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ABSTRACT

Based on the recent advancements in representation learning, we propose a novel
framework for command-following robots with raw sensor inputs. Previous RL-
based methods are either difficult to continuously improve after the deployment
or require a large number of new labels during the fine-tuning. Motivated by
(self-)supervised contrastive learning literature, we propose a novel representa-
tion, named VAR++, that generates an intrinsic reward function for command-
following robot tasks by associating images with sound commands. After the
robot is deployed in a new domain, the representation can be updated intuitively
and data-efficiently by non-experts, and the robot is able to fulfill sound com-
mands without any hand-crafted reward functions. We demonstrate our approach
on various sound types and robotic tasks, including navigation and manipulation
with raw sensor inputs. In the simulated experiments, we show that our system can
continually self-improve in previously unseen scenarios given fewer new labeled
data, yet achieves better performance, compared with previous methods.

1 INTRODUCTION

When humans are told to turn on a TV, they can associate what they hear with what they see even
in unfamiliar environments. For robots to follow commands and fulfill similar tasks, they must
ground task-oriented language to vision and motor skills. Command following robots is such an
important application that paves the way for non-experts to intuitively communicate and collaborate
with robots in daily lives.

The need for command following robots has spurred a wealth of research. Learning-based language
grounding agents were proposed to perform tasks according to visual observations and text/speech
instructions Anderson et al. (2018); Chang et al. (2020); Chaplot et al. (2018); Hermann et al. (2017);
Shridhar et al. (2020); Yu et al. (2018). However, these approaches fail to completely solve a com-
mon problem in learning-based methods: performance degradation in a novel target domain Akkaya
et al. (2019); James et al. (2019); Tobin et al. (2017). One solution to address the domain shift
problem is domain randomization Tobin et al. (2017). However, it has been shown that domain
randomization alone is not sufficient since the randomized simulation may not accurately reflect
the target domain that the robot is later deployed in Du et al. (2021); Smith et al. (2022). Alter-
natively, fine-tuning policies in the target domain can further reduce the reality gap but is often
cost prohibitive: professionals usually train the robots with hand-crafted, task-specific reward func-
tions Haarnoja et al. (2019); Smith et al. (2022) and large amounts of labels, neither of which can
be afforded by non-expert users after deployment.

Without enough domain expertise or abundant labeled data, how can we allow users to adapt such
robots to novel domains with minimal supervision? Prior works have partially answered this ques-
tion by proposing a visual-audio representation (VAR) trained with triplet loss, which associates
audio commands and goal images with the same intent Chang et al. (2021). However, due to true
negative pairs used in the triplet loss, the number of labels required to fine-tune the VAR is still not
satisfactory, thus hindering an efficient deployment in the target domain.

In this paper, we propose a novel framework that builds on (self-)supervised contrastive learning
to realize more effective training and more efficient fine-tuning for rewards and skills learning. As
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Figure 1: Illustration of our pipeline. Contrastive learning is used to group images and audio commands of
the same intent. The resulting representation VAR++ supports the downstream RL training by encoding the
high-dimensional voice and image signals, and providing reward signals and states to the agent.

shown in Fig. 1, we first learn a joint representation of visual and audio signals (VAR++) whose
clusters have better intra-cluster cohesion and inter-cluster separation compared to VAR Chang et al.
(2021). In the second stage, we use VAR++ to compute intrinsic reward functions to learn various
robot skills with RL without any reward engineering. When the robot is deployed in a new domain
such as a different room, the fine-tuning stage is data efficient in terms of the label usage and is
natural to non-experts in terms of the human-robot interaction. For example, a user can teach a
robot or VAR++ by saying that “this is an apple” when the robot sees an apple. Then, RL policies
are self-improved with the updated VAR++. No hand-designed reward or negative pairs are needed
as in the previous works.

We apply this learning approach to different robotic tasks in diverse settings as illustrated in Fig. 1
and Fig. 3. Given a sound command, the robot must identify the commander’s goal (intent), draw the
correspondence between the raw visual and audio inputs, and develop a policy to finish the task. The
tasks are challenging because no maps, depth images, human demonstrations, or prior knowledge
are available, and the observation mainly comes from a monocular uncalibrated RGB camera.

Our main contributions are as follows: (1) We propose a novel representation of visual-audio ob-
servations for command following robots, named VAR++. To our best knowledge, it is the first
work demonstrating that (self-)supervised contrastive loss improves robot control performance from
triplet loss. (2) We propose a data efficient fine-tuning method for command following robots which
requires significantly fewer labels than baselines. Moreover, our fine-tuning method demonstrates
that (self-)supervised contrastive loss has the potential to enhance user experiences, especially for
non-experts. (3) We release our simulation environments and model implementations. The sim-
ulations are the first open-sourced AI environments which use real speech recordings for robotic
command following tasks. The code will be released after the review at www.github.com

2 RELATED WORKS

End-to-end language understanding. End-to-end spoken language understanding (SLU) systems
extract speaker’s intent directly from raw speech signals without translating the speech to text Kim
et al. (2021); Lugosch et al. (2019); Serdyuk et al. (2018). Such an end-to-end system is able to
fully exploit subtle information, such as speaker emotion, that is lost during speech to text tran-
scription Kim et al. (2021); Lugosch et al. (2019). However, end-to-end SLU systems are mainly
developed for virtual digital assistants and not for robotic applications.

