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ABSTRACT

Federated Learning (FL) offers a privacy-preserving paradigm for distributed
model training by enabling clients to collaboratively learn a shared model with-
out exchanging their raw data. However, the communication overhead associ-
ated with exchanging model updates remains a critical challenge, particularly for
devices with limited bandwidth and battery resources. Existing communication
compression methods largely rely on selection rules based on magnitude or ran-
domness. For example, Top-k drops the elements with small magnitude, while
low-rank methods such as ATOMO and PowerSGD truncate singular values with
small magnitude. However, these rules do not account for the discrepancy be-
tween the compressed and the original outputs, which can lead to the loss of im-
portant information. To address this issue, we propose a novel discrepancy-aware
communication compression method that enhances performance under severely
constrained communication conditions. Each client uses a small subset of its lo-
cal data as calibration data to directly measure the output discrepancy induced by
dropping candidate compression units and uses it as a compression metric to guide
the selection. By integrating this strategy, we can enhance existing mainstream
compression schemes, enabling more efficient communication. Empirical results
across multiple datasets and models show that our method achieves a significant
improvement in accuracy under stringent communication constraints, notably an
18.9% relative accuracy improvement at a compression ratio of 0.1, validating
its efficacy for scalable and communication-efficient FL. Our code is available at
https://github.com/wzy1026wzy/Discrepancy-aware-Compression-for-FL.

1 INTRODUCTION

Federated Learning (FL) has emerged as a paradigm for distributed learning, enabling models to be
trained across decentralized devices without requiring data to leave the local device. This decentral-
ized approach reduces data privacy concerns by transmitting parameter updates instead of raw data
during training. However, FL presents unique challenges due to the limited communication capacity
of client devices, which can result in a high communication burden during the training process. In
this context, a key challenge in FL is optimizing the trade-off between model accuracy and com-
munication efficiency. Consequently, most FL studies have reduced server–client synchronization
frequency since the inception of FL (McMahan et al., 2017). Clients often train for multiple steps
or epochs locally before transmitting and aggregating their updates.

One of the key strategies to alleviate the communication burden in FL is the use of communication
compression techniques, many of which are adapted from distributed learning’s communication
optimization methods. These methods, such as Top-k (Lin et al., 2018; Alistarh et al., 2018; Renggli
et al., 2019), Random-k, Random-Block, ATOMO (Wang et al., 2018), and PowerSGD (Vogels
et al., 2019), aim to reduce the volume of data exchanged between clients and the server in FL. Top-
k, Random-k, and Random Block are element-wise sparsification methods that focus on selecting
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elements to drop based on magnitude or random selection. ATOMO and PowerSGD are low-rank
methods that transmit the low-rank decomposition of the updates, retaining only the singular values
with larger magnitudes and their corresponding singular vectors.

However, all of these communication compression methods in FL follow selection rules based on
magnitude or randomness, to determine which compression units to retain for further upload and
aggregation. In the case of element-wise sparsification methods like Top-k, the compression units
correspond to individual elements. And for low-rank methods like ATOMO, the compression units
consist of singular triplets, each of which includes a singular value and its corresponding singular
vectors. While these selection rules are simple and efficient, they ignore the impact of dropping
specific compression units on the output discrepancy. As a result, important units may be discarded,
leading to significant compression losses and harming the model’s performance. This observation is
consistent with the well-known gap between Top-k and Random-k in practical behavior, even though
they share the almost same worst-case bounds and convergence guarantees (Beznosikov et al., 2023;
Condat et al., 2022; Li & Li, 2023; Qian et al., 2021; Yi et al., 2025; Karimireddy et al., 2019). This
is because the coordinates with the largest magnitudes always captures more informative updates.
Our method pushes this intuition further, as detailed in Section 3.2.

In FL, there have been many studies that tailor compression methods to the server–client train-
ing loop. For example, FedFQ (Li et al., 2024) introduces parameter-level adaptive quantization,
selecting per-parameter bit widths via constraint-guided simulated annealing; FedAQ (Qu et al.,
2024) jointly optimizes uplink and downlink bit widths under energy constraints, derives conver-
gence guarantees, and adopts a schedule with decreasing uplink and increasing downlink precision
across rounds; FedMPQ (Chen & Vikalo, 2024) brings mixed-precision quantization to heteroge-
neous FL, assigning layer-wise bit widths while the server allocates per-client bit budgets across
rounds; AdapComFL (Zhuansun et al., 2024) employs compression based on bandwidth prediction;
and HGC (Hu et al., 2024) unifies sparsification, quantization, and entropy coding within a hybrid
framework. These approaches address several meaningful challenges in FL. However, they still rely
on selection rules based on magnitude or randomness, without leveraging FL-specific characteristics
such as low-frequency communication to address the limitations of existing compression methods.

This limitation partly stems from not fully leveraging a key characteristic that distinguishes FL from
traditional distributed learning—its infrequent communication. Unlike data-center training, FL al-
lows clients to perform multiple local updates before a global aggregation. There is a fundamental
difference in the type of communicated information: distributed learning typically transmits gradi-
ents, while FL typically transmits parameter updates accumulated over multiple local steps (McMa-
han et al., 2017; Li et al., 2020; Dandi et al., 2022). As a result, the content to be compressed in FL
carries little direct loss-related information, further reducing the correlation between magnitude and
importance as discussed in A.2. Consequently, employing selection rules that rely on magnitude or
randomness to determine which compression units to drop is fundamentally inadequate. Further-
more, the infrequent communication in FL makes additional local computation a practical way to
maximize the value of each transmitted bit, which would be too costly in distributed learning.

Building on this observation, we propose a novel discrepancy-aware compression strategy for
communication-efficient FL that enhances performance under severely constrained communication
conditions. Each client uses a small subset of its own local data as a calibration dataset to directly
measure the output discrepancy of dropping different compression units, guiding the compression
selection process. This discrepancy-aware selection replaces selection rules based on magnitude or
randomness with decisions grounded in output sensitivity, leading to more efficient communication
and improved model accuracy under constrained communication budgets.

Our key contributions are as follows:

• We propose a novel discrepancy-aware compression strategy for communication-efficient
FL. Each client uses a small local calibration dataset to directly measure and minimize the
impact of compression on output discrepancy. This approach addresses the drawback of
existing FL compression methods that use magnitude as the importance evaluation.

• Our proposed strategy can seamlessly enhance existing compression schemes as a plug-
in module. We demonstrate its versatility by improving two representative methods: the
sparsification method Top-k and the low-rank decomposition method ATOMO.
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• We conduct extensive experiments on diverse models and datasets. The results show that
our approach achieves superior accuracy under stringent communication budgets. For in-
stance, on CIFAR-10 with the ViT-tiny model, it yields an 18.9% relative accuracy im-
provement at a compression ratio of 0.1 compared to the baseline.

