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ABSTRACT

Out-of-distribution (OOD) detection is critical for the reliable deployment and better un-
derstanding of deep learning models. To address this challenge, various methods rely-
ing on Mahalanobis distance were proposed and widely employed. However, the im-
pact of representation geometry and feature normalization on the OOD performance of
Mahalanobis-based methods is still not fully understood, which may limit their down-
stream application. To address this gap, we conducted a comprehensive empirical study
across diverse image foundation models, datasets, and distance normalization schemes.
First, our analysis shows that Mahalanobis-based methods aren’t universally reliable. Sec-
ond, we define the ideal geometry for data representations and demonstrate that spectral
and intrinsic-dimensionality metrics can accurately predict a model’s out-of-distribution
(OOD) performance. Finally, we analyze how normalization impacts OOD performance.
Building upon these studies, we propose a conformal generalization of recently proposed
ℓ2 normalization that allows to control the degree of radial expansion of the representa-
tions geometry, which in turn helps improve OOD detection. By bridging the gap between
representation geometry, normalization, and OOD performance, our findings offer new
insights into the design of more effective and reliable deep learning models.

1 INTRODUCTION

Out-of-distribution (OOD) detection is foundational for building reliable, open-world vision systems, yet
consistent evaluation at scale—especially with modern foundation models—remains challenging and es-
sential for practice. Mahalanobis-based detectors (Lee et al., 2018) are surprisingly simple yet powerful
baselines that often achieve state-of-the-art performance (Mueller & Hein, 2025; 2024). At its core, this
approach models the feature distribution of in-distribution data—typically by fitting class-conditional mul-
tivariate Gaussians—and flags an input as OOD if its feature representation is far from all class centroids.
While effective, it is not fully understood why this simple metric works so well or how the complex geom-
etry of high-dimensional representations contributes to its success. This paper systematically investigates
this question, revealing that representation geometry and feature normalization are the primary drivers of
Mahalanobis-based OOD detection performance and providing a practical method to optimize them.

We begin our work by benchmarking a diverse set of self-supervised models, revealing significant variance
in the inherent OOD detection capabilities of their representations. We then demonstrate that this variance
is not random, but correlates strongly with measurable geometric properties of the in-distribution feature
space, such as its intrinsic dimensionality and spectral structure. Unlike prior works Ren et al. (2021);
Mueller & Hein (2025) focused on refining the distance metric itself, we introduce a direct control knob for
the geometry of the representation: a β-scaled ℓ2 normalization that conformally contracts or expands the
feature space. This allows us to reshape the representation to better suit the detector. Finally, we demonstrate
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Figure 1: Effect of β-scaled ℓ2 normalization effect 2D feature geometry and Mahalanobis decision sur-
faces. Optimal β improve OOD detection performance. Gray arrows indicate the mapping from the original
to the transformed space. Increasing β contracts norms and tightens clusters, yielding smoother, more local-
ized decision regions; negative β spreads points and broadens regions. Choosing an appropriate β improves
class separation and downstream OOD detection.

that a simple regression model can predict this optimal β, without access to target OOD data, achieving
nearly the same performance as an oracle with access to OOD samples. Our main contributions are:

1. A comparative study of several Mahalanobis-based OOD detectors across diverse models, including
a per-dimension analysis of its variants.

2. An analysis revealing that OOD performance is strongly predicted by the in-distribution geometry
of features, such as spectral decay and intrinsic rank.

3. The introduction of β-scaled ℓ2 normalization and a method to predict the optimal β using only
in-distribution data.

2 RELATED WORK

Out-of-distribution (OOD) detection is essential for ensuring the reliability of machine learning systems
in real-world deployment (Fort et al., 2021). Its goal is to identify whether inputs stem from the training
distribution, thus preventing overconfident predictions on unexpected data (Yang et al., 2024). Post-hoc,
training-free methods are particularly effective, as they combine efficiency with robustness without altering
the model (Xu et al., 2023). Among OOD detection methods, Mahalanobis distance has become a corner-
stone (Lee et al., 2018), with several refinements improving its robustness and performance. The standard
Mahalanobis distance (MD) uses class-conditional covariance estimates to measure the distance of a sample
from each class mean. In contrast, the Relative Mahalanobis distance (RMD) (Ren et al., 2021) compares
each class-specific distance to a single global Gaussian fitted to all in-distribution (ID) data, effectively
normalizing class distances against a global reference. Mahalanobis++ (Mueller & Hein, 2025) further
improves performance by L2-normalizing features, making them adhere more closely to the Gaussian as-
sumptions underlying the Mahalanobis distance. However, our sudy reveals broader insight on the influence
of normalization while computing Mahalanobis distance, particularly in the context of vision models.

Vision OOD detection has shifted toward leveraging large-scale pretraining and contrastive objectives, where
vision transformers Dosovitskiy et al. (2021) and CLIP Radford et al. (2021) show strong near-OOD per-
formance and benefit markedly from few-shot outlier exposure and even label-only supervision for outlier
classes (Fort et al., 2021). However, full fine-tuning can distort pretrained representations and harm OOD
generalization relative to linear probing, with similar cautions for vision–language models; recent work also
explores training-time scaling and post-hoc enhancements, and revisits detector design in vision founda-
tion models (Fort et al., 2021; Ming & Li, 2024; Xu et al., 2023; Zhao et al., 2024b). Evaluation rigor
has improved through ImageNet-scale suites like NINCO that mitigate in-distribution leakage, while theory
and diagnostics connect feature separability to OOD error and delineate when OOD detection is learnable
(Bitterwolf et al., 2023; XIE et al., 2023).
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Representation geometry and normalization have attracted increased attention for their role in OOD gener-
alization. Analyses of contrastive learning and normalization approaches (Le-Gia & Ahn, 2023; Tan et al.,
2025) show that geometric priors, such as hyperspherical projection or ℓ2 normalization, can yield more
robust representation spaces. Studies like (Zhao et al., 2024a) and (XIE et al., 2023) link improved feature
separability and lower intrinsic dimensionality to higher OOD detection performance.

