can rapidly adapt to heterogeneous data on each client. FedBABU only updates the
body in the local update stage and only aggregates the body in the aggregation stage, thus developing
a single global model with a strong representation. This global model can be efficiently personalized
by fine-tuning each client’s model using its own data set. Extensive experimental results showed
that FedBABU overwhelmed various personalized FL algorithms. Our improvement emphasizes the
importance of federating and enhancing the representation for FL.

9

Published as a conference paper at ICLR 2022

ACKNOWLEDGMENTS

This work was supported by Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government (MSIT) [No.2019-0-00075, Artificial
Intelligence Graduate School Program (KAIST)] and [No. 2021-0-00907, Development of Adaptive
and Lightweight Edge-Collaborative Analysis Technology for Enabling Proactively Immediate
Response and Rapid Learning].

REPRODUCIBILITY STATEMENT

Our code is available at https://github.com/jhoon-oh/FedBABU. For convenience re-
producibility, shell files of each algorithm are also included.

REFERENCES

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N Whatmough,
and Venkatesh Saligrama. Federated learning based on dynamic regularization. In International
Conference on Learning Representations, 2021.

Idan Achituve, Aviv Shamsian, Aviv Navon, Gal Chechik, and Ethan Fetaya. Personalized federated
learning with gaussian processes. arXiv preprint arXiv:2106.15482, 2021.

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Feder-
ated learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.

Christopher Briggs, Zhong Fan, and Peter Andras. Federated learning with hierarchical clustering
of local updates to improve training on non-iid data. In 2020 International Joint Conference on
Neural Networks (IJCNN), pp. 1–9. IEEE, 2020.

David M Chan, Roshan Rao, Forrest Huang, and John F Canny. Gpu accelerated t-distributed
stochastic neighbor embedding. Journal of Parallel and Distributed Computing, 131:1–13, 2019.

Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. Federated meta-learning with fast
convergence and efficient communication. arXiv preprint arXiv:1802.07876, 2018.

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer look
at few-shot classification. In International Conference on Learning Representations, 2019a.

Yinbo Chen, Xiaolong Wang, Zhuang Liu, Huijuan Xu, and Trevor Darrell. A new meta-baseline for
few-shot learning. arXiv preprint arXiv:2003.04390, 2020a.

Yiqiang Chen, Xin Qin, Jindong Wang, Chaohui Yu, and Wen Gao. Fedhealth: A federated transfer
learning framework for wearable healthcare. IEEE Intelligent Systems, 35(4):83–93, 2020b.

Yutian Chen, Abram L Friesen, Feryal Behbahani, Arnaud Doucet, David Budden, Matthew W
Hoffman, and Nando de Freitas. Modular meta-learning with shrinkage. arXiv preprint
arXiv:1909.05557, 2019b.

Gary Cheng, Karan Chadha, and John Duchi. Fine-tuning is fine in federated learning. arXiv preprint
arXiv:2108.07313, 2021.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist
to handwritten letters. In 2017 International Joint Conference on Neural Networks (IJCNN), pp.
2921–2926. IEEE, 2017.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared represen-
tations for personalized federated learning. In Marina Meila and Tong Zhang (eds.), Proceedings
of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning Research, pp. 2089–2099. PMLR, 2021.
URL http://proceedings.mlr.press/v139/collins21a.html.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated
learning. arXiv preprint arXiv:2003.13461, 2020.

10

https://github.com/jhoon-oh/FedBABU
http://proceedings.mlr.press/v139/collins21a.html

Published as a conference paper at ICLR 2022

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Guneet S Dhillon, Pratik Chaudhari, Avinash Ravichandran, and Stefano Soatto. A baseline for
few-shot image classification. arXiv preprint arXiv:1909.02729, 2019.

Canh T Dinh, Tung T Vu, Nguyen H Tran, Minh N Dao, and Hongyu Zhang. Fedu: A uni-
fied framework for federated multi-task learning with laplacian regularization. arXiv preprint
arXiv:2102.07148, 2021.

Moming Duan, Duo Liu, Xianzhang Chen, Yujuan Tan, Jinting Ren, Lei Qiao, and Liang Liang.
Astraea: Self-balancing federated learning for improving classification accuracy of mobile deep
learning applications. In 2019 IEEE 37th International Conference on Computer Design (ICCD),
pp. 246–254. IEEE, 2019.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A meta-
learning approach. arXiv preprint arXiv:2002.07948, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International Conference on Machine Learning, pp. 1126–1135. PMLR, 2017.

Sebastian Flennerhag, Andrei A Rusu, Razvan Pascanu, Francesco Visin, Hujun Yin, and Raia
Hadsell. Meta-learning with warped gradient descent. arXiv preprint arXiv:1909.00025, 2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Filip Hanzely and Peter Richtárik. Federated learning of a mixture of global and local models. arXiv
preprint arXiv:2002.05516, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729–9738, 2020.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Shaoxiong Ji, Teemu Saravirta, Shirui Pan, Guodong Long, and Anwar Walid. Emerging trends in
federated learning: From model fusion to federated x learning, 2021.

Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan. Improving federated learning
personalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and Yannis
Kalantidis. Decoupling representation and classifier for long-tailed recognition. In International
Conference on Learning Representations, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Viraj Kulkarni, Milind Kulkarni, and Aniruddha Pant. Survey of personalization techniques for
federated learning. In 2020 Fourth World Conference on Smart Trends in Systems, Security and
Sustainability (WorldS4), pp. 794–797. IEEE, 2020.

11

Published as a conference paper at ICLR 2022

Yoonho Lee and Seungjin Choi. Gradient-based meta-learning with learned layerwise metric and
subspace. In International Conference on Machine Learning, pp. 2927–2936. PMLR, 2018.

José Lezama, Qiang Qiu, Pablo Musé, and Guillermo Sapiro. Ole: Orthogonal low-rank embedding-
a plug and play geometric loss for deep learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 8109–8118, 2018.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127, 2018.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated learning
through personalization. In International Conference on Machine Learning, pp. 6357–6368. PMLR,
2021.

Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B Allen, Randy P Auerbach, David Brent, Ruslan
Salakhutdinov, and Louis-Philippe Morency. Think locally, act globally: Federated learning with
local and global representations. arXiv preprint arXiv:2001.01523, 2020.

Mi Luo, Fei Chen, Dapeng Hu, Yifan Zhang, Jian Liang, and Jiashi Feng. No fear of heterogeneity:
Classifier calibration for federated learning with non-iid data. arXiv preprint arXiv:2106.05001,
2021.

Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three approaches for
personalization with applications to federated learning. arXiv preprint arXiv:2002.10619, 2020.

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. Communication-efficient
learning of deep networks from decentralized data. In Proc. 20th Int’l Conf. Artificial Intelligence
and Statistics (AISTATS), pp. 1273–1282, 2017.

Jaehoon Oh, Hyungjun Yoo, ChangHwan Kim, and Se-Young Yun. Boil: Towards representation
change for few-shot learning. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=umIdUL8rMH.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in Neural Information Processing Systems, 32:
8026–8037, 2019.

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature
reuse? towards understanding the effectiveness of maml. In International Conference on Learning
Representations, 2019.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osin-
dero, and Raia Hadsell. Meta-learning with latent embedding optimization. arXiv preprint
arXiv:1807.05960, 2018.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics
of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. Personalized federated learning using
hypernetworks. arXiv preprint arXiv:2103.04628, 2021.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. Federated multi-task
learning. arXiv preprint arXiv:1705.10467, 2017.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Proceedings of the 31st International Conference on Neural Information Processing Systems, pp.
4080–4090, 2017.

Canh T Dinh, Nguyen Tran, and Tuan Dung Nguyen. Personalized federated learning with moreau
envelopes. Advances in Neural Information Processing Systems, 33, 2020.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated learning.
arXiv preprint arXiv:2103.00710, 2021.

12

https://openreview.net/forum?id=umIdUL8rMH

Published as a conference paper at ICLR 2022

Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip Isola. Rethinking
few-shot image classification: a good embedding is all you need? arXiv preprint arXiv:2003.11539,
2020.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hubert Eichner, Françoise Beaufays, and Daniel
Ramage. Federated evaluation of on-device personalization. arXiv preprint arXiv:1910.10252,
2019.

Hongwei Yang, Hui He, Weizhe Zhang, and Xiaochun Cao. Fedsteg: A federated transfer learning
framework for secure image steganalysis. IEEE Transactions on Network Science and Engineering,
2020.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? arXiv preprint arXiv:1411.1792, 2014.

Haiyang Yu, Ningyu Zhang, Shumin Deng, Zonggang Yuan, Yantao Jia, and Huajun Chen. The
devil is the classifier: Investigating long tail relation classification with decoupling analysis. arXiv
preprint arXiv:2009.07022, 2020.

Hui Zhang and Quanming Yao. Decoupling representation and classifier for noisy label learning.
arXiv preprint arXiv:2011.08145, 2020.

