Position: Formal Mathematical Reasoning—A New Frontier in AI

Kaiyu Yang ! Gabriel Poesia’ Jingxuan He®> Wenda Li* Kristin Lauter ! Swarat Chaudhuri

Abstract

Al for Mathematics (Al4Math) is intellectually in-
triguing and is crucial for Al-driven system design
and verification. Extensive efforts on Al4Math
have mirrored techniques in NLP, in particular,
training large language models on carefully cu-
rated math datasets in text form. As a comple-
mentary yet less explored avenue, formal mathe-
matical reasoning is grounded in formal systems
such as proof assistants, which can verify the
correctness of reasoning and provide automatic
feedback. This position paper advocates formal
mathematical reasoning as an indispensable com-
ponent in future Al for math, formal verification,
and verifiable generation. We summarize existing
progress, discuss open challenges, and envision
critical milestones to measure future success.

1. Introduction

Mathematical reasoning has been important for Al from its
early days (Newell & Simon, 1956) to the era of modern
large language models (LLMs). It serves as a proxy for
reasoning and planning tasks and plays a fundamental role
in quantitative disciplines. Al4Math has the potential to
revolutionize Al for science, engineering, and beyond.

Substantial research in Al4Math has focused on math LLMs.
A common approach is to continue pretraining LLMs on
mathematical data from the Web and finetune on curated
math problems with detailed solutions. We call this the “in-
formal” approach to distinguish it from the formal approach
that will be introduced later. Math LLMs have a simple
recipe, but the secret sauce is data curation. Carefully cu-
rated training data plus inference-time techniques, such as
chain-of-thought (Wei et al., 2022), have led to remarkable
success on benchmarks such as GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021). However, the success

"Meta FAIR *Stanford University *UC Berkeley *University
of Edinburgh UT Austin. Correspondence to: Kaiyu Yang
<kaiyuy @meta.com>, Dawn Song <dawnsong @cs.berkeley.edu>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

> Dawn Song >

has been mostly limited to high school math, raising a key
question: How far can we go by scaling up the informal
approach? Will it solve more challenging competition prob-
lems or even mathematical research problems?

The informal approach faces challenges in dealing with
advanced mathematics. First, high-quality training data is
inherently scarce in advanced mathematics. Second, so-
lutions to advanced problems are not limited to numbers
but may include chains of intricate reasoning steps, such
as proofs. LLMs are notorious for hallucinating seemingly
valid reasoning steps, making it challenging to verify the cor-
rectness of model output or collect useful learning feedback.
These challenges cannot be resolved by merely scaling up
training. Researchers are exploring alternatives, such as
scaling up inference (OpenAl, 2024), learning to reason
via reinforcement learning (Guo et al., 2025), and neural
verifiers (Cobbe et al., 2021). While these techniques have
shown promise, we argue that neural networks alone are
insufficient (Sec. 6). A critical yet underexplored piece of
the puzzle is formal mathematical reasoning. Combining
formal reasoning with LLMs can significantly advance
Al4Math, unlocking its applications in AI-driven formal
verification and verifiable generation.

We consider formal mathematical reasoning broadly as
mathematical reasoning grounded in formal systems, in-
cluding but not limited to higher-order logic (Nipkow et al.,
2002), dependent type theory (Barras et al., 1997), and com-
puter programs annotated with formal specifications (Leino,
2010). Formal systems provide environments that can ver-
ify the model’s reasoning and provide automatic feedback.
The feedback can mitigate data scarcity; also, such systems
enable rigorous test-time checks that resist hallucination. In
contrast, informal mathematics refers to math commonly
found in textbooks and research papers. It interleaves natu-
ral language with symbols (e.g., ISTEX), but these symbols
do not have a self-contained semantics, instead relying on
informal text to convey significant parts of their meaning.

AlphaProof (Google DeepMind, 2024) and AlphaGeome-
try (Trinh et al., 2024) are two successful examples of this
idea, leading to unprecedented performance in the Inter-
national Mathematical Olympiad (IMO).! They build on
a broad literature on the synergistic use of formal meth-

"Public information on AlphaProof’s inner workings is limited.

Position: Formal Mathematical Reasoning—A New Frontier in Al

ods and machine learning in mathematical tasks (Kaliszyk
et al., 2018; Gauthier et al., 2021), including neural theo-
rem proving, i.e., generating formal proofs given formal
theorem statements, and autoformalization, i.e., automati-
cally translating informal mathematics into formal mathe-
matics. The advent of LLMs has significantly accelerated
research in this area. For example, autoformalization was
long hampered by the lack of aligned informal-formal data
for finetuning. LLMs can mitigate this problem by either
synthesizing the data (Jiang et al., 2024) or performing aut-
oformalization without finetuning (Wu et al., 2022). LLMs
are also powerful tools for theorem proving; in particular,
recent approaches have used them to predict proof steps and
fix buggy proofs (Thakur et al., 2024; First et al., 2023).

The research infrastructure around LLMs and formal rea-
soning is rapidly maturing. Lean (de Moura et al., 2015)—a
language for writing formal proofs—has gained popularity
among mathematicians. Multiple frameworks can support
the interaction between LLMs and Lean (Yang et al., 2023;
Aniva et al., 2024; Thakur et al., 2024). LLMs can assist hu-
mans in writing formal proofs (Song et al., 2024), potentially
initiating a data flywheel where growing human-written for-
mal math data leads to more capable LLMs, which in turn
eases the creation of more data.