3 COMPARATIVE STUDY OF SELF-SUPERVISED MODELS

3.1 BACKGROUND

Let z′ = f(x′) ∈ Rd be the feature representation of a test image input x′, and let {N (µk,Σ)}Kk=1 denote
the K class–conditional Gaussian distributions fitted to in–distribution (ID) training data.

Mahalanobis distance (MD) (Lee et al., 2018) measures the squared distance of z′ from the mean of each
class: MDk(z

′) = (z′ − µk)
⊤Σ−1(z′ − µk). A confidence score is obtained as the negative minimum

distance, C(x′) = −mink MDk(z
′).

Relative Mahalanobis distance (RMD) (Ren et al., 2021) compares the class-specific distance to a single
global Gaussian fitted to all ID data, the marginal Mahalanobis distance (MMD): MD0(z

′) = (z′ −
µ0)

⊤Σ−1
0 (z′ − µ0), and defines the RMD score as: RMDk(z

′) = MDk(z
′) − MD0(z

′). This effectively
normalizes class distances against a global reference.

Eigenvalue Decomposition. Let Σ = UΛU⊤ be the eigendecomposition of the shared covariance matrix,
where Λ = diag(λ1, . . . , λd) and U is orthonormal. As shown in (Mueller & Hein, 2025), in this basis the
regular Mahalanobis distance decomposes as

MDk(z
′) =

d∑
i=1

[
u⊤
i (z

′ − µk)
]2

λi
, (1)

revealing the contribution of each principal component. The eigenvalues {λi} quantify the spread of in-
distribution features along each direction; small λi correspond to directions of small variance and thus high
discriminative power for OOD detection.

3.2 CROSS-MODEL OOD DETECTION PERFORMANCE
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Figure 2: OOD detection performance across model
families on the NINCO. RMD consistently outper-
forms the standard MD, especially for models pre-
trained but not fine-tuned on ImageNet.

Understanding how different representation learn-
ing strategies affect OOD detection is a critical
first step in our study. Mahalanobis-based detec-
tors are widely used, but their sensitivity to model
architecture, pretraining data, and fine-tuning is
not well characterized. We therefore begin with
a broad, model-agnostic comparison to answer a
simple question: Which modern self-supervised or
pretrained vision models produce representations
that naturally lend themselves to Mahalanobis-style
OOD detection?

To this end, we gathered publicly available checkpoints from timm (Wightman, 2019) and
huggingface-transformers (Wolf et al., 2020), spanning a range of architectures, sizes, and pre-
training objectives. Following the OpenOOD protocol (Yang et al., 2022), we evaluate on five standard
benchmarks—NINCO (Bitterwolf et al., 2023), iNaturalist (Van Horn et al., 2018), SSB-Hard (Bitterwolf
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et al., 2023), OpenImages-O (Krasin et al., 2017), and Textures (Cimpoi et al., 2014). Performance is re-
ported as the false positive rate at 95% true positive rate (FPR@95 or FPR). Additional implementation
details and a full model list appear in the Appendix.

Key Insights (Figure 2) (1) RMD consistently improves performance over standard Mahalanobis distance,
with the largest gains in models pretrained—but not fine-tuned—on ImageNet. For example, RMD markedly
boosts the OOD detection of EVA02-In21k and ViT-In21k, matching or surpassing their fine-tuned counter-
parts. This weakens the usual correlation between in-distribution accuracy and FPR and yields more uniform
score distributions. (2) Classification accuracy is not a reliable proxy for OOD performance. Substantial
accuracy gaps (often > 10%) do not necessarily translate into improved detection, though we observe a mild
correlation along the fine-tuning sequence In1k → In22k-In1k → large In22k-In1k models (complete results
in Appendix D.1).

3.3 MAHALANOBIS VARIANTS AND PER-DIMENSION ANALYSIS

Having established cross-model trends, we next ask: Which aspects of the Mahalanobis representation
space actually drive OOD discrimination? Beyond aggregate scores, the structure of individual feature
dimensions may reveal why certain models excel while others falter. We therefore conduct a detailed
per-dimension investigation using three Mahalanobis variants—regular, marginal, and relative. Using the
decomposition in Eq. equation 1, we define the OOD separation of the i-th eigenvector direction as the
difference between its mean contribution for out-of-distribution samples and for in-distribution samples:

Si = Ex′∼DOOD

[[
u⊤
i (z′−µk)

]2
λi

]
− Ex∼DID

[[
u⊤
i (z−µk)

]2
λi

]
. Here Si quantifies how strongly dimension i

separates OOD from in-distribution data; positive values indicate greater OOD spread along that eigen-
direction. The eigenvalues {λi} are sorted in descending order (λ1 ≥ λ2 ≥ · · · ≥ λd), so dimension i on
subsequent plots corresponds to the i-th largest eigenvalue.

Figure 3 presents two complementary analyses. The top row reports OOD separation, exposing which
latent directions contribute most to detection. The bottom row shows a dimension-ablation study: we
incrementally compute FPR using the first K principal components (forward) or start from the least-variant
dimensions (backward).
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Figure 3: Dimension-wise analysis of OOD separation (top) and FPR under progressive dimension ablation
(bottom). Large embedding-space separation does not necessarily guarantee superior detection.

Key Insights (1) Large OOD separation Si do not always yield lower FPR: for example, BEiTV2 FT
In1k exhibits stronger separation across all three distance metrics yet performs on par with—or worse
than—BEiTV2 FT In21k. (2) The number of dimensions required for optimal detection varies widely: some
models saturate quickly, whereas others need nearly the full spectrum. Backward ablation reveals that ViT
In21k achieves its best FPR using only the second half of the spectrum, indicating that directions of smaller
explained variance can be more discriminative for OOD-ness. (3) MMD results show that certain models
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rely heavily on class-discriminative features, while others—such as CLIP—spread OOD samples far from
ID data regardless of their classes, consistently achieving low MMD scores.

