
Context Minimization through Linguistic Features: Optimizing the
Trade-off between Performance and Efficiency in Text Classification

Anonymous ACL submission

Abstract001

Pretrained language models have redefined text002
classification, consistently setting new bench-003
marks. However, their insatiable demand for004
computational resources and time makes them005
impractical in many resource-constrained en-006
vironments. We introduce a simple yet ef-007
fective approach to drastically minimize input008
context while preserving classification perfor-009
mance. Our method synergistically integrates010
linguistic insights, incorporating positional ele-011
ments, syntactic structures, semantic attributes,012
and statistical measures to identify the most in-013
formative contexts. We evaluate our approach014
on six diverse datasets, including our newly015
introduced CMLA11 dataset, rigorously assess-016
ing 35 context configurations per dataset. Our017
approach delivers substantial efficiency gains,018
significantly reducing computational overhead019
while maintaining strong classification perfor-020
mance. Specifically, it achieves a 69–75% re-021
duction in GPU memory usage, an 81–87%022
decrease in training time, and an 82–88% im-023
provement in inference speed. Despite these024
drastic resource savings, our best configura-025
tions maintain near-parity with full-length in-026
puts, with F1 (macro) reductions averaging027
as low as 1.39% and 3.10%, while some con-028
figurations even outperform the baseline. Be-029
yond efficiency, our method yields remarkable030
data compression, reducing dataset sizes by an031
average of 72.57%, with reductions reaching032
92.63% for longer documents. These findings033
underscore the potential of context minimiza-034
tion for real-world text classification, enabling035
substantial computational savings with mini-036
mal performance trade-offs.037

1 Introduction038

Pretrained language models have achieved remark-039

able results across various downstream natural lan-040

guage understanding (NLU) tasks such as text clas-041

sification. However, attaining high accuracy of-042

ten requires training these models on large-scale043

datasets, which demands significant computational 044

resources and entails considerable training and in- 045

ference times (Brown et al., 2020). Moreover, as 046

modern PLMs continue to grow in size, fine-tuning 047

them with extensive datasets with long contexts 048

becomes impractical for many regular computing 049

environments. 050

For instance, the disk sizes of prominent NLU 051

models, such as BERT (Devlin et al., 2019), 052

RoBERTa (Liu et al., 2019), XLM-R (Conneau 053

and Lample, 2019), XLNet (Yang et al., 2019), 054

and ELECTRA (Clark et al., 2020), range from 055

approximately 419 MB to 11.5 GB, depending on 056

the model variant. As training datasets expand, 057

computational power, storage, and time require- 058

ments increase exponentially, driven by the pursuit 059

of higher accuracy (Kaplan et al., 2020). Fine- 060

tuning these models for downstream tasks often 061

improves accuracy but also amplifies resource de- 062

mands. Similarly, generative large language mod- 063

els (LLMs), such as the largest variants of LLaMA 064

(Touvron et al., 2023), GPT (OpenAI et al., 2024), 065

and similar models, are several gigabytes in size, 066

making them infeasible for fine-tuning on everyday 067

computers, as well as unusable in many real-world 068

scenarios, and resulting in a large carbon footprint 069

(Strubell et al., 2020). 070

Driven by the challenges of high computational 071

demands, large datasets, and extended training 072

times, we explored methods to reduce context 073

while maintaining competitive accuracy. Our ini- 074

tial experiments revealed that the first sentence of- 075

ten strongly predicts the class. Fine-tuning mod- 076

els using only the first sentence achieved competi- 077

tive performance with significantly lower compu- 078

tational costs, motivating further exploration of 079

key linguistic and statistical features. Our exper- 080

iments include a combination of three positional 081

elements: first sentence (ϕ1), second sentence (ϕ2), 082

and last sentence (ϕn); four syntactic components: 083

nouns (n), verbs (v), adverbs (av), and adjectives 084
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(ad); two semantic attributes: named entities (ne)085

and proper nouns (pn); and two statistical mea-086

sures: TF-IDF scores (tf ) (Salton et al., 1975) and087

RAKE keywords (rk) (Rose et al., 2010). Each088

feature uniquely contributes to text representation,089

enabling the reduction of contextual requirements090

while maintaining task performance. For certain091

combinations, we selected the most frequent oc-092

currences in four different amounts (top 5, 10, 15,093

and 20) from each article to ensure focused and094

efficient representation.095

We evaluated our strategies by fine-tuning each096

dataset and model across various low-context vari-097

ations, limiting the exploration to 35 distinct com-098

binations per dataset. Our extensive experiments099

on 7 NLU models and 5 popular text classification100

benchmark datasets, AGNews (Zhang et al., 2015),101

Enron (Klimt and Yang, 2004), IMDB (Maas et al.,102

2011), BBC (Greene and Cunningham, 2006), and103

20 NewsGroups (Lang, 1995), as well as our cus-104

tom dataset, CMLA11 (Clean Mixed Long Arti-105

cles - 11 categories), confirm our initial hypothe-106

sis: models can be fine-tuned with minimal con-107

text, requiring fewer computational resources, en-108

abling faster training and inference speeds, while109

still achieving comparable accuracy.110

Our contributions are as follows:111

• We presented simple yet highly effective meth-112

ods for context minimization in text classifica-113

tion using simple linguistic features.114

• To provide a comprehensive analysis of how115

low-context input affects model performance,116

we fine-tuned BERT using 35 low-context117

variants from each of six benchmark datasets.118

We then evaluated the top five variants from119

each dataset on six popular NLU models to120

assess their generalizability.121

• Observing the prevalence of noisy data in122

existing benchmarks, we propose our own123

custom-developed, well-balanced, and meticu-124

lously curated dataset, named CMLA11. This125

dataset comprises articles from 26 newspa-126

pers, blogs, and magazine websites, catego-127

rized into 11 classes.128

• We demonstrate that context minimization sig-129

nificantly reduces GPU usage, training time,130

inference time, and dataset size, making it131

ideal for resource-constrained settings, while132

maintaining competitive performance in text133

classification.134

2 Related Works 135

While no prior work directly addresses the spe- 136

cific problem investigated in this paper, some stud- 137

ies have explored related areas, providing valuable 138

context and informing our approach. 139

Recent research has focused on improving how 140

language models utilize context. Liu et al. (2024) 141

explore multi-document question answering with 142

GPT-4 and Llama-2, highlighting that increasing 143

context length does not necessarily improve perfor- 144

mance. They find that models perform best when 145

relevant information is at the beginning or end of 146

the context, struggling with information in the mid- 147

dle. This suggests large contexts may not be as 148

beneficial as previously believed. Building on this, 149

An et al. (2024) note that models generally fail 150

to utilize long contexts effectively and propose 151

Information-Intensive Training, a technique that 152

enhances context utilization by training models on 153

long-context QA datasets that require both short- 154

segment awareness and integration of information 155

across segments. 156

While context utilization is crucial, efficient 157

model performance is also key for practical applica- 158

tions. Schick and Schütze (2021) examine the small 159

language model ALBERT (Lan et al., 2020) in few- 160

shot learning, showing it can rival larger models 161

like GPT-3 while being more resource-efficient. 162

They introduce Pattern-Exploiting Training (PET), 163

which reformulates tasks as cloze questions and 164

optimizes them with gradient-based methods. A 165

modified version of PET for multi-token predic- 166

tions is tested on multiple benchmarks. The results 167

show that PET, especially with ALBERT, outper- 168

forms GPT-3 on SuperGLUE (Wang et al., 2019) 169

with fewer parameters. 170

Complementing algorithmic approaches, Ren 171

et al. (2021) propose ZeRO-Offload, a technique 172

for efficient training of large deep learning models. 173

It offloads model states (parameters, gradients, and 174

optimizer states) from GPU to CPU memory, re- 175

ducing data movement and CPU computation time 176

while maximizing GPU memory savings. While 177

focused on hardware optimization, it highlights the 178

broader solutions being developed to tackle the 179

challenges of large language model deployment 180

and training. 181

3 Methodology 182

Finding appropriate ways to reduce the context suf- 183

ficiently enough to provide accurate classification 184
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was a crucial part of this work. We first experi-

Task First Sentence Impression
News
Category

Third-tier side Wolves have been
drawn at home to Man United in
the FA Cup fifth round. Wolves,
who are ...