2 RELATED WORK

Federated Learning (FL). A classic way to reduce the communication frequency in distributed
learning is to allow clients to perform multiple local Stochastic Gradient Descent (SGD) steps before
synchronization. The seminal work on FL was introduced by Konečnỳ et al. (2016), who presented
a novel paradigm for distributed optimization in machine learning. Building on this framework,
FedAvg (McMahan et al., 2017) introduced the idea of reducing communication overhead by al-
lowing clients to perform multiple local iterations between synchronizations, maintaining accuracy
while improving wall-clock efficiency. Subsequent theory on local/periodic averaging sharpened
this picture: local SGD can match mini-batch SGD in gradient complexity and dramatically reduce
communication rounds (Stich, 2019), with tighter nonconvex analyses and adaptive schedules in
periodic averaging (Lin et al., 2020). Recent works, including AdaComm (Wang & Joshi, 2019),
FedPAQ (Reisizadeh et al., 2020), FedProx (Li et al., 2020), SCAFFOLD (Karimireddy et al., 2020),
FedBuff (Nguyen et al., 2022), and CTUS (Wang et al., 2024), use drift correction, buffering, and
adaptive strategies to improve performance under partial participation and heterogeneous clients.
Overall, communication-delay methods aim to reduce uplink and downlink traffic. Our method
aligns with the general trend in FL of reducing communication cost and improving the trade-off
between communication frequency and model accuracy.

Communication-efficient FL. Limited uplink bandwidth and device energy constraints make
communication a critical bottleneck in FL. To mitigate this, most approaches focus on traditional
communication optimization techniques, such as quantization and compression methods. Quanti-
zation methods aim to reduce the encoding bit-width of parameter updates. Representative works
include QSGD (Alistarh et al., 2017) and SignSGD (Bernstein et al., 2018), while recent FL-specific
approaches (Li et al., 2024; Cao et al., 2024; 2025; Qu et al., 2024; Chen & Vikalo, 2024) per-
form fine-grained adaptive quantization across parameters to optimize communication efficiency.
Compression methods, including sparsification and low-rank decomposition, have also been widely
adopted in FL, originally developed for distributed training. These methods perform compression
operations on the matrix itself and its transformed form, respectively. Sparsification methods re-
duce communication by transmitting only a small subset of updates. The most common approaches
are Random-k and magnitude-driven Top-k (Lin et al., 2018; Alistarh et al., 2018; Renggli et al.,
2019). Beyond these general methods, FL-tailored variants such as STC (Sattler et al., 2019), Fed-
SPA (Hu et al., 2021a), AdapComFL (Zhuansun et al., 2024), and HGC (Hu et al., 2024) have
explored adaptive compression ratio, bidirectional compression, secure aggregation, and differential
privacy mechanisms. Low-rank methods exploit the low-rank property of weight update matrices,
reducing communication load proportional to the rank. ATOMO (Wang et al., 2018) was the first
to propose this sparsification framework, and PowerSGD (Vogels et al., 2019) quickly approximates
low rank using power iteration, widely applied in industrial and open-source distributed training.
However, these compression schemes generally rely on selection rules based on based on magnitude
or randomness, often resulting in higher compression loss.

3 DISCREPANCY-AWARE COMPRESSION SCHEMES FOR FL

In this section, we first present the objectives and motivation behind our approach. We then intro-
duce a compression method that estimates the induced output discrepancy from dropping candidate
compression units—either an element or a singular triplet—on a small local calibration dataset,
and selectively drops candidates. Subsequently, we derive a compression metric tailored for dif-
ferent network architectures and compression techniques. Building on this framework, we enhance
commonly used element-wise sparsification and low-rank compression methods, while ensuring
compatibility with efficient low-rank approximations such as PowerSGD.
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3.1 OBJECTIVE: MINIMIZE THE OUTPUT DISCREPANCY

For a Transformer layer with a matrix W0, a parameter update matrix W and the corresponding
input activations X , the output will be Y = (W0 +W )X . For a CNN with kernel size F , stride s,
and padding size p, we model the layer as cross-correlation. Let Wk,c,0,Wk,c ∈ RF×F denote the
original kernel and its update from input channel c to output channel k and X̄ be X zero-padded by
p pixels on each border. Then the output at channel k is Yk[u, v] =

∑Cin

c=1

∑F−1
i=0

∑F−1
j=0 (Wk,c,0 +

Wk,c)[i, j] X̄c[us+ i, vs+ j]. Given a compressed update Ŵ producing Y ′, our goal in both cases
is to minimize the output discrepancy on a calibration set, measured by the Frobenius norm:

min
Ŵ
Lcomp(W − Ŵ ) =

∑
X

∥∥∆Y
∥∥2
F

=
∑
X

∥∥Y − Y ′∥∥2
F
.

3.2 MOTIVATION: LOW MAGNITUDE ̸= LOW IMPORTANCE

Existing compression methods decide which compression units to drop using selection rules that
do not incorporate loss- or discrepancy-related information. For example, Top-k drops the small-
magnitude elements, while low-rank methods such as ATOMO and PowerSGD truncate small-
magnitude singular values. Without considering the output discrepancy induced by compression,
these rules can drop compression units whose removal causes a large change in the layer output,
leading to inefficient utilization of communication resources.

In FL, this challenge is exacerbated by a fundamental difference from traditional distributed learning
(DL), where communication is frequent and gradients directly dictate the importance of each coor-
dinate. In contrast, FL uses parameter updates across multiple local steps, resulting in compressed
content that does not directly correlate with the gradient magnitudes, as detailed in A.2. Therefore,
magnitude-based selection rules, such as those employed in the Top-k and other methods, fail to
appropriately capture the true importance of the components being compressed, further limiting the
accuracy and communication efficiency trade-off in FL.

A Motivating Example of Element-wise Sparsification. Selecting the largest elements of a ma-
trix W ∈ Rm×d does not guarantee minimal distortion, because the actual impact on outputs
Y = WX depends on the input activations X ∈ Rd×n. Write X by rows as X = [f⊤

1 , . . . , f⊤
d ]⊤.

The induced output discrepancy in the form of Frobenius loss from removing an element wi,j equals

Lcomp(wi,j) = ∥(W −W\wi,j
)X∥2F = ∥wi,jfj∥2F = w2

i,j ∥fj∥2F .

Consider two candidate elements wi1 = 0.1 and wi2 = 10 with their corresponding input activation
feature ∥f1∥F = 103 and ∥f2∥F = 10−3. If we drop wi1, the induced output discrepancy would
be calculated as Lcomp(wi1) = (0.1 · 103)2 = 104. On the other hand, if we drop wi2, the output
discrepancy would be Lcomp(wi2) = (10 · 10−3)2 = 10−4. The magnitude-based Top-k rule would
keep wi2 and drop wi1. However, this choice induces an output discrepancy 108 times larger than the
alternative, revealing a clear gap between selecting by element magnitude and selecting by output
discrepancy induced. The argument holds whether the Top-k is applied per row or globally over all
entries of W . Random-k can fare worse by discarding high-impact entries purely by chance.

A Motivating Example of Low-rank Decomposition. Truncating smaller singular values is not
necessarily safe if the associated singular vectors align with high-energy input directions. Let the
SVD of W ∈ Rm×d be W =

∑2
i=1 σiuiv

⊤
i . A standard low-rank truncation would remove the

smaller singular value σ1. However, the induced output discrepancy in the form of Frobenius loss
from dropping component i equals

Lcomp(σi) = ∥(W −W\σi
)X∥2F = ∥σi uiv

⊤
i X∥2F = σ2

i ∥ui(v
⊤
i X)∥2F = σ2

i ∥v⊤i X∥2F .