4 GEOMETRY OF REPRESENTATIONS

In the previous section we showed that no single OOD method yield consistent performance and behavior
across multiple models. In fact, different SSL models and pretraining regimes produce representations with
distinct geometric properties, indicating that OOD performance depends on the intrinsic structure of the
representation space. To understand these effects, we analyze the internal geometry of model represen-
tations, seeking to answer: What internal characteristics of a model’s feature space predict strong OOD
detection, and how do pretraining and fine-tuning shape these characteristics?

4.1 SPECTRAL ANALYSIS

To understand how the intrinsic geometry of representations affects OOD performance, we begin by exam-
ining the spectral properties of three key matrices: the feature covariance C, the within-class scatter Sw, and
the between-class scatter Sb. These matrices capture complementary aspects of the feature space: C reflects
overall variance, Sw measures intra-class dispersion, and Sb quantifies inter-class separation (more details in
Appendix A). Our first analysis focuses on the eigenvalue spectra of these matrices. The magnitude and de-
cay of eigenvalues reveal how variance is distributed across dimensions, providing insight into the richness
and anisotropy of the feature space. For instance, a steep decay in Sw eigenvalues indicates that intra-class
variability is concentrated along a few directions, resulting in tight clusters, whereas a slower decay sug-
gests more diffuse intra-class variation. Similarly, large eigenvalues in Sb correspond to well-separated class
means, signaling strong discriminability.
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Figure 4: Spectral ratios across models. Higher ratios indicate richer within-class variation and more ex-
pressive feature spaces. Fine-tuning tends to increase Sb while preserving Sw.

Spectral ratios To systematically compare models, we compute ratios between eigenvalues of Sb, Sw,
and C. These ratios serve as compact summaries of representation geometry. Higher Sb/Sw ratios indicate
representations with greater between-class separation relative to intra-class spread, which generally favors
OOD detection, while lower ratios may signal overlapping clusters or limited discriminative power. A higher
C ratio indicates that variance is distributed along multiple directions, reflecting a richer and more expressive
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representation that can better accommodate novel OOD inputs without major distortion. As illustrated in
Figure 4, models pretrained on large, diverse datasets (e.g., In21k) exhibit larger C and Sw ratios, capturing
richer intra-class variations and producing more expressive feature spaces. Fine-tuning tends to increase Sb

ratios while preserving Sw, enhancing class separability without sacrificing cluster compactness. Models
trained on smaller datasets exhibit smaller ratios, reflecting less expressive representations with weaker
discriminability.

Eigenvalue shifts Beyond static spectra, we are interested in how stable the representation geometry is un-
der distributional shifts. To capture this, we define a spectral shift metric, which measures the relative change
in eigenvalues from the training set to validation or OOD data (see Appendix A). A small shift indicates that
the representation preserves its structure across data splits, signaling robustness. Large positive shifts reveal
that features are spreading along new directions, while large negative shifts indicate compression. Figure 4
shows that OOD samples induce larger spectral shifts in models trained on small datasets, reflecting lower
generalization and brittle feature structures. Large-scale pretrained models show smaller shifts, indicating
more stable, robust representations under distributional change. Fine-tuning generally maintains small shifts
while increasing Sb, improving class separation without compromising intra-class compactness.

4.2 GEOMETRIC TRADE-OFFS

To systematically identify what makes a representation “good” for OOD detection, we correlate spectral and
manifold-based metrics with detection performance. The geometry of the representations is assessed with
two complementary families of measures: manifold-geometry metrics—including Intrinsic Dimensional-
ity (ID) and Local Intrinsic Dimensionality (LID) (Ma et al., 2018)—and eigenvalue-based metrics (e.g.,
Entropy, Slope, Fisher Ratio) computed on the covariance matrix C and the Fisher scatter matrices Sw and
Sb. A complete description of all metrics is provided in Appendix B. Correlation analysis, visualized in
Figure 5, highlights several metrics that correlate strongly with OOD performance.

Figure 5: Spearman correlations between representation metrics and OOD performance across Mahalanobis
variants. The three Mahalanobis-based detectors exploit different geometric cues, which explains their dis-
tinct correlation patterns.

Key insights Mahalanobis distance shows moderate correlation with individual metrics; its sensitivity to
the global eigen-spectrum can make it less reliable for ambiguous OOD regions. Relative Mahalanobis
emphasizes how well features fit their class cluster by normalizing out global variance. It correlates strongly
with Sw metrics, such as entropy and eigenvalue decay, reflecting the importance of compact, well-separated
clusters. Marginal Mahalanobis ignores class structure and correlates primarily with global metrics (C and
Sb), indicating that its success depends on overall manifold shape rather than per-class separation.

6
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4.3 IDEAL GEOMETRY

OOD detection performance depends on both the magnitude of separation between ID and OOD features and
the internal structure of the representation. Ideally, an effective representation exhibits a balance between
local manifold complexity and intra-class compactness: low-dimensional manifolds require tighter clusters
to separate OOD data, while high-dimensional manifolds allow looser clusters, as extra directions naturally
push OOD samples away. This “ideal geometry” reflects a compensatory relationship between these two
principles. However, as we observed in Sections 3.3 and 4.2, single metrics fail to satisfy both principles
simultaneously. Models with larger raw feature separation can perform worse than models with smaller
separation, indicating that additional geometric properties beyond simple separation are critical for reliable
detection. While individual metrics provide insight, they capture only a single aspect of the geometry.

Figure 6: Correlation of the product of LID and Sw slope with OOD detection performance. Minimizing the
absolute value indicates an optimal balance between manifold richness and cluster compactness.