Language grounding agents. Conventional language grounding agents consist of independent
modules for transcription, language grounding, and planning Magassouba et al. (2019); Paul et al.
(2018); Stramandinoli et al. (2016). These modular pipelines suffer from intermediate errors and do
not generalize beyond their programmed domains Hermann et al. (2017); Tada et al. (2020); Vanzo
et al. (2016). To address these problems, end-to-end language grounding agents are used to perform
tasks according to text-based natural language instructions and visual observations Anderson et al.
(2018); Chaplot et al. (2018); Hermann et al. (2017); Shridhar et al. (2020); Yu et al. (2018). Our
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work has two novelties from these works. First, while the above works consider text-based input, we
focus on commanding agents through raw audio, which leads to more natural human-robot commu-
nication without additional modules. Second, training the agents requires either expert demonstra-
tions, step-by-step instructions Anderson et al. (2018); Shridhar et al. (2020), or a carefully designed
extrinsic reward function Chaplot et al. (2018); Hermann et al. (2017); Yu et al. (2018). Although
some methods generalize to new command sentences and/or new scenes to some extent, they over-
look the continual fine-tuning after deployment Chang et al. (2020); Yu et al. (2018). In contrast,
our method requires none of the above and thus requires significantly fewer efforts to fine-tune in a
novel domain, where both perception and dynamics are different from the training scenes.

Another line of works trains the robot to fulfill commands directly from raw audio inputs with
RL Chang et al. (2020; 2021). However, the method in Chang et al. (2020) requires hand-tuned
reward functions and a prohibitive number of one-hot labels, which is still hard to fine-tune. Chang
et al. (2021) partially addresses the problem by learning a visual-audio representation (VAR) with
triplet loss to generate an intrinsic reward function for RL. However, the quality of the VAR in Chang
et al. (2021) is suboptimal based on our quantitative evaluation. In contrast, the better representation
in our work leads to more ideal reward functions and better robot performance.

Representation learning for robotics. Representation learning has shown great potential in learn-
ing useful embeddings for downstream robotic tasks. Deep autoencoders have been used to com-
press high-dimensional observations such as images into low-dimensional latent space. The re-
sulting latent vectors are then used as states or intrinsic rewards for RL Lange et al. (2012); Nair
et al. (2018); Wang et al. (2020). At test time, however, the methods in Nair et al. (2018); Wang
et al. (2020) require users to provide goal images for task execution, while our method takes voice
commands, which is a more natural and convenient way of human-robot communication. Addition-
ally, reconstructions of the input images often make the autoencoders computationally expensive.
Another line of works uses contrastive loss to learn representations for downstream tasks such as
grasping and water pouring Jang et al. (2018); Nguyen et al. (2020); Sermanet et al. (2018). Con-
trastive loss avoids the reconstruction operation in autoencoders. While all of these works focus
mainly on the visual or the text modality, we address the interplay between sight and sound.

3 METHODOLOGY

In this section, we describe the two-stage training pipeline and fine-tuning procedure. In training,
we assume the availability of sufficiently large labeled datasets, simulators, and labels. However, in
fine-tuning, speech transcriptions, one-hot labels, and reward functions, are not available.

3.1 VISUAL-AUDIO REPRESENTATION LEARNING

In the first stage, we collect visual-audio pairs from the environment. Then, we learn a joint rep-
resentation of images and audios, named VAR++, that associates an image with its corresponding
sound command.

Data collection. Suppose there are M possible intents or tasks within an environment. We collect
visual-audio pairs defined as (I,S, y) from the environment, where I ∈ Rn×n is the current RGB im-
age from the robot’s camera, S ∈ Rl×m is the Mel Frequency Cepstral Coefficients (MFCC) Davis
& Mermelstein (1980) of the sound command, and y ∈ {0, 1, ...,M} is the intent ID. We call I and
S two views of an intent y. A visual-audio pair contains an image and a sound command of the same
intent. For example, when an iTHOR agent sees a lit lamp, it hears the sound “Switch on the lamp”
from the environment. In contrast, when the agent sees no object or is far away from all objects so
that it sees many objects at once, it receives only an image and hears no sound. The image is paired
with S = 0l×m and y = M . We define this situation as an empty intent.