Consider two candidate singular values σ1 = 1 with ∥v⊤1 X∥F = 103 and σ2 = 100 with
∥v⊤2 X∥F = 10−3. If we drop σ1, the induced output discrepancy would be calculated as
Lcomp(σ1) = 1 · 103 = 103. On the other hand, if we drop σ2, the output discrepancy would
be Lcomp(σ2) = 100 · 10−3 = 10−1. Therefore, removing the smaller singular value incurs an
output discrepancy 108 times larger than removing the larger one.
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Algorithm 1: Communication-efficient FL with discrepancy-aware compression

Input : Number of communication rounds T ; Client set C; Global model W 0; Learning rate η;
Local training epochs E; Communication budget B;

Output: Final global model WT .

1 for t = 1, . . . , T do
2 Server samples clients Ct ⊆ C and broadcasts global model W t−1.
3 for each Client k ∈ Ct in parallel do
4 Local training based on W t−1 using private training data for E epochs, obtain ∆Wk.
5 Discrepancy-aware compression based on local calibration dataset, obtain ∆̂W k.
6 Transmit ∆̂W k to Server.

7 Server aggregates clients’ updates W t ←W t−1 +
∑

k∈Ct

nk

mt
∆̂W k,mt =

∑
k∈Ct

nk,
where nk is the number of samples on client k in round t.

These motivating examples indicate that existing compression strategies remove compression units
without regard to their actual contribution to the output, leading to disproportionate output discrep-
ancy for a given communication budget. To address this limitation, we adopt a calibration-based
perspective that explicitly links the selection of compression units to the output discrepancy. This
perspective unifies disparate compressors and highlights why selection rules based solely on magni-
tudes or randomness are fundamentally insufficient.

3.3 KEY DESIGN

As outlined in Algorithm 1 and 2, we seek a unified, compression-aware principle for communi-
cation compression that directly scores each candidate compression unit by the output discrepancy
it would induce on a small calibration dataset. Let W be a layer update to be compressed, and X
denote the calibration activations. We recommend that each client randomly select a small subset of
its local training dataset in each round to compute calibration activations, which are then used for
scoring compression units. This choice is empirically evaluated in Section 4.4. For each candidate
compression unit u (whether an element or a singular triplet), we use the output discrepancy on a
calibration set as a compression metric to estimate its removal cost:

Lcomp(u) =
∑
cal X

∥∥∆Y
∥∥2
F

=
∑
cal X

∥∥Y − Y ′∥∥2
F
.

Then we rank these units by their compression metric Lcomp(u), and select the subset that approx-
imately minimizes Lcomp(u) under the given budget. This leads to a simple drop rule: keep units
with large Lcomp(u), and drop those with small Lcomp(u). Below we derive Lcomp(u) for different
granularities that encompass common compressors. Notably, like most compression methods, our
approach can operate under either a global or layer communication budget.

In addition, Our method is fully compatible with classic error feedback scheme. Concretely, each
client maintains a residual vector that accumulates the compression error from previous rounds. At
each communication round, each client first forms a compensated update by adding the residual to its
current local update. The compensated update is then passed through the proposed compression op-
erator, yielding the transmitted message. And the residual is updated by subtracting the transmitted
compressed update from the compensated update.

3.4 COMPRESSION METRIC

For Element-wise Sparsification in Transformer Layers. Dropping a single element wi,j re-
places W by W\wi,j

= W − wi,jeie
⊤
j . Then

∆Ywi,j
= (W −W\wi,j

)X = wi,j eie
⊤
j X = wi,j eif

⊤
j , where f⊤

j is row j of X.

Hence the compression metric for element-wise compressors in Transformer layers is

Lcomp(wi,j) = ∥wi,j eif
⊤
j ∥2F = w2

i,j ∥fj∥2F .
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Algorithm 2: Discrepancy-aware compression
Input : Layer update W ; Compression granularity g ∈ {ELEMENT, SINGULAR TRIPLET};

Communication budget B (compression ratio or retained rank);
Output: compressed layer update Ŵ under communication budget B.

1 Define compression unit set U (whether elements or singular triplets).
2 for each u ∈ U do
3 Randomly select a small sample size of calibration data to obtain calibration activation X ,

and compute compression metric Lcomp(u) =
∑

cal X

∥∥Y − Y ′
∥∥2
F
.

4 Select a subset S ⊆ U that satisfies the budget B and maximizes
∑

u∈S Lcomp(u)

5 Form Ŵ by retaining units in S and dropping the rest.

For Element-wise Sparsification in Convolution Layers. Consider an individual kernel with
input channels Cin, output channels Cout, stride s, and padding p. Dropping a single kernel element
wk,c[i, j] with 0 ≤ i, j < F yields an output perturbation

∆Yk[u, v] = wk,c[i, j] X̄c[us+ i, vs+ j].

Hence the compression metric for element-wise compressors in Convolution layers is

Lcomp

(
wk,c[i, j]

)
=

∥∥∆Yk

∥∥2
F

= wk,c[i, j]
2

H′−1∑
u=0

W ′−1∑
v=0

(
X̄c[us+ i, vs+ j]

)2
.

Here H ′ =
⌊
H+2p−F

s

⌋
+ 1 and W ′ =

⌊
W+2p−F

s

⌋
+ 1.

For Low-rank Decomposition in Transformer Layers. Let the SVD be W = UΣV ⊤ =∑r
t=1 σtutv

⊤
t . Dropping a single singular value σt causes

Y − Y ′ = (W −W\t)X = σt utv
⊤
t X,

Hence the compression metric for low-rank compressors in Transformer layers is

Lcomp(σt) = ∥σt ut(v
⊤
t X)∥2F = σ2

t ∥v⊤t X∥2F .

For Low-rank Decomposition in Convolution Layers. Fix (k, c) and take the SVD of its kernel
Wk,c =

∑r
t=1 σt utv

⊤
t with r ≤ F and unit singular vectors ut, vt ∈ RF . Dropping component t

removes its rank-1 contribution, and the resulting output perturbation with stride s and padding size
p is given explicitly by

∆Y
(t,c)
k [m,n] = σt

F−1∑
i=0

F−1∑
j=0

ut[i] vt[j] X̄c(ms+ i, ns+ j).