Michael Zhang, Karan Sapra, Sanja Fidler, Serena Yeung, and Jose M Alvarez. Personalized federated
learning with first order model optimization. arXiv preprint arXiv:2012.08565, 2020.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

Weiming Zhuang, Yonggang Wen, Xuesen Zhang, Xin Gan, Daiying Yin, Dongzhan Zhou, Shuai
Zhang, and Shuai Yi. Performance optimization of federated person re-identification via benchmark
analysis. In Proceedings of the 28th ACM International Conference on Multimedia, pp. 955–963,
2020.

Weiming Zhuang, Xin Gan, Yonggang Wen, Shuai Zhang, and Shuai Yi. Collaborative unsuper-
vised visual representation learning from decentralized data. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 4912–4921, 2021.

13

Published as a conference paper at ICLR 2022

A IMPLEMENTATION DETAIL

Our implementations are based on the code presented by (Liang et al., 2020).9 All the reported results
are based on the last model. For computation costs, we used a single TITAN RTX and the entire
training time of FedBABU on CIFAR100 using MobileNet takes ∼2 hours when f=1.0 and τ=1.
Therefore, as f decreases and τ increases, it takes less time.

A.1 ARCHITECTURES

In our experiments, we employ the 3convNet for EMNIST, 4convNet for CIFAR10, MobileNet for
CIFAR100, and ResNet for CIFAR100. 3convNet and 4convNet are described below. MobileNet
(Howard et al., 2017) includes depthwise convolution and pointwise convolution, and ResNet (He
et al., 2016) includes skip connection.10 Please refer to each paper in detail.

3 convNet (
(f e a t u r e s) : S e q u e n t i a l (

(0) : S e q u e n t i a l (
(0) : Conv2d (1 , 64 , k e r n e l _ s i z e = (3 , 3) , s t r i d e = (1 , 1) , padd ing =(1 , 1))
(1) : BatchNorm2d (6 4 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e)
(2) : ReLU ()
(3) : MaxPool2d (k e r n e l _ s i z e =2 , s t r i d e =2 , padd ing =0 , d i l a t i o n =1 , ce i l _mode = F a l s e)

)
(1) : S e q u e n t i a l (

(0) : Conv2d (6 4 , 64 , k e r n e l _ s i z e = (3 , 3) , s t r i d e = (1 , 1) , padd ing =(1 , 1))
(1) : BatchNorm2d (6 4 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e)
(2) : ReLU ()
(3) : MaxPool2d (k e r n e l _ s i z e =2 , s t r i d e =2 , padd ing =0 , d i l a t i o n =1 , ce i l _mode = F a l s e)

)
(2) : S e q u e n t i a l (

(0) : Conv2d (6 4 , 64 , k e r n e l _ s i z e = (3 , 3) , s t r i d e = (1 , 1) , padd ing =(1 , 1))
(1) : BatchNorm2d (6 4 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e)
(2) : ReLU ()
(3) : MaxPool2d (k e r n e l _ s i z e =2 , s t r i d e =2 , padd ing =0 , d i l a t i o n =1 , ce i l _mode = F a l s e)

)
)
(l i n e a r) : L i n e a r (i n _ f e a t u r e s =576 , o u t _ f e a t u r e s =62 , b i a s =True)

)

4 convNet (
(f e a t u r e s) : S e q u e n t i a l (

(0) : S e q u e n t i a l (
(0) : Conv2d (3 , 64 , k e r n e l _ s i z e = (3 , 3) , s t r i d e = (1 , 1) , padd ing =(1 , 1))
(1) : BatchNorm2d (6 4 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e)
(2) : ReLU ()
(3) : MaxPool2d (k e r n e l _ s i z e =2 , s t r i d e =2 , padd ing =0 , d i l a t i o n =1 , ce i l _mode = F a l s e)

)
(1) : S e q u e n t i a l (

(0) : Conv2d (6 4 , 64 , k e r n e l _ s i z e = (3 , 3) , s t r i d e = (1 , 1) , padd ing =(1 , 1))
(1) : BatchNorm2d (6 4 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e)
(2) : ReLU ()
(3) : MaxPool2d (k e r n e l _ s i z e =2 , s t r i d e =2 , padd ing =0 , d i l a t i o n =1 , ce i l _mode = F a l s e)

)
(2) : S e q u e n t i a l (

(0) : Conv2d (6 4 , 64 , k e r n e l _ s i z e = (3 , 3) , s t r i d e = (1 , 1) , padd ing =(1 , 1))
(1) : BatchNorm2d (6 4 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e)
(2) : ReLU ()
(3) : MaxPool2d (k e r n e l _ s i z e =2 , s t r i d e =2 , padd ing =0 , d i l a t i o n =1 , ce i l _mode = F a l s e)

)
(3) : S e q u e n t i a l (

(0) : Conv2d (6 4 , 64 , k e r n e l _ s i z e = (3 , 3) , s t r i d e = (1 , 1) , padd ing =(1 , 1))
(1) : BatchNorm2d (6 4 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e)
(2) : ReLU ()
(3) : MaxPool2d (k e r n e l _ s i z e =2 , s t r i d e =2 , padd ing =0 , d i l a t i o n =1 , ce i l _mode = F a l s e)

)
)
(l i n e a r) : L i n e a r (i n _ f e a t u r e s =256 , o u t _ f e a t u r e s =10 , b i a s =True)

)

9https://github.com/pliang279/LG-FedAvg
10We use two architectures from https://github.com/kuangliu/pytorch-cifar

14

Published as a conference paper at ICLR 2022

A.2 DATASETS

We used two public datasets, the CIFAR (Krizhevsky et al., 2009)11 and EMNIST (Cohen et al.,
2017) 12, for performance evaluation. The composition of each dataset is summarized in Table 8. We
applied linear transformations such as horizontal flipping and random cropping.

Table 8: Composition of CIFAR and EMNIST.

Dataset # of Training # of Validation # of Classes

CIFAR-10 50,000 10,000 10
CIFAR-100 50,000 10,000 100
EMNIST 731,668 82,587 62

A.3 HYPERPARAMETERS

For LG-FedAvg, FedAvg models corresponding to the FL settings in Table 3 are used as an ini-
tialization. It is then trained about a quarter of FedAvg training with a learning rate of 0.001. For
FedRep, the number of local epochs for head and body updates were set to τ and 1, respectively. For
Per-FedAvg, we used the first-order (FO) version, and the β value was set as the learning rate value
corresponding to the communication round. For Ditto, the λ used to control the regularization term
was set to 0.75.

A.4 EVALUATION OF FL ALGORITHMS

In FL algorithms, because the parts that need to be shared over all clients after federated training may
not be shared due to client fraction, we evaluate these algorithms as follows:

Algorithm 2 Evaluation procedure of FedAvg, FedBABU, FedPer, LG-FedAvg, and FedRep.
1: initlist = [] (If alg is FedAvg or FedBABU)
2: perlist = []
3: for each client i ∈ [1, N] in parallel do
4: θi,s(0)← θK

G,s

5: Accinit ← Eval(θi(0);Dts
i) (If alg is FedAvg or FedBABU)

6: initlist.append(Accinit) (If alg is FedAvg or FedBABU)
7: θi(τf Ii)← Fine-tune(alg, θi(0), τf ;Dtr

i)

8: Accper ← Eval(θi(τf Ii);Dts
i)

9: perlist.append(Accper)
10: end for
11: return initlist, perlist

12: function FINE-TUNE(alg, θi, τf)

13: Ii ← ⌈
nCi
B ⌉

14: for each fine-tune epoch 1, · · · , τf do
15: for each iteration 1, · · · , Ii do
16: θi ← SGD(θi) (If alg is FedAvg or FedBABU or FedPer or LG-FedAvg)
17: θi,cls ← SGD(θi) (If alg is FedRep)
18: end for
19: end for
20: for each iteration 1, · · · , Ii do (If alg is FedRep)
21: θi,ext ← SGD(θi)

22: end for
23: return θi
24: end function

where θK
G,s indicates the shared parts after federated training (i.e., full in the cases of FedAvg and

FedBABU, body in the cases of FedPer and FedRep, and head in the case of LG-FedAvg). All
notations are explained in the evaluation paragraph in Section 3. Because communication round
k is not related to evaluation, it is emitted. For FedAvg and FedBABU, initial accuracy is also
calculated. Although all clients have different personalized models because some parts are not shared
after broadcasting except for FedAvg and FedBABU, it is not completely personalized because there
is a common part θK

G,s. Therefore, we fine-tune all algorithms. FedRep trains models sequentially
(Line 17 and 21), while others jointly (Line 16). Finally, the mean and standard deviation of initlist
and perlist are reported as initial accuracy and personalized accuracy in our paper.

11https://www.cs.toronto.edu/ kriz/cifar.html
12https://www.nist.gov/itl/products-and-services/emnist-dataset

15

Published as a conference paper at ICLR 2022

B ORTHOGONALITY OF RANDOM INITIALIZATION

0 20 40 60 80 100 120 140 160

0.1

0.2

0.3

0.4

0.5

0.6

Xavier-uniform (-0.0002)
He-uniform (-0.0001) [default]
Orthogonal (-2.55e-10)
Similar (0.9967)

Figure 3: Test accuracy curves according to
the initialization method when the body is
only trained in the centralized setting. The
values in parentheses indicate the average of
cosine similarities between row vectors.