Training VAR++. Our goal is to encode both visual and auditory signals into a joint latent space,
where the embeddings from the same intents are pulled closer together than embeddings from dif-
ferent intents. For example, the embedding of an image with a TV turned on needs to be close
to the embedding of a sound command “Turn on the TV” but far away from other irrelevant com-
mands such as “Turn off the light.” We adopt the idea from (self-)supervised contrastive learning
for visual representations and formulate the problem as metric learning. As shown in Fig. 2a, the
VAR++ is a double-branch network with two main components. The first component is the en-
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Figure 2: Network architectures. (a) The VAR++ is a double-branch network optimized with (self-)supervised
contrastive loss. (b) The latent space of the VAR++ is a unit hypersphere such that the images and audios of the
same intent are closer than those of different intent in the space. (c) The policy network for RL training. The
portion in blue is VAR++ which is frozen during the RL training. We use

⊕
to denote element-wise addition,

FC to denote fully connected layers, and [••] to denote concatenation.

coders f I : Rn×n → RdI and fS : Rl×m → RdS which map an input image I and a sound
signal S to representation vectors hI and hS , respectively. In practice, any deep models for image
and sound processing can be used for f I and fS . The second component is the projection heads
gI : RdI → Rd, gS : RdS → Rd, bI : RdI → R, and bS : RdS → R that map the representa-
tions hI and hS to the space where losses are applied. We denote the vector embeddings gI(hI)
and gS(hS) as zI and zS , respectively. We enforce the norm of zI and zS to be 1 by applying an
L2-normalization, such that the embeddings live on a unit hypersphere as shown in Fig. 2b.

We use supervised contrastive (SupCon) loss as the objective, which encourages the distance be-
tween zI and zS of the same intent to be closer than those of a different intent Khosla et al. (2020).
Suppose there are N visual-audio pairs in a batch. Let k ∈ K := {1, ..., 2N} be the index of an
image or a sound signal within that batch and P (k) := {p ∈ K \ {k} : yp = yk} be the set of
indices of all images and sounds of the same intent except for index k. Then, the SupCon loss is

LSupCon = −
∑
k∈K

1

|P (k)|
∑

p∈P (k)

log
exp (zk · zp/τ)∑

j∈K\{k} exp (zk · zj/τ)
, (1)

where |·| is the cardinality, z(·) can be either zI or zS , and τ ∈ R+ is a scalar temperature parameter.
The previous VAR uses visual-audio triplets of the form (I,S+,S−) for the training, where I and
S+ are an image and sound with the same intent, and S− is the sound with a different intent. The
loss only pulls together the embeddings of I and S+ and pushes away the embeddings of I and
S− in a triplet. This setting is less efficient because each anchor only has one positive and one
negative Chang et al. (2021). In contrast, the use of SupCon loss allows the attraction and repulsion
among all images and sound within a batch, which improves the performance of the representation
as we will show in Sec. 4.3. We additionally introduce a binary classification loss for both the image
and sound to distinguish between empty and non-empty intent. Let LBCE denote the binary cross
entropy loss and e denote the label of intent, which is 0 for empty intent and 1 for non-empty intent.
The batch loss for training the VAR++ is:

LVAR++ = α1LSupCon + α2
1

N

N∑
j=1

LBCE(b
I(hI

j ), ej) + LBCE(b
S(hS

j ), ej), (2)

where α1 and α2 are the weights of losses. Depending on if the intent is predicted empty or not, the
output vI and vS of VAR++ can be determined for image and sound by:

vI = 1{êI ≥ 0.5} z
I , êI := bI(hI),

vS = 1{êS ≥ 0.5} z
S , êS := bS(hS),

(3)

where 1 is an indicator function. We call the latent space of the output as joint space. The purpose of
the binary classification is to set the image and sound embeddings of the empty intent to the center
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of the joint space. This centralization removes the biases caused by the location of the empty intent
in the joint space, leading to better intrinsic reward generated by the VAR++.

While SupCon loss and other self-supervised visual representation learning frameworks are origi-
nally only applied to image modality Chen et al. (2020); Khosla et al. (2020), we extend the frame-
work to a multi-modality setting and create a new representation for command following robots.

3.2 RL WITH VISUAL-AUDIO REPRESENTATION

The second stage of our pipeline is to train an RL agent using an intrinsic reward function generated
by a trained VAR++. We model a robot command following task as a Markov Decision Process
(MDP), defined by the tuple ⟨X ,A, P,R, γ⟩. At each time step t, the agent receives an image It
from its RGB camera, and robot states Mt such as end-effector location or previous action. At t = 0,
an additional one-time sound command Sg containing an intent is given to the robot. We freeze the
trainable weights of VAR++ in this stage and define the MDP state xt ∈ X as xt = [It,v

I
t ,v

S
g ,Mt],

where vI
t and vS

g are the output of the VAR++ for It and Sg , respectively. The VAR++ encodes the
information in the input image and the intent in Sg . Then, based on its policy π(at|xt), the agent
takes an action at ∈ A. In return, the agent receives a reward rt ∈ R and transitions to the next state
xt+1 according to an unknown state transition P (·|xt, at). The process continues until t exceeds the
maximum episode length T , and the next episode starts.