To address this limitation, we consider combinations of metrics across different geometric aspects. In partic-
ular, the product of LID and the slope of Sw strongly predicts OOD performance, which is shown in Figure
6. For the standard MD, this combined metric achieves a Spearman correlation of ρs = 0.85, and it remains
highly predictive for RMD and MMD (ρs = 0.72 and 0.74, respectively).

In practice, when the feature manifold is locally simple (low LID), the model has fewer dimensions to sep-
arate ID and OOD data, requiring extremely tight and compact class clusters (a steep, negative slope). The
detector thus relies on strict confinement of ID data to identify outliers. Conversely, when the manifold
is locally rich and complex (high LID), the space itself helps isolate OOD samples, allowing less com-
pact clusters (a shallower slope), as high dimensionality drives OOD separation. The product of LID and
slope reaches its ideal when minimized in absolute magnitude, reflecting the optimal balance between local
manifold richness and cluster compactness.

5 NORMALIZATION EFFECTS

Our preceding analysis has established that the efficacy of Mahalanobis-based OOD detectors is intrinsically
linked to the geometric structure of a model’s feature space. Yet, even when the geometry is favorable,
standard Mahalanobis distance assumes Gaussian-distributed features with tied covariance, an assumption
often violated in practice. Empirical studies, such as Mahalanobis++ (Mueller & Hein, 2025), show that deep
neural network features frequently exhibit heavy-tailed distributions and large variations in feature norms.
These deviations imply that ID features do not occupy a single, globally Euclidean space; instead, they lie on
a collection of low-dimensional, non-Euclidean submanifolds. Consequently, the raw Mahalanobis metric
can misestimate distances, undermining OOD detection. These observations motivate explicit control over
feature geometry: by adjusting feature magnitudes we can either better satisfy the Mahalanobis assumptions
or deliberately reshape the space to improve OOD separation.
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Table 1: False-positive rate (FPR) across models (averaged over datasets) using different Mahalanobis
variants: MD* uses the empirically optimal β, M̂D uses the regression-predicted β̂, MD (standard) fixes
β = 0, and MD++ (Mahalanobis++) fixes β = 1. The regression-guided detector generally outperforms
fixed-β settings.

Detector BEiTV2
In1k

BEiTV2
In21k ViT ViT

In21K
ViT

In21K In1k
ViT-L

In21K In1k DeiT3 DeiT3
In21k In1k

DeiT3-L
In22k In1k EVA02 EVA02

In21k
EVA02

In21k In1k
EVA02-L

In22k In1k
ViT CLIP

In1k
ViT CLIP
In12k In1k Average

MD* 0.365 0.244 0.445 0.493 0.327 0.229 0.425 0.348 0.320 0.378 0.468 0.369 0.351 0.364 0.246 0.358
M̂D 0.375 0.274 0.456 0.518 0.346 0.239 0.428 0.356 0.333 0.401 0.498 0.383 0.368 0.386 0.254 0.375
MD 0.402 0.436 0.457 0.532 0.357 0.253 0.433 0.376 0.366 0.534 0.565 0.408 0.370 0.402 0.335 0.415
MD++ 0.376 0.298 0.454 0.577 0.387 0.282 0.430 0.356 0.342 0.446 0.506 0.382 0.378 0.382 0.278 0.392

RMD* 0.363 0.312 0.442 0.378 0.365 0.259 0.386 0.331 0.335 0.426 0.358 0.373 0.308 0.366 0.294 0.353
ˆRMD 0.367 0.324 0.443 0.392 0.375 0.268 0.390 0.338 0.347 0.442 0.368 0.383 0.314 0.370 0.297 0.361

RMD 0.391 0.331 0.449 0.398 0.376 0.269 0.408 0.366 0.376 0.440 0.367 0.403 0.326 0.403 0.325 0.375
RMD++ 0.373 0.325 0.446 0.398 0.376 0.269 0.399 0.351 0.359 0.440 0.377 0.391 0.318 0.386 0.309 0.368

5.1 CONFORMAL ℓ2 NORMALIZATION

To control the geometry of the representation space and mitigate the sensitivity to raw feature norms, we
introduce a conformal ℓ2 normalization that applies a radially symmetric conformal map to each feature
vector. For a feature z ∈ Rd \ {0}, the transformation is defined as:

ϕβ(z
′) =

z′

∥z′∥β
, (2)

where the scalar parameter β ∈ R governs the amount of radial scaling. This mapping is angle-preserving
(conformal) and induces the Riemannian metric gβ = ∥z′∥−2βgEuc, where distances in the transformed
space are measured with respect to a conformally rescaled Euclidean metric. The new radius of the feature
is given by ∥ϕβ(z)∥ = ∥z∥1−β (see Figure 1 and Appendix C for details).

2 1 0 1 2 3

BEiTV2 In1k
BEiTV2 In21k

ViT
ViT In21K

ViT In21K In1k
ViT-L In21K In1k

DeiT3
DeiT3 In21k In1k

DeiT3-L In22k In1k
EVA02

EVA02 In21k
EVA02 In21k In1k

EVA02-L In22k In1k
ViT CLIP In1k

ViT CLIP In12k In1k

MD
RMD

Figure 7: Distribution of empirically
optimal β for MD and RMD detectors
across OOD datasets. High variability in-
dicates model- and dataset-specific tun-
ing is needed.

Intuitively, adjusting β allows us to compress or expand the fea-
ture space radially, controlling how tightly features cluster near
the origin or how much “empty space” surrounds them:

• β < 0: Radii are expanded, aggressively emphasizing
differences between norms.

• β = 0: Radii are unchanged, corresponding to the stan-
dard Mahalanobis distance.

• 0 < β < 1: Radii are compressed, while preserving
relative ordering.

• β = 1: All points are projected onto the unit sphere,
equivalent to the MD++ normalization.

• β > 1:Features farther from the origin are pulled in-
ward more strongly than those closer, creating strong
radial contraction.