Emerging opportunities have led to booming research activ-
ities in Al for formal mathematical reasoning. The number
of publications in this field has almost doubled annually in
2023 and 2024 (Li et al., 2024b). AlphaProof leveraged
formal reasoning to become the first Al to achieve the silver
medal level in IMO. Developments in this field also have
immediate applications in formal verification (Klein et al.,
2009). While formal verification can lead to software and
hardware systems that are exceedingly robust and secure,
it has historically been too costly to deploy in all but the
most safety-critical applications. Al can drastically reduce
this cost by automating the formalization and proof effort
needed to formally certify complex systems. This can lead
to a future in which mass-produced software and hardware
systems are far more robust than they are today.

We believe Al-based formal mathematical reasoning has
reached an inflection point, with significant progress in the
near future. This position paper maps out open challenges in
data and algorithms and potential routes for future progress.
It is not meant to be a comprehensive survey but to provide
perspectives on where the field may go next and call on the
community to unite to accelerate the progress.

2. AldMath and the Formal Turn

After discussing the limitations of the informal approach,
we introduce formal reasoning as a promising path.

Math-related
web documents
Problems w/ step-

by-step solutions
Problems w/ tool-

integrated solutions
p

Removing duplicates, the possible values for x + y are
\boxed{-5, 1, 4}

LLM pretrained Base Finetuned Tool-integrated
ontextandcode mathLLM mathLLM mathLLM

Figure 1. A typical math LLM.

2.1. State-of-the-art Math LLMs and Their Limitations

A Case Study of NuminaMath. NuminaMath (Fleureau
et al., 2024) won the first AIMO Progress Prize in July 2024
and is an excellent example of modern math LLMs, as it
encompasses many key ingredients:

1. Math pretraining (Fig. 1 Left): The base math LLM
results from continually pretraining a generic LLM on
mathematical Web documents. NuminaMath adopted
DeepSeekMath-Base 7B (Shao et al., 2024) as the base
math LLM, which was trained on high-quality mathemat-
ical documents retrieved from Common Crawl through
a carefully engineered data pipeline that combined auto-
matic filtering and manual annotation.

2. Finetuning on step-by-step solutions (Fig. 1 Middle): To
align the model with problem solving, one can finetune
it on a carefully curated dataset of math problems with
detailed, step-by-step solutions. NuminaMath collected
860K problems and solutions covering high school and
competition math (Li et al., 2024a).

3. Tool-integrated reasoning (Fig. 1 Right): Finetuned math
LLMs may still struggle with precise calculation (e.g.,
162 x 731) and symbol manipulation. A simple solution
is to outsource these operations to external tools such
as SymPy (Meurer et al., 2017). NuminaMath performs
tool-integrated reasoning that interleaves reasoning in
natural language with tool invocation in Python. The key
is, again, data. They follow ToRA (Gou et al., 2024b)
and MuMath-Code (Yin et al., 2024) to collect a dataset
of math problems with solutions in the form of natural
language interleaved with tool invocation trajectories.

Data Scarcity. Training data plays a pivotal role through-
out all ingredients of the informal approach, limiting its
success to domains with abundant high-quality data, such
as pre-college math. It is difficult to extend the approach
to data-scarce domains such as advanced mathematics. Ad-
vanced mathematics is important for Al-driven scientific

Position: Formal Mathematical Reasoning—A New Frontier in Al

discovery, as it serves as the foundation of numerous scien-
tific disciplines (e.g., climate modeling depends on partial
differential equations). Moreover, the long-term goal of
developing human-level Al mathematicians requires Al to
handle novel aspects of mathematics. Novelty, by definition,
implies difficulty in collecting in-distribution training data.

Lack of Correctness Verifiability. Another challenge
lies in evaluation. Existing math LL.Ms are evaluated on
benchmarks like MATH because many pre-college prob-
lems have numeric solutions that can be checked easily. For
advanced mathematics, however, restricting to numeric so-
lutions would deviate from common practice (Glazer et al.,
2024), as it frequently deals with abstract conjectures and
proofs. Verifying proofs can be a daunting task, even for ex-
perienced mathematicians (Klarreich, 2018). The situation
becomes even more complicated when LLMs are used to
generate proofs, as they are known to hallucinate plausibly.

2.2. Al for Formal Mathematical Reasoning

From Informal to Formal. Formal mathematics ad-
dresses the challenges in data and evaluation, potentially
enabling Al to tackle advanced mathematics. In this paper,
it refers to mathematics grounded in formal systems, which
have a syntax for well-formed formulas and can perform rea-
soning by manipulating formulas according to rules. Exam-
ples of formal systems include higher-order logic (Gordon,
2000) and dependent type theory (Martin-Lof & Sambin,
1984). They are used not only in math but to express com-
puter programs and reason about semantics (Howard, 1980).

Formal systems are useful environments for Al to learn math.
They guarantee the soundness of the reasoning, provide
automatic feedback, and check if the goal has been achieved.
This is crucial to addressing existing challenges in data
scarcity and evaluation. Automatic feedback can serve as
learning signals and alleviate the need for human-created
training data. Rigorous proof verification can evaluate the
model’s reasoning without worrying about hallucination.