We hypothesize that the orthogonal initialization
(Saxe et al., 2013) on the head, through which the row
vectors of the classifier parameters θcls are orthogo-
nal, is the best for the body-only update rule. At each
update, the output of the extractor is pulled toward its
label’s row of θcls and pushed apart from the other
rows of θcls through backpropagation. Therefore,
orthogonal weight initialization can separate the out-
puts of the extractor well based on their class labels.
Note that distribution-based random initializations,
such as Xaiver (Glorot & Bengio, 2010) and He (He
et al., 2015), have almost orthogonal rows because
the orthogonality of two random vectors is observed
in high dimensions with high probability (Lezama
et al., 2018).

Figure 3 shows test accuracy curves for many differ-
ent initialization methods when only the body is trained in the centralized setting.13 When the row
vectors are initialized similarly, a convergence gap appears (green and red lines in Figure 3), as
expected. More experiments in the centralized setting are reported in subsection F.1 and Appendix G.
Based on these empirical and theoretical results, we used He (uniform) initialization, the default
setting in PyTorch (Paszke et al., 2019), in our paper.

This characteristic can be proved. Xavier (Glorot & Bengio, 2010) and He (He et al., 2015) are
representative distribution-based random initialization methods, controlling the variance of parameters
using network size to avoid the exploding/vanishing gradient problem. Two initialization methods use
uniform and normal distribution. In detail, each element follows U(−a, a) orN (0, σ2) independently,
where a and σ are defined by non-linearity (such as ReLU and Tanh) and layer input-output size.
Because we used the ReLU non-linear function in our implementations, we calculate a and σ by
multiplying

√
2, for scaling of ReLU non-linearity.

Because we focus on initialization on the head, we specify θcls ∈ RC×d, where C is the number
of classes (i.e., layer output size) and d is the dimension of the last representation (i.e., layer input
size). Namely, each element random variable {wi,j}i∈[1,C],j∈[1,d] follows U(−a, a) or N (0, σ2)
independently.

When wi,j ∼ U(−a, a), in Xavier initialization, a is defined as
√
2 ×

√
6

d+C . Similarly, in He

initialization, a is defined as
√
2×

√
3
d or
√
2×

√
3
C depending on which to be preserved, forward

pass or backward pass. When wi,j ∼ N (0, σ2), in Xavier initialization, σ is defined as
√
2×

√
2

d+C .

Similarly, in He initialization, σ is defined as
√
2 ×

√
1
d or
√
2 ×

√
1
C depending on which to be

preserved, forward pass or backward pass. However, It is noted that a in the uniform distribution
and σ in the normal distribution do not affect proof on orthogonality, therefore we keep the form of
U(−a, a) and N (0, σ2) for simplicity.

We first consider 2d independent random variables {wi,j}i∈{p,q},j∈[1,d] for any p ̸= q ∈ [1, C]. Then,
we can define d independent random variables {wp,jwq,j}j∈[1,d] from the above 2d independent
random variables. Then, for all j ∈ [1, d], E[wp,jwq,j] = E[wp,j]E[wq,j] = 0 and V[wp,jwq,j] =
V[wp,j]E[wq,j]

2+V[wp,j]V[wq,j]+E[wp,j]
2V[wq,j] = V[wp,j]V[wq,j] because each element in θcls

follows U(−a, a) or N (0, σ2) independently. Let Sd = 1
d

∑d
j=1 wp,jwq,j . Then, by the Weak Law

of Large Numbers, limd→∞ P (|Sd−E[Sd]| > ϵ) = limd→∞ P (|Sd| > ϵ) = 0 for all ϵ > 0 because
{wp,jwq,j}j∈[1,d] are independent random variables and there is V such that V[wp,jwq,j] < V for
all j.

13All initialization methods except for ‘similar’ are provided by PyTorch (Paszke et al., 2019). Here, ‘similar’
initialization is implemented using a uniform distribution on [0.45, 0.55], and then each row vector is unitized by
dividing the norm corresponding to the row vector.

16

Published as a conference paper at ICLR 2022

C PERSONALIZATION OF THE CENTRALIZED MODEL

In (Jiang et al., 2019), they showed that localizing centralized initial models is harder. Similarly,
we investigate the personalization of the centralized model under different heterogeneity. First, we
train two models with 10 epochs, one is entirely updated (F in Table 9), and another is body-partially
updated (B in Table 9) using all training data set. Then, the trained model is broadcast to each client
and then evaluated. Table 9 describes the results of this experiment. It is demonstrated that if models
are updated body-partially, then personalization ability does not hurt even under centralized training.

Table 9: Personalization of the centralized models. F is trained entirely, and B is trained body-partially
in the centralized setting.

s Model Fine-tune epochs (τf)

0 (Initial) 1 2 3 4 5

100 F 40.25±4.75 40.77±4.72 41.80±4.86 42.43±4.78 43.32±4.72 44.15±4.61
B 39.64±4.96 43.37±5.41 47.66±5.08 50.16±5.24 51.09±5.00 52.15±5.04

50 F 37.92±5.48 38.93±5.52 40.68±5.48 42.40±5.33 43.86±5.39 45.27±5.43
B 37.18±5.21 43.66±5.34 51.14±5.49 54.67±5.06 56.34±4.82 57.36±5.21

10 F 25.46±6.23 28.04±6.88 33.43±7.32 39.56±7.66 44.74±7.43 50.32±7.05
B 23.86±5.08 48.63±5.39 69.14±5.78 74.32±5.35 75.90±5.49 76.47±5.48

D EFFECT OF MOMENTUM DURING LOCAL UPDATES ON PERFORMANCE

We investigate the effect of momentum during local updates on the performance of FedAvg and
FedBABU. Table 10 describes the initial and personalized accuracy according to the momentum
during local updates. The momentum for personalization fine-tuning is the same as the momentum in
federated training. In both cases of FedAvg and FedBABU, appropriate momentum improves the
performance, especially personalized accuracy. However, when the extreme momentum (m=0.99) is
used, FedAvg completely loses the ability to train models, while FedBABU has robust performance.

Table 10: Initial and personalized accuracy according to momentum (m) during local updates under a
realistic FL setting (N=100, f=0.1, and τ=10).

m
Initial accuracy

s = 100 s = 50 s = 10
FedAvg FedBABU FedAvg FedBABU FedAvg FedBABU

0.0 26.07±3.83 26.38±3.98 24.71±4.15 24.72±4.67 15.44±7.16 13.66±6.15
0.5 26.63±4.61 27.01±4.62 26.27±4.87 27.58±4.75 16.60±6.14 17.98±6.55
0.9 28.18±4.83 29.38±4.74 27.34±4.96 27.91±5.27 14.40±5.64 18.50±7.82
0.99 19.84±4.12 30.62±4.60 1.00±1.40 30.01±5.19 1.00±3.32 15.68±7.11

m
Personalized accuracy

s = 100 s = 50 s = 10
FedAvg FedBABU FedAvg FedBABU FedAvg FedBABU

0.0 28.46±4.05 30.24±4.39 30.02±4.65 33.43±5.26 40.80±9.00 59.85±7.41
0.5 30.44±4.37 32.70±4.65 33.64±4.78 38.65±5.14 54.32±8.33 67.34±6.32
0.9 33.13±5.22 35.94±5.06 38.09±5.17 42.63±5.59 62.67±6.52 66.32±7.02
0.99 23.88±4.34 34.17±4.75 1.12±1.48 42.17±5.32 1.00±3.32 61.02±7.84

E EFFECT OF MASSIVENESS ON PERFORMANCE

We increase the number of clients from 100 to 500, and then each client has 100 training data and
20 test data. Table 11 describes the initial and personalized accuracy of FedAvg and FedBABU on
CIFAR100 under various FL settings with 500 clients. The performance of FedAvg is slightly better
than that of FedBABU in many cases; however, FedBABU overwhelms FedBABU in the case of
extreme FL setting (s=10, f=0.1, and τ=10). More interestingly, if each client has a few data samples,
then local epochs τ should be more than 1. It is thought that massiveness makes data size insufficient
on each client (when the total number of data is fixed) and brings out other problems.

17

Published as a conference paper at ICLR 2022

Table 11: Initial and personalized accuracy of FedAvg and FedBABU on CIFAR100 under various
settings with 500 clients. The used network is MobileNet.