Sports

Sentiment The movie was absolutely stunning,
with breathtaking visuals. I went
there ...

Positive

Topic Recent quantum computing ad-
vances opened new possibilities in
cryptography. An Arab mathemati-
cian ...

Technology

Email Dear customer, you’ve won a
$2,000 gift card in lottery! Click
here to ...

Spam

Table 1: Examples of First Sentences Providing Imme-
diate Classification Signals Across Text Categories

185
mented with the first sentence, as it often captures186

significant information in text classification tasks187

like news, sentiment, topic, and email classifica-188

tion, as shown in Table 1. Our findings indicate189

that while the first sentence yields surprisingly ac-190

curate results, it is insufficient for comprehensive191

classification. Consequently, we incorporated lin-192

guistic, semantic, positional, and statistical features193

to reduce the input context, selectively capturing194

essential information without processing the entire195

article.196

Positional Features: Positional features analyze197

sentence placement within the text, leveraging con-198

text provided by the First Sentence (ϕ1), Second199

Sentence (ϕ2), or Last Sentence (ϕn). For instance,200

“Wolves have been drawn at home to Man United201

in the FA Cup fifth round." immediately signals202

the sports category from the first sentence, while203

the last sentence, “The championship will be de-204

cided in the final match tomorrow." reinforces the205

decision.206

Syntactic Features: Syntactic features, such as207

nouns (n), verbs (v), adverbs (av), and adjectives208

(ad), capture the grammatical structure, sentiment,209

and tone of the text. These features enhance clas-210

sification by identifying emotional and contextual211

cues. For example, “The movie was absolutely212

stunning, with breathtaking visuals." includes ad-213

jectives such as stunning and breathtaking, which214

indicate a strongly positive sentiment.215

Semantic Features: Semantic features, including216

Named Entities (ne) and Proper Nouns (pn), facili-217

tate domain-specific understanding by identifying218

specialized terms and context. This ensures pre-219

cise categorization by leveraging contextual rich-220

ness. For example, “Recent quantum computing 221

advances opened new possibilities in cryptogra- 222

phy." includes entities like quantum computing and 223

cryptography, guiding classification under the tech- 224

nology domain. 225

Statistical Features: Statistical features, such as 226

TF-IDF scores (tf ) and RAKE keywords (rk), cap- 227

ture key terms based on their significance and 228

co-occurrence patterns. These features optimize 229

text analysis while remaining computationally effi- 230

cient. For example, “Dear customer, you’ve won 231

a $2,000 gift card!" includes high TF-IDF scores 232

for terms like customer and RAKE keywords such 233

as “you’ve won" and “gift card", clearly signaling 234

spam. 235

The selected features effectively balance com- 236

putational efficiency with linguistic and contextual 237

richness, ensuring that key classification signals are 238

preserved while minimizing input complexity. 239

3.1 Context Minimization 240

To condense large articles into meaning- 241

ful contexts, we systematically combined 242

linguistic features and conducted exper- 243

iments on six benchmark datasets: D ∈ 244

{AGNews,Enron, IMDB,BBC, 20 NewsGroups, 245

CMLA11}. The features were grouped into 4 cat- 246

egories: Positional Elements: P = {ϕ1, ϕ2, ϕn}, 247

Syntactic Components: S = {n, v, av, ad}, 248

Semantic Attributes: E = {ne, pn}, Statistical 249

Measures: T = {tf , rk}. Together, these subsets 250

form the complete feature set F , defined as: 251

F = P ∪ S ∪ E ∪ T . For a given dataset 252

Dk ∈ D, we iteratively construct new datasets by 253

systematically selecting features from the feature 254

set F . Initially, a new dataset Dk,new1 is built by 255

extracting a single feature f1 ∈ F : 256

Dk,new1 = {f1}, f1 ∈ F . 257

The newly constructed dataset Dk,new1 is then 258

trained and evaluated with model MBERT to es- 259

tablish an initial performance metric νBERT
k,new1

. Since 260

no prior results were available, this served as the 261

starting point for comparison for the rest of the 262

features in the feature set F . Subsequently, addi- 263

tional features fi ∈ F are introduced to Dk,new1 to 264

construct new low-context dataset Dk,new2 . Simi- 265

larly, for each new feature combination, the model 266

is trained and evaluated: 267

Dk,newj
= Dk,newj−1

∪{fi}, where j = 2, 3, . . . 268

269νBERT
k,newj

= Ψ(MBERT,Dk,newj
) 270
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Here, Ψ(·, ·) represents the evaluation function that271

