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Abstract

Pretrained language models have redefined text
classification, consistently setting new bench-
marks. However, their insatiable demand for
computational resources and time makes them
impractical in many resource-constrained en-
vironments. We introduce a simple yet ef-
fective approach to drastically minimize input
context while preserving classification perfor-
mance. Our method synergistically integrates
linguistic insights, incorporating positional ele-
ments, syntactic structures, semantic attributes,
and statistical measures to identify the most in-
formative contexts. We evaluate our approach
on six diverse datasets, including our newly
introduced CMLA11 dataset, rigorously assess-
ing 35 context configurations per dataset. Our
approach delivers substantial efficiency gains,
significantly reducing computational overhead
while maintaining strong classification perfor-
mance. Specifically, it achieves a 69—75% re-
duction in GPU memory usage, an 81-87%
decrease in training time, and an 82—-88% im-
provement in inference speed. Despite these
drastic resource savings, our best configura-
tions maintain near-parity with full-length in-
puts, with F1 (macro) reductions averaging
as low as 1.39% and 3.10%, while some con-
figurations even outperform the baseline. Be-
yond efficiency, our method yields remarkable
data compression, reducing dataset sizes by an
average of 72.57%, with reductions reaching
92.63% for longer documents. These findings
underscore the potential of context minimiza-
tion for real-world text classification, enabling
substantial computational savings with mini-
mal performance trade-offs.

1 Introduction

Pretrained language models have achieved remark-
able results across various downstream natural lan-
guage understanding (NLU) tasks such as text clas-
sification. However, attaining high accuracy of-
ten requires training these models on large-scale

datasets, which demands significant computational
resources and entails considerable training and in-
ference times (Brown et al., 2020). Moreover, as
modern PLMs continue to grow in size, fine-tuning
them with extensive datasets with long contexts
becomes impractical for many regular computing
environments.

For instance, the disk sizes of prominent NLU
models, such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), XLM-R (Conneau
and Lample, 2019), XLNet (Yang et al., 2019),
and ELECTRA (Clark et al., 2020), range from
approximately 419 MB to 11.5 GB, depending on
the model variant. As training datasets expand,
computational power, storage, and time require-
ments increase exponentially, driven by the pursuit
of higher accuracy (Kaplan et al., 2020). Fine-
tuning these models for downstream tasks often
improves accuracy but also amplifies resource de-
mands. Similarly, generative large language mod-
els (LLMs), such as the largest variants of LLaMA
(Touvron et al., 2023), GPT (OpenAl et al., 2024),
and similar models, are several gigabytes in size,
making them infeasible for fine-tuning on everyday
computers, as well as unusable in many real-world
scenarios, and resulting in a large carbon footprint
(Strubell et al., 2020).

Driven by the challenges of high computational
demands, large datasets, and extended training
times, we explored methods to reduce context
while maintaining competitive accuracy. Our ini-
tial experiments revealed that the first sentence of-
ten strongly predicts the class. Fine-tuning mod-
els using only the first sentence achieved competi-
tive performance with significantly lower compu-
tational costs, motivating further exploration of
key linguistic and statistical features. Our exper-
iments include a combination of three positional
elements: first sentence (¢1), second sentence (¢2),
and last sentence (¢, ); four syntactic components:
nouns (n), verbs (v), adverbs (a,), and adjectives



(aq); two semantic attributes: named entities (n.)
and proper nouns (p,); and two statistical mea-
sures: TF-IDF scores (¢ ) (Salton et al., 1975) and
RAKE keywords (r;) (Rose et al., 2010). Each
feature uniquely contributes to text representation,
enabling the reduction of contextual requirements
while maintaining task performance. For certain
combinations, we selected the most frequent oc-
currences in four different amounts (top 5, 10, 15,
and 20) from each article to ensure focused and
efficient representation.

We evaluated our strategies by fine-tuning each
dataset and model across various low-context vari-
ations, limiting the exploration to 35 distinct com-
binations per dataset. Our extensive experiments
on 7 NLU models and 5 popular text classification
benchmark datasets, AGNews (Zhang et al., 2015),
Enron (Klimt and Yang, 2004), IMDB (Maas et al.,
2011), BBC (Greene and Cunningham, 2006), and
20 NewsGroups (Lang, 1995), as well as our cus-
tom dataset, CMLA11 (Clean Mixed Long Arti-
cles - 11 categories), confirm our initial hypothe-
sis: models can be fine-tuned with minimal con-
text, requiring fewer computational resources, en-
abling faster training and inference speeds, while
still achieving comparable accuracy.

Our contributions are as follows:

* We presented simple yet highly effective meth-
ods for context minimization in text classifica-
tion using simple linguistic features.

* To provide a comprehensive analysis of how
low-context input affects model performance,
we fine-tuned BERT using 35 low-context
variants from each of six benchmark datasets.
We then evaluated the top five variants from
each dataset on six popular NLU models to
assess their generalizability.

* Observing the prevalence of noisy data in
existing benchmarks, we propose our own
custom-developed, well-balanced, and meticu-
lously curated dataset, named CMLAT11. This
dataset comprises articles from 26 newspa-
pers, blogs, and magazine websites, catego-
rized into 11 classes.

* We demonstrate that context minimization sig-
nificantly reduces GPU usage, training time,
inference time, and dataset size, making it
ideal for resource-constrained settings, while
maintaining competitive performance in text
classification.

2 Related Works

While no prior work directly addresses the spe-
cific problem investigated in this paper, some stud-
ies have explored related areas, providing valuable
context and informing our approach.

Recent research has focused on improving how
language models utilize context. Liu et al. (2024)
explore multi-document question answering with
GPT-4 and Llama-2, highlighting that increasing
context length does not necessarily improve perfor-
mance. They find that models perform best when
relevant information is at the beginning or end of
the context, struggling with information in the mid-
dle. This suggests large contexts may not be as
beneficial as previously believed. Building on this,
An et al. (2024) note that models generally fail
to utilize long contexts effectively and propose
Information-Intensive Training, a technique that
enhances context utilization by training models on
long-context QA datasets that require both short-
segment awareness and integration of information
across segments.

While context utilization is crucial, efficient
model performance is also key for practical applica-
tions. Schick and Schiitze (2021) examine the small
language model ALBERT (Lan et al., 2020) in few-
shot learning, showing it can rival larger models
like GPT-3 while being more resource-efficient.
They introduce Pattern-Exploiting Training (PET),
which reformulates tasks as cloze questions and
optimizes them with gradient-based methods. A
modified version of PET for multi-token predic-
tions is tested on multiple benchmarks. The results
show that PET, especially with ALBERT, outper-
forms GPT-3 on SuperGLUE (Wang et al., 2019)
with fewer parameters.