Intrinsic rewards. Since vI and vS of the same intent are pulled together within the VAR++ by
the contrastive loss, intrinsic rewards can be derived as the similarity between vI and vS . Eq. 4 and
5 present two possible task-agnostic and robot-agnostic reward functions:

rit = vI
t · vS

g (4)

rict = vI
t · vS

g + vS
t · vS

g (5)

where vS
t is the embedding of the current sound signal St, which can be triggered in the same way

as S as described in Section 3.1. Intuitively, the agent using rit receives high reward when the scene
it sees matches the command it hears. The agent trained using the reward rict additionally needs
to match the current sound it hears with the sound command to receive high rewards. Compared
to rict , the reward function rit does not depend on any real-time supervision signal such as current
sound vS

t from the environment, allowing the agent to perform self-supervised RL training with
VAR++. Although RL agents trained with Eq. 4 can already achieve decent performance, providing
the current sound St can further improve the performance Chang et al. (2021). Since St can be
difficult to obtain especially in real environments, St is not part of the state xt and thus the robot
policy does not require St at test time.

Policy network architecture. We show our policy network architecture used in our experiments in
Fig. 2c. Given the state xt, the network outputs the value V (xt) and the policy π(at|xt). Instead of
reusing the CNN in f I , we add another CNN to extract the features relevant for achieving the goal.
For example, the iTHOR agent needs to encode information about obstacles for collision avoidance.
We use an LSTM to encode the embeddings of It and Mt for long-term decision making. Proximal
Policy Optimization (PPO) was used for policy and value function learning Schulman et al. (2017).

3.3 FINE-TUNING

After the robot is deployed in a new domain such as the real world, its performance often degrades
due to domain shift from both perception and dynamics Du et al. (2021). Our fine-tuning procedure
allows non-experts to continually improve the VAR++ to reduce perception gaps and improve robot
skills to reduce dynamics gaps. Since performing accurate state and reward measurements, data
labeling, and instrumentation requires domain expertise and is time-consuming, we assume tuned
reward functions, one-hot labels, and accurate speech transcriptions are not available from non-
experts. Fortunately, our method requires none of these. To fine-tune VAR++, since we no longer
have the underlying labels y for images and sounds, we replace the SupCon loss in Eq. (2) with the
following self-supervised contrastive loss (SSC) Chen et al. (2020):

LSSC = −
∑
k∈K

log
exp (zk · zp(k)/τ)∑

j∈K\{k} exp (zk · zj/τ)
, (6)
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where p(k) is the index of the data paired with the data of index k with the same intent. To fine-tune
the robot, non-experts collect visual-audio pairs of the form (I,S) based on their common knowl-
edge using their own voices. The robot can then self-improve its policy network with the intrinsic
reward function by randomly sampling a collected sound command as the goal. See Appendix A for
a detailed fine-tuning algorithm.

To fine-tune VAR in Chang et al. (2021), non-experts have to provide a sound command with differ-
ent intent S− for each image I to use triplet loss. In contrast, VAR++ eliminates this requirement by
utilizing the SSC, leading to a more intuitive data collection experience for non-experts and better
performance with fewer labeled data.

4 SIMULATION EXPERIMENTS

In this section, we first describe the environments (Fig. 1) and various sound datasets for the experi-
ments. Then, we compare the performance and data efficiency of our pipeline with several baselines
and ablation models.

4.1 ROBOTIC ENVIRONMENTS

Figure 3: Simulation environments for the experiments.

We evaluate the performance of all the meth-
ods on three different robotic platforms: Turtle-
Bot, Kuka, and iTHOR. In all environments, af-
ter hearing a sound command, the robots must
learn exploration skills and approach the corre-
sponding objects. All the robots are equipped
with a monocular uncalibrated RGB camera for
robot perception. See Appendix C for detailed
descriptions and visualizations.

4.2 SOUND DATA

We use several types of sounds from state-of-the-art datasets in training and testing. Specifi-
cally, we use speech signals collected for training the end-to-end SLU from Fluent Speech Com-
mands (FSC) Lugosch et al. (2019) and short speech commands from Google Speech Commands
(GSC) Warden (2018). We also collect single-tone signals from NSynth Engel et al. (2017) and
urban & environmental sounds from UrbanSound8K (US8K) Salamon et al. (2014). The Wordset
dataset was created from the “0,” “1,” “2,” “3” in GSC. We also used a Mix dataset to show that
the VAR++ can map multiple types of sounds to a single object or idea, by mixing speech data with
environmental sound. We mix “house” with “jackhammer” and “dog” with “bark”. Examples of
commands in the iTHOR environment include “turn on the lights” and “pause”. The iTHOR en-
vironment uses the commands from FSC, while the Kuka and the TurtleBot environments uses the
commands from the other sound datasets. See Appendix B for more sound examples and intent we
choose for the iTHOR environment.