Proof Assistants and Lean. An important type of formal
system is proof assistants. These are software tools that
enable humans to write formal proofs about mathematics
or verified software. Common examples of proof assistants
include Coq (Barras et al., 1997), Isabelle (Nipkow et al.,
2002), and Lean (Moura & Ullrich, 2021). They have dif-
ferent logical foundations but similar user interfaces. For
simplicity, we will use Lean as an example.

Fig. 2 demonstrates how Lean is used to formalize mathe-
matics. At its core, it is a programming language for writ-
ing not only conventional programs but also mathemati-
cal definitions, theorems, and proofs. Fig. 2 (Middle) is a
Lean file. After defining natural numbers (Nat) and ad-

dition (add), it states and proves the theorem add_zero
(vn € N,0 + n = n). Lean can automatically check if the
proof is correct with respect to the theorem statement.

Proof tree Lean file

niN Local context
+addOn=n | | Goal

Tactic
induction n

Project O GitHub

teorth/pfr

N
ih:addom=m
+add 0 (n"+1) = n'+1

ImperialCollegeLon
don/FLT

Figure 2. Formalizing math using Lean (de Moura et al., 2015).

Theorem proving in Lean is an interactive process (Fig. 2
Left). It begins with the statement as the initial goal, and the
user enters a proof step, known as a "tactic". Lean executes
the tactic, transforming the goal into a list of subgoals. The
user then inspects the new goals and enters new tactics,
repeating this process until there are no goals left. This
process implicitly defines a proof tree whose nodes are
goals and edges are tactics. The user plays a key role here.
While proof assistants like Lean were designed with human
users in mind, in formal mathematical reasoning, the user
can also be Al or human mathematicians in collaboration
with Al (Buzzard, 2024; Tao, 2024).

Formalizing mathematics using Lean is like developing soft-
ware (Fig. 2 Right). Files are organized into larger code units
such as libraries and projects, which can be open-sourced
on GitHub and reused by other projects. For example, the
formalization of cutting-edge research often builds upon the
basic concepts formalized in mathlib (Mathlib commu-
nity, 2020): Lean’s general-purpose mathematical library.

Al Meets Formal Mathematics. Integrating Al with
proof assistants such as Lean can be mutually beneficial.
Proof assistants provide data and environments for Al to
learn math, whereas Al enhances the user experience of
proof assistants, e.g., by automating simple proofs. Fig. 3
illustrates common tasks at this intersection: Given informal
mathematics from textbooks or papers, autoformalization
automatically translates it into formal theorems and proofs
(Fig. 4). Given theorem statements, theorem proving aims
to generate formal proofs. In addition to the statement, a
theorem prover may have access to a large library of existing
definitions and lemmas, such as mathlib, and can select
useful definitions and lemmas from the library. Furthermore,
Al for autoformalization and theorem proving can lead to
new theorems and/or proofs that can enrich the library.

Fig. 5 is a common architecture for neural theorem provers,
which combines tactic generation and proof search. Given
the current goal, a neural network generates suggestions

https://github.com/leanprover-community/mathlib4

Position: Formal Mathematical Reasoning—A New Frontier in Al

7’
i Theorem proving 3
Auto- 1 \/—:\
]MAT,'Z formalization 1 1
& 1| ———' | Formal theorem —>
(2P 1 Formal proof !
= 1 statement 1
1 1
Informal \ 1 Formal
math D i e math library

Figure 3. Al for formal mathematical reasoning in proof assistants.

1 ,W\TH Theorem 1. There ezists an infinite number of primes.
1

1 i " N H
1 = p € Z* be a prime factor of n!+1. We can derive p > n
| Informal by noting that n! + 1 cannot be divided by positive

\
. L 1
Proof. Let n be an arbitrary positive integer, and let 1
1
integers from 2 to n. Since n is arbitrary, we have :

I\math proved that the number of primes is infinite. (m]
———————————————————————— 4
o T T e e e mm e mm—m e m————— - - .
[theorem exists_infinite_primes (n : N) : 3 p, n s p A Prime p := \
let p := minFac (n ! + 1) |
1 have f1 : n ! + 1 # 1 := ne_of_gt <| succ_lt_succ <| factorial_pos _
1 have pp : Prime p := minFac_prime f1 1
1 have np : n = p := I
1 le_of_not_ge fun h => 1
I Formal theorem have ha : p | n ! := dvd_factorial (minFac_pos _) h 1
1 have h: : p | 1 := (Nat.dvd_add_iff_right h:).2 (minFac_dvd _) |
\ (and proof) pp.not_dvd_one h: 1
\ (p, np, pp) /
S 4

Figure 4. Autoformalization: from informal to formal.

for the next tactic. The network is often trained on human-
written proofs and can be finetuned using reinforcement
learning. The generated tactics are assembled into a com-
plete proof through repeated sampling or tree search.

Synergies with Natural Language and System Design.
The formal and informal approaches are not mutually ex-
clusive, nor should formal reasoning entirely supplant the
informal. Instead, they can complement each other to en-
able complex reasoning that is both general and rigorous,
e.g., integrating autoformalization with theorem proving to
solve problems formulated in natural language (Zhou et al.,
2024a). We refer to the combination of formal and informal
reasoning as verified reasoning in natural language.

Moreover, formal mathematics has direct applications in the
verification of software and hardware systems (Leroy, 2009).
Here, one specifies the correctness/security requirements
as formal statements and uses theorem proving to establish
that the system satisfies its requirements. Al-driven auto-
formalization and theorem proving can potentially facilitate
this process, significantly reducing the costs.