Complementing algorithmic approaches, Ren
et al. (2021) propose ZeRO-Offload, a technique
for efficient training of large deep learning models.
It offloads model states (parameters, gradients, and
optimizer states) from GPU to CPU memory, re-
ducing data movement and CPU computation time
while maximizing GPU memory savings. While
focused on hardware optimization, it highlights the
broader solutions being developed to tackle the
challenges of large language model deployment
and training.

3 Methodology

Finding appropriate ways to reduce the context suf-
ficiently enough to provide accurate classification



was a crucial part of this work. We first experi-

Task First Sentence Impression
News Third-tier side Wolves have been | Sports
Category | drawn at home to Man United in

the FA Cup fifth round. Wolves,
who are ...

Sentiment| The movie was absolutely stunning, | Positive
with breathtaking visuals. I went

there ...

Topic Recent quantum computing ad-| Technology
vances opened new possibilities in
cryptography. An Arab mathemati-
cian ...

Email Dear customer, you’ve won a|Spam

$2,000 gift card in lottery! Click
here to ...

Table 1: Examples of First Sentences Providing Imme-
diate Classification Signals Across Text Categories

mented with the first sentence, as it often captures
significant information in text classification tasks
like news, sentiment, topic, and email classifica-
tion, as shown in Table 1. Our findings indicate
that while the first sentence yields surprisingly ac-
curate results, it is insufficient for comprehensive
classification. Consequently, we incorporated lin-
guistic, semantic, positional, and statistical features
to reduce the input context, selectively capturing
essential information without processing the entire
article.

Positional Features: Positional features analyze
sentence placement within the text, leveraging con-
text provided by the First Sentence (¢), Second
Sentence (¢2), or Last Sentence (¢,,). For instance,
“Wolves have been drawn at home to Man United
in the FA Cup fifth round.” immediately signals
the sports category from the first sentence, while
the last sentence, “The championship will be de-
cided in the final match tomorrow." reinforces the
decision.

Syntactic Features: Syntactic features, such as
nouns (n), verbs (v), adverbs (a,), and adjectives
(ag), capture the grammatical structure, sentiment,
and tone of the text. These features enhance clas-
sification by identifying emotional and contextual
cues. For example, “The movie was absolutely
stunning, with breathtaking visuals."” includes ad-
jectives such as stunning and breathtaking, which
indicate a strongly positive sentiment.

Semantic Features: Semantic features, including
Named Entities (n.) and Proper Nouns (p,,), facili-
tate domain-specific understanding by identifying
specialized terms and context. This ensures pre-
cise categorization by leveraging contextual rich-

ness. For example, “Recent quantum computing
advances opened new possibilities in cryptogra-
phy.” includes entities like quantum computing and
cryptography, guiding classification under the tech-
nology domain.

Statistical Features: Statistical features, such as
TF-IDF scores () and RAKE keywords (74), cap-
ture key terms based on their significance and
co-occurrence patterns. These features optimize
text analysis while remaining computationally effi-
cient. For example, “Dear customer, you’ve won
a $2,000 gift card!" includes high TF-IDF scores
for terms like customer and RAKE keywords such
as “you’ve won" and “gift card”, clearly signaling
spam.

The selected features effectively balance com-
putational efficiency with linguistic and contextual
richness, ensuring that key classification signals are
preserved while minimizing input complexity.

3.1 Context Minimization

To condense large articles into meaning-
ful contexts, we systematically combined
linguistic  features and conducted exper-
iments on six benchmark datasets: D €
{AGNews, Enron, IMDB, BBC, 20 NewsGroups,
CMLA11}. The features were grouped into 4 cat-
egories: Positional Elements: P = {¢1, ¢2, ¢n },
Syntactic Components: S = {n,v,ay,aq},
Semantic Attributes: & = {n.,p,}, Statistical
Measures: 7 = {ts,r}. Together, these subsets
form the complete feature set F, defined as:
F = PUSUEUT. For a given dataset
Dy, € D, we iteratively construct new datasets by
systematically selecting features from the feature
set F. Initially, a new dataset Dy, peq, 1 built by
extracting a single feature f; € F:

Dk,newl = {fl}, fl e F.

The newly constructed dataset Dy, peq, is then
trained and evaluated with model Mpgggrt to es-
tablish an initial performance metric 1/,1355\51. Since
no prior results were available, this served as the
starting point for comparison for the rest of the
features in the feature set /. Subsequently, addi-
tional features f; € F are introduced to Dy, ¢4, tO
construct new low-context dataset Dy, ,eqp, . Simi-
larly, for each new feature combination, the model

1s trained and evaluated:

Dk,newj = Dk,ner_1 U {fl}a Wherej = 27 37 cee

BERT
Vienew; = ¥ (MBERT, D new; )



Here, U (-, -) represents the evaluation function that
computes the performance of model Mggrt On

dataset Dy pew,. If the evaluation metric yBERT

k,new ;
improve compared to VEEeR\I —_,» the number of to-
) J—

kens associated with the newly added feature was
incrementally increased by An = 5. The number
of tokens in linguistic features are taken based on
the most frequent occurrences in the context. If
no improvement was observed, the feature combi-
nation was adjusted by introducing features from
other subsets (P, S, £, T) within F. This iterative
process ensured systematic exploration of feature
combinations to identify those yielding optimal per-
formance. The iteration continued until no further
improvement was observed or a predefined limit
(35 evaluated combinations) was reached for each
dataset Dy, € D, as this limit was chosen to balance
computational efficiency and resource constraints
while ensuring sufficient exploration of the feature
space for meaningful insights. The final set of eval-
uated combinations is represented as: Cipper C F.
From these combinations, the top 5 performing re-
duced context datasets D, ; are identified based
on CkBERT‘

Finally, 6 prominent NLU models are
used to trained and evaluated to establish
the understanding affectivness of reduced
contexts trained on Dy, ; where Mmogel €

{DistilBERT, RoBERTa, ALBERT, XLNet, XLM-R, ELECTRA }. BBC

We evaluate these models M,,, € Model On these
reduced datasets. The performance metric 1/,?/;’" is
computed as follows:

VD}“ »J e,Dkl(ypfS

Mm —_ ]
Vig" = ¥ (Mm, Dy j), Y Min € Minodel

This formulation ensures that our performance eval-
uation is both structured and consistent across dif-
ferent models and data.

3.2 Training Setup

Our experiments utilized Mpgrt and M pogel, cho-
sen for their strong performance across diverse
NLP benchmarks. All models were implemented
in PyTorch! and integrated via the Hugging Face”
Transformers library to ensure reproducibility and
scalability.