To evaluate efficiently, we stack {v⊤t }rt=1 as r horizontal 1×F filters and compute Zt = H
(s,P )
vt (X̄c)

in a single pass; then apply the r vertical F × 1 filters {ut} in grouped fashion to obtain Yt =

V
(s,P )
ut (Zt) for all singular values. A naive implementation would perform r separate F × F 2D

correlations with cost O(r F 2 H ′W ′), whereas this two-pass scheme costs O(r F H ′W ′). Define

(
H(s,p)

v (X̄c)
)
[m′, n] =

F−1∑
j=0

v[j] X̄c

(
m′, ns+ j

)
,
(
V (s,p)
u (Z)

)
[m,n] =

F−1∑
i=0

u[i] Z
(
ms+ i, n

)
,

so that ∆Y
(t,c)
k [m,n] = σt

(
V

(s,p)
ut

(
H

(s,p)
vt (X̄c)

))
[m,n]. Then the compression metric for low-rank

compressors in Convolution layers is

Lcomp(σt; k, c) =
∥∥∆Y

(t,c)
k

∥∥2
F
= σ2

t

∥∥V (s,p)
ut

(
H(s,p)

vt (X̄c)
)∥∥2

F
.
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4 EXPERIMENTS

4.1 SETUP

We evaluate on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and Fashion-MNIST (Xiao et al.,
2017) datasets under non-IID client partitions, using three Transformers (ViT-tiny, ViT-small, and
ViT-base (Dosovitskiy et al., 2021)) and two CNNs (AlexNet (Krizhevsky et al., 2012) and ResNet-
18 (He et al., 2016)). We simulate the non-IID scenario by considering a heterogeneous partition,
where the number of data points and class proportions are unbalanced. Specifically, we simulate a
partition into N clients following a Dirichlet allocation with α = 0.2. The level of heterogeneity
among local datasets across different clients decreases as α increases. We set the total number of
clients to be N = 100, and randomly sample 10 clients per round for training and aggregation. The
training process consists of 200 communication rounds. Each participating client performs E = 2
local training epochs per communication round with batch size bs = 16. Training employs a cosine
annealing learning rate schedule (Loshchilov & Hutter, 2017) and linear warm-up. For ViTs, we use
the AdamW optimizer (Loshchilov & Hutter, 2019) with an initial learning rate of 10−4 decayed by a
cosine annealing factor and a weight decay of 0.05, while for ResNet-18 we use the SGD optimizer
with an initial learning rate of 0.01 decayed by a cosine annealing factor and a weight decay of
10−4. Unless stated otherwise, each client uses 64 randomly sampled local examples per round for
calibration. All clients initialize from the same global model and employ identical within-round
learning-rate schedules. We evaluate two baselines: the element-wise sparsification method Top-k
and the low-rank decomposition method ATOMO. For each, we compare the original magnitude-
based method with our discrepancy-aware re-ranking variant under the same communication budget.
For element-wise sparsification, we use the global budget configuration, as it typically performs
better and is more widely adopted than the layer budget. For low-rank decomposition, we follow
ATOMO’s original setup with the layer budget configuration (Wang et al., 2018). We conduct each
experiment with three independent trials and report the average results. In all experiments, we
employ the classic error feedback scheme to mitigate the bias introduced by lossy compression.

4.2 MAIN RESULTS

Element-wise Sparsification. To evaluate the effectiveness of our discrepancy-aware compres-
sion in enhancing existing element-level sparsification methods, we compare the final test accuracy
of the original magnitude-based Top-k method and its discrepancy-aware augmented variant across
different compression ratios, datasets, and models. As shown in Table 1, the discrepancy-aware
compression leads to consistent improvements over the baseline. Notably, the advantage becomes
more pronounced as the compression ratio decreases. This is because under stronger compression,
the overlap between compression units selected by different methods reduces, as detailed in Sec-
tion 4.3. Thus, the ability to identify important information becomes more critical to performance.

Table 1: Final test accuracy of the element-wise sparsification method Top-k and the corresponding
discrepancy-aware augmented method across different compression ratios, datasets, and models.

Dataset Method Compression Ratio
(Model) 0.01 0.1 0.2 0.4 0.6 1.0

CIFAR-10 Magnitude-based 21.03± 0.3 34.93± 0.5 37.69± 0.3 38.25± 0.2 38.57± 0.2 51.56± 0.3(ViT-tiny) Discrepancy-aware 29.62± 0.1 41.52± 0.4 43.11± 0.4 42.81± 0.1 41.21± 0.2

CIFAR-100 Magnitude-based 9.29 ± 0.4 26.91± 0.3 28.51± 0.5 29.97± 0.4 30.23± 0.5 34.13± 0.2(ViT-small) Discrepancy-aware 13.29± 0.2 28.62± 0.3 31.27± 0.1 32.87± 0.4 33.32± 0.3

CIFAR-100 Magnitude-based 10.76± 0.1 27.28± 0.7 30.71± 1.0 32.34± 0.9 32.82± 0.6 35.33± 0.1(ResNet-18) Discrepancy-aware 15.58± 0.3 29.71± 0.4 32.54± 0.5 33.65± 0.7 33.71± 0.4

Fashion-MNIST Magnitude-based 63.31± 0.1 70.32± 0.9 71.50± 0.5 71.59± 0.7 71.98± 0.7 78.96± 0.3(AlexNet) Discrepancy-aware 67.55± 0.3 73.42± 0.7 73.61± 0.4 73.70± 0.4 74.01± 0.5

Low-rank Decomposition. Similarly, we evaluate discrepancy-aware compression applied to
low-rank decomposition methods by comparing the original ATOMO method and its discrepancy-
aware augmented variant across various retained ranks, datasets, and models. As shown in Table 2,
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Table 2: Final test accuracy of the low-rank decomposition method ATOMO and the corresponding
discrepancy-aware augmented method across different retained ranks, datasets, and models.

Dataset Method Retained Rank
(Model) 1 2 4 8

CIFAR-10 Magnitude-based 26.46± 0.4 28.33± 0.3 36.14± 0.4 42.44± 0.3

(ViT-tiny) Discrepancy-aware 28.03± 0.5 30.74± 0.3 36.40± 0.4 42.68± 0.2

CIFAR-10 Magnitude-based 33.41± 0.4 37.01± 0.4 41.32± 0.2 44.01± 0.4

(ViT-small) Discrepancy-aware 34.61± 0.4 40.10± 0.3 43.17± 0.3 45.29± 0.3

CIFAR-100 Magnitude-based 17.08± 0.4 19.07± 0.5 24.62± 0.7 29.01± 0.6

(ViT-base) Discrepancy-aware 20.17± 0.3 23.99± 0.5 26.13± 0.4 30.62± 0.4

the discrepancy-aware augmented approach again leads to consistent and significant improvements.
As with element-wise sparsification, the benefit increases under higher compression, due to reduced
overlap and increased differentiation among selected candidate compression units—making accurate
identification of important features more critical, as further analyzed in Section 4.3.

Overall Communication Rounds to Achieve Target Accuracy. To demonstrate that the
discrepancy-aware method converges in fewer communication rounds, we further compare the
number of communication rounds required to reach target accuracy between magnitude-based and
discrepancy-aware compression methods. Specifically, we conduct experiments on two representa-
tive configurations at various compression ratios. The target accuracy is defined as 60% or 80% of
the final test accuracy achieved by the discrepancy-aware method for each specific configuration.
The results are summarized in Tables 3 and 4. Across all configurations and compression ratios,
the discrepancy-aware method consistently reaches the same target accuracy in fewer rounds than
the magnitude-based baseline. The performance gains are particularly pronounced under strong
compression, with a speedup of up to 1.56× in reaching the target accuracy at a compression ra-
tio of 0.01 on the CIFAR-10 dataset using the ViT-tiny model. This analysis demonstrates that
discrepancy-aware compression not only enhances final accuracy, but also accelerates convergence
in terms of wall-clock time under the same communication budget.