FL settings Initial accuracy Personalized accuracy

s f τ FedAvg FedBABU FedAvg FedBABU

100

1.0
1 13.71±7.58 11.85±7.13 16.12±7.99 15.00±7.54
4 18.98±8.57 16.79±8.38 21.17±9.05 19.94±8.64

10 15.70±8.18 15.66±8.23 17.54±8.91 18.47±8.61

0.1
1 14.59±7.72 10.53±7.25 16.46±8.27 13.90±7.96
4 18.90±8.33 17.36±8.85 20.88±8.85 20.30±9.27

10 16.79±7.90 14.38±8.14 18.22±8.37 16.76±8.33

50

1.0
1 13.67±8.05 11.04±7.01 19.29±9.31 17.39±8.11
4 18.36±8.60 16.60±8.43 22.76±9.05 23.15±9.51

10 15.95±8.57 14.81±8.24 19.57±9.28 21.38±9.78

0.1
1 14.58±8.33 10.72±6.81 19.65±9.14 16.05±8.11
4 18.28±8.79 16.79±9.04 22.39±9.78 23.57±9.79

10 15.79±8.21 15.07±7.97 18.52±8.69 20.83±8.90

10

1.0
1 9.91±7.14 7.41±6.55 37.62±11.76 35.02±10.71
4 15.34±8.49 12.67±7.58 39.91±12.43 49.07±11.13

10 12.99±7.98 12.93±8.15 35.47±11.29 48.07±12.25

0.1
1 10.96±7.22 8.42±6.58 38.95±11.63 35.13±10.85
4 15.03±8.27 13.99±7.82 37.92±11.64 49.96±11.94

10 12.39±7.65 13.29±7.40 32.41±10.91 49.83±11.74

F RESULTS OF 4CONVNET ON CIFAR10

F.1 ACCURACY CURVES IN THE CENTRALIZED SETTING

When 4convNet is used on CIFAR10, a similar tendency appears. Comparing Figure 2 and Figure 4,
the importance of learning representation is emphasized more when tasks are difficult. In addition,
Figure 5 shows the necessity of orthogonality when the body is only trained and approximation of
random initialization to the orthogonal initialization using 4convNet on CIFAR10.

0 20 40 60 80 100 120 140 160
0.2

0.3

0.4

0.5

0.6

0.7

0.8

full
head
body

Figure 4: Test accuracy curves of 4convNet on
CIFAR10 according to the update part in the
centralized setting.

0 20 40 60 80 100 120 140 160

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Xavier (normal)
Xavier (uniform)
He (normal)
He (uniform) [default]
Orthogonal
Similar

Figure 5: Test accuracy curves of 4convNet on
CIFAR10 according to the initialization method
when the body is only trained.

F.2 EXPERIMENTAL RESULTS

We also evaluate algorithms on CIFAR10 using 4convNet. Table 12 and Table 13 are the experiment
results corresponding to the Table 3 and Table 5 in the main paper, respectively. The tendency of
performance comparison and the superiority of our algorithm appears similarly when using 4convNet
on CIFAR10.

18

Published as a conference paper at ICLR 2022

Table 12: Initial accuracy of FedAvg and FedBABU according to the existence of classifier on
CIFAR10 under various settings with 100 clients. The used network is 4convNet.

FL settings FedAvg FedBABU

s f τ w/ classifier w/o classifier w/ classifier w/o classifier

10

1.0
1 68.89±6.35 74.41±6.25 71.50±7.35 75.00±7.46
4 61.56±6.84 66.17±7.44 68.40±6.67 71.77±7.29

10 60.06±5.68 65.21±7.94 64.66±6.00 69.04±6.68

0.1
1 63.79±7.59 69.48±6.72 69.36±5.61 71.21±6.87
4 59.65±8.03 66.11±7.37 66.80±7.43 69.27±8.05

10 57.32±6.76 63.19±6.81 62.68±7.06 67.58±6.42

5

1.0
1 66.56±9.39 80.73±8.27 68.54±8.45 80.53±7.99
4 52.60±7.79 70.53±9.15 63.79±9.12 78.34±8.30

10 51.55±8.23 71.03±8.77 61.10±9.80 77.13±7.10

0.1
1 55.13±8.57 71.27±10.03 63.44±9.82 77.64±8.26
4 48.77±8.54 68.64±11.36 59.93±8.32 74.61±8.81

10 46.32±10.52 67.07±8.77 55.55±9.90 73.29±9.25

2

1.0
1 59.47±15.16 88.60±6.96 63.51±14.63 88.34±7.05
4 41.08±13.42 83.87±10.92 55.43±15.76 88.80±8.57

10 39.47±13.44 82.41±10.79 48.52±13.47 86.33±8.93

0.1
1 40.48±14.59 81.43±12.74 57.22±14.05 86.81±8.31
4 26.72±14.54 78.56±12.58 44.39±16.49 83.12±9.68

10 22.29±16.39 73.54±10.97 36.57±17.23 84.37±10.52

Table 13: Personalized accuracy comparison on CIFAR10 under various settings with 100 clients.
The used network is 4convNet.

FL settings Personalized accuracy

s f τ FedBABU (Ours) FedAvg FedPer LG-FedAvg FedRep Per-FedAvg Ditto Local-Only

10

1.0
1 80.52±5.51 79.72±5.24 78.51±5.66 80.37±5.32 71.96±6.62 79.89±5.84 79.89±6.49

55.40±11.78

4 79.30±5.67 73.35±6.15 71.04±7.50 74.75±5.87 63.71±7.01 72.10±6.57 77.99±6.48
10 76.86±5.08 71.03±5.86 69.25±7.07 71.91±5.72 60.27±7.13 66.52±7.64 72.88±6.11

0.1
1 78.80±5.51 73.05±5.94 77.22±5.57 67.95±7.00 78.21±5.38 77.23±5.48 75.27±6.64
4 77.45±6.23 71.06±6.19 71.13±6.78 64.17±7.29 68.78±6.91 67.32±7.99 71.49±6.34

10 76.25±6.16 69.11±5.70 66.43±6.59 61.15±7.32 60.70±8.76 61.22±8.14 64.97±7.07

5

1.0
1 85.17±6.43 83.82±6.75 84.50±5.70 85.04±6.35 78.98±8.29 74.96±7.36 82.64±6.85

68.79±13.38

4 83.65±5.99 77.47±8.32 76.96±8.65 77.54±8.14 73.05±9.11 65.17±10.71 83.77±6.93
10 83.48±6.13 77.01±7.80 76.17±8.11 77.28±7.52 70.62±7.36 53.31±12.12 79.01±7.56

0.1
1 82.76±6.47 75.08±9.34 80.69±7.63 63.30±10.62 83.71±7.05 72.15±10.22 72.08±9.92
4 81.31±7.17 74.87±9.64 74.74±8.04 59.17±10.18 77.64±7.51 58.32±11.28 66.36±9.53

10 80.99±7.64 74.29±8.29 74.92±8.32 55.19±13.91 68.71±10.47 47.48±13.76 58.66±12.51

2

1.0
1 91.41±6.50 91.40±6.12 91.75±6.90 92.35±5.44 91.11±8.21 72.02±14.48 91.41±6.82

90.85±9.10

4 91.24±7.33 88.91±9.06 89.14±8.44 88.67±9.03 87.74±8.08 43.41±23.51 92.17±6.42
10 90.53±7.20 88.48±8.44 88.15±9.20 87.38±8.56 86.19±9.50 36.42±18.35 90.15±7.57

0.1
1 90.98±6.22 86.36±10.57 90.33±7.52 68.63±14.34 91.88±7.37 63.28±13.77 64.16±18.12
4 87.85±8.57 85.94±10.72 86.84±10.20 47.00±24.75 86.68±10.13 32.19±19.63 54.69±17.67

10 88.93±9.33 85.14±10.73 86.69±8.04 33.30±22.29 83.85±11.20 26.61±19.52 43.64±21.03

F.3 ABLATION STUDY ACCORDING TO THE LOCAL UPDATE PARTS

We decouple the entire network in more detail during local updates to investigate whether the body
should be totally trained. For this ablation study, we used 4convNet on CIFAR10. Table 14 and
Table 15 show the initial and personalized accuracy according to the local update parts, respectively.
For consistency, all cases are personalized by fine-tuning the entire network in this experiment. In all
cases, FedBABU has the best performance, which implies that the body must be totally trained at
least when using 4convNet. It is believed that the same (body-totally) or similar (body except for a
few top layers) trends appear when large networks are used.

19

Published as a conference paper at ICLR 2022

Table 14: Initial accuracy comparison on CIFAR10 under various settings with 100 clients. The used
network is 4convNet.