We used the default tokenizers for each model
and applied stratified sampling on the combined
data from all splits for each dataset to ensure bal-
anced class representation, creating training (80%),

"https://pytorch.org/
https://huggingface.co/

validation (10%), and test (10%) sets. To pre-
process the text data efficiently, we employed a
parallelized processing pipeline using Python’s
multiprocessing. Text transformations were ex-
ecuted in parallel across multiple CPU cores with
a process pool executor to optimize computational
efficiency in data processing. The maximum se-
quence length was set to 512 tokens for full-context
experiments and 64 tokens for low-context variants.

The training protocol was standardized across
all experiments for fair comparison. We used the
cross-entropy loss function with the AdamW op-
timizer, an initial learning rate of 2 x 107°, and
a linear decay scheduler. Training was performed
for 5 epochs with a batch size of 32, and the model
with the lowest validation loss was retained for
evaluation. To ensure robustness, we conducted 5
runs with different random seeds for each model-
dataset-context combination and reported the me-
dian results.

4 Experiments and Results

In this section, we first describe our datasets and
experimental setup, followed by the results of our
experiments and an analysis of their implications.

Dataset  #Train #Dev #Test #Label Avg Len

AGNEWS 102,080 12,760 12,760 4 37.84

1,780 222 223 5 390.3
ENRON 26,676 3,334 3,335 2 306.77
IMDB 40,000 5,000 5,000 2 231.16
20NEWS 15,077 1,884 1,885 20 181.67
CMLAI11 88,000 11,000 11,000 11 716.64

Table 2: Statistical Summary of Datasets Used in Our
Experiments: Sample Distribution, Label Counts, and
Average Word Count.

4.1 Datasets

We conducted experiments on five widely used text
classification benchmark datasets, all of which are
publicly available, along with CMLA11, which
also contains publicly available data. The statisti-
cal summary of these datasets is presented in Table
2. Each of these datasets varies significantly in na-
ture and contains articles of varying lengths, which
is essential for our experiments on context mini-
mization to demonstrate effectiveness and capture
a broad range of classification challenges. We did
not use the default train-test splits of the benchmark
datasets due to disproportional splits. Instead, we
merged all splits together and created an 80-10-10
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Dataset Context MacroF1 AF1 GPUMB) AGPU Train(s) A Train Infer(s) A Infer
Full Length 0.9421 +0.0005 - 9099.69 +0.77 - 7458.14 £0.30 - 58.53 +0.95 -
d1+0n 0.9414 +0.0006 -0.0007 2806.52+0.63 -69.158% 1359.76 20.46 -81.77% 10.35 +0.005 -82.32%
AGNews G1+Pn+10p,+5n  0.9408 +0.0029 -0.0013 2851.25 +1.32 -68.666% 1340.97 20.36 -82.02% 10.17 +0.012 -82.63%
G1+Dn+107; 0.9407 0.0004 -0.0014 2896.72 +2.70 -68.167% 1343.95 +0.03 -81.98% 10.17 +0.000 -82.62%
P1+pn+10t ¢ 0.9402 +0.0004 -0.0019 2896.43 +1.18 -68.170% 1341.75 +0.17 -82.01% 10.17 0.005 -82.62%
G1+0n+10p,+5v  0.9399 +0.0010 -0.0022 2896.49 +1.53 -68.169% 1340.70 20.07 -82.02% 10.18 +0.014 -82.61%
Full Length 0.9888 +0.0067 - 11588.46 +1.02 - 186.59 +0.61 - 1.47 +0.001 -
207 0.9888 +0.0022 0 2875.49 +1.88 -75.187% 25.42+0.09 -86.38% 0.18 +0.001 -87.67%
BBC ¢1+15n 0.9865 +0.0045 -0.0023 2910.14 +1.48 -74.888% 25.26 +0.00 -86.46% 0.18 +0.003 -87.6%
157 0.9865 +0.0032 -0.0023 2875.60 +2.89 -75.186% 25.17 x0.01 -86.51% 0.18 +0.000 -87.75%
¢1+107 0.9865 +0.0000 -0.0023 2910.49 +1.16 -74.885% 25.29 +0.01 -86.45% 0.18 +0.001 -87.67%
G1+0n+10p,+5v  0.9843 +0.0022 -0.0045 2920.37 +2.85 -74.799% 23.69 +0.01 -87.30% 0.19 20.004 -87.20%
Full Length 0.9957 +0.0008 - 11441.45 +1.78 - 2808.19 +1.88 - 22.64 +0.005 -
P1+pn+10t ¢ 0.9921 +0.0002 -0.0036 2920.37 +2.28 -74.476% 375.68 +0.29 -86.62% 2.68 +0.003 -88.14%
ENRON P1+15pp+5n 0.9918 +0.0008 -0.0039 2875.13 +1.06 -74.871% 353.76 £0.03 -87.4% 2.72 0.001 -87.98%
$1+10pp+10n 0.9916 +0.0006 -0.0041 2920.49 +1.65 -74.475% 350.30 +0.04 -87.53% 2.67 +0.001 -88.2%
¢1+107, 0.9912 20.0006 -0.0045 2860.69 +0.68 -74.997% 355.98 +0.17 -87.32% 2.72 £0.001 -87.99%
G1+Pn+10p,+5n  0.9911 +0.0012 -0.0046 2920.24 +1.04 -74.477% 377.22 +0.63 -86.57% 2.74 £0.029 -87.91%
Full Length 0.9358 +0.0020 - 11409.26 +1.45 - 4171.13 £1.69 - 33.46 +0.009 -
P1+Pn+10ag+5a, 0.8938 £0.0028 -0.042 2920.73 +0.63 -74.400% 531.1 028 -87.27% 4.05 +0.003 -87.89%
IMDB G1+Pn+15a4+10a, 0.8936 £0.0032 -0.0422 2934.43 221 -74.280% 525.79 +0.01 -87.39% 3.99 +0.002 -88.08%
G1+Pn+10aq 0.8932 +0.0044 -0.0426 2920.37 +2.38 -74.404% 530.78 021 -87.27% 4.03 +0.001 -87.94%
GP1+Pn+10aq+5n  0.8931 £0.0057 -0.0427 2920.58 +1.02 -74.402% 530.47 +0.15 -87.28% 4.07 20.046 -87.84%
d1+Pn+15a4 0.8929 +0.0023 -0.0429 2924.69 +1.13 -74.366% 524.87 +0.13 -87.42% 3.99 +0.000 -88.07%
Full Length 0.7731 £0.0025 - 11441.92 +0.58 - 2124.75 +0.41 - 12.26 +0.002 -
¢1+10p,+10n 0.7559 £0.0044 -0.0172 2928.46 £1.63 -74.406% 268.98 +0.03 -87.34% 1.48 z0.001 -87.97%
20News 20t 0.7472 £0.0027 -0.0259 2896.95 +0.51 -74.681% 270.65 £0.03 -87.26% 1.54 +0.043 -87.46%
P1+10t ¢ 0.7472 +0.0031 -0.0259 2925.58 +0.75 -74.431% 271.74 +0.00 -87.21% 1.50 20.003 -87.78%
10p,+10n+10ay  0.7448 £0.0025 -0.0283 2896.69 +2.55 -74.684% 267.27 +0.12 -87.42% 1.47 +0.001 -88.01%
P1+Pn+10t; 0.7445 +0.0027 -0.0286 2932.98 +1.46 -74.366% 268.66 +0.11 -87.36% 1.47 +0.001 -88.02%
Full Length 0.9449 +0.0003 - 11410.96 2.01 - 9418.53 +0.37 - 74.74 £0.025 -
P1+Pn+10pp+5n  0.9251 £0.0025 -0.0198 2851.36 +2.77 -75.012% 1177.71 2051 -87.5% 8.96 +0.009 -88.01%
CMLAI11 G1+15pn+5n 0.9239 +0.0006 -0.021 2896.86 +1.38 -74.613% 1163.33 +0.42 -87.65% 8.81 +0.003 -88.21%
¢1+15pp+5v 0.9236 +0.0015 -0.0213 2896.37 +2.45 -74.618% 1165.31 20.07 -87.63% 8.86 +0.000 -88.15%
P1+pn+10t ¢ 0.9225 +0.0025 -0.0224 2931.78 +1.55 -74.307% 1176.68 +1.13 -87.51% 8.95 z0.012 -88.02%
®1+20pn, 0.9222 +0.0003 -0.0227 2896.46 +1.71 -74.617% 1163.03 +0.22 -87.65% 8.80 +0.011 -88.22%