Table 3: Communication rounds required to reach target accuracy on FMNIST (AlexNet) of the
element-wise sparsification method Top-k and the corresponding discrepancy-aware variant. Values
in parentheses indicate the speedup of discrepancy-aware methods over magnitude-based baselines.

Target Accuracy Method Compression Ratio
0.01 0.05 0.1 0.2 0.4 0.6

60% of the final Magnitude-based 73 54 55 54 56 56
test accuracy Discrepancy-aware 62(1.18×) 46(1.17×) 50(1.10×) 54(1.00×) 56(1.00×) 53(1.05×)

80% of the final Magnitude-based 105 85 83 83 84 81
test accuracy Discrepancy-aware 82(1.28×) 72(1.18×) 71(1.17×) 83(1.00×) 81(1.03×) 82(0.98×)

Table 4: Communication rounds required to reach target accuracy on CIFAR-10 (ViT-tiny) of the
element-wise sparsification method Top-k and the corresponding discrepancy-aware variant. Values
in parentheses indicate the speedup of discrepancy-aware methods over magnitude-based baselines.

Target Accuracy Method Compression Ratio
0.01 0.05 0.1 0.2 0.4 0.6

60% of the final Magnitude-based 53 45 33 36 39 40
test accuracy Discrepancy-aware 44(1.20×) 31(1.45×) 26(1.27×) 34(1.06×) 37(1.05×) 39(1.03×)

80% of the final Magnitude-based 128 117 120 99 116 89
test accuracy Discrepancy-aware 82(1.56×) 81(1.44×) 83(1.45×) 79(1.25×) 79(1.47×) 86(1.03×)

4.3 OVERLAP ANALYSIS OF SELECTED TRANSMITTED CONTENT

To demonstrate the differences between discrepancy-aware and magnitude-based selections across
varying compression levels and data heterogeneity, we report the overlap rate of the selected com-
pression units between the Top-k method and its discrepancy-aware augmented variant. This is
shown in the 2D heatmaps of Figure 1, with the compression ratio (x-axis) and Dirichlet parameter
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α (y-axis). Across datasets and models, the overlap increases with both the compression ratio and
α. When compression is aggressive and data are highly non-IID, the overlap is minimal, whereas
milder compression and more IID data yield substantially higher overlap. These trends reinforce
our central conclusion: discrepancy-aware compression is most beneficial under conditions of tight
bandwidth with low compression ratios and strong heterogeneity with small α. When resources
are constrained, discrepancy-aware compression selectively transmits the most important content.
Additionally, the uneven distribution of local data characteristics across clients increases the impact
of these characteristics on the importance of compression units. However, as compression becomes
milder and data approach IID, the two criteria partially align and the overlap increases. This suggests
that while large-magnitude units are no longer the most critical, they still regain a relative advantage.
We also observe higher overlaps on Fashion-MNIST (AlexNet) compared to CIFAR-10 (ViT-tiny),
indicating that simpler datasets and architectures lead to more agreement between the two strategies.
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Figure 1: Overlap rate heatmaps for different Non-IID degree (alpha) and compression ratios on (a)
CIFAR-10 (ViT-tiny) and (b) FMNIST (AlexNet).

4.4 ANALYSIS AND ABLATION

Selection Strategies and Sample Size of Calibration Data. We investigate the influence of cal-
ibration data selection strategies and the sample size of calibration data on the performance of
discrepancy-aware compression. As shown in Table 5, randomly sampling calibration data at each
round consistently outperforms strategies that always choose either the earliest or the latest samples,
without incurring additional cost. Therefore, we adopt random sampling as the default strategy in
experiments. Moreover, Table 5 demonstrates that the number of calibration samples has only a
marginal effect on performance, which remains stable across different quantities. These findings
highlight the robustness of our method in different calibration sample sizes.

Table 5: Impact of calibration data selection strategies and sample size.

Dataset (Model) Selection Strategies Calibration Samples
Random First Last 32 64 128 256 512

Fashion-MNIST (AlexNet) 73.95 72.49 73.14 72.89 72.41 72.86 72.76 72.91
CIFAR-10 (ViT-tiny) 43.23 43.14 42.91 42.97 43.11 43.52 43.22 42.96

Additional computational cost. We evaluated the additional computational cost introduced by
our discrepancy-aware compression method by measuring the average time spent at different stages.
As shown in Table 6, while the compression time with the discrepancy-aware method increased by
up to 18.2%, the overall computation time per client per round showed only a slight increase. Given
the low communication frequency and communication bottlenecks in FL, it is an acceptable trade-
off. Our method significantly enhances communication resource utilization under tight communi-
cation budgets and thereby improves performance. This makes it a viable strategy for enhancing
communication efficiency in FL under constrained communication resources.
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Table 6: Comparison of per-round time consumption per client (calibration sample size = 64).

Dataset Method Avg Time Consumption (Top-k) Avg Time Consumption (ATOMO)
(Model) Training Compression Total Training Compression Total

CIFAR-10 Magnitude-based 0.5681s 0.0013s 0.5694s 0.7033s 0.1006s 0.8039s
(ViT-tiny) Discrepancy-aware 0.5662s 0.0568s 0.6380s 0.7055s 0.2232s 0.9287s

CIFAR-100 Magnitude-based 0.5789s 0.0014s 0.5803s 0.7480s 0.3258s 1.0738s
(ViT-small) Discrepancy-aware 0.5799s 0.0586s 0.6385s 0.7423s 0.5217s 1.2694s

Non-IID Degree. We simulate a heterogeneous data partition into N clients using the Dirichlet
distribution with α. Here, we conduct an ablation study to investigate the impacts of Non-IID
degree, while keeping all other settings identical to Section 4.1. As shown in Figure 2, across all
heterogeneity settings, discrepancy-aware compression consistently improves the final test accuracy
over magnitude-based baselines. Notably, the gains are most pronounced under highly non-IID
splits with smaller α, suggesting that selecting candidate compression units according to client-
specific calibration data, rather than pure magnitude, can better capture what matters for each client.
Some large-magnitude candidate compression units exert little influence on the local input–output
mapping and are therefore deprioritized by discrepancy-aware compression. As the non-IID degree
decreases as α increases, the final test accuracy generally improves as expected.

Figure 2: Impact of non-IID degree. Figure 3: Impact of local training epochs.

Local Training Epochs. We conduct an ablation study to investigate the impact of local training
epochs, while keeping all other settings identical to Section 4.1. As shown in Figure 3, increasing the
number of local training epochs consistently improves the final test accuracy, reflecting the benefit
of more thorough local updates. Across all settings, our discrepancy-aware compression achieves
higher accuracy than magnitude-based baselines. These results highlight that selecting compression
units based on calibration data consistently provides robust gains.