computes the performance of model MBERT on272

dataset Dk,newj
. If the evaluation metric νBERT

k,newj
273

improve compared to νBERT
k,newj−1

, the number of to-274

kens associated with the newly added feature was275

incrementally increased by ∆n = 5. The number276

of tokens in linguistic features are taken based on277

the most frequent occurrences in the context. If278

no improvement was observed, the feature combi-279

nation was adjusted by introducing features from280

other subsets (P,S, E , T ) within F . This iterative281

process ensured systematic exploration of feature282

combinations to identify those yielding optimal per-283

formance. The iteration continued until no further284

improvement was observed or a predefined limit285

(35 evaluated combinations) was reached for each286

dataset Dk ∈ D, as this limit was chosen to balance287

computational efficiency and resource constraints288

while ensuring sufficient exploration of the feature289

space for meaningful insights. The final set of eval-290

uated combinations is represented as: CkBERT ⊆ F .291

From these combinations, the top 5 performing re-292

duced context datasets Dktop-5 are identified based293

on CkBERT .294

Finally, 6 prominent NLU models are295

used to trained and evaluated to establish296

the understanding affectivness of reduced297

contexts trained on Dktop-5 where Mmodel ∈298

{DistilBERT, RoBERTa,ALBERT,XLNet,XLM-R, ELECTRA}.299

We evaluate these models Mm ∈ Mmodel on these300

reduced datasets. The performance metric νMm
k,j is301

computed as follows:302

νMm
k,j = Ψ(Mm,Dk,j),

∀Dk,j∈Dktop-5
∀Mm∈Mmodel

303

This formulation ensures that our performance eval-304

uation is both structured and consistent across dif-305

ferent models and data.306

3.2 Training Setup307

Our experiments utilized MBERT and Mmodel, cho-308

sen for their strong performance across diverse309

NLP benchmarks. All models were implemented310

in PyTorch1 and integrated via the Hugging Face2311

Transformers library to ensure reproducibility and312

scalability.313

We used the default tokenizers for each model314

and applied stratified sampling on the combined315

data from all splits for each dataset to ensure bal-316

anced class representation, creating training (80%),317

1https://pytorch.org/
2https://huggingface.co/

validation (10%), and test (10%) sets. To pre- 318

process the text data efficiently, we employed a 319

parallelized processing pipeline using Python’s 320

multiprocessing. Text transformations were ex- 321

ecuted in parallel across multiple CPU cores with 322

a process pool executor to optimize computational 323

efficiency in data processing. The maximum se- 324

quence length was set to 512 tokens for full-context 325

experiments and 64 tokens for low-context variants. 326

The training protocol was standardized across 327

all experiments for fair comparison. We used the 328

cross-entropy loss function with the AdamW op- 329

timizer, an initial learning rate of 2 × 10−5, and 330

a linear decay scheduler. Training was performed 331

for 5 epochs with a batch size of 32, and the model 332

with the lowest validation loss was retained for 333

evaluation. To ensure robustness, we conducted 5 334

runs with different random seeds for each model- 335

dataset-context combination and reported the me- 336

dian results. 337

4 Experiments and Results 338

In this section, we first describe our datasets and 339

experimental setup, followed by the results of our 340

experiments and an analysis of their implications. 341

Dataset #Train #Dev #Test #Label Avg Len
AGNEWS 102,080 12,760 12,760 4 37.84
BBC 1,780 222 223 5 390.3
ENRON 26,676 3,334 3,335 2 306.77
IMDB 40,000 5,000 5,000 2 231.16
20NEWS 15,077 1,884 1,885 20 181.67
CMLA11 88,000 11,000 11,000 11 716.64

Table 2: Statistical Summary of Datasets Used in Our
Experiments: Sample Distribution, Label Counts, and
Average Word Count.

4.1 Datasets 342

We conducted experiments on five widely used text 343

classification benchmark datasets, all of which are 344

publicly available, along with CMLA11, which 345

also contains publicly available data. The statisti- 346

cal summary of these datasets is presented in Table 347

2. Each of these datasets varies significantly in na- 348

ture and contains articles of varying lengths, which 349

is essential for our experiments on context mini- 350

mization to demonstrate effectiveness and capture 351

a broad range of classification challenges. We did 352

not use the default train-test splits of the benchmark 353

datasets due to disproportional splits. Instead, we 354

merged all splits together and created an 80-10-10 355
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Dataset Context Macro F1 ∆ F1 GPU (MB) ∆ GPU Train (s) ∆ Train Infer (s) ∆ Infer

AGNews

Full Length 0.9421 ±0.0005 - 9099.69 ±0.77 - 7458.14 ±0.30 - 58.53 ±0.95 -
ϕ1+ϕn 0.9414 ±0.0006 -0.0007 2806.52±0.63 -69.158% 1359.76 ±0.46 -81.77% 10.35 ±0.005 -82.32%
ϕ1+ϕn+10pn+5n 0.9408 ±0.0029 -0.0013 2851.25 ±1.32 -68.666% 1340.97 ±0.36 -82.02% 10.17 ±0.012 -82.63%
ϕ1+ϕn+10rk 0.9407 ±0.0004 -0.0014 2896.72 ±2.70 -68.167% 1343.95 ±0.03 -81.98% 10.17 ±0.000 -82.62%
ϕ1+ϕn+10tf 0.9402 ±0.0004 -0.0019 2896.43 ±1.18 -68.170% 1341.75 ±0.17 -82.01% 10.17 ±0.005 -82.62%
ϕ1+ϕn+10pn+5v 0.9399 ±0.0010 -0.0022 2896.49 ±1.53 -68.169% 1340.70 ±0.07 -82.02% 10.18 ±0.014 -82.61%

BBC

Full Length 0.9888 ±0.0067 - 11588.46 ±1.02 - 186.59 ±0.61 - 1.47 ±0.001 -
20rk 0.9888 ±0.0022 0 2875.49 ±1.88 -75.187% 25.42 ±0.09 -86.38% 0.18 ±0.001 -87.67%
ϕ1+15n 0.9865 ±0.0045 -0.0023 2910.14 ±1.48 -74.888% 25.26 ±0.00 -86.46% 0.18 ±0.003 -87.6%
15rk 0.9865 ±0.0032 -0.0023 2875.60 ±2.89 -75.186% 25.17 ±0.01 -86.51% 0.18 ±0.000 -87.75%
ϕ1+10rk 0.9865 ±0.0090 -0.0023 2910.49 ±1.16 -74.885% 25.29 ±0.01 -86.45% 0.18 ±0.001 -87.67%
ϕ1+ϕn+10pn+5v 0.9843 ±0.0022 -0.0045 2920.37 ±2.85 -74.799% 23.69 ±0.01 -87.30% 0.19 ±0.004 -87.20%

ENRON

Full Length 0.9957 ±0.0008 - 11441.45 ±1.78 - 2808.19 ±1.88 - 22.64 ±0.005 -
ϕ1+ϕn+10tf 0.9921 ±0.0002 -0.0036 2920.37 ±2.28 -74.476% 375.68 ±0.29 -86.62% 2.68 ±0.003 -88.14%
ϕ1+15pn+5n 0.9918 ±0.0008 -0.0039 2875.13 ±1.06 -74.871% 353.76 ±0.03 -87.4% 2.72 ±0.001 -87.98%
ϕ1+10pn+10n 0.9916 ±0.0006 -0.0041 2920.49 ±1.65 -74.475% 350.30 ±0.04 -87.53% 2.67 ±0.001 -88.2%
ϕ1+10rk 0.9912 ±0.0006 -0.0045 2860.69 ±0.68 -74.997% 355.98 ±0.17 -87.32% 2.72 ±0.001 -87.99%
ϕ1+ϕn+10pn+5n 0.9911 ±0.0012 -0.0046 2920.24 ±1.04 -74.477% 377.22 ±0.63 -86.57% 2.74 ±0.029 -87.91%

IMDB

Full Length 0.9358 ±0.0020 - 11409.26 ±1.45 - 4171.13 ±1.69 - 33.46 ±0.009 -
ϕ1+ϕn+10ad+5av 0.8938 ±0.0028 -0.042 2920.73 ±0.63 -74.400% 531.1 ±0.28 -87.27% 4.05 ±0.003 -87.89%
ϕ1+ϕn+15ad+10av 0.8936 ±0.0032 -0.0422 2934.43 ±2.21 -74.280% 525.79 ±0.01 -87.39% 3.99 ±0.002 -88.08%
ϕ1+ϕn+10ad 0.8932 ±0.0044 -0.0426 2920.37 ±2.38 -74.404% 530.78 ±0.21 -87.27% 4.03 ±0.001 -87.94%
ϕ1+ϕn+10ad+5n 0.8931 ±0.0057 -0.0427 2920.58 ±1.02 -74.402% 530.47 ±0.15 -87.28% 4.07 ±0.046 -87.84%
ϕ1+ϕn+15ad 0.8929 ±0.0023 -0.0429 2924.69 ±1.13 -74.366% 524.87 ±0.13 -87.42% 3.99 ±0.000 -88.07%