4.3 EVALUATION OF THE REPRESENTATIONS

Evaluation metrics. The representations are evaluated by a linear layer (LL) and nearest neigh-
bor (NN). For LL, we follow the widely used linear evaluation protocol, where a linear classifier
is trained using a cross-entropy loss on top of the frozen encoders, which are f I and fS in our
case Chen et al. (2020); Kolesnikov et al. (2019); Zhang et al. (2016). For NN, we first find the
medoids of each intent C0, ..., CM in the joint space using the training data. The predicted label of a
test image or sound is argmaxi v ·Ci, where v is embedding of the test image or sound in the joint
space. NN measures the quality of the intrinsic reward produced by the representations.

Baselines. We compare the performance of our VAR++ with VAR which uses triplet loss for both
training and fine-tuning Chang et al. (2021). For each intent, we collect the same number of visual-
audio pairs (I,S, y) for VAR++ training and visual-audio triplets of the form (I,S+,S−) for VAR
training, where I and S+ are an image and sound with the same intent, y is the intent ID, and S− is
the sound with a different intent. We kept the network architecture of both methods the same.
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Table 1: Percentage accuracy of VARs with near-
est neighbor (NN) and linear layer (LL).

Env Method NN LL

Img Snd Avg

Kuka VAR 97.8 77.4 95.4 86.4
VAR++ 98.5 82.2 99.8 91.0

TurtleBot VAR 96.7 66.1 84.9 75.5
VAR++ 99.1 76.5 96.8 88.1

iTHOR VAR 96.6 51.4 91.2 73.8
VAR++ 96.9 78.4 94.7 86.6

Quantitative results. From Table 1, we ob-
serve that both methods achieve high NN ac-
curacy while VAR++ marginally outperforms
VAR, suggesting that both methods are able to
produce accurate and reliable rewards for the
downstream RL tasks. As for LL, VAR++ is
much better than VAR since even a linear clas-
sifier can achieve much higher accuracy with
VAR++.

Qualitative results. We visualize the VARs by
projecting images and sounds to the joint space,
as shown in Fig. 4. We see that the embeddings
of the same concept form a cluster and all clus-
ters are separated from each other. Compared
to VAR, the clusters in VAR++ have better intra-cluster cohesion and inter-cluster separation, sug-
gesting that the two distinct concepts are better distinguished and the same concepts are better re-
lated. During fine-tuning, although VAR++ does not have S− as an explicit indication of negatives
like VAR does in the input, VAR++ can still maintain relatively clear inter-cluster separation and
provide reliable rewards for the self-improvement of RL agents.

Figure 4: Visualizations of the VARs in the iTHOR environments with FSC. The colors indicate the ground
truth intent ID of embeddings of sound (marked by triangles) and image (marked by circles). (a) VAR after the
training. (b) VAR after the fine-tuning. (c) VAR++ after the training. (d) VAR++ after the fine-tuning.

4.4 EVALUATION OF THE RL POLICY

Evaluation metrics. We evaluate the model with two metrics: (1) success rate (SR) and (2) the
number of labels used for training (LU). We define SR as the percentage of successful test episodes.
We test the learned policy for 50 episodes for each intent. For the iTHOR environment, an agent
succeeds if it fulfills the command. For the TurtleBot and Kuka environments, a successful episode
happens when the agent stays close to the target mentioned in the command for a certain time period.
We compare the label usage of a model because a command following robot deployed in the real
world should require as few annotations as possible from non-experts for fine-tuning.

Baselines and ablations. We compare the RL performance of our method against the following
baselines and ablation models. The first baseline, denoted as “E2E,” is a representative end-to-end
deep RL policy for command following robots Chang et al. (2020). E2E uses hand-tuned task-
specific reward functions and requires ground-truth class labels for image and sound classification.

The second baseline, denoted as “VAR,” trains an RL agent based on the output of the VAR Chang
et al. (2021). VAR utilizes triplet loss for the training and fine-tuning. Both our method and VAR
use Eq 5 for the downstream RL tasks. We mark a model with “Centered (C)” or “Not centered
(NC)”to indicate if the image and sound embeddings of the empty intent are set to the center of the
hypersphere in the joint space. The original VAR method does not centralize the empty intent.

The third baseline, denoted as “ASR+NLU+RL (ANR),” is a common modular pipeline. We first
use an off-the-shelf automatic speech recognition (ASR) named Mozilla DeepSpeech Hannun et al.
(2014) to transcribe the speech to text. We then train a learning-based natural language under-
standing (NLU) module to handle the noisy output from the ASR. For example, “Play the music”
is sometimes transcribed as “by the music.” Finally, a vision-based RL agent operates with the
predicted intent from the NLU. Note that unlike this baseline, our method does not rely on any tran-
scriptions or expertise to be fine-tuned. This baseline does not work with non-speech datasets such
as NSynth. See Appendix D for more facts.
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Table 2: Test success rate results in Kuka and TurtleBot en-
vironments with different sounds.