FL settings Local update parts

s f τ Conv1 Conv12 Conv123 Conv1234 Conv1234+Linear
(FedBABU) (FedAvg)

10

1.0
1 25.22±8.34 47.23±6.91 68.44±6.65 71.50±7.35 68.89±6.35
4 23.02±9.57 45.73±7.55 60.25±7.69 68.40±6.67 61.56±6.84
10 17.80±8.15 42.51±7.03 60.48±6.96 64.66±6.00 60.06±5.68

0.1
1 19.33±7.71 42.84±8.15 62.71±7.67 69.36±5.61 63.79±7.59
4 19.85±8.96 41.58±8.37 55.26±6.65 66.80±7.43 59.65±8.03
10 18.99±9.10 44.38±7.49 54.61±6.66 62.68±7.06 57.32±6.76

5

1.0
1 23.42±8.35 44.35±9.59 64.27±10.48 68.54±8.45 66.56±9.39
4 22.34±9.48 40.07±8.83 54.50±9.21 63.79±9.12 52.60±7.79
10 18.94±10.38 39.59±9.03 51.25±9.22 61.10±9.80 51.55±8.23

0.1
1 20.78±7.96 38.90±10.02 52.14±8.95 63.44±9.82 55.13±8.57
4 19.33±10.59 40.71±9.19 47.66±11.17 59.93±8.32 48.77±8.54
10 23.71±8.86 36.74±9.72 46.97±9.81 55.55±9.90 46.32±10.52

2

1.0
1 18.72±16.35 45.01±13.57 58.86±15.93 63.51±14.63 59.47±15.16
4 20.08±10.09 34.58±11.84 40.56±12.73 55.43±15.76 41.08±13.42
10 18.81±14.56 29.74±10.94 37.75±12.08 48.52±13.47 39.47±13.44

0.1
1 16.17±18.73 37.08±12.45 45.57±13.36 57.22±14.05 40.48±14.59
4 14.09±18.82 28.75±14.13 25.12±15.63 44.39±16.49 26.72±14.54
10 17.40±10.53 23.73±17.87 23.16±19.27 36.57±17.23 22.29±16.39

Table 15: Personalized accuracy comparison on CIFAR10 under various settings with 100 clients.
The used network is 4convNet.

FL settings Local update parts

s f τ Conv1 Conv12 Conv123 Conv1234 Conv1234+Linear
(FedBABU) (FedAvg)

10

1.0
1 55.94±7.28 64.88±8.34 78.74±5.24 80.52±5.51 79.72±5.24
4 53.06±7.17 62.84±6.57 71.85±6.11 79.30±5.67 73.35±6.15
10 52.89±7.14 62.02±6.48 71.16±6.24 76.86±5.08 71.03±5.86

0.1
1 53.85±8.04 64.40±6.47 72.79±6.46 78.80±5.51 73.05±5.94
4 50.75±8.21 61.79±6.84 66.45±7.31 77.45±6.23 71.06±6.19
10 51.95±7.45 62.72±7.64 67.41±6.31 76.25±6.16 69.11±5.70

5

1.0
1 67.49±9.74 74.39±7.74 82.55±6.50 85.17±6.43 83.82±6.75
4 66.12±10.02 71.77±8.48 79.68±6.77 83.65±5.99 77.47±8.32
10 64.87±8.21 69.73±9.10 76.25±8.51 83.48±6.13 77.01±7.80

0.1
1 65.50±9.00 74.50±8.77 74.50±8.77 82.76±6.47 75.08±9.34
4 65.05±8.56 70.80±9.29 75.44±8.06 81.31±7.17 74.87±9.64
10 65.61±8.73 69.66±8.68 74.79±7.85 80.99±7.64 74.29±8.29

2

1.0
1 85.44±9.20 88.20±8.86 90.61±6.48 91.41±6.50 91.40±6.12
4 84.46±9.30 83.94±10.18 88.86±8.62 91.24±7.33 88.91±9.06
10 81.62±9.66 86.20±10.72 88.58±9.01 90.53±7.20 88.48±8.44

0.1
1 85.46±9.68 85.78±9.73 88.18±8.41 90.98±6.22 86.36±10.57
4 82.74±10.45 85.13±9.77 85.91±10.87 87.85±8.57 85.94±10.72
10 82.52±10.02 84.98±9.25 85.46±9.74 88.93±9.33 85.14±10.73

G RESULTS OF RESNET18 AND RESNET50 ON CIFAR100

G.1 ACCURACY CURVES IN THE CENTRALIZED SETTING

We experiment with ResNet18 and ResNet50. In the centralized setting, test accuracy curves
according to the update part (Figure 6 and Figure 8) and according to the initialization method
(Figure 7 and Figure 9) have the same trend as we have seen before.

20

Published as a conference paper at ICLR 2022

0 20 40 60 80 100 120 140 160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

full
head
body

Figure 6: Test accuracy curves of ResNet18 on
CIFAR100 according to the update part in the
centralized setting.

0 20 40 60 80 100 120 140 160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Xavier (normal)
Xavier (uniform)
He (normal)
He (uniform) [default]
Orthogonal
Similar

Figure 7: Test accuracy curves of ResNet18 on
CIFAR100 according to the initialization method
when the body is only trained.

0 20 40 60 80 100 120 140 160
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 full

head
body

Figure 8: Test accuracy curves of ResNet50 on
CIFAR100 according to the update part in the
centralized setting.

0 20 40 60 80 100 120 140 160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Xavier (normal)
Xavier (uniform)
He (normal)
He (uniform) [default]
Orthogonal
Similar

Figure 9: Test accuracy curves of ResNet50 on
CIFAR100 according to the initialization method
when the body is only trained.

G.2 EXPERIMENTAL RESULTS

Table 16 and Table 17 are the results of ResNet18 and ResNet50, respectively. It is shown that the
performance gap between FedAvg and FedBABU increases when ResNet is used rather than when
MobileNet (in the main paper) is used. Furthermore, it is observed that as the complexity of the model
increases (ResNet18→ ResNet50), the performance of FedAvg decreases, while that of FedBABU
does not.

Table 16: Initial and personalized accuracy of FedAvg and FedBABU on CIFAR100 under various
settings with 100 clients. The used network is ResNet18. f is 0.1.

FL settings Initial accuracy Personalized accuracy

s τ FedAvg FedBABU FedAvg FedBABU

100
1 57.26±4.71 59.87±4.27 60.39±5.16 66.48±4.43
4 44.79±4.70 49.02±5.01 49.32±4.90 55.65±4.81
10 34.52±4.73 40.60±5.62 39.04±4.77 47.42±5.66

50
1 53.73±4.97 59.23±5.10 63.21±5.33 71.16±4.75
4 42.47±5.21 49.03±4.56 52.76±5.99 62.54±4.92
10 37.09±4.20 40.71±4.98 47.13±4.47 54.99±5.37

10
1 42.88±8.08 53.65±7.53 76.84±7.08 83.83±5.22
4 29.15±8.18 39.76±8.23 67.29±6.42 77.40±6.45
10 26.54±7.66 30.96±8.09 66.18±7.29 72.49±6.19

21

Published as a conference paper at ICLR 2022

Table 17: Initial and personalized accuracy of FedAvg and FedBABU on CIFAR100 under various
settings with 100 clients. The used network is ResNet50. f is 0.1.

FL settings Initial accuracy Personalized accuracy

s τ FedAvg FedBABU FedAvg FedBABU

100
1 42.89±5.34 60.78±4.74 47.59±5.16 65.74±4.72
4 33.59±4.35 50.71±4.37 39.56±4.43 56.35±4.43
10 32.88±4.23 40.59±4.65 37.32±4.47 45.52±5.29

50
1 42.14±5.27 59.51±4.69 53.04±5.28 70.58±5.06
4 30.97±4.43 48.65±4.94 42.76±4.95 59.64±5.74
10 30.90±4.76 41.14±5.47 43.28±5.49 52.13±5.14

10
1 28.18±7.99 51.17±6.97 65.50±6.92 81.43±6.20
4 19.31±7.56 38.45±9.50 58.92±7.40 73.86±6.96
10 18.41±7.42 30.22±8.26 59.50±7.30 68.42±8.04

H RESULTS OF RESNET10 ON DIRICHLET DISTRIBUTION-BASED CIFAR100

We evaluate ours and existing algorithms under unbalanced and non-IID settings derived from the
Dirichlet distribution. Figure 10 and 11 describe the distributions of train and test data points and
non-IID depending on β, which is the hyperparameter of the Dirichlet distribution. Table 18 describes
the results on Dirichlet distribution-based non-IID CIFAR100 in the realistic FL setting (f=0.1 and
τ=10). The lower β implies the larger heterogeneity.

Figure 10: Data distribution (β = 1.0). Figure 11: Data distribution (β = 0.5).

Table 18: Personalized accuracy comparison on Dirichlet distribution-based non-IID CIFAR100 with
100 clients (FL setting: f=0.1, and τ=10). The used network is MobileNet.

β
Personalized accuracy

FedBABU (Ours) FedAvg FedPer LG-FedAvg FedRep Per-FedAvg Ditto Local-only

1.0 34.92±6.22 32.10±6.15 34.21±5.68 25.00±6.12 12.68±5.27 18.85±4.97 7.11±4.84 23.73±5.71
0.5 44.67±5.80 40.21±5.68 35.62±6.17 27.24±6.73 12.52±4.32 18.36±5.01 8.13±4.69 31.24±5.49

I RESULTS OF 3CONVNET ON EMNIST

Table 19 describes the results on EMNIST using a network that consists of three convolution layers
and a linear classifier. We set the number of users to 1488, and the number of data points per user was
approximately 450. We fixed the fraction ratio at 0.1 and local epochs at 10 (which is the realistic
setting used in our paper). The results demonstrate that FedBABU also has the best performance on
EMNIST.