Table 3: Performance and resource utilization analysis for the top 5 context combinations, ranked and sorted by
Macro F1 scores across datasets (full results are available in the Appendix A). Results obtained by BERT-base
model, representing the median values from 5 runs with 5 random seeds. Full results available in Appexdix.
Evaluation focuses on model behavior, efficiency, and computational overhead when using reduced contextual input.

split for training, validation, and testing. AGNews
(Zhang et al., 2015) is a news classification dataset
containing 127,600 samples across 4 categories
with an average length of 37.84 words, providing a
balanced and compact testbed for short news clas-
sification. BBC (Greene and Cunningham, 2006)
news classification dataset contains larger and more
structured news articles making it a perfect dataset
for our tasks containing 2,225 samples in 5 cat-
egories, with an average length of 390.3 words.
ENRON (Klimt and Yang, 2004), a binary spam
email classification dataset with 33,345 email sam-
ples, has an average length of 306.77 words and
reflects noisy, real-world text data. IMDB (Maas
etal., 2011), a sentiment analysis dataset of 50,000
movie reviews, offers binary labels with an average

length of 231.16 words, testing models on subjec-
tive and variable-length input. 20 NewsGroups
(Lang, 1995) is a topic classification dataset that
comprises 18,846 samples across 20 topics, with
an average length of 181.67 words, presenting a
diverse topical challenge.

CMLA113, our custom dataset, comprises
110,000 carefully curated long articles from 26
sources across 11 categories, with an average
length of 716.64 words. The sources include
carefully selected newspapers, blogs, and mag-
azines. CMLAI11 is designed to evaluate our
approaches on large articles from diverse sources,
including both American and British English
variations, to stress-test the models. Furthermore,

3Upon acceptance, we will publicly release the dataset.



Dataset Context BERT DistilBERT RoBERTa ALBERT XLNet XLM-R ELECTRA score
Full Length 0.9421 0.9395 0.9469 0.9369 0.9451 0.9567 0.9440  0.9445
P1+¢n 0.9414 0.9378 0.9444 0.9343 0.9406 0.9491 0.9404 0.9411
AGNews ¢1+dn+10p,+5n  0.9408 0.9381 0.9459 0.9336 0.9433 0.9523 0.9406 0.9421
P1+On+107y 0.9407  0.9369 0.9462 0.9373 0.9417 0.9520 0.9393 0.942
P1+Pn+10t ¢ 0.9402  0.9389 0.9451 0.9337 0.9422 0.9498 0.9390 0.9413
G1+Pn+10pp+5v  0.9399  0.9353 0.9453 0.9341 0.9420 0.9395 0.9402  0.9395
Full Length 0.9888 0.9823 0.9911 0.9890 0.9821 0.9821 0.9910  0.9866
207 0.9888  0.9801 0.9783 0.9689 0.9664 0.9529 0.9776  0.9733
BBC ¢1+15n 0.9865 0.9442 0.9322 0.9397 0.9417 0.9372 0.9462  0.9468
157y 0.9865 0.9801 0.9736 0.9733  0.9596 0.9594 0.9709 09719
¢1+107 0.9865 0.9823 0.9723 -0.9756 0.9743 0.9614 0.9821 0.9764
G1+Pn+10p,+5v  0.9843 0.9804 0.9750 0.9756 0.9760 0.9664 0.9818  0.9771
Full Length 0.9957  0.9925 0.9967 0.9896 0.9970 0.9955 0.9964  0.9948
G1+pn+10t5 0.9921 0.9881 0.9915 0.9854 0.9883 0.9879 0.9925 0.9894
ENRON @1+15pn+5n 0.9918 0.9856 0.9882 0.9860 0.9883 0.9889 0.9918  0.9887
¢1+10p,+10n 0.9916  0.9883 0.9892 0.9874 0.9891 0.9895 0.9921  0.9896
¢1+107% 0.9912  0.9862 0.9912 0.9845 0.9889 0.9882 0.9922  0.9889
G1+dn+10p,+5n  0.9911 0.9871 0.9897 0.9859 0.9888 0.9886 0.9921 0.989
Full Length 0.9358 0.9337 0.9592 0.9296 0.9584 0.9456 0.9607  0.9461
¢1+dn+10a4+5a, 0.8938  0.8732 0.8961 0.8709 0.8976 0.8680 0.9159  0.8879
IMDB P1+dn+15a4+10a,, 0.8936  0.8765 0.9014 0.8739 0.9081 0.8740 0.9164  0.8920
d1+¢Pn+10a4 0.8932  0.8716 0.8908 0.8698 0.8976 0.8675 0.9007  0.8845
P1+Pn+10aq+5n  0.8931 0.8727 0.8972 0.8727 0.8948 0.6839 0.9137  0.8612
P1+Pn+15a4 0.8929  0.8760 0.9056 0.8751 0.8958 0.8735 0.9167 0.8908
Full Length 0.7731 0.7532 0.7591 0.7185 0.7844 0.7566 0.7454  0.7558
¢1+10p,+10n 0.7559  0.7333 0.7190 0.6629 0.7131 0.7062 0.7155  0.7151
20News 20t s 0.7472  0.7202 0.6910 0.6637 0.7000 0.6841 0.6839  0.6986
¢1+10t ¢ 0.7472  0.7260 0.7081 0.6738 0.7057 0.7011 0.6967  0.7084
10p,+10n+10a4 0.7448 0.7235 0.6932 0.6757 0.7076 0.6833 0.7076  0.7051
P1+pn+10t5 0.7445 0.7211 0.7048 0.6686 0.7106 0.6920 0.6994  0.7059
Full Length 0.9449 09516 0.9622 0.9325 0.9587 0.9557 0.9567  0.9518
¢1+0n+10p,+5n 09251 0.9254 0.9389 0.9143 0.9234 0.9177 0.9305  0.9250
CMLA11 ¢1+15pn+5n 0.9239  0.9291 0.9258 09151 09174 09149 0.9233  0.9214
¢1+15p,+5v 0.9236  0.9285 0.9238 0.9137 0.9161 0.9139 0.9275  0.9210
G1+pn+10t5 0.9225 0.9253 0.9274 0.9076 0.9215 0.9172 0.9224  0.9206
¢1+20pn, 0.9222  0.9262 0.9215 0.9105 0.9149 0.9147 0.9315 0.9202
Score 0.9166 0.9075 0.9102 0.8944  0.9089 0.8963 0.9115