5 CONCLUSION

In this work, we introduce a discrepancy-aware communication compression strategy for FL that
addresses the challenge under tight communication budgets by minimizing the output discrepancy
through calibration data. This approach can be seamlessly integrated with existing FL compression
techniques, offering enhanced performance under limited communication resources. Moreover, it is
compatible with a wide range of other FL methods, including those focused on security, privacy, and
heterogeneity. Empirical results across various datasets and models demonstrate that the proposed
method significantly outperforms baseline compression strategies. Our work provides a fresh per-
spective on communication compression process in FL, and we believe this work can significantly
contribute to the development of communication-efficient FL.
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lach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Ad-
vances in Neural Information Processing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
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A.2 COMPARISON OF CONTENT TO BE COMPRESSED IN FEDERATED LEARNING AND
DISTRIBUTED LEARNING

Let the global objective be

F (W ) =

K∑
k=1

pk Eξ∼Dk

[
ℓ(W ; ξ)

]
,

and g(W ) = ∇F (W ) represents the gradient, and H(W ) = ∇2F (W ) is the Hessian.

In data-center distributed learning (DL), every iteration synchronizes across workers, transmitting
gradients, and the compression step involves reducing the gradient g(W ) using a compressor C(·),
such as Top-k. For a given parameter update W , the compressed update ∆̂W = C(∆W ) leads to a
compression loss:

F (W + ∆̂W )− F (W +∆W ) = ηg⊤(g − C(g)) +O(η2),

where C(g) zeroes out some components of the gradient. In this case, the compression loss is
directly related to the gradient magnitude, specifically to g2j , because the object being compressed
and transmitted is the gradient itself.

However, in FL, the situation is different. Instead of transmitting a single gradient, each client
performs multiple local SGD steps, accumulating updates over several epochs. The update for client
k is the difference:

∆Wk = Wk,t −Wk,0 = −η
t−1∑
τ=0

gk(Wk,τ ),

which is a series of gradients evaluated at different local iterates. Expanding around the global model
W , we approximate:

gk(Wk,τ ) ≈ gk(W ) +Hk(W )(Wk,τ −W ).

Since Wk,τ −W is a summation of previous gradients, the update becomes:

∆Wk ≈ −ηtgk(W ) + η2
t(t− 1)

2
Hk(W )gk(W ),

where the first term is the gradient-based update and the second term introduces curvature effects due
to the Hessian. This shows that the client updates are influenced by both the gradient and the model
curvature Hk(W ), making the relationship between the update and the gradient more complex than
in DL.

Now consider the server-side aggregation of updates from multiple clients:

∆W =
∑
k

αk∆Wk.

The compressed update is ∆̂W = C(∆W ), and the compression error is given by the residual
R = ∆W − ∆̂W . The resulting compression loss is:

F (W + ∆̂W )− F (W +∆W ) = −g(W )⊤R+O(∥∆W∥∥R∥+ ∥R∥2).

Crucially, this residual R is a difference in parameter updates, not gradients. The importance of a
coordinate j is determined by the product gj(W )Rj , not just by the magnitude |Rj | alone. This
reflects a fundamental difference from DL, where magnitude-based compression decisions align
with gradient importance.

This analysis confirms the core observation: in FL, the content being compressed (parameter up-
dates) carries little gradient information, which weakens the relationship between magnitude and
importance. This motivates our discrepancy-aware compression strategy, which ranks compression
units based on their effect on layer output using the Lcomp rather than relying on magnitude or
randomness.
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A.3 COMPATIBILITY WITH POWERSGD

We have already shown in the main text that our discrepancy-aware selection principle can be in-
stantiated on top of ATOMO, where the layer update is factorized via an exact SVD. Importantly,
the same principle is not restricted to this setting. Our discrepancy-aware selection mechanism only
requires that a layer update matrix can be written as a sum of rank-1 components and does not
rely on these components being exact singular vectors. Concretely, suppose a layer update matrix
W ∈ Rdout×din admits a factorization of the form

W ≈
r∑

t=1

atb
⊤
t , (1)

where at ∈ Rdout and bt ∈ Rdin define rank-1 components atb
⊤
t . Let X ∈ Rdin×m denote a small

local calibration set of layer inputs (activations). The corresponding layer outputs are

Y = (W0 +W )X, (2)

where W0 is the current model parameter of the layer. If we remove a single component atb⊤t , the
modified update becomes W − atb

⊤
t , and the new outputs are

Y ′ = (W0 +W − atb
⊤
t )X = Y − atb

⊤
t X. (3)

Hence, the discrepancy incurred on the calibration set by dropping component t is

∆t = Y − Y ′ = atb
⊤
t X = at(b

⊤
t X). (4)

Our per-component discrepancy metric is precisely the Frobenius norm of this difference:

Lcomp(t) = ∥∆t∥2F =
∥∥atb⊤t X∥∥2

F
=

∥∥at(b⊤t X)
∥∥2
F
. (5)

In the ATOMO instantiation, W is factorized using the SVD as W =
∑r

t=1 σtutv
⊤
t . In this special

case, (at, bt) = (σtut, vt), and Lcomp(t) reduces to a function of the singular value and the right
singular vector evaluated on the calibration inputs.

Specialization to PowerSGD. PowerSGD produces a low-rank approximation of the form

W ≈ PQ⊤, (6)

where P ∈ Rdout×r and Q ∈ Rdin×r are obtained via iterative power iterations. Let pt and qt denote
the t-th columns of P and Q, respectively. Then

PQ⊤ =

r∑
t=1

ptq
⊤
t , (7)

so (at, bt) = (pt, qt) in Equation 5. The discrepancy metric for component t under PowerSGD
becomes

Lcomp(t) =
∥∥ptq⊤t X∥∥2

F
=

∥∥pt(q⊤t X)
∥∥2
F
, t = 1, . . . , r. (8)

Thus, our method applies directly to the rank-1 components produced by PowerSGD; it does not
depend on how P and Q are computed, only on the resulting factorization W ≈ PQ⊤.

Discrepancy-aware selection on top of PowerSGD. Given a standard PowerSGD implementa-
tion for a layer, our discrepancy-aware selection can be implemented in each communication round
as follows.

1. PowerSGD factorization with an oversized candidate rank. Run PowerSGD to obtain
a rank-rcand approximation W ≈ PQ⊤ for each compressed layer, where rcand is a pre-
specified candidate rank that is intentionally larger than the effective rank allowed by the
communication budget, i.e., rbudget < rcand.

2. Compute discrepancy scores on a calibration set. On a small local calibration set X ,
compute q⊤t X for each column qt of Q, and evaluate

Lcomp(t) =
∥∥pt(q⊤t X)

∥∥2
F
, t = 1, . . . , rcand. (9)
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3. Select components under the communication budget. Rank the rcand components
{ptq⊤t } by Lcomp(t) in descending order, and select the top rbudget components that fit within
the desired communication budget.

4. Form truncated factors and communicate them. Form truncated factors P ′ ∈
Rdout×rbudget and Q′ ∈ Rdin×rbudget by keeping only the selected columns of P and Q, and
communicate (P ′, Q′) instead of the full (P,Q).

This procedure does not modify the internal power-iteration scheme or the encoding format of Pow-
erSGD; it only changes which rank-1 components are ultimately transmitted, based on their data-
driven impact on the layer output as measured by Lcomp(t).