3. Recent Progress

We summarize recent progress in Al for formal mathemati-
cal reasoning. A more extensive discussion can be found in
the extended version of this paper (Yang et al., 2024b).

Proof search n:N

Fadd00=0 & ih:add0n’=n"

Fadd 0 (W+1) =n'+1
n:N
ihzaddOn’=n’
Fadd 0 (n'+1) =n"+1

Language

Fadd00=0
0N
Fadd0(n’+1)=n"+1

n:N
- false

! simp [add, ih] }
Tactic ! rwlih]
suggestions }

Figure 5. A common architecture for neural theorem proving.

Autoformalization. Early attempts of machine learning
for autoformalization were hampered by the lack of aligned
informal-formal corpora (Kaliszyk et al., 2017; Wang et al.,
2018; 2020). The emergence of in-context learning in LLMs
opens up a new paradigm, requiring only a few expert-
constructed demonstrations (Wu et al., 2022). In addition, in-
formalization is generally easier than formalization, and we
can use LLMs to perform back-translation, i.e., generating
synthetic aligned corpora by auto-informalizing existing
formal statements (Jiang et al., 2024; Azerbayev et al., 2023).
Finetuning a smaller model on this synthetic data led to
notable improvements in autoformalization.

As the bridge between informal and formal mathematics,
autoformalization has three immediate applications: (1) data
augmentation for neural theorem provers (Wu et al., 2022;
Xin et al., 2024; Wang et al., 2025; Ren et al., 2025), (2)
guiding theorem proving via informal proofs (Jiang et al.,
2023), and (3) validating informal reasoning (Zhou et al.,
2024a; Olausson et al., 2023).

Neural Theorem Proving. Deep learning has been widely
used for learning heuristics to find proofs in formal sys-
tems (Vaezipoor et al., 2021; Lederman et al., 2020).
Holophrasm (Whalen, 2016) was the first system to demon-
strate the feasibility of training deep neural networks to
guide proof search. This paradigm was expanded in GPT-
f (Polu & Sutskever, 2020), which trained a single Trans-
former to generate proof steps. It enjoyed substantial gains
from math pretraining (Sec. 2.1). Subsequent approaches
have trained richer architectures and exploited zero-shot
prompting of LLMs. We highlight several prominent ideas:

» Expert iteration alternates between (1) using the prover
to attempt unsolved problems and, (2) if new proofs are
found, using them as training data to improve the prover.
It leads to a performance gain that diminishes after a few
iterations (Polu et al., 2023; Lample et al., 2022).

Position: Formal Mathematical Reasoning—A New Frontier in Al

* Learning from mistakes: Formal proof environments can
provide error messages when a proof step fails. CO-
PRA (Thakur et al., 2024) included error messages in
the prompts, utilizing LLMs’ in-context learning capabil-
ity to reduce the odds of repeating similar mistakes.

* Informal proof sketches: Formal theorem proving has also
benefited from informal proofs. Draft, Sketch and Prove
(DSP) (Jiang et al., 2023) used LLMs to generate a “proof
sketch” in natural language, and then autoformalized it in
Isabelle. Lean-STaR (Lin et al., 2024) interleaved formal
and informal reasoning steps in theorem proving in Lean.

Premise selection involves retrieving useful lemmas in
proving a theorem (Kiihlwein et al., 2012; Irving et al.,
2016; Mikuta et al., 2024). ReProver (Yang et al., 2023)
applied retrieval for neural theorem proving, where it first
retrieved lemmas from a mathematical library. COPRA
also used retrieved lemmas as part of their LLM prompts.

Verified Reasoning in Natural Language. Reasoning
problems expressed in natural language may be difficult to
completely formalize. In such cases, we still want some
form of verification. Several works have used neural net-
works as verifiers (Lightman et al., 2024; Yang et al., 2022;
Ling et al., 2024). While neural verifiers cannot formally
guarantee the validity of the reasoning, they nonetheless
provided a boost in overall performance and faithfulness.

Alternatively, one can combine LLM-based autoformaliza-
tion with formal problem solving. SatLM (Ye et al., 2023)
and LINC (Olausson et al., 2023) converted the entire prob-
lem into appropriate formats and called SAT/SMT solvers to
produce solutions. LogicGuide (Poesia et al., 2024b) used
a formal system to constrain the step-by-step deductions
from the LLM, producing chain-of-thought reasoning that
alternates between formal reasoning and natural language.

Formal Verification and Verifiable Generation. Al can
automate many tedious aspects in theorem proving for sys-
tem verification, e.g., generating initial proofs (Sanchez-
Stern et al., 2020) and refining existing proofs (First et al.,
2023). Moreover, it is useful in SMT-based verification
tasks, including inferring loop invariants (Si et al., 2020)
and generating helper assertions (Mugnier et al., 2024). In-
tegrating Al and verification has been explored in the formal
method community. For example, Seshia (2015) proposed
SID (Structure, Induction, and Deduction), a general frame-
work that combines inductive and deductive reasoning for
verification. In SID, machine learning models can serve as
the inductive engine to generate artifacts (e.g., loop invari-
ants or proofs), while formal systems such as Lean serve as
the deductive engine to answer queries about these artifacts.