By tuning β, we obtain a flexible mechanism to shape the feature
geometry, providing a simple yet powerful knob for improving
OOD separation while maintaining compact ID clusters.

5.2 PREDICTING THE OPTIMAL β

Our experiments show that the optimal conformal parameter β is highly model- and dataset-dependent,
reflecting the intrinsic geometry of the learned representations. Moderate positive values often align the
feature distribution with the Gaussian, tied-covariance assumptions of the Mahalanobis detector, yet in some
cases larger or even negative values yield stronger in/out-of-distribution separation. Consequently, a fixed
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choice of β is rarely optimal. Figure 7 shows the empirically optimal β values (searched over [−2, 3] in
0.25 steps) for MD and RMD detectors across different OOD datasets. The wide spread of optimal values
underscores that a one-size-fits-all approach is ineffective.

Regression Framework. To eliminate the need for tuning on the target OOD dataset, we train a regression
model that predicts β using in-distribution geometry metrics, while allowing it to learn from other OOD
datasets. We adopt a Leave-One-Dataset-Out scheme: for each target OOD dataset, the regression model
is trained on all other OOD datasets and their corresponding ID features, ensuring that the target OOD
samples are never seen during training. This setup is conceptually similar to outlier exposure (Hendrycks
et al., 2018), where access to auxiliary OOD data helps guide the detector, but crucially, here the model
generalizes to completely unseen OOD distributions. Candidate predictors include spectral properties of the
feature covariance, intrinsic dimensionality estimates, and other representation-geometry statistics; highly
collinear features (ρ > 0.9) are removed. The target variable is the β value minimizing the false-positive
rate (FPR) for each model–dataset pair. Let β̂ denote the predicted value.

2 1 0 1 2 3
True Beta

2

1

0

1

2

3

Pr
ed

ict
ed

 B
et

a

NINCO
OpO
SSB
Textures
iNat

NINCO OpO SSB Textures iNat
0.00

0.05

0.10

0.15

0.20

0.25

Ab
so

lu
te

 E
rro

r = 0
= 1

Figure 8: Predicted vs. optimal β for MD under
Leave-One-Dataset-Out validation. The diagonal
indicates perfect prediction.

Results. Table 1 reports FPR across models and
datasets. The regression-predicted β̂ consistently im-
proves OOD detection compared to fixed baselines
(β = 0 for standard MD, β = 1 for MD++), for
both MD and RMD detectors. For MD, the regres-
sion achieves a MAE of 0.72 and R2 = 0.25 in pre-
dicting the optimal β; for RMD, the MAE is 0.89 with
R2 = 0.47. While the regression does not perfectly
recover the empirically optimal β, it captures suffi-
cient geometric information from in-distribution fea-
tures to meaningfully improve detection. Figure 8 vi-
sualizes predicted vs. optimal β for MD. Points close
to the diagonal indicate that the regression captures key trends even for previously unseen OOD datasets.
This demonstrates a practical path for tuning conformal ℓ2 scaling without access to target OOD data, lever-
aging ID feature structure and prior knowledge from other auxiliary OOD datasets.

6 CONCLUSION

In this work, we conducted a comprehensive empirical study across diverse image foundation mod-
els, datasets, and distance normalization schemes to understand how representation geometry shape
Mahalanobis-based OOD detection performance. Our comparative analysis revealed that these detectors
are not universally reliable, with significant variance in inherent OOD detection capabilities across different
self-supervised models. We demonstrated that this variance correlates strongly with measurable geometric
properties of the in-distribution feature space. In particular, the product of Local Intrinsic Dimensionality
(LID) and within-class scatter slope achieves strong correlations with detection effectiveness. The proposed
measure reflects the balance between local manifold complexity and cluster compactness, crucial for effec-
tive OOD.

Building on these geometric insights, we introduced β-scaled ℓ2 normalization, a conformal transformation
that enables direct control over radial geometry, allowing practitioners to reshape feature spaces to better
align with Mahalanobis assumptions or enhance OOD separation. We developed a regression framework
that successfully predicts optimal β values using only in-distribution training data, achieving performance
on-par with the oracle. Future work should focus on developing fully model-free methods for determining
optimal β.

9
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A COMPUTATION AND INTUITION FOR COVARIANCE AND SCATTER MATRICES

Our spectral analysis relies on three core matrices derived from the feature embeddings {zi, yi}Ni=1 of a
trained model: the overall feature covariance C, the within-class scatter Sw, and the between-class scatter
Sb. All eigenvalues reported in the main text are sorted in descending order.

Feature Covariance. The global covariance is

C =
1

N

N∑
i=1

(zi − µ)(zi − µ)⊤, µ =
1

N

N∑
i=1

zi. (3)

This matrix captures the overall spread of representations in feature space. Large eigenvalues correspond to
directions of high variance, indicating axes along which the model representation varies the most across all
samples.

Within-Class Scatter. For K classes with means µk and nk samples each,

Sw =
1

N

K∑
k=1

∑
i:yi=k

(zi − µk)(zi − µk)
⊤. (4)

Sw measures the average dispersion of features around their class means, capturing intra-class variability.
Intuitively, if Sw has large eigenvalues, samples of a class are more spread out in feature space; small
eigenvalues indicate tight, compact clusters. Notably, Sw is equivalent to the tied covariance Σ used in
Mahalanobis distance (Eq. 1) when all classes share a common covariance estimate: Σ = Sw. Thus the
Mahalanobis detector implicitly measures distances with respect to the within-class scatter of the training
distribution.

Between-Class Scatter. The between-class scatter quantifies the variability of class means:

Sb =
1

N

K∑
k=1

nk(µk − µ)(µk − µ)⊤. (5)

This matrix captures inter-class separation: directions with large eigenvalues indicate axes along which class
centroids are widely separated, while small eigenvalues correspond to directions where classes overlap. The
spectrum of Sb provides insight into the model’s ability to linearly discriminate between classes.