Table 19: Personalized accuracy comparison on EMNIST with 1488 clients (FL setting: f=0.1, and
τ=10). The used network is 3convNet.

s
Personalized accuracy

FedBABU (Ours) FedAvg FedPer LG-FedAvg FedRep Per-FedAvg Ditto Local-Only

60 85.27±5.33 84.52±4.62 54.68±6.77 82.75±4.78 75.28±5.21 78.45±5.22 83.38±5.46 72.50±5.91
30 89.30±5.03 85.46±5.16 58.72±8.04 81.64±5.80 82.03±5.34 80.61±6.02 83.23±6.06 81.63±5.73
6 95.96±5.00 89.83±7.72 64.86±15.09 73.50±13.02 94.61±5.11 62.94±14.86 76.27±12.72 96.06±3.89

22

Published as a conference paper at ICLR 2022

J RESULTS ON IN-DISTRIBUTION (ID) AND OUT-OF-DISTRIBUTION (OOD)
CLASSES

To investigate the accuracy of in-distribution (ID) and out-of-distribution (OOD) classes, we scatter
IID-like test set (s=100) to all clients. Namely, some classes are in test data set (s=100), but not in
training data set (s=50 or s=10). Table 20 describes the results of FedAvg and FedBABU on this
experiment. Here, in-distribution accuracy is the test accuracy of the classes present in the training
data set; otherwise, out-of-distribution accuracy. Before personalization (Before in tables), FedBABU
beats FedAvg from both ID and OOD. After personalization (After in tables), FedBABU becomes
fit strongly for the ID classes than OOD classes. The OOD accuracy of FedBABU decreases more
than that of FedAvg, but the accuracy of FedAvg simiarly drops after personalization. These results
indicate that no personalization is the best strategy for both FedBABU and FedAvg. Therefore,
because the OOD accuracy of FedBABU is higher than that of FedAvg before personalization, it is
concluded that FedBABU has better performance than FedAvg when the optimal strategy for OOD is
used.

Table 20: In-distribution (ID) and out-of-distribution (OOD) accuracy of FedAvg and FedBABU
before/after personalization under various settings with 100 clients. The used network is MobileNet.

FL settings FedAvg FedBABU

ID accuracy OOD accuracy ID accuracy OOD accuracy

s f τ Before After Before After Before After Before After

50

1.0
1 47.30±7.05 55.14±7.57 46.46±6.74 32.85±6.67 48.30±7.75 57.92±7.98 47.81±6.56 24.06±5.27
4 37.30±8.56 45.30±8.61 37.24±6.29 27.05±5.71 38.99±7.73 49.70±8.00 37.76±5.71 13.88±4.78

10 30.98±7.57 38.46±9.04 30.54±5.98 20.14±5.18 27.63±7.41 37.40±8.06 29.69±6.24 5.72±3.32

0.1
1 39.90±7.55 47.06±7.96 39.06±6.17 28.32±5.76 42.98±8.20 53.35±7.73 42.14±7.49 16.04±5.08
4 33.23±7.88 41.25±8.19 35.70±6.15 27.38±5.63 37.07±8.02 47.04±9.18 36.34±6.10 11.67±4.32

10 28.70±7.77 36.32±7.41 27.15±6.00 18.05±5.44 28.26±8.44 38.74±9.08 29.06±5.61 6.70±2.94

10

1.0
1 42.16±18.36 78.14±16.62 41.51±5.12 14.25±3.37 45.76±16.41 79.60±11.35 44.93±5.13 3.93±2.24
4 30.60±15.77 68.38±16.14 31.43±5.02 7.13±3.10 38.43±17.27 71.59±15.29 37.05±5.19 0.13±0.36

10 26.30±16.40 61.21±17.16 23.70±4.50 2.27±1.48 27.20±15.12 64.21±16.24 25.49±4.42 0.00±0.00

0.1
1 34.47±18.00 69.23±14.87 34.10±4.87 9.74±2.95 42.57±19.11 75.18±16.46 39.64±5.04 3.32±1.89
4 26.86±16.09 64.24±16.45 27.09±4.55 6.03±2.73 31.31±17.27 68.38±15.55 30.75±5.23 0.06±0.24

10 18.42±12.83 56.21±17.46 19.67±3.89 2.95±1.92 22.30±14.65 64.73±17.16 22.46±4.71 0.00±0.00

K SIMILARITY BETWEEN CLIENTS DURING FINE-TUNING

0.97

0.98

0.99

1.00
FedAvg, shard per user: 100 FedAvg, shard per user: 50 FedAvg, shard per user: 10

0 5 10 15 20

0.97

0.98

0.99

1.00
FedBABU, shard per user: 100

0 5 10 15 20

FedBABU, shard per user: 50

0 5 10 15 20

FedBABU, shard per user: 10

conv1.weight
layers.0.conv1.weight
layers.0.conv2.weight
layers.1.conv1.weight
layers.1.conv2.weight
layers.2.conv1.weight
layers.2.conv2.weight
layers.3.conv1.weight
layers.3.conv2.weight
layers.4.conv1.weight
layers.4.conv2.weight
layers.5.conv1.weight
layers.5.conv2.weight
layers.6.conv1.weight
layers.6.conv2.weight
layers.7.conv1.weight
layers.7.conv2.weight
layers.8.conv1.weight
layers.8.conv2.weight
layers.9.conv1.weight
layers.9.conv2.weight
layers.10.conv1.weight
layers.10.conv2.weight
layers.11.conv1.weight
layers.11.conv2.weight
layers.12.conv1.weight
layers.12.conv2.weight
linear.weight

Figure 12: Layer-wise cosine similarity of FedAvg and Fed-
BABU trained under the realistic FL setting (f=0.1 and
τ=10) during fine-tuning. The blue-, green-, and red-like
lines represent low-, middle-, and high-level convolution lay-
ers, respectively. The black line represents the last linear
layer (i.e., head).

We investigate the cosine similarity
between different clients during 20
fine-tuning epochs, described in Fig-
ure 12. During fine-tuning for per-
sonalization evaluation, the entire net-
work is updated in the cases of both
FedAvg and FedBABU. From the re-
sults, it is found that classifier (black
line in Figure 12) is closely related to
personalization. In other words, all
clients have similar extractors during
fine-tuning (i.e., large cosine similar-
ity), while make different classifiers
based on their own data. Furthermore,
it is observed that the cosine similarity
on the head between different clients
decreases more rapidly in the case of FedBABU than FedAvg. It is believed that this is because
the classifier of FedAvg starts personalization from the federated convergent classifier, while that of
FedBABU starts personalization from the initialized orthogonal classifier. This characteristic explains
rapid personalization, introduced in Section 5.2.4.

23

Published as a conference paper at ICLR 2022

L FEDBABU WITH BODY UPDATE ON THE SERVER

Table 21: Initial and personalized accuracy of FedBABU on CIFAR100 under realistic FL settings
(N=100, f=0.1, and τ=10) according to the p, which is the percentage of all client data that the server
also has. Here, the body is updated only on the server using available data.

p
s=100 (heterogeneity ↓) s=50 s=10 (heterogeneity ↑)

Initial Personalized Initial Personalized Initial Personalized

0.00 29.38±4.74 35.94±5.06 27.91±5.27 42.63±5.59 18.50±7.82 66.32±7.02
0.05 28.68±4.65 36.25±4.77 26.94±4.98 41.01±5.34 21.32±5.85 66.56±7.24
0.10 32.49±4.52 39.93±4.76 31.39±4.84 47.02±5.54 24.34±5.32 68.95±6.92

Let us repeat the experiment in Section 4 again, where the server has a small portion p of the non-
privacy data of the clients. Table 21 describes the initial and personalized accuracy of FedBABU when
the global model is body-partially updated on the server using available data (such as experiments
(B) in Table 2). FedBABU with body updates on the server improves personalization compared to
FedAvg with body updates on the server, maintaining the initial accuracy (refer to (B) in Table 2).
This result demonstrates that training the head negatively affects personalization even when trained
locally. In addition, the performance of FedBABU improves as p increases. This implies that there is
room for enhancing the representation beyond that of FedBABU.

M BODY AGGREGATION AND BODY UPDATE ON THE FEDPROX

Even when all clients are active every communication round (i.e., f=1.0), the personalized perfor-
mance of FedProx+BABU beats not only that of FedAvg but also that of FedBABU.

Table 22: Initial and personalized accuracy of FedProx and FedProx+BABU with µ of 0.01 on
CIFAR100 with 100 clients and f of 1.0.