Env Dataset SR↑
ANR E2E VAR Ours(C)

Kuka
Wordset 85.5 95.5 97.0 99.0
NSynth - 92.5 98.0 98.0
Mix - 94.0 95.5 97.0

TurtleBot
Wordset 82.0 92.0 94.0 95.0
NSynth - 95.0 96.0 97.5
Mix - 87.0 91.0 92.5

Definition of labels. In this paper,
labels include all forms of annota-
tion and measurement that are used
to train a model. For example, one-
hot labels for image and sound clas-
sification and the distance measure-
ment between the robot and the goal
are both labels. One visual-audio pair
(I,S, y) for training or (I,S) for fine-
tuning used in VAR++ requires 1 la-
bel to indicate y or the same intent.
A visual-audio triplet used in VAR,
(I,S+,S−), requires 2 labels to in-
dicate the positive and the negative.
Every E2E training step requires 3 labels, including the target object state checking (e.g. check if
the light is switched on), distance measuring to calculate the extrinsic reward, and a one-hot label
for auxiliary losses.

Table 3: Train label-usage and test
success rate results in iTHOR 201-
220 with FSC dataset.

Models LU (×106) ↓ SR↑
ANR 27.00 66.0
E2E 27.06 68.0

VAR(NC) 9.12 65.6
VAR(C) 9.12 69.0

Ours(NC) 9.06 65.8
Ours(C) 9.06 72.4

Control policies with unheard sounds. In this experiment,
we test the performance of different models with sound com-
mands never heard by the agent during training (e.g. new
speakers). All the models were trained with the same num-
ber of RL steps and sufficient labels. For iTHOR environment,
we trained the agents for 9 million (M) RL steps and tested
them within the seen floor plans (Floor Plan 201 - 220). For
Turtlebot and Kuka environments, the total RL steps is 3M. No
fine-tuning is performed yet.

Table 2 and Table 3 show that the application of our method is
not limited to a specific robot, robotic task, or types of sound
signal. In all environments, compared to the baselines, our
method achieves the highest SR. In iTHOR environment, our
method achieves the highest SR and the lowest LU. Although no limit was imposed on LU in this
experiment, ASR+NLU+RL and E2E require much more labels during the training than VAR and
our method. The results also suggest that the intrinsic rewards produced by the representations are
sufficient for the RL training, since VAR and our method both demonstrate satisfying performance
without receiving any extrinsic rewards.

From Table 2 and 3, the SR for ASR+NLU+RL baseline is lower than most of the other methods.
The main reason is that the system suffers from intermediate and cascading errors among different
modules, which coincides with the findings in Chang et al. (2021); Tada et al. (2020). The last four
rows of Table 3 indicate the improvement by centralizing the empty intent for both VAR and our
method. This result justifies the necessity of the binary classification loss in Eq. 2. See Appendix E
for examples of task execution of the agent and Appendix F for time efficiency measurements.

Table 4: Average success rates over unseen iTHOR Floor
Plan 226 - 230 after fine-tuning with additional label-usage.

LU 0 2400

Models ANR E2E VAR Ours ANR E2E VAR Ours

Avg.↑ 18.8 18.4 19.6 20.8 24.0 23.6 69.2 86.0

Fine-tuning in novel iTHOR floor
plans. This experiment aims to show
the potential of each method to be im-
proved in a new domain. We consider
the scenario where a trained house-
hold robot is purchased to serve in a
new room with a unfamiliar set of fur-
niture and arrangement. Each method
is given the same number of new labels, and a data efficient method should achieve the highest suc-
cess rate. We first test the performance of trained models with unheard sound commands in 5 unseen
iTHOR floor plans without any fine-tuning. This process uses 0 new labels. The first three columns
of Table 4 show the necessity of fine-tuning: the performance of all methods drops due to the con-
sequence of domain shift, which is a common problem for learning systems Tobin et al. (2017).
We then use 2400 new labels for each unseen floor plan to fine-tune each method for that floor
plan. For our method, each intent has 400 new labels on average because there are 6 intents for our
iTHOR environment. We followed Sec. 3.3 to fine-tune the VAR and VAR++ and used Eq. 4 to
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self-improve RL policies without current sounds. For E2E, we collect one-hot labels and use simu-
lator queries during the fine-tuning. The fine-tuning is terminated after it reaches the label limit. See
Appendix E.4 for comparison of task execution before and after the fine-tuning.

From Table 4, we find that the ANR and end-to-end method can only be improved by 5.2% using
2400 labels, suggesting the inefficiency of fine-tuning E2E after deployment. The label quotas are
depleted rapidly due to the inefficient use of labels for policy network fine-tuning, which leads to
less RL experience. VAR and our method improve itself by 49.6% and 65.2%, respectively, using
the same amount of labels after 1M of self-supervised RL training steps.