Spectral Shift Metric. To study how representations change under distributional shifts, for each matrix
M ∈ {C, Sw, Sb} we compute its eigenvalues {λtrain

i } on the training set and {λeval
i } on a validation or OOD

set. The relative eigenvalue shift is defined as

∆i(M) =
λeval
i − λtrain

i

λtrain
i

. (6)

This spectrum of shifts highlights how the geometry of the representation changes under distributional shift,
providing a fine-grained indicator of robustness or overfitting.
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Intuition Behind the Shift Metric.

• Zero shift (∆i ≈ 0): The corresponding direction in feature space is stable across data splits.

• Positive shift (∆i > 0): The representation spreads out along this eigenvector in the new data,
increasing variance.

• Negative shift (∆i < 0): The representation compresses along this eigenvector, reducing variance.

• Magnitude: Reflects the relative degree of expansion or contraction. For example, ∆i = 0.5
indicates a 50% increase in variance, while ∆i = −0.2 indicates a 20% decrease.

Interpretation in Model Analysis.

• Small shifts across all eigenvectors: Robust and stable representations that generalize well.

• Large positive shifts: Features become more variable on new data, potentially indicating under-
regularization or sensitivity to OOD inputs.

• Large negative shifts: Features compress on new data, potentially indicating overfitting.

• Consistent shift patterns: Systematic changes in representation geometry, revealing overfitting or
robustness issues.

Types of Shifts.

• Validation covariance shift: Change in global covariance from training to validation data.

• OOD covariance shift: Change in global covariance from training to out-of-distribution data.

• Validation within-class shift: Change in within-class scatter from training to validation data.

• Validation between-class shift: Change in between-class scatter from training to validation data.

B DETAILED DESCRIPTION OF SPECTRAL AND MANIFOLD METRICS

Let X ∈ RN×d be the feature matrix and C = 1
N (X − X̄)⊤(X − X̄) its covariance. All metrics below

operate on the sorted non-negative eigenvalues of C, denoted λ1 ≥ λ2 ≥ · · · ≥ λd.

Intrinsic Dimensionality (ID). Global estimate of the manifold dimension using maximum-likelihood
methods of Ma et al. (2018).

Local Intrinsic Dimensionality (LID). For a point z,

LIDk(z) = −

1

k

k∑
j=1

log
rj(z)

rk(z)

−1

,

where rj is the j-th nearest-neighbor distance. We report the dataset mean for k∈{10, 25, 50, 100}.

Total Variance.

Total Variance =

d∑
i=1

λi.
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Effective Rank. Implements the code’s definition,

Effective Rank =

∑
i λi

λ1
,

the ratio of total variance to the largest eigenvalue.

Participation Ratio.

PR =

(∑
i λi

)2∑
i λ

2
i

.

Condition Number.

κ =
λ1

λd
,

where λd is the smallest positive eigenvalue.

Spectral Gap. Difference between the largest and sixth largest eigenvalue,

Gap = λ1 − λ6.

Entropy. Shannon entropy of the normalized spectrum,

Entropy = −
∑
i

pi log pi, pi =
λi∑
j λj

.

Average Log Decay Rate (Top-20). Mean forward difference of the first 20 log-eigenvalues,

1

19

19∑
i=1

[
log λi − log λi+1

]
.

Slope. Slope of the least-squares fit
log λi = a+ b i,

i.e., regression of log λi on the linear index i.

Beta Power Law. Exponent β of a power law λi ∝ i−β , computed as the negative slope of log λi versus
log i.

Dim. 90% Var. Minimum k such that
∑k

i=1 λi

/∑
j λj ≥ 0.9.

These definitions ensure exact reproducibility of the results reported in Section 4.3.

C GEOMETRY INDUCED BY CONFORMAL ℓ2 NORMALIZATION

This appendix provides a formal derivation of the Riemannian metric naturally associated with the conformal
ℓ2 normalization used in our Mahalanobis-based OOD detector.
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C.1 SETUP AND DERIVATION

Let z ∈ Rd \{0} be a feature vector with the standard Euclidean metric gEuc. We apply a radially symmetric
conformal map, ϕβ , to the feature space:

ϕβ(z) =
z

∥z∥β
,

where the scalar parameter β ∈ R controls the degree of radial scaling. This smooth map induces a new
Riemannian metric on the domain via the pullback of the Euclidean metric, gβ := ϕ∗

βgEuc.

The differential of ϕβ is given by

dϕβ(z) = ∥z∥−β

[
I − β

zz⊤

∥z∥2

]
.

Using this, we can derive the induced metric gβ by computing the pullback of the Euclidean metric. For a
tangent vector v, the squared norm in the new metric is gβ(v, v) = v⊤dϕβ(z)

⊤dϕβ(z)v.

To simplify this expression, we decompose any tangent vector v into a radial component vr and an angular
component v⊥ in polar coordinates z = ru (r = ∥z∥, u = z/r). This radial-angular decomposition reveals
the structure of the induced metric:

gβ = r−2β dr2 + r2(1−β)gSd−1 ,

where gSd−1 is the standard round metric on the unit sphere. Thus β continuously interpolates between
Euclidean geometry (β = 0), spherical contraction (β > 0), and radial expansion (β < 0).

C.2 GEOMETRIC INTERPRETATION OF THE PARAMETER β

The exponent β is a single parameter that continuously interpolates between different geometries by con-
trolling the radial-tangential trade-off.

• Case 1: β = 0 (Euclidean Geometry). The conformal map reduces to the identity, and the induced
metric becomes the standard Euclidean metric (r0dr2 + r2gSd−1 ).

• Case 2: β > 0 (Contractive Geometries). This mapping pulls points towards the unit hypersphere.
The new radius becomes ∥z∥1−β . If 0 < β < 1, radii are compressed but their order is preserved.
For β = 1 we obtain a hypersphere, corresponding to standard ℓ2 normalization. When β > 1,
points that were far from the origin are pulled inward even more strongly, which can be seen as
inducing a hyperbolic-like geometry. This contractive effect makes the ID distribution closer to the
Gaussian assumptions of the Mahalanobis detector.