20News

Full Length 0.7731 ±0.0025 - 11441.92 ±0.58 - 2124.75 ±0.41 - 12.26 ±0.002 -
ϕ1+10pn+10n 0.7559 ±0.0044 -0.0172 2928.46 ±1.63 -74.406% 268.98 ±0.03 -87.34% 1.48 ±0.001 -87.97%
20tf 0.7472 ±0.0027 -0.0259 2896.95 ±0.51 -74.681% 270.65 ±0.03 -87.26% 1.54 ±0.043 -87.46%
ϕ1+10tf 0.7472 ±0.0031 -0.0259 2925.58 ±0.75 -74.431% 271.74 ±0.00 -87.21% 1.50 ±0.003 -87.78%
10pn+10n+10ad 0.7448 ±0.0025 -0.0283 2896.69 ±2.55 -74.684% 267.27 ±0.12 -87.42% 1.47 ±0.001 -88.01%
ϕ1+ϕn+10tf 0.7445 ±0.0027 -0.0286 2932.98 ±1.46 -74.366% 268.66 ±0.11 -87.36% 1.47 ±0.001 -88.02%

CMLA11

Full Length 0.9449 ±0.0003 - 11410.96 ±2.01 - 9418.53 ±0.37 - 74.74 ±0.025 -
ϕ1+ϕn+10pn+5n 0.9251 ±0.0025 -0.0198 2851.36 ±2.77 -75.012% 1177.71 ±0.51 -87.5% 8.96 ±0.009 -88.01%
ϕ1+15pn+5n 0.9239 ±0.0006 -0.021 2896.86 ±1.38 -74.613% 1163.33 ±0.42 -87.65% 8.81 ±0.003 -88.21%
ϕ1+15pn+5v 0.9236 ±0.0015 -0.0213 2896.37 ±2.45 -74.618% 1165.31 ±0.07 -87.63% 8.86 ±0.000 -88.15%
ϕ1+ϕn+10tf 0.9225 ±0.0025 -0.0224 2931.78 ±1.55 -74.307% 1176.68 ±1.13 -87.51% 8.95 ±0.012 -88.02%
ϕ1+20pn 0.9222 ±0.0003 -0.0227 2896.46 ±1.71 -74.617% 1163.03 ±0.22 -87.65% 8.80 ±0.011 -88.22%

Table 3: Performance and resource utilization analysis for the top 5 context combinations, ranked and sorted by
Macro F1 scores across datasets (full results are available in the Appendix A). Results obtained by BERT-base
model, representing the median values from 5 runs with 5 random seeds. Full results available in Appexdix.
Evaluation focuses on model behavior, efficiency, and computational overhead when using reduced contextual input.

split for training, validation, and testing. AGNews356

(Zhang et al., 2015) is a news classification dataset357

containing 127,600 samples across 4 categories358

with an average length of 37.84 words, providing a359

balanced and compact testbed for short news clas-360

sification. BBC (Greene and Cunningham, 2006)361

news classification dataset contains larger and more362

structured news articles making it a perfect dataset363

for our tasks containing 2,225 samples in 5 cat-364

egories, with an average length of 390.3 words.365

ENRON (Klimt and Yang, 2004), a binary spam366

email classification dataset with 33,345 email sam-367

ples, has an average length of 306.77 words and368

reflects noisy, real-world text data. IMDB (Maas369

et al., 2011), a sentiment analysis dataset of 50,000370

movie reviews, offers binary labels with an average371

length of 231.16 words, testing models on subjec- 372

tive and variable-length input. 20 NewsGroups 373

(Lang, 1995) is a topic classification dataset that 374

comprises 18,846 samples across 20 topics, with 375

an average length of 181.67 words, presenting a 376

diverse topical challenge. 377

CMLA113, our custom dataset, comprises 378

110,000 carefully curated long articles from 26 379

sources across 11 categories, with an average 380

length of 716.64 words. The sources include 381

carefully selected newspapers, blogs, and mag- 382

azines. CMLA11 is designed to evaluate our 383

approaches on large articles from diverse sources, 384

including both American and British English 385

variations, to stress-test the models. Furthermore, 386

3Upon acceptance, we will publicly release the dataset.
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Dataset Context BERT DistilBERT RoBERTa ALBERT XLNet XLM-R ELECTRA score

AGNews

Full Length 0.9421 0.9395 0.9469 0.9369 0.9451 0.9567 0.9440 0.9445
ϕ1+ϕn 0.9414 0.9378 0.9444 0.9343 0.9406 0.9491 0.9404 0.9411
ϕ1+ϕn+10pn+5n 0.9408 0.9381 0.9459 0.9336 0.9433 0.9523 0.9406 0.9421
ϕ1+ϕn+10rk 0.9407 0.9369 0.9462 0.9373 0.9417 0.9520 0.9393 0.942
ϕ1+ϕn+10tf 0.9402 0.9389 0.9451 0.9337 0.9422 0.9498 0.9390 0.9413
ϕ1+ϕn+10pn+5v 0.9399 0.9353 0.9453 0.9341 0.9420 0.9395 0.9402 0.9395

BBC

Full Length 0.9888 0.9823 0.9911 0.9890 0.9821 0.9821 0.9910 0.9866
20rk 0.9888 0.9801 0.9783 0.9689 0.9664 0.9529 0.9776 0.9733
ϕ1+15n 0.9865 0.9442 0.9322 0.9397 0.9417 0.9372 0.9462 0.9468
15rk 0.9865 0.9801 0.9736 0.9733 0.9596 0.9594 0.9709 0.9719
ϕ1+10rk 0.9865 0.9823 0.9723 -0.9756 0.9743 0.9614 0.9821 0.9764
ϕ1+ϕn+10pn+5v 0.9843 0.9804 0.9750 0.9756 0.9760 0.9664 0.9818 0.9771

ENRON

Full Length 0.9957 0.9925 0.9967 0.9896 0.9970 0.9955 0.9964 0.9948
ϕ1+ϕn+10tf 0.9921 0.9881 0.9915 0.9854 0.9883 0.9879 0.9925 0.9894
ϕ1+15pn+5n 0.9918 0.9856 0.9882 0.9860 0.9883 0.9889 0.9918 0.9887
ϕ1+10pn+10n 0.9916 0.9883 0.9892 0.9874 0.9891 0.9895 0.9921 0.9896
ϕ1+10rk 0.9912 0.9862 0.9912 0.9845 0.9889 0.9882 0.9922 0.9889
ϕ1+ϕn+10pn+5n 0.9911 0.9871 0.9897 0.9859 0.9888 0.9886 0.9921 0.989

IMDB

Full Length 0.9358 0.9337 0.9592 0.9296 0.9584 0.9456 0.9607 0.9461
ϕ1+ϕn+10ad+5av 0.8938 0.8732 0.8961 0.8709 0.8976 0.8680 0.9159 0.8879
ϕ1+ϕn+15ad+10av 0.8936 0.8765 0.9014 0.8739 0.9081 0.8740 0.9164 0.8920
ϕ1+ϕn+10ad 0.8932 0.8716 0.8908 0.8698 0.8976 0.8675 0.9007 0.8845
ϕ1+ϕn+10ad+5n 0.8931 0.8727 0.8972 0.8727 0.8948 0.6839 0.9137 0.8612
ϕ1+ϕn+15ad 0.8929 0.8760 0.9056 0.8751 0.8958 0.8735 0.9167 0.8908