A closely related challenge is to simultaneously generate
code and formal proofs. LLM-generated code can be buggy

and insecure (Pearce et al., 2022; Perry et al., 2023). Cou-
pling generation with formal verification is a natural way to
prevent such failures. One possibility is to first develop a for-
mally verified program in Coq or Lean, with Al assistance,
and then translate it into a more efficient implementation
using compilers. This approach establishes a direct arc be-
tween theorem proving and generation. Another possibility
is to incorporate LLM-based code and proof generation into
a high-level verification-friendly language like Dafny (Misu
et al., 2024) and Verus (Lattuada et al., 2023).

4. Open Challenges and Future Directions

Formal mathematical reasoning presents a wealth of chal-
lenging problems for Al. Here, we explore several open
challenges and promising directions.

4.1. Data

Scaling the training data in formal mathematics is hampered
by the scarcity of human-created formal proofs. The Proof
Pile dataset (Azerbayev et al., 2024), which aggregated
proofs from six different formal languages, collected only
500MB of formal proofs—orders of magnitude smaller than
its informal counterparts. The issue is more pronounced in
research mathematics, where even informal data is limited.

Researchers are exploring different strategies to overcome
data scarcity. The first is autoformalization. We have a sub-
stantial amount of informal math data. Since formal proofs
can be verified easily, if a system successfully formalizes
even a small subset of the informal math data, it can self-
improve through expert iteration, potentially covering an
increasingly larger set with each iteration (Sec. 3). Another
approach is synthetic data generation. For example, the train-
ing data in AlphaGeometry and TongGeometry consisted
solely of synthetic geometry problems and solutions (Trinh
et al., 2024; Zhang et al., 2024a). Mathematical axioms
entail all provable facts, in principle containing infinite data.
By generating synthetic data, Al can potentially explore
and learn from the vast space of possible mathematics, at a
scale that can drastically surpass the pace of human-created
training data. If the method can be generalized, it would
help in completely new mathematical domains, where even
informal data might be scarce.

Autoformalization and synthetic data were combined in Al-
phaProof (Google DeepMind, 2024), which autoformalized
one million IMO-like informal problems into one hundred
million formal theorems, whose proofs were synthetically
generated using expert iteration. It remains an open ques-
tion to generalize this approach beyond domains where a
large number of human-written problems are available, e.g.,
research mathematics. Those domains will likely require
conjecturing new unseen statements (Poesia et al., 2024a).

Position: Formal Mathematical Reasoning—A New Frontier in Al

Another promising strategy is knowledge transfer from dif-
ferent modalities. Specifically, code is closely related to
mathematics, as both require symbolic reasoning. This simi-
larity has been exploited to improve AI’s general mathemat-
ical capabilities (Gao et al., 2023; Guo et al., 2024; Dubey
et al., 2024), though it is still an open question how to lever-
age data-rich programming languages such as Python to
enhance reasoning in formal mathematical languages.

4.2. Algorithms

Autoformalization at Scale. A major bottleneck in aut-
oformalization is evaluating whether the autoformalized
statement is logically equivalent to the ground truth. Proxy
metrics such as BLEU (Papineni et al., 2002) do not cor-
relate well with human judgment (Jiang et al., 2024), but
relying on humans is not scalable. Possible ideas for better
automated metrics include checking logical equivalence via
automated provers (Murphy et al., 2024; Li et al., 2024c).

Autoformalization goes beyond translation, as some prob-
lems (e.g., IMO 2024 P5) may require complex reasoning,
retrieving existing definitions, or even inventing new ones.
For such problems, it is natural to break down the reason-
ing process into smaller steps, e.g., retrieving definitions
before formalizing the statement or generating high-level
sketches before formalizing the proof. We anticipate bene-
fits from smaller steps and process supervision (Lightman
et al., 2024; Lu et al., 2024) and call for autoformalization
to be more interactive (Szegedy, 2020).

Proof Search and Test-Time Compute. Search is funda-
mental in many reasoning systems. Many neural theorem
provers combine tactic generation with proof search (Fig. 5).
The search strategy ranges from independent sampling of
multiple candidates to sophisticated algorithms like Monte
Carlo Tree Search (Lample et al., 2022). Scaling search to
exploit vast test-time compute has emerged as a promising
approach for both formal and informal reasoning (Google
DeepMind, 2024; Zhang et al., 2024b; Xie et al., 2024b).

Many myths and trade-offs surrounding proof search remain
unexplored. Is proof search really necessary, given that gen-
erating complete proofs can achieve lower latency (First
et al., 2023; Xin et al., 2024). For a fixed compute budget,
should we use smaller models with more search steps, or
larger models (Wu et al., 2024a; Blaauwbroek et al., 2024)?
How do different search algorithms compare? To answer
these questions and guide the development of future provers,
we need a systematic evaluation of existing methods. Such
an evaluation is lacking due to the inherent challenge in
evaluating theorem proving in a fair and unified manner. It
is unclear how to compare provers targeting different proof
assistants. Even within the same proof assistant, a prover’s
performance is multifaceted and depends on resource con-

straints (e.g., hardware and time limits), making it difficult to
consolidate performance into a single metric. A comprehen-
sive evaluation that addresses these complexities would be
immensely valuable. Despite these challenges, researchers
are exploring various directions to improve proof search,
such as developing value models to assess the promise of
proof goals (Lample et al., 2022; Wu et al., 2024b).