• Case 3: β < 0 (Expansive Geometries). Let β = −γ for γ > 0. The mapping becomes
ϕ−γ(z) = z·∥z∥γ . This transformation pushes points with large norms even further from the origin,
radially stretching the space. This is optimal when ID class manifolds are already well-separated
and situated far from the origin, as it further increases inter-cluster distances while creating a large,
empty void around the origin where OOD samples can be easily detected.

C.3 CONFORMAL MAHALANOBIS DISTANCE

The final OOD detector combines this geometric transformation with the standard Mahalanobis distance
calculation. After applying a whitening transformation to the data, we apply the conformal map ϕβ and then
compute the standard Mahalanobis distance between the mapped test feature and the mapped class mean.
The final OOD score is the minimum distance to any class mean:

Score(z) = min
c

Dβ(z, µc).
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By tuning β we directly control this geometry, providing a principled way to align—or deliberately mis-
align—the feature space with the statistical assumptions underlying Mahalanobis-based OOD detection.
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D FULL RESULTS

D.1 CROSS-MODEL PERFORMANCE

Table 2: False positive rate across different models and datasets using two Mahalanobis distance variants
(MD and RMD)

Mahalanobis Relative Mahalanobis
Model NINCO OpO SSB Textures iNat Average NINCO OpO SSB Textures iNat Average
BEiTV2 In1k 0.506 0.212 0.825 0.327 0.142 0.402 0.456 0.207 0.827 0.323 0.140 0.391
BEiTV2 In21k 0.475 0.331 0.781 0.418 0.174 0.436 0.339 0.165 0.786 0.314 0.051 0.331
MAE In1k 0.516 0.272 0.827 0.353 0.208 0.435 0.463 0.251 0.828 0.360 0.186 0.418
DINOV2 0.424 0.178 0.773 0.302 0.014 0.338 0.577 0.200 0.845 0.415 0.032 0.414
ViT 0.557 0.302 0.843 0.376 0.206 0.457 0.516 0.303 0.806 0.417 0.206 0.450
ViT In21K 0.641 0.513 0.807 0.541 0.158 0.532 0.451 0.253 0.816 0.392 0.080 0.398
ViT-S In21K In1k 0.515 0.362 0.828 0.700 0.145 0.510 0.512 0.301 0.830 0.441 0.161 0.449
ViT In21K In1k 0.405 0.245 0.759 0.319 0.058 0.357 0.425 0.215 0.784 0.393 0.061 0.376
ViT-L In21K In1k 0.322 0.105 0.607 0.205 0.028 0.253 0.272 0.120 0.625 0.299 0.028 0.269
DeiT3 0.505 0.270 0.829 0.379 0.183 0.433 0.437 0.256 0.824 0.353 0.171 0.408
DeiT3 FB In22k In1k 0.480 0.236 0.841 0.386 0.092 0.407 0.457 0.243 0.825 0.395 0.104 0.405
DeiT3 In21k In1k 0.432 0.201 0.780 0.388 0.081 0.376 0.407 0.206 0.769 0.360 0.086 0.366
DeiT3-L In22k In1k 0.402 0.187 0.744 0.443 0.054 0.366 0.405 0.216 0.792 0.402 0.063 0.376
EVA02 0.691 0.340 0.837 0.422 0.379 0.534 0.515 0.252 0.872 0.444 0.116 0.440
EVA02 In1k 0.418 0.186 0.800 0.323 0.153 0.376 0.431 0.226 0.876 0.363 0.118 0.403
EVA02 In21k 0.638 0.527 0.805 0.545 0.308 0.565 0.393 0.225 0.751 0.362 0.106 0.367
EVA02-S In22k In1k 0.526 0.260 0.800 0.374 0.152 0.422 0.517 0.278 0.860 0.388 0.173 0.443
EVA02 In21k In1k 0.424 0.262 0.763 0.412 0.179 0.408 0.425 0.262 0.806 0.363 0.159 0.403
EVA02-L In22k In1k 0.356 0.214 0.651 0.353 0.276 0.370 0.321 0.190 0.703 0.300 0.118 0.326
ViT CLIP In1k 0.476 0.221 0.792 0.379 0.144 0.402 0.446 0.222 0.794 0.387 0.164 0.403
ViT CLIP In12k In1k 0.379 0.190 0.659 0.357 0.091 0.335 0.373 0.157 0.693 0.331 0.071 0.325
ViT-L CLIP In12k In1k 0.320 0.167 0.583 0.375 0.038 0.297 0.299 0.159 0.631 0.326 0.047 0.292
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D.2 CONFORMAL NORMALIZATION NINCO RESULTS

Table 3: False-positive rate (FPR) across models for NINCO dataset using different Mahalanobis variants:
MD* uses the empirically optimal β, M̂D uses the regression-predicted β̂, MD (standard) fixes β = 0, and
MD++ (Mahalanobis++) fixes β = 1.