20News

Full Length 0.7731 0.7532 0.7591 0.7185 0.7844 0.7566 0.7454 0.7558
ϕ1+10pn+10n 0.7559 0.7333 0.7190 0.6629 0.7131 0.7062 0.7155 0.7151
20tf 0.7472 0.7202 0.6910 0.6637 0.7000 0.6841 0.6839 0.6986
ϕ1+10tf 0.7472 0.7260 0.7081 0.6738 0.7057 0.7011 0.6967 0.7084
10pn+10n+10ad 0.7448 0.7235 0.6932 0.6757 0.7076 0.6833 0.7076 0.7051
ϕ1+ϕn+10tf 0.7445 0.7211 0.7048 0.6686 0.7106 0.6920 0.6994 0.7059

CMLA11

Full Length 0.9449 0.9516 0.9622 0.9325 0.9587 0.9557 0.9567 0.9518
ϕ1+ϕn+10pn+5n 0.9251 0.9254 0.9389 0.9143 0.9234 0.9177 0.9305 0.9250
ϕ1+15pn+5n 0.9239 0.9291 0.9258 0.9151 0.9174 0.9149 0.9233 0.9214
ϕ1+15pn+5v 0.9236 0.9285 0.9238 0.9137 0.9161 0.9139 0.9275 0.9210
ϕ1+ϕn+10tf 0.9225 0.9253 0.9274 0.9076 0.9215 0.9172 0.9224 0.9206
ϕ1+20pn 0.9222 0.9262 0.9215 0.9105 0.9149 0.9147 0.9315 0.9202

Score 0.9166 0.9075 0.9102 0.8944 0.9089 0.8963 0.9115

Table 4: Macro F1 scores (median of 5 runs with different random seeds; standard deviations omitted due to page
width constraints) across different models on all datasets. The best 5 performing contexts by the BERT-base model
are selected for comparison to assess model performance in low-context training.

it aims to provide a balanced and well-curated text387

classification benchmark for future researchers388

in this domain. To build CMLA11, we carefully389

selected sources, scrapped articles using Beau-390

tifulSoup4, extracted plain texts, and removed391

outliers. The annotation was comparatively392

easier since instead of manual annotation, we393

extracted annotation directly from the article’s394

URL. Let U = {u1, u2, . . . , un} be the set of395

scraped URLs, and A = {a1, a2, . . . , an} be the396

corresponding articles. For each URL ui, a textual397

label L(ui) is extracted, which is then mapped398

to a numerical value N(L(ui)). Suppose ui =399

https://www.abc.com/sports/hdv5oaxsbp,400

then L(ui) = sports and N(L(ui)) = 5.401

4https://pypi.org/project/beautifulsoup4/

The dataset is represented as: D = 402

{(ai, N(L(ui)), L(ui)) | i ∈ {1, 2, . . . , n}} 403

4.2 Experimental Setup 404

Each model was trained on one of 5 NVIDIA 405

GTX 3090 GPUs (24GB each) in parallel, pow- 406

ered by an Intel Core i9-12900K CPU with 64GB 407

of RAM. For a comprehensive evaluation, we mea- 408

sured multiple performance metrics, including F1 409

(macro), GPU memory usage, training time, and 410

inference time. All reported results represent the 411

median of five runs, with standard deviations (σ) 412

also recorded. To analyze computational efficiency 413

in detail, we tracked GPU memory utilization (both 414

allocated and reserved) after each batch during both 415

training and evaluation using the pynvml library. 416
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4.3 Results417

As detailed in Table 3, the performance impact is418

minimal when comparing the full-length version419

with the best-performing reduced configurations420

across datasets. Based on BERT, five out of six421

datasets show an almost negligible drop (a mere422

0% to 1.98%), while even on IMDB, the differ-423

ence is as low as 4.2%, a small trade-off consid-424

ering the massive efficiency gains. All configu-425

rations deliver substantial computational savings426

while maintaining outstanding performance. For427

instance, on the AGNews dataset, using first and428

last sentences achieves a macro F1 score of 0.9414,429

with only a 0.0007 drop from the full-length dataset,430

while reducing GPU memory usage by 69.158%431

and training time by 81.77%. Similarly remarkable432

efficiency gains are observed in the BBC dataset,433

where using just 20 RAKE keywords maintains the434

full-length performance of 0.9888 while reducing435

GPU memory consumption by 75.19% and training436

time by 86.38%.437

The efficiency improvements extend across more438

challenging datasets. On ENRON, the combina-439

tion of first and last sentences with TF-IDF fea-440

tures (ϕ1+ϕn+10tf ) achieves a macro F1 score of441

0.9921, with only a 0.0036 decrease, reducing GPU442

memory usage by 74.476% and training time by443

86.62%. In IMDB, despite the complexity of sen-444

timent analysis, the ϕ1+ϕn+10ad+5av configura-445

tion achieves a macro F1 score of 0.8938, with446

GPU memory reduction of 74.400% and training447

time reduction of 87.27%. Unlike other datasets,448

reduced-context configurations in IMDB prioritiz-449

ing adjectives consistently outperformed alterna-450

tives, highlighting their role in sentiment analysis.451

On the 20News dataset, the ϕ1+10pn+10n con-452

figuration achieves a macro F1 score of 0.7559,453

with a 0.0172 decrease, reducing GPU memory454

usage by 74.406% and training time by 87.34%.455

For CMLA11, the ϕ1+ϕn+10pn+5n configuration456

maintains strong performance with a macro F1457

score of 0.9251, demonstrating the effectiveness of458

combining structural and semantic features while459

achieving GPU memory savings of 75.012% and460

training time reduction of 87.5%.461

Notably, inference time improvements are con-462

sistent across all datasets, with reductions ranging463

from 82.32% to 88.22%. This significant enhance-464

ment in inference efficiency, coupled with mini-465

mal performance degradation, suggests that our466

approach is particularly valuable for deployment467

scenarios where computational resources are con- 468

strained or where rapid inference is crucial. 469

Building on BERT-base findings, we extend 470

our analysis across 6 additional prominent NLU 471

models. Table 4 presents the Macro F1 scores 472

achieved by these models, evaluated on BERT’s 5 473

top-performing reduced-context configurations to 474

ensure consistent architectural comparison. BERT 475

maintains its strong performance, registering the 476

highest overall score of 0.9166, followed by ELEC- 477

TRA (0.9115) and RoBERTa (0.9102). Critically, 478

reduced-context learning frequently yields perfor- 479

mance comparable to, and in some cases exceeding, 480

that of full-length input. For instance, on AGNews, 481

the ϕ1+ϕn+10rk configuration, ALBERT even ex- 482

hibits a better performance than the full-length one. 483

On BBC, 20rk closely mirrors full-length perfor- 484

mance with BERT. For ENRON, ϕ1+10pn+10n 485

provides competitive results across all models. In 486

IMDB, reduced context settings, while maintaining 487

reasonable performance, exhibit a slight decline 488

compared to full-length input across all models. 489

A similar, though less pronounced, effect is ob- 490

served on 20News. These observations underscore 491

the importance of context selection and suggest 492

dataset-specific optimization. Intriguingly, certain 493

reduced-context combinations consistently demon- 494

strate strong performance across datasets and mod- 495

els. Specifically, ϕ1+ϕn+10pn+5n performs well 496

on AGNews and CMLA11; ϕ1+ϕn+10pn+5v on 497

BBC; ϕ1+10pn+10n on ENRON and 20News; and 498

ϕ1+ϕn+15ad+10av on IMDB. Notably, the inclu- 499

sion of first and last sentences (ϕ1+ϕn), combined 500

with syntactic features (pronouns, nouns) or se- 501

mantic markers (adjectives, verbs), appears to cap- 502

ture essential contextual information across diverse 503

text classification tasks. This finding suggests that 504

strategic selection of linguistic features in reduced 505

contexts can effectively preserve model perfor- 506

mance while substantially reducing input complex- 507

ity.