Algorithm τ
s=100 (heterogeneity ↓) s=50 s=10 (heterogeneity ↑)

Initial Personalized Initial Personalized Initial Personalized

FedProx
1 42.25±4.58 56.22±4.54 52.08±4.92 59.95±4.99 44.39±7.53 78.96±6.16
4 40.32±4.70 43.17±4.62 40.11±5.80 45.99±6.05 29.73±6.74 67.66±7.67

10 30.75±4.53 33.43±4.48 29.44±4.24 35.65±4.60 19.63±5.73 57.83±7.13

FedProx
+BABU

1 55.02±4.42 61.48±4.83 54.13±4.86 66.54±4.68 50.42±9.63 83.75±5.97
4 39.01±4.97 46.31±4.98 38.79±5.15 52.96±5.46 34.09±7.28 77.28±5.96

10 28.69±4.64 36.29±4.45 30.39±5.39 44.46±5.49 25.16±5.84 69.77±6.26

N DISCUSSION ON THE EFFECTIVENESS OF FEDAVG

MOCHA (Smith et al., 2017) is a representative personalized FL paper using regularization based on
relationships between tasks. pFedMe (T Dinh et al., 2020) and Ditto (Li et al., 2021) train local models
with a regularization based on the divergence between a global model and local models. If the weight
on regularization is set to zero, these regularized personalized FL algorithms reduce to the local-only
algorithm; on the other extreme, these reduce to the FedAvg algorithm (i.e., θ1 = · · · = θN). The
personalized FL algorithms such as FedPer (Collins et al., 2021), in which each client has parts that
are not aggregated (i.e., personalized parts), can be explained similarly. If there is no personalized
part, these personalized FL algorithms reduce to the FedAvg; on the other extreme, i.e., if the entire
network is not aggregated, these personalized FL algorithms reduce to the local-only algorithm. In
summary, personalized FL algorithms are in-between local-only and FedAvg algorithms and have
better personalized performance than both local-only and FedAvg in general.

In the same vein, FedAvg+Fine-tuning is also in-between local-only and FedAvg because this
algorithm uses two extreme algorithms sequentially (i.e., FedAvg followed by local-only). However,
intuitively, FedAvg+Fine-tuning is a bit more FedAvg-based, whereas personalized FL algorithms

24

Published as a conference paper at ICLR 2022

are a bit more local-only-based. This is because FedAvg+Fine-tuning is the same as FedAvg before
personalization, whereas personalized FL algorithms develop different clients’ models from scratch
like local-only. Therefore, we believe that FedAvg+Fine-tuning earns more benefits (particularly
for representation) from federation than personalized FL algorithms from this difference (FedAvg-
based v.s. local-only-based). An additional difference between FedAvg+Fine-tuning and regularized
personalized FL algorithms is that FedAvg+Fine-tuning optimizes clients separately using their
own data set based on the well-federated extractor, whereas regularized personalized FL algorithms
optimize clients jointly from scratch. In other words, FedAvg+Fine-tuning can easily optimize all
clients’ models based on their own data sets. However, it is too difficult to optimize all clients’ models
simultaneously. Therefore, FedAvg+Fine-tuning can achieve better personalized performance than
regularized personalized FL algorithms.

Furthermore, very recent work (Cheng et al., 2021) has addressed the effectiveness of FedAvg+Fine-
tuning theoretically. In Cheng et al. (2021), they compared local-only (zero collaboration), FedAvg
(zero personalization) (McMahan et al., 2017), FedAvg+Fine-tuning, Per-FedAvg (Fallah et al., 2020),
and pFedMe (T Dinh et al., 2020) in the high-dimensional asymptotic limit by analyzing bias-variance.
They demonstrated that the asymptotic test loss of FedAvg+Fine-tuning (FTFA in Cheng et al. (2021))
matches that of Per-FedAvg and that the asymptotic test loss of FedAvg+Fine-tuning with a ridge
regularizer (RTFA in Cheng et al. (2021)) matches that of pFedMe on their stylized linear regression
model.

Although Cheng et al. (2021) thoroughly addressed this problem on their stylized linear regression
model, there are few results on real data sets except for test accuracies. It is believed that “why
FedAvg+Fine-tuning is effective” itself needs to be studied more using real data sets, as “why MAML
(Finn et al., 2017) is effective” has been addressed in (Raghu et al., 2019).

O FEDAVG WITH DIFFERENT LEARNING RATES

Table 23: FedAvg with different learning rates under realistic FL setting (f=0.1 and τ=10). We set
the body’s initial learning rate (αb) as 0.1.

s FedAvg (αh=αb) FedAvg (αh=0.1× αb) FedAvg (αh=0.01× αb) FedBABU (αh=0)

100 24.34±4.58 27.10±4.43 28.37±4.60 29.36±4.46
50 33.10±5.08 35.97±5.17 36.21±5.08 36.49±5.37
10 50.25±6.27 52.96±7.52 54.04±7.60 54.93±7.85

What we want to emphasize is the importance of making all clients have the same class boundary
by freezing the head. We argue that this shared classifier enhances the representation power of the
federated model, which is an important factor for personalization. From this perspective, if the head
moves even a little bit client by client, the different class boundaries to train feature extractor are used
during local updates. Therefore, the federated model’s feature extractor might hurt.

To verify this hypothesis, we experiment using different learning rates depending on the parts. The
above table describes the federated model’s accuracy without a classifier (i.e., w/o classifier accuracy
in Table 3) to investigate representation power of models. We set the body’s initial learning rate as
0.1, the fraction ratio as 0.1, and local epochs as 10. αh and αb are the head’s learning rate and the
body’s learning rate, respectively.

From this result, we believe that the federated model’s representation power increases as the head’s
learning rate decreases, i.e., as a learning signal for the body is larger. In this trend, we highlight that
the best performance is due to the same classifier on all clients.

P CLASS-WISE ANALYSIS DURING FEDERATED TRAINING

To explain why FedBABU has better performance than FedAvg after federated training (i.e., before
fine-tuning), we analyze the federated training procedure of FedAvg and FedBABU class-wisely
under the realistic federated settings (f=0.1 and τ=10). For this analysis, we assume that each client
has 500 training data and 10,000 test data (i.e., the whole test data) of CIFAR-100. Test data set
is divided into two groups for each client; in-class test data and out-of-class test data. In-class test

25

Published as a conference paper at ICLR 2022

0 50 100 150 200 250 300
0

5

10

15

20

25

30 FedAvg
FedBABU

(a) s=100 (in-class).

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40 FedAvg
FedBABU

(b) s=50 (in-class).

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70
FedAvg
FedBABU

(c) s=10 (in-class).

0 50 100 150 200 250 300
0

5

10

15

20

25

FedAvg
FedBABU

(d) s=100 (out-of-class).

0 50 100 150 200 250 300
0

5

10

15

20

25

30
FedAvg
FedBABU

(e) s=50 (out-of-class).

0 50 100 150 200 250 300
0

5

10

15

20
FedAvg
FedBABU

(f) s=10 (out-of-class).

Figure 13: In-class and out-of-class test accuracy curves according to the heterogeneity. The models
are trained under the realistic federated settings (f=0.1 and τ=10).

data indicates test data whose class is in the classes in training data, whereas out-of-class test data
indicates test data whose class is not in the classes in training data. For instance, if client A has
classes 0-9 as training data, then in-class test data indicates test data whose class is one of 0-9 and
out-of-class test data indicates test data whose class is one of 10-99.

Figure 13 describes the in-class ((a)-(c)) and out-of-class ((d)-(f)) test accuracy curves according
to the heterogeneity. Client sampling, broadcasting, local updates, and aggregation stages are
repeated during federated training. The accuracies per epoch are averaged right after broadcasting
the aggregated model to the selected clients and during local updates on them. It is observed that
in-class accuracy of the aggregated model is significantly low and increases dramatically during local
updates, whereas out-of-class accuracy of the aggregated model is significantly high and decreases
dramatically during local updates, as heterogeneity is larger. In all cases, FedBABU has higher
out-of-class accuracy than FedAvg after local updates. It implies that freezing the head makes less
damage to out-of-class during local updates and can lead to better aggregation. Furthermore, when
heterogeneity is large (s=10), FedBABU has higher in-class accuracy than FedAvg after local updates.

Q FEDBABU WITH THE NON-ORTHOGONAL CLASSIFIERS

We demonstrate that an orthogonal initialization on the head is required for desirable performance
in the centralized setting (Appendix B). To investigate whether this characteristic is still required
under FL settings, we compare FedBABU with the orthogonal head (which is proposed) to FedBABU
without the orthogonal head. FedBABU without the orthogonal head is designed in the same way as
‘similar’ in Appendix B. Table 24 describes the results. As we expected, if the head does not consist
of the orthogonal row vectors, FedBABU cannot achieve desirable performance.

Table 24: Initial and personalized accuracy of FedBABU on CIFAR100 according to the head’s
orthogonality under various FL settings with 100 clients (f=0.1) . MobileNet is used.