Table 4: Macro F1 scores (median of 5 runs with different random seeds; standard deviations omitted due to page
width constraints) across different models on all datasets. The best 5 performing contexts by the BERT-base model
are selected for comparison to assess model performance in low-context training.

it aims to provide a balanced and well-curated text
classification benchmark for future researchers
in this domain. To build CMLA11, we carefully
selected sources, scrapped articles using Beau-
tifulSoup®, extracted plain texts, and removed
outliers.  The annotation was comparatively
easier since instead of manual annotation, we
extracted annotation directly from the article’s
URL. Let Y = {uj,us,...,u,} be the set of
scraped URLs, and A = {a1,as,...,a,} be the
corresponding articles. For each URL u;, a textual
label L(u;) is extracted, which is then mapped
to a numerical value N(L(u;)). Suppose u; =
https://www.abc.com/sports/hdv5oaxsbp,

then L(u;) = sports and N(L(u;)) = 5.

*https://pypi.org/project/beautifulsoup4/

The dataset is represented as: D =
{(ai, N(L(uq)), L(wi)) [ 2 € {1,2,...,n}}

4.2 Experimental Setup

Each model was trained on one of 5 NVIDIA
GTX 3090 GPUs (24GB each) in parallel, pow-
ered by an Intel Core 19-12900K CPU with 64GB
of RAM. For a comprehensive evaluation, we mea-
sured multiple performance metrics, including F1
(macro), GPU memory usage, training time, and
inference time. All reported results represent the
median of five runs, with standard deviations (o)
also recorded. To analyze computational efficiency
in detail, we tracked GPU memory utilization (both
allocated and reserved) after each batch during both
training and evaluation using the pynvml library.



4.3 Results

As detailed in Table 3, the performance impact is
minimal when comparing the full-length version
with the best-performing reduced configurations
across datasets. Based on BERT, five out of six
datasets show an almost negligible drop (a mere
0% to 1.98%), while even on IMDB, the differ-
ence is as low as 4.2%, a small trade-off consid-
ering the massive efficiency gains. All configu-
rations deliver substantial computational savings
while maintaining outstanding performance. For
instance, on the AGNews dataset, using first and
last sentences achieves a macro F1 score of 0.9414,
with only a 0.0007 drop from the full-length dataset,
while reducing GPU memory usage by 69.158%
and training time by 81.77%. Similarly remarkable
efficiency gains are observed in the BBC dataset,
where using just 20 RAKE keywords maintains the
full-length performance of 0.9888 while reducing
GPU memory consumption by 75.19% and training
time by 86.38%.

The efficiency improvements extend across more
challenging datasets. On ENRON, the combina-
tion of first and last sentences with TF-IDF fea-
tures (¢1+¢,+10t ) achieves a macro F1 score of
0.9921, with only a 0.0036 decrease, reducing GPU
memory usage by 74.476% and training time by
86.62%. In IMDB, despite the complexity of sen-
timent analysis, the ¢1+¢,+10a4+5a, configura-
tion achieves a macro F1 score of 0.8938, with
GPU memory reduction of 74.400% and training
time reduction of 87.27%. Unlike other datasets,
reduced-context configurations in IMDB prioritiz-
ing adjectives consistently outperformed alterna-
tives, highlighting their role in sentiment analysis.
On the 20News dataset, the ¢;+10p,+10n con-
figuration achieves a macro F1 score of 0.7559,
with a 0.0172 decrease, reducing GPU memory
usage by 74.406% and training time by 87.34%.
For CMLAL11, the ¢1+¢,+10p,+5n configuration
maintains strong performance with a macro F1
score of 0.9251, demonstrating the effectiveness of
combining structural and semantic features while
achieving GPU memory savings of 75.012% and
training time reduction of 87.5%.

Notably, inference time improvements are con-
sistent across all datasets, with reductions ranging
from 82.32% to 88.22%. This significant enhance-
ment in inference efficiency, coupled with mini-
mal performance degradation, suggests that our
approach is particularly valuable for deployment

scenarios where computational resources are con-
strained or where rapid inference is crucial.
Building on BERT-base findings, we extend
our analysis across 6 additional prominent NLU
models. Table 4 presents the Macro F1 scores
achieved by these models, evaluated on BERT’s 5
top-performing reduced-context configurations to
ensure consistent architectural comparison. BERT
maintains its strong performance, registering the
highest overall score of 0.9166, followed by ELEC-
TRA (0.9115) and RoBERTa (0.9102). Critically,
reduced-context learning frequently yields perfor-
mance comparable to, and in some cases exceeding,
that of full-length input. For instance, on AGNews,
the ¢1+¢,+10r; configuration, ALBERT even ex-
hibits a better performance than the full-length one.
On BBC, 207}, closely mirrors full-length perfor-
mance with BERT. For ENRON, ¢+10p,+10n
provides competitive results across all models. In
IMDB, reduced context settings, while maintaining
reasonable performance, exhibit a slight decline
compared to full-length input across all models.
A similar, though less pronounced, effect is ob-
served on 20News. These observations underscore
the importance of context selection and suggest
dataset-specific optimization. Intriguingly, certain
reduced-context combinations consistently demon-
strate strong performance across datasets and mod-
els. Specifically, ¢1+¢,,+10p,+5n performs well
on AGNews and CMLA11; ¢1+¢,+10p,+5v on
BBC; ¢1+10p,+10n on ENRON and 20News; and
¢1+Pp+15a4+10a, on IMDB. Notably, the inclu-
sion of first and last sentences (¢1+¢,,), combined
with syntactic features (pronouns, nouns) or se-
mantic markers (adjectives, verbs), appears to cap-
ture essential contextual information across diverse
text classification tasks. This finding suggests that
strategic selection of linguistic features in reduced
contexts can effectively preserve model perfor-
mance while substantially reducing input complex-

ity.