Dataset Full Size (MB) Reduced Size (MB) ∆ Size (%)
AGNews 30.89 27.43 -11.20%
BBC 4.82 0.65 -86.51%
ENRON 47.60 6.69 -85.95%
IMDB 65.91 12.36 -81.25%
20News 16.10 3.56 -77.89%
CMLA11 459.00 33.85 -92.63%

Table 5: Dataset size comparison: full-length articles vs.
averaged minimized-context datasets.

508
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Our analysis presents our context minimization509

techniques, which not only reduce computational510

resources, training, and inference time without511

compromising model performance but also con-512

tribute to data compression, achieving an average513

file size reduction of 72.57% across six diverse514

datasets, as detailed in Table 5. The most dra-515

matic reduction is observed in the CMLA11 dataset,516

where the data size is compressed by 92.63%, de-517

creasing from 459.00 MB to 33.85 MB. Similarly,518

other datasets show impressive size reductions:519

BBC (86.51% reduction), ENRON (85.95% re-520

duction), and IMDB (81.25% reduction). Even521

the smallest reduction, observed in the AGNews522

dataset, still represents an 11.20% decrease in data523

size.524

4.4 Discussion525

Our findings demonstrate the effectiveness of strate-526

gic context reduction in maintaining high model527

performance while achieving substantial compu-528

tational efficiency gains. The approach results529

in impressively minimal performance degradation530

across all six datasets when comparing full-length531

context with the best-performing reduced context.532

Specifically, the average degradation is 1.39%,533

1.75%, 2.26%, 2.17%, 2.88%, 3.10%, and 1.92%534

for BERT, DistilBERT, RoBERTa, ALBERT, XL-535

Net, XLM-R, and ELECTRA, respectively, while536

delivering significant benefits: 69–75% GPU mem-537

ory reduction, 81–87% training time improvement,538

and 82–88% faster inference across all datasets.539

In most cases, the first sentence, pronouns, and540

nouns provided sufficient semantic information for541

text classification tasks. Notably, adjective-focused542

configurations proved superior for sentiment anal-543

ysis on IMDB, highlighting the importance of544

targeted feature selection and revealing dataset-545

specific patterns. On the other hand, our analysis546

revealed a strong correlation between article length547

and dataset size reduction efficiency. Specifically,548

datasets containing longer articles exhibited greater549

potential for size reduction. This relationship is550

exemplified by the CMLA11 dataset, which con-551

tains articles with a mean length of 716.64 words552

and achieved the highest average reduction rate553

of 92.63%. In contrast, the AGNEWS dataset,554

characterized by substantially shorter articles with555

an average length of 37.84 words, demonstrated556

the lowest reduction rate of 11.20% among all six557

datasets examined. These results suggest that our558

context minimization approach provides a practi-559

cal solution for resource-efficient text classification 560

without significant performance trade-offs, mak- 561

ing it particularly valuable in resource-constrained 562

deployment scenarios. 563

5 Conclusion 564

This paper presents a systematic approach to con- 565

text minimization for efficient text classification 566

through strategic combinations of linguistic fea- 567

tures. Our evaluation across six datasets and seven 568

NLU models demonstrates that reduced-context 569

configurations maintain competitive performance 570

while enhancing efficiency. The method signifi- 571

cantly reduces dataset sizes while preserving accu- 572

racy, making it valuable for resource-constrained 573

environments. Future work should explore apply- 574

ing this approach to tasks such as natural language 575

inference, question answering, and text generation 576

to enable more efficient language model deploy- 577

ment. 578

Limitations 579

Our context minimization techniques, which lever- 580

age key linguistic features, reduce computational 581

resource requirements but may introduce biases 582

by omitting critical contextual information. While 583

we use well-established datasets, inherent societal 584

biases in web content could be amplified through 585

feature selection, potentially affecting fairness. Re- 586

duced context enhances efficiency but may over- 587

simplify complex classifications, requiring users 588

to assess its impact on accuracy. Finally, despite 589

conducting extensive experiments on 35 reduced- 590

context variants across six datasets with seven lan- 591

guage models, further exploration may reveal alter- 592

native low-context configurations that yield more 593

accurate results. 594

Ethical Considerations 595

To ensure transparency and reproducibility, we will 596

release our dataset, CMLA11, and all associated 597

code upon acceptance. Model results may vary 598

slightly due to factors like random seed initializa- 599

tion, data sampling order, and hardware dependen- 600

cies. It is crucial to assess trade-offs across differ- 601

ent application scenarios, particularly in sensitive 602

domains where misclassification can have serious 603

consequences. Practitioners must evaluate whether 604

reduced context can provide the necessary accuracy 605

and reliability. 606
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Dataset Context Macro F1 ∆ F1

AGNews

Full Length 0.9421 ± 0.0005 -
ϕ1+ϕn 0.9414 ± 0.0006 -0.0007
ϕ1+ϕn+10pn+5n 0.9408 ± 0.0029 -0.0013
ϕ1+ϕn+10rk 0.9407 ± 0.0004 -0.0014
ϕ1+ϕn+10tf 0.9402 ± 0.0004 -0.0019
ϕ1+ϕn+10pn+5v 0.9399 ± 0.0010 -0.0022
ϕ1+S 0.9394 ± 0.0005 -0.0027
ϕ1+15rk 0.9381 ± 0.0011 -0.0040
20rk 0.9380 ± 0.0003 -0.0041
ϕ1+10pn+10n 0.9364 ± 0.0022 -0.0057
ϕ1+10rk 0.9358 ± 0.0024 -0.0063
ϕ1+10pn+5ad 0.9352 ± 0.0025 -0.0069
ϕ1+15pn+5n 0.9349 ± 0.0022 -0.0072
ϕ1+10pn 0.9348 ± 0.0008 -0.0073
ϕ1+15pn+5ad 0.9347 ± 0.0017 -0.0074
ϕ1+15n 0.9346 ± 0.0010 -0.0074
ϕ1+10ad+10pn 0.9344 ± 0.0024 -0.0077
ϕ1+15pn 0.9341 ± 0.0026 -0.0080
ϕ1+5pn+5n+5ad 0.9340 ± 0.0009 -0.0081
ϕ1+5pn+5n+5ad+5v 0.9340 ± 0.0013 -0.0081
ϕ1+15pn+5v 0.9339 ± 0.0016 -0.0082
ϕ1+20pn 0.9337 ± 0.0027 -0.0084
15rk 0.9335 ± 0.0023 -0.0085
ϕ1+10tf 0.9334 ± 0.0013 -0.0087
ϕ1+10ne 0.9328 ± 0.0024 -0.0093
10pn+10n+10ad+10v 0.9327 ± 0.0004 -0.0094
ϕ1+15ad+5v 0.9307 ± 0.0007 -0.0114
ϕ1+20ad 0.9306 ± 0.0013 -0.0115
10pn+10n+10ad 0.9295 ± 0.0003 -0.0125
ϕ1+15ad 0.9292 ± 0.0010 -0.0129
ϕ1 0.9285 ± 0.0013 -0.0136
10pn+10n 0.9272 ± 0.0003 -0.0149
20tf 0.9214 ± 0.0007 -0.0207
15tf 0.9143 ± 0.0010 -0.0278
10tf+5pn 0.9134 ± 0.0010 -0.0287
10tf 0.9042 ± 0.0010 -0.0379

Table 6: Macro F1 scores for AGNews dataset across
different context settings. The Full Length setting rep-
resents the original dataset, while other configurations
use various low-context representations.