Proof search alone does not solve theorem proving, where
a fundamental challenge is a discrete, infinite action space.
Proof search cannot succeed if the model cannot produce
high-quality actions in the first place. In the context of
theorem proving, mathematical creativity can manifest as
actions exceeding the current model’s capabilities, akin to
the “divine move (f#.2 —7)"—a legendary concept in Go.
We would not expect to find them if the action space were
an infinite, unstructured list. Fortunately, mathematics is
structured, making it possible—though still challenging—to
find the divine moves (Gowers, 2022). Next, we discuss
several ways of leveraging structures in mathematics.

Exploiting Hierarchies and Learning Abstractions.
Theorems are built upon smaller lemmas, which in turn
break down into even simpler subgoals. Several existing
theorem provers leverage this hierarchical structure. Draft,
Sketch, and Prove (Jiang et al., 2023) transformed informal
proofs into formal “proof sketches”—skeletons of formal
proofs with “holes”, i.e., open goals left unproven, yield-
ing a hierarchical structure. POETRY (Wang et al., 2024)
recursively decomposed goals in proof sketches using an
LLM. While these works demonstrated the potential of hier-
archical decomposition, it is still a significant challenge to
decompose realistic high-level goals with current LLMs.

Abstraction is central to human mathematical practice. We
first learn natural numbers through counting; years later,
those operations show up in solving equations but do not
require as much attention anymore. In interactive theorem
proving, abstractions can be encapsulated in new definitions,
lemmas, and tactics. While most existing methods assume
they are predefined and fixed, recent work has explored
learning abstractions. For instance, LEGO-Prover (Xin
et al., 2023) used LLMs to propose and prove new lem-
mas, integrating them into its library to help prove further
theorems. Lemma mining from existing proof corpora has
also been explored (Kaliszyk & Urban, 2013; Zhou et al.,
2024b). These lemmas, not explicitly factored out by hu-
mans, are still useful for automation. On learning tactics,
Peano (Poesia & Goodman, 2023) and LEMMA (L. et al.,
2022) have proposed to learn simple proof strategies from
an agent’s own solutions to past problems, in a bootstrap-
ping fashion. However, these approaches have so far been
limited to simpler formal systems, and it is still an open
challenge to synthesize entirely new tactics in full-fledged
formal theorem proving languages like Lean.

Position: Formal Mathematical Reasoning—A New Frontier in Al

Incorporating External Knowledge. Formal mathemat-
ical reasoning can benefit from explicitly retrieving and
incorporating knowledge from databases of existing lem-
mas/definitions. ReProver (Yang et al., 2023) and CO-
PRA (Thakur et al., 2024) demonstrated performance gains
through standard retrievers like BM25 (Robertson et al.,
2009) and Dense Passage Retrieval (Karpukhin et al., 2020).
A promising direction involves developing retrieval methods
tailored to formal math, e.g., structured or neurosymbolic
retrievers. Another avenue is to grow the knowledge base
dynamically. For example, the system could decompose
high-level proof goals into subgoals, cache a subset of these
subgoals as modules, and use them in subsequent proof ef-
forts. Deciding which subgoals are “interesting” enough to
be modularized in this way is a challenge.

4.3. Formal Verification and Verifiable Generation

Like Al4Math, we envision a growing need for formal rea-
soning in Al-based software and hardware generation, with
assurance of correctness and security. While syntactical cor-
rectness can be guaranteed by constrained decoding (Beurer-
Kellner et al., 2024), ensuring semantic properties, such as
those validated by compilers, remains a challenge. More-
over, formal reasoning can help programmers understand
Al-generated code (Ferdowsi et al., 2024).

Formal verification poses unique challenges. For exam-
ple, a necessary but challenging step is encoding the target
system and the correctness requirements in the proof assis-
tant, similar to formalizing mathematics. However, while
mathematical statements tend to assert properties of estab-
lished mathematical objects, statements in formal verifica-
tion typically concern bespoke procedures and datatypes.
Also, proofs tend to be more repetitive and heavy on case-
splits and inductive reasoning about recursive functions
and datatypes. Finally, unlike statements in mathematics
research, real-world software and hardware systems are
characterized by large codebases and frequent changes. For
instance, selL4 (Klein et al., 2009) consists of about 200,000
lines of specifications and proofs in Isabelle. Verifying these
systems requires not only theorem proving but also rigorous
management of specifications and proofs—an exciting yet
underexplored direction for Al (Ringer et al., 2019).

It is natural to couple formal verification and Al-based gener-
ation to simultaneously generate code, formal specifications
(i.e., pre/post-conditions, loop invariants, and helper asser-
tions), and proofs. Then a program verifier or a theorem
prover can check if the code is consistent with the specifica-
tions and proofs. This approach has been explored in recent
research (Sun et al., 2024a; Yang et al., 2024a) and can
potentially reduce verification efforts and enhance software
and hardware reliability. However, a key challenge is to
ensure the trustworthiness of the generated specifications—

that they accurately reflect developers’ intent.

5. Milestones and Success Measures

Inspired by the levels of automation for self-driving
cars (SAE, 2024), we propose levels for Al-based formal
mathematical reasoning. A more extensive discussion can
be found in the extended version of our paper (Yang et al.,
2024b).

5.1. Autoformalization

* Level 0, representing knowledge in formal systems to sup-
port manual formalization: Achieved by modern proof
assistants such as Lean.