Dataset Full Size (MB) Reduced Size (MB) A Size (%)
AGNews 30.89 2743 -11.20%
BBC 4.82 0.65 -86.51%
ENRON 47.60 6.69 -85.95%
IMDB 65.91 12.36 -81.25%
20News 16.10 3.56 -77.89%
CMLAI11 459.00 33.85 -92.63%

Table 5: Dataset size comparison: full-length articles vs.
averaged minimized-context datasets.



Our analysis presents our context minimization
techniques, which not only reduce computational
resources, training, and inference time without
compromising model performance but also con-
tribute to data compression, achieving an average
file size reduction of 72.57% across six diverse
datasets, as detailed in Table 5. The most dra-
matic reduction is observed in the CMLA11 dataset,
where the data size is compressed by 92.63%, de-
creasing from 459.00 MB to 33.85 MB. Similarly,
other datasets show impressive size reductions:
BBC (86.51% reduction), ENRON (85.95% re-
duction), and IMDB (81.25% reduction). Even
the smallest reduction, observed in the AGNews
dataset, still represents an 11.20% decrease in data
size.

4.4 Discussion

Our findings demonstrate the effectiveness of strate-
gic context reduction in maintaining high model
performance while achieving substantial compu-
tational efficiency gains. The approach results
in impressively minimal performance degradation
across all six datasets when comparing full-length
context with the best-performing reduced context.
Specifically, the average degradation is 1.39%,
1.75%, 2.26%, 2.17%, 2.88%, 3.10%, and 1.92%
for BERT, DistilBERT, RoBERTa, ALBERT, XL-
Net, XLM-R, and ELECTRA, respectively, while
delivering significant benefits: 69-75% GPU mem-
ory reduction, 81-87% training time improvement,
and 82-88% faster inference across all datasets.
In most cases, the first sentence, pronouns, and
nouns provided sufficient semantic information for
text classification tasks. Notably, adjective-focused
configurations proved superior for sentiment anal-
ysis on IMDB, highlighting the importance of
targeted feature selection and revealing dataset-
specific patterns. On the other hand, our analysis
revealed a strong correlation between article length
and dataset size reduction efficiency. Specifically,
datasets containing longer articles exhibited greater
potential for size reduction. This relationship is
exemplified by the CMLA11 dataset, which con-
tains articles with a mean length of 716.64 words
and achieved the highest average reduction rate
of 92.63%. In contrast, the AGNEWS dataset,
characterized by substantially shorter articles with
an average length of 37.84 words, demonstrated
the lowest reduction rate of 11.20% among all six
datasets examined. These results suggest that our
context minimization approach provides a practi-

cal solution for resource-efficient text classification
without significant performance trade-offs, mak-
ing it particularly valuable in resource-constrained
deployment scenarios.

5 Conclusion

This paper presents a systematic approach to con-
text minimization for efficient text classification
through strategic combinations of linguistic fea-
tures. Our evaluation across six datasets and seven
NLU models demonstrates that reduced-context
configurations maintain competitive performance
while enhancing efficiency. The method signifi-
cantly reduces dataset sizes while preserving accu-
racy, making it valuable for resource-constrained
environments. Future work should explore apply-
ing this approach to tasks such as natural language
inference, question answering, and text generation
to enable more efficient language model deploy-
ment.

Limitations

Our context minimization techniques, which lever-
age key linguistic features, reduce computational
resource requirements but may introduce biases
by omitting critical contextual information. While
we use well-established datasets, inherent societal
biases in web content could be amplified through
feature selection, potentially affecting fairness. Re-
duced context enhances efficiency but may over-
simplify complex classifications, requiring users
to assess its impact on accuracy. Finally, despite
conducting extensive experiments on 35 reduced-
context variants across six datasets with seven lan-
guage models, further exploration may reveal alter-
native low-context configurations that yield more
accurate results.

Ethical Considerations

To ensure transparency and reproducibility, we will
release our dataset, CMLA11, and all associated
code upon acceptance. Model results may vary
slightly due to factors like random seed initializa-
tion, data sampling order, and hardware dependen-
cies. It is crucial to assess trade-offs across differ-
ent application scenarios, particularly in sensitive
domains where misclassification can have serious
consequences. Practitioners must evaluate whether
reduced context can provide the necessary accuracy
and reliability.
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Dataset Context MacroF1 AF1 Dataset Context MacroF1 AF1
Full Length 0.9421 +0.0005 - Full Length 0.9888 +0.0067 -
P1+dn 0.9414 +0.0006 -0.0007 207y 0.9888 +0.0022 0
P1+Pn+10p,+5n 0.9408 +0.0029 -0.0013 ¢1+15n 0.9865 +0.0045 -0.0023
G1+dn+107; 0.9407 +0.0004 -0.0014 157 0.9865 +0.0032 -0.0023
P1+pn+10t ¢ 0.9402 +0.0004 -0.0019 ¢1+107 0.9865 +0.0090 -0.0023
P1+Pn+10p,+5v 0.9399 +0.0010 -0.0022 G1+Pn+10p,+5v 0.9843 +0.0022 -0.0045
P1+S 0.9394 +0.0005 -0.0027 P1+Pn+107y 0.9843 +0.0022 -0.0045
¢1+157r 0.9381 +0.0011 -0.0040 10p,+10n+10aq 0.9843 +0.0067 -0.0045
207y, 0.9380 +0.0003 -0.0041 ¢1+10pn+5aq 0.9843 +0.0022 -0.0045
¢1+10pp+10n 0.9364 +0.0022 -0.0057 P1+5pn+5n+Saq+5v  0.9843 +0.0022 -0.0045
¢1+107 0.9358 +0.0024 -0.0063 G1+15pn+5n 0.9843 +0.0022 -0.0045
¢1+10pp+5aq 0.9352 +0.0025 -0.0069 P1+15pp+5aq 0.9843 +0.0022 -0.0045
¢1+15p,+5n 0.9349 +0.0022 -0.0072 ¢1+10t ¢ 0.9843 +0.0067 -0.0045
¢1+10py, 0.9348 +0.0008 -0.0073 G1+0n+10p,+5n 0.9821 +0.0045 -0.0067
¢1+15pn+S5aq 0.9347 +0.0017 -0.0074 P1+Pn+10t 5 0.9821 +0.0000 -0.0067
¢1+15n 0.9346 +0.0010 -0.0074 G1+Pn 0.9821 +0.0000 -0.0067
¢1+10aq+10py, 0.9344 +0.0024 -0.0077 10p,+10n 0.9821 +0.0090 -0.0067