Dataset Context Macro F1 ∆ F1

BBC

Full Length 0.9888 ± 0.0067 -
20rk 0.9888 ± 0.0022 0
ϕ1+15n 0.9865 ± 0.0045 -0.0023
15rk 0.9865 ± 0.0032 -0.0023
ϕ1+10rk 0.9865 ± 0.0090 -0.0023
ϕ1+ϕn+10pn+5v 0.9843 ± 0.0022 -0.0045
ϕ1+ϕn+10rk 0.9843 ± 0.0022 -0.0045
10pn+10n+10ad 0.9843 ± 0.0067 -0.0045
ϕ1+10pn+5ad 0.9843 ± 0.0022 -0.0045
ϕ1+5pn+5n+5ad+5v 0.9843 ± 0.0022 -0.0045
ϕ1+15pn+5n 0.9843 ± 0.0022 -0.0045
ϕ1+15pn+5ad 0.9843 ± 0.0022 -0.0045
ϕ1+10tf 0.9843 ± 0.0067 -0.0045
ϕ1+ϕn+10pn+5n 0.9821 ± 0.0045 -0.0067
ϕ1+ϕn+10tf 0.9821 ± 0.0000 -0.0067
ϕ1+ϕn 0.9821 ± 0.0000 -0.0067
10pn+10n 0.9821 ± 0.0090 -0.0067
ϕ1+15ad+5v 0.9821 ± 0.0000 -0.0067
ϕ1+10pn+10n 0.9821 ± 0.0000 -0.0067
ϕ1+10pn 0.9821 ± 0.0045 -0.0067
ϕ1+15rk 0.9821 ± 0.0135 -0.0067
ϕ1+S 0.9798 ± 0.0022 -0.0090
10pn+10n+10ad+10v 0.9798 ± 0.0112 -0.0090
ϕ1+5pn+5n+5ad 0.9798 ± 0.0022 -0.0090
ϕ1+15pn+5v 0.9798 ± 0.0022 -0.0090
ϕ1+10ad+10pn 0.9776 ± 0.0045 -0.0112
ϕ1+10ne 0.9776 ± 0.0000 -0.0112
ϕ1+15pn 0.9776 ± 0.0045 -0.0112
ϕ1+20ad 0.9753 ± 0.0022 -0.0135
ϕ1+20pn 0.9731 ± 0.0000 -0.0157
ϕ1 0.9709 ± 0.0112 -0.0179
ϕ1+15ad 0.9709 ± 0.0067 -0.0179
20tf 0.9552 ± 0.0045 -0.0336
15tf 0.9395 ± 0.0157 -0.0493
10tf+5pn 0.9345 ± 0.0157 -0.0543
10tf 0.9214 ± 0.0157 -0.0674

Table 7: Macro F1 scores for BBC dataset across differ-
ent context settings. The Full Length setting represents
the original dataset, while other configurations use vari-
ous low-context representations.
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Dataset Context Macro F1 ∆ F1

ENRON

Full Length 0.9957 ± 0.0008 -
ϕ1+ϕn+10tf 0.9921 ± 0.0002 -0.0036
ϕ1+15pn+5n 0.9918 ± 0.0008 -0.0039
ϕ1+10pn+10n 0.9916 ± 0.0006 -0.0041
ϕ1+10rk 0.9912 ± 0.0006 -0.0045
ϕ1+ϕn+10pn+5n 0.9911 ± 0.0012 -0.0046
ϕ1+15rk 0.9909 ± 0.0002 -0.0048
ϕ1+10ad+10pn 0.9904 ± 0.0000 -0.0053
10pn+10n+10ad+10v 0.9900 ± 0.0002 -0.0057
ϕ1+ϕn+10rk 0.9900 ± 0.0016 -0.0057
ϕ1+5pn+5n+5ad 0.9898 ± 0.0006 -0.0059
ϕ1+15n 0.9895 ± 0.0009 -0.0062
ϕ1+ϕn+10pn+5v 0.9894 ± 0.0010 -0.0063
ϕ1+15pn+5ad 0.9892 ± 0.0006 -0.0065
20rk 0.9892 ± 0.0006 -0.0065
ϕ1+20pn 0.9891 ± 0.0008 -0.0066
ϕ1+10tf 0.9891 ± 0.0002 -0.0066
ϕ1+5pn+5n+5ad+5v 0.9888 ± 0.0008 -0.0069
ϕ1+15pn+5v 0.9882 ± 0.0010 -0.0075
10pn+10n+10ad 0.9879 ± 0.0002 -0.0078
ϕ1+10pn 0.9879 ± 0.0010 -0.0078
ϕ1+15pn 0.9877 ± 0.0003 -0.0080
15rk 0.9877 ± 0.0006 -0.0080
ϕ1+10pn+5ad 0.9876 ± 0.0008 -0.0081
20tf 0.9873 ± 0.0016 -0.0084
ϕ1+ϕn 0.9867 ± 0.0008 -0.0090
ϕ1+10ne 0.9867 ± 0.0002 -0.0090
10pn+10n 0.9864 ± 0.0008 -0.0093
ϕ1+15ad+5v 0.9862 ± 0.0006 -0.0095
ϕ1+20ad 0.9861 ± 0.0005 -0.0096
ϕ1+15ad 0.9855 ± 0.0005 -0.0102
ϕ1+S 0.9843 ± 0.0022 -0.0114
15tf 0.9838 ± 0.0018 -0.0119
10tf+5pn 0.9785 ± 0.0000 -0.0172
ϕ1 0.9741 ± 0.0031 -0.0216
10tf 0.9625 ± 0.0000 -0.0332

Table 8: Macro F1 scores for ENRON dataset across
different context settings. The Full Length setting rep-
resents the original dataset, while other configurations
use various low-context representations.