Table 5: Model performance and the number of visual-audio
pairs collected for the fine-tuning

Floor Plan RL steps Number of Pairs
0 600 1200 2400

226

0M 26.8 - - -
0.08M 41.6 70.8 72.0 84.0
0.4M 69.2 87.6 92.0 92.0
1M 77.6 88.4 93.2 97.2

229

0M 34.4 - - -
0.08M 51.2 54.0 54.0 64.0
0.4M 57.6 70.4 77.6 95.2
1M 62.0 71.2 93.2 95.6

The richer RL experience was due
to the higher data efficiency of our
method because the labels were used
to update VAR++, and there was no
label consumption during the self-
supervised RL exploration. Com-
pared to VAR, our method achieves
better performance because VAR++
does not need negative pairs for fine-
tuning. This property allows the
VAR++ to achieve almost the same
RL performance as VAR using only
half as many labels, since Chang et al.
(2021) reports that the SR for VAR
with 5000 new labels is 84.7%.

We further show the relation between the number of RL steps and the number of newly collected
pairs in two randomly selected unseen iTHOR Floor Plans (226 and 229). In Table 5, we see that our
method is still effective when the number of new pairs and the self-supervised RL steps are much
fewer than 2400 and 1M - even when no new pairs are collected. More visual-audio pairs and more
RL steps allow the agent to improve faster and reach higher success rates.

Fine-tuning in new Kuka environment. This experiment shows that our method can handle dy-
namics gaps and adapt to unseen objects. We first train the agent in the original Kuka environment
with four identical blocks. At test time, we change the link mass, the joint friction, and parameters of
the robot’s PID controller. In addition, as shown in Fig. 7 in Appendix C.2, we also replace three of
the blocks to a capsule, a teddy bear, and a rabbit. Without fine-tuning, our method achieves 69.5%
SR. This result suggests that the VAR++ successfully encodes the most essential spatial information
and can generalize to unseen objects with different shapes. We then fine-tune the agent following
Sec. 3.3 with 1800 visual-audio pairs and 0.5M RL steps. The final SR raises to 96.5%, which
demonstrates the adaptability of our method to novel objects and changes in dynamics.

5 FUTURE WORK AND DISCUSSION

In conclusion, we propose a novel visual-audio representation named VAR++ for command fol-
lowing robots based on the recent advancement in (self-)supervised contrastive learning. VAR++
requires much fewer labels from non-experts during fine-tuning but produces higher-quality rewards
for downstream RL agents. Our results suggest that visual-language association and skill devel-
opment are highly correlated and thus need to be designed together. Furthermore, we are the first
to demonstrate that (self-)supervised contrastive loss has the potential in enhancing human-robot
interaction (HRI) experiences. Such a natural human-robot interaction can promote human percep-
tion and adoption of robotic systems and marks one step towards practical social robot applications.
However, our work encompasses the following limitations, which opens up directions for future
work. (1) Empty intents may result in a sparse intrinsic reward function, which poses challenges in
solving long horizon tasks. To solve this, our reward function can be combined with other intrinsic
rewards Burda et al. (2019). (2) We only apply our method to vision-based command following
robots in this paper. It is a promising direction to extend the method to other modalities and provide
reward function for other goal-based multi-modal robot tasks.
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A ALGORITHM FOR FINE-TUNING AN AGENT

This section shows the detailed algorithm for fine-tuning the VAR++ and an RL agent.

Algorithm 1 Fine-tuning

1: Inputs: A trained VAR++ V, and a trained policy πθ

2: Collect a small set of visual-audio pairs D = {(Ii,Si)}Ui=1

3: for a sampled minibatch {(Ii,Si)}Ni=1 from D do ▷ Fine-tune VAR++
4: Calculate empty intent label ei by checking if Si = 0l×m

5: Calculate image and sound embeddings: hI , zI ,hS , zS ← V(Ii,Si)
6: Calculate LSSC by Eq. 6
7: Calculate loss by Lfinetune = α1LSSC + α2

1
N

∑N
j=1 LBCE(b

I(hI
j ), ej) + LBCE(b

S(hS
j ), ej)

8: Update V to minimize Lfinetune

9: for k = 0, 1, 2, ... do ▷ Self-supervised RL fine-tuning
10: Sample a sound command Sg from D as goal
11: for t = 0, 1, ..., T do
12: Receive RGB image It and robot state Mt

13: Calculate image and sound embeddings: vI
t ,v

S
g ← V(It,Sg) by Eq. 3

14: Calculate reward rt = vI
t · vS

g
15: if St then
16: Calculate embeddings: vS

t ← V(St)
17: rt = rt + vS

t · vS
g

18: Store {rt, It,Mt,v
I
t ,v

S
g } in a memory buffer DRL

19: Update πθ with data from DRL using PPO
20: Clear DRL

21: return V, πθ

B SOUND DATA

Table 6: Sound signals used in the experiments.