* Level 1, generating autoformalization candidates and col-
lecting human feedback: LLMs can often generate good
autoformalization candidates, but we need a system to
gather and store human feedback, e.g., bug fixes and re-
visions made by humans to make the candidates usable.
The system would also keep informal-formal pairs syn-
chronized as the formal statements continue to develop.

e Level 2, robust and faithful translations between infor-
mal and formal: Model performance at this level could
be assessed using human-curated benchmarks, including
challenges from the ICML 2024 Math-AI workshop (mat,
2024; Huang et al., 2024b), ProofNet (Azerbayev et al.,
2023), Herald (Gao et al., 2025), and Con-NF (Liu et al.,
2025). However, a major obstacle is how to automatically
evaluate autoformalized statements (Sec. 4.2).

* Level 3, inferring missing information and flagging situa-
tions when a gap cannot be filled: Implicit assumptions
and hand-waived proof steps frequently pose challenges
in formalizing mathematics. Bridging these information
gaps requires robust reasoning capabilities: Proof gaps
may be filled by neural or symbolic theorem provers,
while missing assumptions can be resolved using abduc-
tive reasoning or counterexamples (Bundy et al., 2005;
Blanchette & Nipkow, 2010). The main challenge is for
the models to identify gaps—such as assessing the likeli-
hood that a statement is provable or can be adjusted—even
when it cannot bridge the gap immediately.

» Level 4, self-correcting erroneous or inconsistent inputs
by understanding human intentions: At this stage, the
autoformalization model focuses more on capturing hu-
man intentions and may rely on its own self-consistency
to eliminate errors. Advancements here will be closely
linked to natural language reasoning (Sec. 5.3).

* Level 5, proposing novel definitions that can reduce proof
complexity: Al can serve as “theory builders” that reshape
the proving process through better abstraction or concept
formulation. For instance, filters (i.e., a set of sets satisfy-
ing certain properties) are rarely taught in standard math

Position: Formal Mathematical Reasoning—A New Frontier in Al

curricula but have become convenient for formalizing lim-
its in various proof assistants. Automatically devising
definitions like filters is what we hope Al can achieve.

5.2. Theorem Proving

* Level 0, checking formal proofs: Achieved by modern
proof assistants such as Lean.

* Level 1, assisting humans to develop formal proofs by
suggesting definitions, lemmas, proof steps, etc.: Library
search engines like LeanSearch (Gao et al., 2024) and
proof completion “copilots” (Dohmke, 2023; Song et al.,
2024) can be highly helpful, though humans are still re-
sponsible for the main job of developing the proof.

e Level 2, human-implemented tactics for proof automation:
These are domain-specific procedures for automating cer-
tain classes of proofs, e.g., omega and nlinarith can
automatically solve many equalities and inequalities. This
level involves no machine learning but mostly human-
engineered domain-specific methods to produce proofs.

* Level 3, proving simple theorems automatically in a
domain-general fashion: Recent neural theorem provers
are domain-agnostic and evaluated on benchmarks tar-
geting this level, e.g., CogGym (Yang & Deng, 2019),
LeanDojo (Yang et al., 2023), MiniF2F (Zheng et al.,
2022), and PutnamBench (Tsoukalas et al., 2024). These
systems are limited to relatively simple proofs, typically
not the most time-consuming ones, but they can still be
useful for closing simple gaps in larger proofs.

* Level 4, contributing to formalization projects au-
tonomously: Beyond proving individual theorems, Al
should be able to break down larger results, state new
definitions and lemmas, and potentially explore different
alternatives as the project develops. Evaluation may re-
quire new benchmarks constructed from GitHub metadata,
such as issues and commits, of real-world formalizations.

* Level 5, solving problems and discovering new math be-
yond the human level: Out of reach for current Al systems.
One challenge will be to measure progress meaningfully
towards this open-ended goal, since our current evalua-
tions only test knowledge of existing mathematics.

5.3. Verified Reasoning in Natural Language

* Level 0, stepwise natural language reasoning w/o verifica-
tion: Chain-of-thought (Wei et al., 2022) is effective but
its reasoning can be brittle, incorrect, or unfaithful (Shi
et al., 2023; Lanham et al., 2023; Ling et al., 2024).

* Level 1, stepwise natural language reasoning with neu-
ral verification: Neural verifiers can improve reasoning,
e.g., by selecting the best output from many generated
candidates (Cobbe et al., 2021). Evaluation can be done
using standard benchmarks like MATH (Hendrycks et al.,

2021) or by directly measuring whether the model can
identify reasoning errors (Hong et al., 2024; Zheng et al.,
2024a). Standard benchmarks like MATH suffer from
data contamination (Dong et al., 2024). To mitigate the
issue, dynamically generated benchmarks such as GSM-
Symbolic (Mirzadeh et al., 2024) or private benchmarks
such as FrontierMath (Glazer et al., 2024) may be useful.

Level 2, tool-integrated reasoning using SymPy, NumPy,
etc.: Models can leverage external tools to perform com-
putation that neural networks struggle to learn reliably,
e.g., numerical calculations and symbol manipulation.
They can be evaluated on math problems requiring intri-
cate computations, e.g., the MATH dataset or AIME.

Level 3, Reasoning seamlessly in natural language and
formal systems such as Lean: Instead of formalizing the
entire problem (Zhou et al., 2024a), the model can inter-
leave natural language with formal reasoning, selectively
determining which parts of reasoning to process using
formal systems. Benchmarks should evaluate not only
the final answer but also the quality of reasoning, and
they should include math problems that resist complete
formalization, e.g., IMO as taken by human contestants,
without manual formalization as AlphaProof did.