Dataset Context Macro F1 ∆ F1

IMDB

Full Length 0.9358 ± 0.0020 -
ϕ1+ϕn+10ad+5av 0.8938 ± 0.0028 -0.0420
ϕ1+ϕn+15ad+10av 0.8936 ± 0.0032 -0.0422
ϕ1+ϕn+10ad 0.8932 ± 0.0044 -0.0426
ϕ1+ϕn+10ad+5n 0.8931 ± 0.0057 -0.0427
ϕ1+ϕn+15ad 0.8929 ± 0.0023 -0.0429
ϕ1+ϕn+10tf 0.8923 ± 0.0077 -0.0435
ϕ1+ϕn+10rk 0.8908 ± 0.0048 -0.0450
ϕ1+ϕn+10ad+5v 0.8901 ± 0.0015 -0.0457
ϕ1+ϕn+10rk+10ad 0.8872 ± 0.0068 -0.0486
ϕ1+ϕn 0.8817 ± 0.0055 -0.0541
ϕ1+10ad+5rk 0.8721 ± 0.0004 -0.0637
ϕ1+15ad+10v 0.8693 ± 0.0087 -0.0665
ϕ1+15rk 0.8641 ± 0.0013 -0.0717
ϕ1+15ad+5v 0.8624 ± 0.0042 -0.0734
ϕ1+10ad+5pn+5v 0.8612 ± 0.0060 -0.0746
ϕ1+15ad 0.8607 ± 0.0027 -0.0751
ϕ1+10rk 0.8598 ± 0.0044 -0.0760
ϕ1+10ad+10pn 0.8592 ± 0.0024 -0.0766
20rk 0.8591 ± 0.0027 -0.0767
ϕ1+10ad+5n+5v 0.8583 ± 0.0027 -0.0775
10pn+10n+10ad+10v 0.8575 ± 0.0037 -0.0783
ϕ1+5pn+5n+5ad+5v 0.8561 ± 0.0011 -0.0797
ϕ1+5pn+5n+5ad 0.8521 ± 0.0023 -0.0837
ϕ1+5ad+5+ADV+5v 0.8517 ± 0.0051 -0.0841
10pn+10n+10ad 0.8502 ± 0.0012 -0.0856
ϕ1+10pn+5ad 0.8495 ± 0.0005 -0.0863
15rk 0.8492 ± 0.0008 -0.0866
ϕ1+15pn+5ad 0.8488 ± 0.0022 -0.0870
ϕ1+S 0.8481 ± 0.0039 -0.0877
20tf 0.8461 ± 0.0006 -0.0897
ϕ1+10tf 0.8453 ± 0.0089 -0.0905
ϕ1+10pn+10n 0.8376 ± 0.0002 -0.0982
ϕ1+15pn+5n 0.8335 ± 0.0035 -0.1023
ϕ1+15pn+5v 0.8306 ± 0.0028 -0.1052
ϕ1+15n 0.8281 ± 0.0003 -0.1077

Table 9: Macro F1 scores for IMDB dataset across
different context settings. The Full Length setting rep-
resents the original dataset, while other configurations
use various low-context representations.
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Dataset Context Macro F1 ∆ F1

20News

Full Length 0.7731 ± 0.0025 -
ϕ1+10pn+10n 0.7559 ± 0.0044 -0.0172
20tf 0.7472 ± 0.0027 -0.0259
ϕ1+10tf 0.7472 ± 0.0031 -0.0259
10pn+10n+10ad 0.7448 ± 0.0025 -0.0283
ϕ1+ϕn+10tf 0.7445 ± 0.0027 -0.0286
ϕ1+15rk 0.7412 ± 0.0055 -0.0319
10pn+10n 0.7407 ± 0.0005 -0.0324
ϕ1+5pn+5n+5ad+5v 0.7390 ± 0.0038 -0.0341
10pn+10n+10ad+10v 0.7387 ± 0.0093 -0.0344
ϕ1+ϕn+10pn+5n 0.7380 ± 0.0005 -0.0351
ϕ1+10rk 0.7374 ± 0.0060 -0.0357
ϕ1+15pn+5n 0.7366 ± 0.0046 -0.0365
ϕ1+ϕn+10rk 0.7363 ± 0.0038 -0.0368
15rk 0.7244 ± 0.0003 -0.0487
ϕ1+5pn+5n+5ad 0.7236 ± 0.0082 -0.0495
15tf 0.7111 ± 0.0096 -0.0620
ϕ1+15n 0.7092 ± 0.0016 -0.0639
20rk 0.6973 ± 0.0063 -0.0758
ϕ1+ϕn+10pn+5v 0.6971 ± 0.0011 -0.0760
ϕ1+15pn+5ad 0.6875 ± 0.0035 -0.0856
ϕ1+15pn+5v 0.6834 ± 0.0131 -0.0897
ϕ1+10pn+5ad 0.6815 ± 0.0106 -0.0916
ϕ1+10ad+10pn 0.6790 ± 0.0038 -0.0941
ϕ1+15pn 0.6760 ± 0.0074 -0.0971
ϕ1+20pn 0.6760 ± 0.0019 -0.0971
ϕ1+10pn 0.6758 ± 0.0082 -0.0973
10tf+5pn 0.6754 ± 0.0000 -0.0977
ϕ1+10ne 0.6703 ± 0.0038 -0.1028
ϕ1+S 0.6676 ± 0.0066 -0.1055
ϕ1+ϕn 0.6362 ± 0.0025 -0.1369
ϕ1+15ad+5v 0.6285 ± 0.0035 -0.1446
ϕ1+20ad 0.6149 ± 0.0041 -0.1582
ϕ1+15ad 0.6111 ± 0.0074 -0.1620
ϕ1 0.5675 ± 0.0011 -0.2056
10tf 0.5626 ± 0.0000 -0.2105

Table 10: Macro F1 scores for 20NewsGroup dataset
across different context settings. The Full Length setting
represents the original dataset, while other configura-
tions use various low-context representations.

Dataset Context Macro F1 ∆ F1

CMLA11

Full Length 0.9449 ± 0.0003 -
ϕ1+ϕn+10pn+5n 0.9251 ± 0.0025 -0.0198
ϕ1+15pn+5n 0.9239 ± 0.0006 -0.0210
ϕ1+15pn+5v 0.9236 ± 0.0015 -0.0213
ϕ1+ϕn+10tf 0.9225 ± 0.0025 -0.0224
ϕ1+20pn 0.9222 ± 0.0003 -0.0227
ϕ1+ϕn+10pn+5v 0.9218 ± 0.0005 -0.0231
ϕ1+10pn+10n 0.9218 ± 0.0017 -0.0231
ϕ1+15pn+5ad 0.9192 ± 0.0016 -0.0257
ϕ1+15pn 0.9189 ± 0.0012 -0.0260
ϕ1+5pn+5n+5ad+5v 0.9176 ± 0.0009 -0.0273
ϕ1+ϕn+10rk 0.9171 ± 0.0021 -0.0278
ϕ1+10pn+5ad 0.9165 ± 0.0005 -0.0284
ϕ1+10rk 0.9144 ± 0.0001 -0.0305
ϕ1+10ad+10pn 0.9135 ± 0.0012 -0.0314
ϕ1+15rk 0.9132 ± 0.0014 -0.0317
ϕ1+5pn+5n+5ad 0.9130 ± 0.0005 -0.0319
ϕ1+10pn 0.9125 ± 0.0011 -0.0324
ϕ1+10tf 0.9083 ± 0.0009 -0.0366
ϕ1+S 0.9076 ± 0.0008 -0.0373
ϕ1+10ne 0.9065 ± 0.0033 -0.0384
10pn+10n+10ad+10v 0.9042 ± 0.0032 -0.0407
ϕ1+15n 0.9030 ± 0.0005 -0.0419
ϕ1+ϕn 0.9024 ± 0.0001 -0.0425
ϕ1+15ad+5v 0.8948 ± 0.0013 -0.0501
ϕ1+20ad 0.8880 ± 0.0002 -0.0569
ϕ1+15ad 0.8871 ± 0.0007 -0.0578
10pn+10n+10ad 0.8867 ± 0.0019 -0.0582
10pn+10n 0.8767 ± 0.0010 -0.0682
15rk 0.8647 ± 0.0012 -0.0802
20rk 0.8635 ± 0.0003 -0.0814
ϕ1 0.8594 ± 0.0018 -0.0855
20tf 0.8490 ± 0.0034 -0.0959
10tf+5pn 0.8394 ± 0.0002 -0.1055
15tf 0.8317 ± 0.0020 -0.1132
10tf 0.8125 ± 0.0013 -0.1324

Table 11: Macro F1 scores for CMLA11 dataset across
different context settings. The Full Length setting rep-
resents the original dataset, while other configurations
use various low-context representations.
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