AGNews ¢1+15py, 0.9341 =0.0026 -0.0080 BBC ¢1+15aq+5v 0.9821 +0.0000 -0.0067
G1+5pn+5n+5a4 0.9340 +0.0009 -0.0081 ¢1+10p,+10n 0.9821 +0.0000 -0.0067
G1+5pn+5n+5a4+5v  0.9340 +0.0013 -0.0081 ¢1+10py, 0.9821 +0.0045 -0.0067
¢1+15pn+5v 0.9339 +0.0016 -0.0082 14157 0.9821 +0.0135 -0.0067
¢1+20pn, 0.9337 +0.0027 -0.0084 $1+S 0.9798 +0.0022 -0.0090
157y 0.9335 £0.0023 -0.0085 10p,+10n+10a4+10v 0.9798 +0.0112 -0.0090
¢1+10t ¢ 0.9334 +0.0013 -0.0087 P1+5pn+5n+5aq 0.9798 +0.0022 -0.0090
d1+10n, 0.9328 +0.0024 -0.0093 G1+15pp+5v 0.9798 +0.0022 -0.0090
10pn+10n+10a4+10v 0.9327 +0.0004 -0.0094 ¢1+10a4+10py, 0.9776 +0.0045 -0.0112
¢1+15a4+5v 0.9307 +0.0007 -0.0114 ¢1+10n, 0.9776 +0.0000 -0.0112
¢1+20a4 0.9306 +0.0013 -0.0115 ¢1+15py, 0.9776 +0.0045 -0.0112
10p,+10n+10aq 0.9295 +0.0003 -0.0125 ¢1+20aq 0.9753 £0.0022 -0.0135
¢1+15aq4 0.9292 +0.0010 -0.0129 ¢1+20pn, 0.9731 +0.0000 -0.0157
b1 0.9285 +0.0013 -0.0136 b1 0.9709 +o0.0112 -0.0179
10pn+10n 0.9272 +0.0003 -0.0149 ¢1+15aq4 0.9709 +0.0067 -0.0179
20t 0.9214 +0.0007 -0.0207 20t 0.9552 +0.0045 -0.0336
15t 0.9143 +0.0010 -0.0278 15t 0.9395 £0.0157 -0.0493
10t s 4+5pn 0.9134 +0.0010 -0.0287 10t s +5pn 0.9345 +0.0157 -0.0543
10t s 0.9042 +0.0010 -0.0379 10t s 0.9214 +0.0157 -0.0674

Table 7: Macro F1 scores for BBC dataset across differ-
ent context settings. The Full Length setting represents
the original dataset, while other configurations use vari-
ous low-context representations.

Table 6: Macro F1 scores for AGNews dataset across
different context settings. The Full Length setting rep-
resents the original dataset, while other configurations
use various low-context representations.
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Dataset Context MacroF1 AF1 Dataset Context MacroF1 AF1
Full Length 0.9957 +0.0008 - Full Length 0.9358 +0.0020 -
P1+pn+10t ¢ 0.9921 +0.0002 -0.0036 P1+Pn+10aq+5a, 0.8938 +0.0028 -0.0420
P1+15pp+5n 0.9918 +0.0008 -0.0039 P1+Pn+15a4+10a,  0.8936 +0.0032 -0.0422
¢1+10p,+10n 0.9916 +0.0006 -0.0041 b1+Pn+10aq 0.8932 +0.0044 -0.0426
¢1+107, 0.9912 +0.0006 -0.0045 P1+Pn+10aq4+5n 0.8931 +0.0057 -0.0427
G1+Pn+10pp+5n 0.9911 +0.0012 -0.0046 G1+Pn+15aq4 0.8929 +0.0023 -0.0429
P1+157 0.9909 +0.0002 -0.0048 P1+pn+10t ¢ 0.8923 +0.0077 -0.0435
¢1+10aq+10py, 0.9904 =+ 0.0000 -0.0053 P1+Pn+107y 0.8908 +0.0048 -0.0450
10p,+10n+10a4+10v 0.9900 +0.0002 -0.0057 d1+dn+10aq+5v 0.8901 +0.0015 -0.0457
P1+Pn+107 0.9900 =+ 0.0016 -0.0057 P1+Pn+10r,+10aq  0.8872 +0.0068 -0.0486
G1+5pn+5n+5a4 0.9898 +0.0006 -0.0059 bG1+Pn 0.8817 +0.0055 -0.0541
p1+15n 0.9895 +0.0009 -0.0062 ¢1+10a4+57} 0.8721 +0.0004 -0.0637
G1+Pn+10p,+5v 0.9894 +0.0010 -0.0063 ¢1+15a4+10v 0.8693 +0.0087 -0.0665
G1+15pn+5a4 0.9892 +0.0006 -0.0065 d1+157 0.8641 +0.0013 -0.0717
207 0.9892 +0.0006 -0.0065 ¢1+15a4+5v 0.8624 +0.0042 -0.0734
¢1+20py, 0.9891 +0.0008 -0.0066 ¢1+10aq+5pn+5v 0.8612 +0.0060 -0.0746
¢1+10t 0.9891 +0.0002 -0.0066 ¢1+15aq4 0.8607 +0.0027 -0.0751

ENRON P1+5pn+5n+5aq+5v  0.9888 +0.0008 -0.0069 IMDB ¢1+107, 0.8598 +0.0044 -0.0760
P1+15pp+5v 0.9882 +0.0010 -0.0075 ¢1+10aq+10py, 0.8592 +0.0024 -0.0766
10p,+10n+10aq 0.9879 +0.0002 -0.0078 207 0.8591 +0.0027 -0.0767
¢1+10pn, 0.9879 +0.0010 -0.0078 ¢1+10aq+5n+5v 0.8583 +0.0027 -0.0775
¢1+15pn 0.9877 +0.0003 -0.0080 10p,+10n+10a4+10v 0.8575 +0.0037 -0.0783
157 0.9877 +0.0006 -0.0080 G1+5pn+5n+5a4+5v  0.8561 +0.0011 -0.0797
¢1+10pp+5aq 0.9876 +0.0008 -0.0081 P1+5pn+5n+5aq 0.8521 £0.0023 -0.0837
20t ¢ 0.9873 +0.0016 -0.0084 P1+5a4+5+ADV+5v  0.8517 £0.0051 -0.0841
b1+Pn 0.9867 +0.0008 -0.0090 10pn+10n+10aq 0.8502 +0.0012 -0.0856
¢$1+10n, 0.9867 +0.0002 -0.0090 ¢1+10pn+Saq 0.8495 +0.0005 -0.0863
10pn+10n 0.9864 +0.0008 -0.0093 157 0.8492 +0.0008 -0.0866
P1+15aq+5v 0.9862 +0.0006 -0.0095 P1+15pp+5aq 0.8488 +0.0022 -0.0870
d1+20aq 0.9861 +0.0005 -0.0096 d1+S 0.8481 +0.0039 -0.0877
P1+15aq 0.9855 +0.0005 -0.0102 20t 0.8461 +0.0006 -0.0897
¢1+S 0.9843 +0.0022 -0.0114 ¢1+10t 0.8453 +0.0089 -0.0905
15t 0.9838 +0.0018 -0.0119 ¢1+10p,+10n 0.8376 +0.0002 -0.0982
10t s +5pn 0.9785 +0.0000 -0.0172 P1+15pn+5n 0.8335 £0.0035 -0.1023
P1 0.9741 £ 0.0031 -0.0216 P1+15pp+5v 0.8306 +0.0028 -0.1052
10t s 0.9625 +0.0000 -0.0332 ¢1+15n 0.8281 +0.0003 -0.1077