A.4 FUTURE WORK: EXTENSION TO QUANTIZATION-BASED METHODS

Our discrepancy-aware selection principle is designed to be compressor-agnostic: it only requires
the ability to simulate the effect of a given compression operation on the layer outputs over a small
calibration set. In the main text, this principle is instantiated for element-wise sparsification (e.g.,
Top-k) and low-rank decomposition (e.g., ATOMO) by treating either an individual element or a
singular triplet as the compression unit and scoring it via the induced output discrepancy.

The same idea naturally extends to quantization-based methods. Consider a set of quantization units
U . For each unit u ∈ U , we allow a finite set of candidate bit-widths B. For a given pair (u, b)
with b ∈ B, we construct a compression configuration θ(u, b) where unit u is quantized with b bits,
and all other units u′ ̸= u are kept at a fixed reference precision (e.g., full precision or a baseline
bit-width). We then measure the corresponding discrepancy

L(u, b) = L(θ(u, b)) =
∥∥(W0 +W )X − (W0 + Cθ(u,b)(W ))X

∥∥2
F
. (10)

Given a fixed total bit budget for each layer, bits can be allocated by prioritizing units for which
increasing the bit-width yields the largest reduction in discrepancy per additional bit. A simple
strategy is to start from a baseline bit-width bbase for all units and then iteratively consider raising the
bit-width of some units to higher candidate values. For each unit u and a feasible higher bit-width
b′ > bcurr(u), we estimate the decrease in the discrepancy measure L(u, b) when changing from
bcurr(u) to b′, and normalize this decrease by the corresponding increase in the number of bits. At
each step, we choose the unit and bit-width change that provides the largest discrepancy reduction
per additional bit, update bcurr(u) accordingly, and repeat this greedy procedure until the total bit
budget for the layer is fully used. This yields a discrepancy-aware quantization scheme in which
units that are more critical for the layer outputs (high-discrepancy units) are assigned more bits,
while less critical ones can be more aggressively quantized.

This construction is complementary to existing federated learning quantization frameworks: the
discrepancy-aware principle can be used as a drop-in mechanism for deciding bit allocation within
such frameworks, without modifying their overall communication or system design. We expect
that specific instantiations of this idea, tailored to particular quantization schemes and hardware
constraints, will be promising directions for future work in communication-efficient quantization.

A.5 CONVERGENCE OF DISCREPANCY-AWARE COMPRESSOR WITH ERROR-FEEDBACK

In this section, following previous works on compressor convergence in distributed learn-
ing (Beznosikov et al., 2023; Karimireddy et al., 2019; Condat et al., 2022; Hu et al., 2021b; Qian
et al., 2021; Li & Li, 2023), we adopted similar settings and approaches to discuss the convergence
of our discrepancy-aware compressor.

We consider minimizing a possibly non-convex objective

min
x∈Rd

f(x) := Eξ

[
F (x; ξ)

]
. (11)

A.5.1 ERROR–FEEDBACK SCHEME

We study the following generic error–feedback scheme, as detailed in Algorithm 3.
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Algorithm 3: Error–feedback SGD with Compressor

Input: stepsize γ > 0, compressor C(·), initial weight matrix w0;

1 Set e0 = 0. for t = 0, 1, . . . , T do
2 Draw stochastic gradient gt at wt.
3 Form corrected direction g′t = γgt + et.
4 Compress: C(g′t).
5 Update iterate: wt+1 = wt − C(g′t).
6 Update error: et+1 = g′t − C(g′t).

A.5.2 ASSUMPTIONS

Assumption 1 (Smoothness). The function f is L–smooth, i.e. for all x, y ∈ Rd,

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2. (12)

Assumption 2 (Unbiased stochastic gradients with bounded second moment). At iteration t the
algorithm queries a stochastic gradient gt such that

E[gt | wt] = ∇f(wt), E
[
∥gt∥2 | wt

]
≤ σ2, (13)

for some σ > 0.
Assumption 3 (δ–approximate compressor). A (possibly randomized) operator C : Rd → Rd is
called a δ–approximate compressor with δ ∈ (0, 1] if for all v ∈ Rd

E
[
∥C(v)− v∥2

]
≤ (1− δ) ∥v∥2. (14)

The expectation is taken over the internal randomness of C if any.

A.5.3 CONVERGENCE ANALYSIS

Lemma 1 (discrepancy-aware top-k compressor is a δ-approximate compressor). Let a ∈ Rd denote
the fixed calibration activations obtained from the calibration dataset, and let mi(w, ai) be a scalar
discrepancy score for coordinate i which depends on both the weight entry wi and the calibration
activation ai. We assume that mi(·, ai) is continuous and strictly increasing in |wi| for every fixed
ai. The discrepancy-aware top-k compressor Cdis−k is defined by

Sdis−k-k(w) := indices of the k largest mi(w, ai), (Cdis−k(w))i :=

{
wi, i ∈ Sdis−k-k(w),

0, otherwise.
(15)

Denote by Stop-k(w) the index set of the k largest entries of w in magnitude, and define

ϕ(w) :=

∑
i∈Sdis−k-k(w) w

2
i∑

i∈Stop-k(w) w
2
i

, w ̸= 0. (16)

Assume that on the feasible set Q we have a uniform lower bound

ϕ(x) ≥ c > 0, ∀x ∈ Q \ {0}, (17)

i.e., the subset selected by the discrepancy-aware rule always retains at least a fixed fraction c of the
squared ℓ2-mass that would be retained by plain top-k.

This assumption is mild for our discrepancy-aware compressor. During training, both the model
parameters and the calibration activations are constrained to stay in a bounded region, so it is
natural to restrict attention to a compact feasible set Q ⊂ Rd on which all coordinates are uni-
formly bounded. Moreover, for our Lcomp the discrepancy score mi(wi, ai) depends not only on
the calibration activation ai. In particular, |wi| enters as an important multiplicative factor in the
score. Hence the discrepancy-aware selection rule is hard to systematically assign large scores to
coordinates with vanishingly small |wi| while ignoring coordinates with moderate or large |wi|.
Then Cdis−k is a δ-approximate compressor on Q with

δ = c
k

d
. (18)
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Proof. Fix any w ∈ Q. Since Cdis−k(w) is obtained by zeroing out a subset of coordinates of w, we
have

∥Cdis−k(w)∥22 =
∑

i∈Sdis−k(w)

w2
i , ∥w∥22 =

∑
i∈Sdis−k(w)

w2
i +

∑
i/∈Sdis−k(w)

w2
i , (19)

and therefore

∥Cdis−k(w)− w∥22 =
∑

i/∈Sdis−k(w)

w2
i = ∥w∥22 − ∥Cdis−k(w)∥22. (20)

On the other hand, the standard top-k compressor satisfies (see Appendix B.2 in Karimireddy et al.
(2019)) ∑

i∈Stop-k(w)

w2
i ≥

k

d
∥w∥22, (21)

i.e., the top-k operator retains at least a k
d fraction of the total energy. Together with Equation 17,

this implies ∑
i∈Sdis−k(w)

w2
i = ϕ(w)

∑
i∈Stop-k(w)

w2
i ≥ c

∑
i∈Stop-k(w)

w2
i ≥ c

k

d
∥w∥22. (22)

Substituting Equation 22 into Equation 20, we obtain

∥Cdis−k(w)− w∥22 = ∥w∥22 −
∑

i∈Sdis−k(w)

w2
i ≤

(
1− c

k

d

)
∥w∥22. (23)

Therefore, if we define

δ := c
k

d
, (24)

then
∥Cdis−k(w)− w∥22 ≤ (1− δ) ∥w∥22, ∀w ∈ Q. (25)

Note that our compressor is deterministic, so the expectation in Assumption 3 over the internal
randomness of C is not needed in this case. Hence Cdis−k is a δ-approximate compressor on Q,
which completes the proof.