Model MD* M̂D MD MD++ RMD* ˆRMD RMD RMD++

BEiTV2 FT In1k 0.446 0.463 0.506 0.470 0.414 0.418 0.457 0.443
BEiTV2 FT In21k 0.281 0.281 0.475 0.364 0.311 0.322 0.339 0.331
DINOV2 0.403 0.415 0.424 0.445 0.573 0.573 0.577 0.574
DeiT3 0.496 0.496 0.505 0.500 0.422 0.429 0.437 0.433
DeiT3 FB In22k In1k 0.455 0.464 0.480 0.455 0.445 0.455 0.457 0.445
DeiT3 In21k In1k 0.423 0.426 0.432 0.423 0.349 0.349 0.407 0.387
DeiT3-L In22k In1k 0.386 0.391 0.402 0.388 0.368 0.368 0.405 0.385
EVA02 0.535 0.630 0.691 0.630 0.499 0.515 0.515 0.523
EVA02 FT In1k 0.409 0.412 0.418 0.413 0.418 0.418 0.431 0.425
EVA02 FT In21k 0.538 0.546 0.638 0.563 0.385 0.393 0.393 0.400
EVA02 FT In21k In1k 0.406 0.406 0.424 0.407 0.387 0.388 0.425 0.406
EVA02-L FT In22k In1k 0.349 0.358 0.356 0.388 0.311 0.312 0.321 0.316
EVA02-S FT In22k In1k 0.494 0.499 0.526 0.504 0.506 0.506 0.517 0.513
MAE FT In1k 0.481 0.485 0.516 0.488 0.428 0.433 0.463 0.450
ViT 0.553 0.557 0.557 0.556 0.511 0.513 0.516 0.514
ViT CLIP In12k In1k 0.302 0.317 0.379 0.336 0.301 0.301 0.373 0.352
ViT CLIP In1k 0.436 0.439 0.476 0.455 0.409 0.411 0.446 0.433
ViT In21K 0.630 0.659 0.641 0.658 0.442 0.454 0.451 0.453
ViT In21K In1k 0.394 0.394 0.405 0.481 0.415 0.422 0.425 0.425
ViT-L CLIP In12k In1k 0.309 0.309 0.320 0.310 0.272 0.282 0.299 0.290
ViT-L In21K In1k 0.303 0.306 0.322 0.358 0.264 0.272 0.272 0.277
ViT-S In21K In1k 0.499 0.500 0.515 0.505 0.512 0.514 0.512 0.514

18



846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

E GEOMETRY OF EIGVENVALUES
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Figure 9: BEiTV2 eigenspectra and their respective shifts: top—eigenvalues of covariance C, within-class
Sw, and between-class Sb across train (solid), val (dashed), and OOD (dotted); bottom—corresponding
OOD-induced eigenvalue shifts relative to train.
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Figure 10: CLIP eigenspectra and their respective shifts: top—eigenvalues of covariance C, within-class
Sw, and between-class Sb across train (solid), val (dashed), and OOD (dotted); bottom—corresponding
OOD-induced eigenvalue shifts relative to train.
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Figure 11: EVA02 eigenspectra and their respective shifts: top—eigenvalues of covariance C, within-class
Sw, and between-class Sb across train (solid), val (dashed), and OOD (dotted); bottom—corresponding
OOD-induced eigenvalue shifts relative to train.
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Figure 12: ViT eigenspectra and their respective shifts: top—eigenvalues of covariance C, within-class
Sw, and between-class Sb across train (solid), val (dashed), and OOD (dotted); bottom—corresponding
OOD-induced eigenvalue shifts relative to train.
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Figure 13: Eigenspectrum of covariance shift between train and OOD data (NINCO) for ViT variants:
left—ViT In21K vs ViT; right—ViT In21K In1k vs ViT In21K.
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Figure 14: Eigenspectrum differences by model pair (BEiTV2, ViT, EVA02/CLIP): for each pair, we plot
ID vs OOD covariance C, ID within-class Sw and between-class Sb, and covariance-shift curves (OOD and
ID), showing relative eigenvalue changes between the first and second model.
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F FULL MODEL NAMES

Table 4: Mapping of model names to checkpoints and sources.
Model Name Checkpoint (Version) Source
BEiTV2 In1k beitv2 base patch16 224.in1k ft in1k timm / huggingface
BEiTV2 In21k beitv2 base patch16 224.in1k ft in22k timm / huggingface
DINOV2 vit base patch14 dinov2.lvd142m timm / huggingface
DINOV3 dinov3-vitb16-pretrain-lvd1689m facebook / huggingface
MAE In1k mae finetuned vit base github.com/facebookresearch/mae
ViT vit base patch16 224.augreg in1k timm / huggingface
ViT In21K vit base patch16 224.augreg in21k timm / huggingface
ViT In21K In1k vit base patch16 224.augreg in21k ft in1k timm / huggingface
ViT-S In21K In1k vit small patch16 224.augreg in21k ft in1k timm / huggingface
ViT-L In21K In1k vit large patch16 224.augreg in21k ft in1k timm / huggingface
ViT CLIP In1k vit base patch16 clip 224.laion2b ft in1k timm / huggingface
ViT CLIP In12k In1k vit base patch16 clip 224.laion2b ft in12k in1k timm / huggingface
ViT-L CLIP In12k In1k vit large patch14 clip 336.laion2b ft in12k in1k timm / huggingface
EVA02 eva02 base patch14 224.mim in22k timm / huggingface
EVA02 In1k eva02 base patch14 448.mim in22k ft in1k timm / huggingface
EVA02 In21k eva02 base patch14 448.mim in22k ft in22k timm / huggingface
EVA02 In21k In1k eva02 base patch14 448.mim in22k ft in22k in1k timm / huggingface
EVA02-L In22k In1k eva02 large patch14 448.mim m38m ft in22k in1k timm / huggingface
EVA02-S In22k In1k eva02 small patch14 336.mim in22k ft in1k timm / huggingface
DeiT3 deit3 base patch16 224 timm / huggingface
DeiT3 In21k In1k deit3 base patch16 224 in21ft1k timm / huggingface
DeiT3 FB In22k In1k deit3 base patch16 384.fb in22k ft in1k timm / huggingface
DeiT3-L In22k In1k deit3 large patch16 384.fb in22k ft in1k timm / huggingface

G USE OF AI ASSISTANCE

AI assistants, such as ChatGPT, were utilized in various aspects of the research, including coding, data
analysis, and writing tasks. These tools helped automate repetitive tasks, generate initial drafts, and assist in
exploring potential solutions. However, all AI-generated outputs were reviewed and refined by researchers
to ensure accuracy and coherence.
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