Orthogonal τ
s=100 (heterogeneity ↓) s=50 s=10 (heterogeneity ↑)

Initial Personalized Initial Personalized Initial Personalized

O (proposed)
1 41.02±4.99 49.67±4.92 41.33±5.10 56.69±5.16 35.05±7.63 76.02±6.29
4 36.77±4.47 44.74±5.10 34.68±4.58 49.55±5.58 25.67±7.31 71.00±6.63

10 29.38±4.74 35.94±5.06 27.91±5.27 42.63±5.59 18.50±7.82 66.32±7.02

X
1 11.05±3.31 17.30±3.41 11.01±4.07 23.22±4.16 9.37±4.73 47.09±7.93
4 18.68±3.70 24.13±3.94 18.32±4.69 29.87±4.51 14.02±7.20 58.63±8.43

10 20.46±4.10 25.23±4.05 20.81±5.11 32.82±4.75 11.71±6.67 58.54±8.67

26

Published as a conference paper at ICLR 2022

R DESCRIPTION OF DATA DISTRIBUTION ACCORDING TO THE SHARDS PER
USER s

To help understanding data distribution of clients according to the shard per user s, we provide
examples of them. Figure 14 describes examples of data distribution of clients when s is 10 (left) or
2 (right). Consider that there are 10 clients and CIFAR10 dataset is scattered to each client. When s
is 10, total shards 100 because 10 users and 10 shards per user. Then, the CIFAR10 dataset is divided
into 100 shards, hence each shard consits of 500 samples with the same class. Here, each client has
10 shards randomly. In this situation, each client can have up to 10 classes. On the contrary, when s
is 2, total shards are 20 because 10 users and 2 shards per user. Then, the CIFAR10 dataset is divided
into 20 shards, hence each shard consits of 2500 samples with the same class. Here, each client has 2
shards randomly. In this situation, each client can have 2 classes at most. Namely, as s gets smaller,
the number of classes that each clients has is limited (i.e., label distribution owned by each client is
limited) and the number of samples per class increases.

1 2 3 4 5 6 7 8 9 10
Users

0

1000

2000

3000

4000

5000

class 0
class 1
class 2
class 3
class 4
class 5
class 6
class 7
class 8
class 9

(a) s=10.

1 2 3 4 5 6 7 8 9 10
Users

0

1000

2000

3000

4000

5000

class 0
class 1
class 2
class 3
class 4
class 5
class 6
class 7
class 8
class 9

(b) s=2.

Figure 14: Examples of data distribution of users according to the shards per user.

S PERFORMANCE WITH LARGER TOTAL EPOCHS

We fixed the total number of epochs to 320, i.e., K (total communication rounds)× τ (local epochs) =
320. This is because the performance gap between algorithms appeared and Collins et al. (2021) used
total number of epochs to 500, where K=100 and τ=5 on CIFAR100. However, because algorithms
may not converge, we evaluate them with larger total epochs of 640. Furthermore, we add the results
when s is 20 and 5. Table 25 describes the results with the total epochs of 640 when f is 0.1. The
results demonstrate that FedBABU is the best under large heterogeneity (i.e., s=20, 10, and 5), which
is the situation federated learning researchers attempt to solve.

Table 25: Personalized accuracy comparison on CIFAR100 under various settings with 100 clients
and MobileNet is used with the total epochs of 640 (f=0.1).

FL settings Personalized accuracy

s τ
FedBABU

(Ours)
FedAvg
(2017)

FedPer
(2019)

LG-FedAvg
(2020)

FedRep
(2021)

Per-FedAvg
(2020)

Ditto
(2021)

100
1 59.90±4.52 54.34±4.83 57.34±4.66 53.24±4.71 24.19±3.88 48.41±7.23 51.86±4.98
4 45.65±4.67 43.70±4.72 47.00±4.62 43.87±4.85 18.19±3.86 41.79±7.08 36.46±4.18
10 36.88±4.62 36.25±4.17 39.66±4.96 35.65±4.48 14.60±3.41 32.27±7.42 29.11±4.59

50
1 65.15±5.20 57.10±4.69 61.67±4.91 53.89±4.90 32.94±5.10 46.11±7.84 50.78±5.84
4 52.66±5.79 49.42±5.11 52.70±5.14 48.18±5.06 25.83±5.06 36.51±7.83 36.09±5.49
10 47.00±5.19 40.33±5.32 47.00±5.36 38.31±5.62 21.59±4.18 30.31±8.10 30.08±5.73

20
1 75.12±5.33 66.87±5.16 71.51±5.53 59.82±5.63 50.95±6.17 41.77±8.93 47.76±8.87
4 67.71±5.26 63.01±5.50 65.87±6.71 54.76±6.35 42.71±6.04 28.71±9.00 36.05±10.58
10 57.55±6.95 52.44±4.73 56.47±6.03 42.11±8.77 37.09±5.75 23.39±7.91 27.49±8.32

10
1 82.26±5.49 76.32±6.22 79.44±5.44 69.23±6.97 66.19±8.16 38.64±10.37 42.82±14.08
4 78.67±6.08 73.38±6.42 74.00±6.11 54.67±10.20 57.42±8.14 19.81±11.12 31.14±15.06
10 72.72±6.77 68.04±6.81 68.41±6.46 42.44±12.41 48.72±8.30 15.39±9.44 23.08±14.55

5
1 88.16±5.70 84.42±6.43 85.04±6.30 81.03±6.84 77.80±9.18 42.10±15.62 42.94±19.36
4 84.91±7.03 80.26±7.35 78.65±8.61 52.84±17.17 69.88±8.43 8.36±11.70 22.61±21.98
10 81.05±6.89 74.70±7.50 75.19±7.81 30.55±19.75 62.77±8.05 5.92±9.08 14.80±21.38

27

Published as a conference paper at ICLR 2022

T QUALITATIVE COMPARISON BETWEEN FEDAVG AND FEDBABU

Figure 15 describes t-SNE visualization (Van der Maaten & Hinton, 2008) of representations learned
by FedAvg and FedBABU on CIFAR10 and CIFAR100 for a qualitative comparison. For speed
acceleration, we used t-SNE-CUDA (Chan et al., 2019). For CIFAR100, the sparse classes are
converted into coarse classes (e.g., bicycle→ vehicle). However, the difference cannot be captured by
the naked eye. Therefore, we further provide t-SNE visualization using only sub-classes of ‘vehicle’
super-class, described as Figure 16. For CIFAR10, airplane, automobile, ship, and truck classes are
used, and for CIFAR100, bicycle, bus, motorcycle, pickup truck, train, lawn-mower, rocket, streetcar,
tank, and tractor are used.

(a) FedAvg (CIFAR10, train). (b) FedAvg (CIFAR10, test).

(c) FedBABU (CIFAR10, train). (d) FedBABU (CIFAR10, test).

(e) FedAvg (CIFAR100, train). (f) FedAvg (CIFAR100, test).

(g) FedBABU (CIFAR100, train). (h) FedBABU (CIFAR100, test).

Figure 15: t-SNE visualizations of representations learned by FedAvg and FedBABU. For CIFAR10
and CIFAR100, s is set to 2 and 10, respectively. The models are trained under the realistic federated
settings (f=0.1 and τ=10).

28

Published as a conference paper at ICLR 2022

(a) FedAvg (CIFAR10, train). (b) FedAvg (CIFAR10, test).

(c) FedBABU (CIFAR10, train). (d) FedBABU (CIFAR10, test).

(e) FedAvg (CIFAR100, train). (f) FedAvg (CIFAR100, test).

(g) FedBABU (CIFAR100, train). (h) FedBABU (CIFAR100, test).

Figure 16: t-SNE visualizations of representations learned by FedAvg and FedBABU using only
sub-classes of ‘vehicle’ super-class. For CIFAR10 and CIFAR100, s is set to 2 and 10, respectively.
The models are trained under the realistic federated settings (f=0.1 and τ=10).

29

	Introduction
	Related Works
	Preliminaries
	Personalization of a Single Global Model
	FedBABU: Federated Averaging with Body Aggregation and Body Update
	Frozen Head in the Centralized Setting
	FedBABU Algorithm
	Representation Power of Global Models Trained by FedAvg and FedBABU
	Personalization of FedAvg and FedBABU
	Personalization Performance Comparison
	Personalization Speed of FedAvg and FedBABU
	Body Aggregation and Body Update on the FedProx

	Conclusion
	Implementation Detail
	Architectures
	Datasets
	Hyperparameters
	Evaluation of FL algorithms

	Orthogonality of Random Initialization
	Personalization of the Centralized Model
	Effect of Momentum during Local Updates on Performance
	Effect of Massiveness on Performance
	Results of 4convNet on CIFAR10
	Accuracy Curves in the Centralized Setting
	Experimental Results
	Ablation Study According to the Local Update Parts

	Results of ResNet18 and ResNet50 on CIFAR100
	Accuracy Curves in the Centralized Setting
	Experimental Results

	Results of ResNet10 on Dirichlet distribution-based CIFAR100
	Results of 3convNet on EMNIST
	Results on In-Distribution (ID) and Out-of-Distribution (OOD) Classes
	Similarity between Clients during Fine-tuning
	FedBABU with Body Update on the Server
	Body Aggregation and Body Update on the FedProx
	Discussion on the effectiveness of FedAvg
	FedAvg with Different Learning rates
	Class-wise Analysis during Federated Training
	FedBABU with the non-orthogonal classifiers
	Description of data distribution according to the shards per user s
	Performance with larger total epochs
	Qualitative comparison between FedAvg and FedBABU