Lemma 2 (Bounded error). Based on Assumptions 2 and Lemma 1, let {et}t≥0 be generated by
Algorithm 3. Then for any t ≥ 0,

E
[
∥et∥2

]
≤ 4(1− δ)

δ2
γ2σ2. (26)

Proof. By construction of et+1 and Assumption 3, we have

∥et+1∥2 = ∥g′t − C(g′t)∥2 ≤ (1− δ) ∥g′t∥2 = (1− δ) ∥γgt + et∥2. (27)

Taking expectation and expanding the square, for any parameter η > 0,

E
[
∥et+1∥2

]
≤ (1− δ)E

[
∥γgt + et∥2

]
(28)

≤ (1− δ)(1 + η)E
[
∥et∥2

]
+ (1− δ)

(
1 +

1

η

)
γ2E

[
∥gt∥2

]
(29)

≤ (1− δ)(1 + η)E
[
∥et∥2

]
+ (1− δ)

(
1 +

1

η

)
γ2σ2, (30)

where we used the inequality ∥a+ b∥2 ≤ (1 + η)∥a∥2 + (1 + 1/η)∥b∥2.

Unrolling this recursion and using E∥e0∥2 = 0 gives

E
[
∥et+1∥2

]
≤ (1− δ)

(
1 +

1

η

)
γ2σ2

t∑
i=0

[
(1− δ)(1 + η)

]i
. (31)
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For any η ∈ (0, δ/(2(1− δ))) we have (1− δ)(1 + η) < 1, and thus
∞∑
i=0

[
(1− δ)(1 + η)

]i
=

1

1− (1− δ)(1 + η)
=

1

δ − η(1− δ)
. (32)

Choosing η = δ
2(1−δ) yields

1 +
1

η
= 1 +

2(1− δ)

δ
≤ 2

δ
, δ − η(1− δ) =

δ

2
,

and therefore

E
[
∥et+1∥2

]
≤ 4(1− δ)

δ2
γ2σ2. (33)

Since the bound does not depend on t, it holds for all t ≥ 0.

To relate Algorithm 3 to standard analysis in Karimireddy et al. (2019), it is convenient to introduce
the virtual iterate

w̃t := wt − et. (34)
Using the update rules for wt and et one checks that

w̃t+1 = wt+1 − et+1 = wt − C(g′t)− (g′t − C(g′t)) = wt − g′t = w̃t − γgt, (35)

i.e. w̃t follows the trajectory of vanilla SGD with stepsize γ in a broad sense.
Theorem 1 (Non-convex convergence of error–feedback SGD). Let Assumptions 1, 2, and 3 hold,
and let {wt}Tt=0 be generated by Algorithm 3 with constant stepsize γ > 0. Denote f⋆ := infx f(w)
and f0 := f(w0)− f⋆. Then

1

T + 1

T∑
t=0

E
[
∥∇f(wt)∥2

]
≤ 2f0

γ(T + 1)
+ γLσ2 +

4(1− δ)

δ2
γ2L2σ2. (36)

Consequently, choosing γ = Θ
(
(T + 1)−1/2

)
yields

min
0≤t≤T

E
[
∥∇f(wt)∥2

]
= O

( 1√
T + 1

)
, (37)

which matches the rate of vanilla SGD up to constants and a higher–order O(1/T ) term depending
on the compression quality δ.

Proof. By L–smoothness (Assumption 1) applied at w̃t, we have

E
[
f(w̃t+1) | wt

]
≤ f(w̃t) + E

[
⟨∇f(w̃t), w̃t+1 − w̃t⟩ | wt

]
+

L

2
E
[
∥w̃t+1 − w̃t∥2 | wt

]
(38)

= f(w̃t)− γ⟨∇f(w̃t),E[gt | wt]⟩+
Lγ2

2
E
[
∥gt∥2 | wt

]
(39)

≤ f(w̃t)− γ∥∇f(w̃t)∥2 +
Lγ2

2
σ2. (40)

Taking full expectation and rearranging gives

γ E
[
∥∇f(w̃t)∥2

]
≤ E

[
f(w̃t)

]
− E

[
f(w̃t+1)

]
+

Lγ2

2
σ2. (41)

Next we relate ∇f(xt) to ∇f(x̃t). Using Lipschitz continuity of the gradient,

∥∇f(xt)∥2 ≤ 2∥∇f(x̃t)∥2 + 2∥∇f(xt)−∇f(x̃t)∥2 ≤ 2∥∇f(x̃t)∥2 + 2L2∥xt − x̃t∥2. (42)

Taking expectations and recalling xt − x̃t = et, we obtain

E
[
∥∇f(wt)∥2

]
≤ 2E

[
∥∇f(w̃t)∥2

]
+ 2L2 E

[
∥et∥2

]
. (43)

Combining Equation 41 and Equation 43, and using Lemma 2, gives

E
[
∥∇f(wt)∥2

]
≤ 2

γ

(
E[f(w̃t)]− E[f(w̃t+1)]

)
+ Lγσ2 + 2L2 E

[
∥et∥2

]
(44)

≤ 2

γ

(
E[f(w̃t)]− E[f(w̃t+1)]

)
+ Lγσ2 +

8(1− δ)

δ2
γ2L2σ2. (45)
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Summing this inequality over t = 0, . . . , T and dividing by T + 1 yields

1

T + 1

T∑
t=0

E
[
∥∇f(wt)∥2

]
≤ 2

γ(T + 1)

(
E[f(w̃0)]− E[f(w̃T+1)]

)
+ Lγσ2 +

8(1− δ)

δ2
γ2L2σ2

(46)

≤ 2(f(w0)− f⋆)

γ(T + 1)
+ Lγσ2 +

8(1− δ)

δ2
γ2L2σ2. (47)

Absorbing the factor 8 into the constant or tightening the intermediate bounds gives the advertised
inequality equation 36, which completes the proof.

Based on the above analysis, our discrepancy-aware compression with error feedback in FL fits
directly into the theoretical framework of Fed-EF (Li & Li, 2023). In particular, Fed-EF assumes a
biased compression operator whose relative-norm of compression error bounded. Lemma 1 shows
that our discrepancy-aware top-k compressor Cdis−k is a δ-approximate compressor, and thus also
satisfies a relative error bound of the form ∥Cdis−k(v)− v∥2 ≤ (1− δ)∥v∥2 for all v. Together with
error-feedback mechanism, our method matches the biased-compression with error-feedback setting
studied in Li & Li (2023) and therefore enjoys the same type of non-convex convergence guarantees
in federated learning, while additionally providing a more informative compression rule.
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