Dataset Sound Examples

FSC

activate light “Turn on the lights,” “Lamp on”
deactivate light “Switch off the lamp,” “Lights off”
activate music “Put on the music,” “Play”
deactivate music “Pause music,” “Stop”
bring shoes “Get me my shoes,” “Bring shoes”

GSC “0,” “1,” “2,” “3” “zero,” “one,” “two,” “three”
names of 4 objects “house” “tree,” “bird,” “dog”

NSynth C4, D4, E4, F4 Various instruments, tempo, and volume

US8K bark, jackhammer Sound recorded in the wild
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C ROBOTIC ENVIRONMENT DESCRIPTIONS

The Turtlebot and Kuka environments are developed in PyBullet Coumans & Bai (2016–2019) and
mainly posed challenges in fine motor control with moderate difficulty in perception. In contrast, the
iTHOR environment is developed in AI2-THOR Kolve et al. (2017) and is challenging in perception
with discretized and simplified control.

C.1 TURTLEBOT

Four objects – a cube, sphere, cone, and cylinder – are placed in a 4m2 space. Each object has an
associated intent. The goal of the robot is to navigate to the object corresponding to the given sound
command based on RGB images. The robot and the four objects are placed randomly in the arena
at the beginning of an episode. The robot’s action is the change of desired transitional velocity and
the change of desired orientation. The robot needs to develop exploration skills to discover the goal
object in the shortest period.

Figure 5: Visualization of the TurtleBot environment with paired images and voices from the Wordset. In this
case, “zero” means cube, “one” means sphere, “two” means cone, and “three” means cylinder. The red and
green rays are just for illustration purposes. The right most figure shows the camera view.

C.2 KUKA

Four identical blocks, each associated with a sound command, are placed in a line at a random
location on the table. The robot needs to move its gripper above the block corresponding to a given
command based on RGB images. The camera is placed at a fixed location on the side of the table
such that it can capture the gripper and blocks from a distorted perspective. The relative positions
of the gripper tip and the blocks are initialized randomly at the beginning of an episode. The robot
needs to develop spatial reasoning skills to approach the target block using the relative positional
information observed from the camera.

Figure 6: Visualization of the Kuka environment with paired images and voices from the Wordset. In this case,
“zero” means the leftmost block, “one” means the second block from the left, and so on. The red and green
rays are just for illustration purposes. The right most figure shows the camera view.

Figure 7: Visualization of the new objects for the Kuka fine-tuning experiment.

C.3 ITHOR

Our iTHOR environment uses real full-sentence speech commands to simulate a real-world appli-
cation of household robots. The environment has 30 different floor plans of living rooms, each with
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their own set of decorations, furnitures, and arrangements. The robot is given goal tasks such as
switching the floor lamp or television on or off. The robot must navigate through the environment
and interact with the intended object given RGB images and a noisy local discrete occupancy grid as
robot states. The complexity of the environment requires the agent to associate complicated speech
commands with high-fidelity visual observations, without a floor plan map. The floor plans can be
visualized and interact with in https://ai2thor.allenai.org/demo/.

Figure 8: Visualization of the iTHOR environment with paired images and voices from the FSC.

D ABOUT ASR+NLU+RL (ANR) PIPELINE

• Accuracy of intent prediction of ASR+NLU.
FSC dataset: 86.0%; Wordset: 87.0%.

• SR of the RL agent when given the ground-truth intent
iTHOR environment: 79.2%; Kuka environment: 98%; TurtleBot environment: 95%.

E VISUALIZATION OF TASK EXECUTION

E.1 TURTLEBOT

Figure 9: Visualization of the task execution in the TurtleBot environment after training without fine-tuning.
The sounds come from NSynth dataset. TurtleBot searches and approaches its target successfully in all
episodes.
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E.2 KUKA

Figure 10: Visualization of the task execution in the Kuka environment after training without fine-tuning. The
sounds come from Wordset dataset. Kuka moves its gripper to the target block successfully in all episodes.

E.3 ITHOR

Figure 11: Visualization of the task execution in the iTHOR environment after training without fine-tuning.
The sounds come from FSC dataset. iTHOR agent finishes household tasks successfully in all episodes.
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E.4 ITHOR FINE-TUNING

Figure 12: Visualization of the task execution in the iTHOR environment before and after the fine-tuning in
unseen floor plans and the sound commands given by new speakers. The sounds come from FSC dataset.

F TIME EFFICIENCY

In this section, we evaluate the time efficiency of all the methods. All the models are running on a
single Nvidia GTX 1080 Ti GPU and a Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz. We report the
average time in second (s) for the model to take one action in the iTHOR environment with the FSC
dataset. The average is calculated from 12500 samples.

• ANR: 0.041s
• E2E: 0.018s
• VAR: 0.024s
• VAR++: 0.022s

17