Table 8: Macro F1 scores for ENRON dataset across
different context settings. The Full Length setting rep-
resents the original dataset, while other configurations
use various low-context representations.

Table 9: Macro F1 scores for IMDB dataset across
different context settings. The Full Length setting rep-
resents the original dataset, while other configurations
use various low-context representations.

12



Dataset Context Macro F1 AF1 Dataset Context Macro F1 AF1
Full Length 0.7731 £0.0025 - Full Length 0.9449 +0.0003 -
¢1+10p,+10n 0.7559 + 0.0044 -0.0172 P1+Pn+10p,+5n 0.9251 +0.0025 -0.0198
20t 0.7472 + 0.0027 -0.0259 ¢1+15p,+5n 0.9239 +0.0006 -0.0210
P1+10t ¢ 0.7472 £ 0.0031 -0.0259 d1+15p,+50v 0.9236 +0.0015 -0.0213
10p,+10n+10a4 0.7448 + 0.0025 -0.0283 P1+Pn+10t s 0.9225 +0.0025 -0.0224
P1+Pn+10ts 0.7445 + 0.0027 -0.0286 ¢1+20pn, 0.9222 +0.0003 -0.0227
¢1+157 0.7412 + 0.0055 -0.0319 P1+Pn+10p,+5v 0.9218 +0.0005 -0.0231
10p,+10n 0.7407 = 0.0005 -0.0324 ¢1+10p,+10n 0.9218 +0.0017 -0.0231
P1+5pn+5n+S5a4+5v  0.7390 £ 0.0038 -0.0341 ¢1+15pr+5aq 0.9192 +0.0016 -0.0257
10p,+10n+10a4+10v 0.7387 £ 0.0093 -0.0344 ¢1+15pn, 0.9189 +0.0012 -0.0260
G1+Pn+10py+5n 0.7380 + 0.0005 -0.0351 @1+5pn+5n+5aq+5v 0.9176 +0.0009 -0.0273
¢1+107 0.7374 + 0.0060 -0.0357 P1+Pn+107} 0.9171 +0.0021 -0.0278
P1+15pn+5n 0.7366 + 0.0046 -0.0365 ¢1+10pp+5aq 0.9165 +0.0005 -0.0284
P1+Pn+107; 0.7363 + 0.0038 -0.0368 ¢1+107% 0.9144 +0.0001 -0.0305
157 0.7244 £ 0.0003 -0.0487 ¢1+10a4+10p, 0.9135 +0.0012 -0.0314
G1+5pn+5n+5aq 0.7236 + 0.0082 -0.0495 ¢1+157 0.9132 +0.0014 -0.0317

2ONews 15¢¢ 0.7111 £ 0.0096 -0.0620 G1+5pn+in+5aq 0.9130 +0.0005 -0.0319
¢1+15n 0.7092 + 0.0016 -0.0639 CMLAI1 ¢1+10py, 0.9125 +0.0011 -0.0324
207y, 0.6973 + 0.0063 -0.0758 P1+10t 5 0.9083 +0.0009 -0.0366
O1+Pn+10p,+5v 0.6971 £ 0.0011 -0.0760 ¢1+S 0.9076 +0.0008 -0.0373
¢1+15pn+5aq 0.6875 + 0.0035 -0.0856 ¢1+10n, 0.9065 +0.0033 -0.0384
@1+15pn+5v 0.6834 +0.0131 -0.0897 10p,+10n+10a4+10v 0.9042 +0.0032 -0.0407
¢1+10pp+5aq 0.6815 +0.0106 -0.0916 ¢1+15n 0.9030 +0.0005 -0.0419
¢1+10a4+10p, 0.6790 = 0.0038 -0.0941 P1+Pn 0.9024 +0.0001 -0.0425
¢1+15p, 0.6760 + 0.0074 -0.0971 ¢1+15a4+5v 0.8948 +0.0013 -0.0501
¢1+20pn, 0.6760 £ 0.0019 -0.0971 ¢1+20aq 0.8880 +0.0002 -0.0569
¢1+10py, 0.6758 +0.0082 -0.0973 ¢1+15aq 0.8871 +0.0007 -0.0578
10t #+5pn 0.6754 + 0.0000 -0.0977 10p,+10n+10aq 0.8867 +0.0019 -0.0582
¢1+10n. 0.6703 + 0.0038 -0.1028 10p,+10n 0.8767 +0.0010 -0.0682
¢1+S 0.6676 = 0.0066 -0.1055 157y, 0.8647 +0.0012 -0.0802
G1+Pn 0.6362 £ 0.0025 -0.1369 207 0.8635 +0.0003 -0.0814
¢1+15a4+5v 0.6285 +0.0035 -0.1446 ¢1 0.8594 +0.0018 -0.0855
¢1+20aq4 0.6149 +0.0041 -0.1582 20t ¢ 0.8490 +0.0034 -0.0959
¢1+15aq 0.6111 +0.0074 -0.1620 10t £ +5pn 0.8394 +0.0002 -0.1055
b1 0.5675 £ 0.0011 -0.2056 15ty 0.8317 £0.0020 -0.1132
10t ¢ 0.5626 £ 0.0000 -0.2105 10t ¢ 0.8125 +0.0013 -0.1324

Table 11: Macro F1 scores for CMLA11 dataset across
different context settings. The Full Length setting rep-
resents the original dataset, while other configurations
use various low-context representations.

Table 10: Macro F1 scores for 20NewsGroup dataset
across different context settings. The Full Length setting
represents the original dataset, while other configura-
tions use various low-context representations.
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