Level 4, complex mathematical reasoning and planning in
real-world applications: Applications of complex rea-
soning often contain mathematical components along
with other components such as commonsense and hu-
man preferences. In scenarios like travel planning (Xie
et al., 2024a) or calendar scheduling (Zheng et al., 2024b),
Al could formulate the task as a constraint satisfaction
problem and solve it using appropriate solvers. Achieving
this capability would enable a wide range of applications.

5.4. Formal Verification and Verifiable Generation

Level 0, code generation without verification.

Level 1, verifying and synthesizing small programs with
simple properties: Several benchmarks have targeted ver-
ification at this level (Loughridge et al., 2024; Lohn &
Welleck, 2024; Aggarwal et al., 2024), but current models
still fall short. We are not aware of large-scale benchmarks
for synthesizing verified code together with a formal spec-
ification, even at Level O (Brandfonbrener et al. (2024)
introduced a small-scale benchmark in this direction).

Level 2, verifying and synthesizing entire projects with
complex functional and security properties: This level
requires decomposing large systems into smaller verifi-
able components, a task currently performed by humans
(Gu et al., 2016) but may be tackled by advanced Al
agents capable of planning and problem-solving to navi-
gate the intricate dependencies and interactions in large
codebases. Benchmarks should incorporate project-level

Position: Formal Mathematical Reasoning—A New Frontier in Al

context, e.g., extracted from existing verification projects
systems (Leroy et al., 2016; Zhang et al., 2024c).

* Level 3, proof and system maintenance: System designs
and implementations constantly evolve, and so must their
proofs to stay synced. Al should provide assistance when
developers update the system or refactor proofs (Ringer,
2021). To evaluate this capability level, benchmarks can
be constructed from the change history of verified sys-
tems (Reichel et al., 2023). These benchmarks should
capture a variety of scenarios, including minor bug fixes,
major feature additions, and comprehensive refactoring.

e Level 4, helping users generate, explain, and debug for-
mal specifications: Al should aid users in writing speci-
fications, which requires abstracting and converting user
requirements into formal languages. The evaluation can
leverage verified codebases. Instead of generating proofs
and code given the specifications, we treat them as ground
truth and use them to evaluate specifications generated by
the model. The system should be interactive to engage
with users, offering suggestions and clarifications.

6. Alternative Views

We argue that formal mathematical reasoning is essential
to address data scarcity and lack of verifiability in the in-
formal approach (Sec. 2.1). An alternative view is that
these challenges could be addressed by neural networks
alone, without formal systems. For example, OpenAl
ol and DeepSeek-R1 have demonstrated impressive capa-
bilities on problems with numeric answers. However, it
remains unclear if they can solve problems requiring rig-
orous intermediate steps, such as theorem proving. Neural
verifiers could add rigor to the informal approach, but their
success hinges on whether neural networks can achieve
(1) self-verification/correction and (2) easy-to-hard gener-
alization (Sun et al., 2024b). Despite extensive studies on
self-verification, current LLMs struggle with intrinsic self-
verification—verifying their own generations without exter-
nal feedback (Huang et al., 2024a; Stechly et al., 2024; Gou
et al., 2024a; Zheng et al., 2024a; Gu et al., 2024).

7. Conclusion

We advocated for formal mathematical reasoning as an im-
portant complement to the informal approach, highlighting
its potential to advance Al in math and verified system de-
sign. We hope to present coherent perspectives that unite
previously fragmented efforts across different fields, foster-
ing discussion, community building, and a future roadmap.

Acknowledgements

We gratefully acknowledge Jeremy Avigad, Albert Q. Jiang,
Zhaoyu Li, Peter O’Hearn, Daniel Selsam, Sanjit A. Seshia,

Armando Solar-Lezama, and Terence Tao for providing
valuable feedback on an initial version of this paper.

Impact Statement

This position paper aims to advance Al for mathematical
reasoning and its application in verifiable software and hard-
ware system design. There are many potential societal con-
sequences of these areas, none of which we feel must be
specifically highlighted here.

References
ICML 2024 Challenges on Automated Math Reason-
ing. https://sites.google.com/view/

aidmathworkshopicml2024/challenges,
2024.

Aggarwal, P, Parno, B., and Welleck, S. AlphaVerus: Boot-
strapping formally verified code generation through self-
improving translation and treefinement. arXiv preprint
arXiv:2412.06176, 2024.

Aniva, L., Sun, C., Miranda, B., Barrett, C., and Koyejo,
S. Pantograph: A machine-to-machine interaction in-
terface for advanced theorem proving, high level rea-
soning, and data extraction in Lean 4. arXiv preprint
arXiv:2410.16429, 2024.

Azerbayev, Z., Piotrowski, B., Schoelkopf, H., Ayers, E. W,
Radev, D., and Avigad, J. ProofNet: Autoformalizing
and formally proving undergraduate-level mathematics.
arXiv preprint arXiv:2302.12433, 2023.

Azerbayev, Z., Schoelkopf, H., Paster, K., Dos Santos, M.,
McAleer, S. M., Jiang, A. Q., Deng, J., Biderman, S.,
and Welleck, S. Llemma: An open language model for
mathematics. In International Conference on Learning
Representations (ICLR), 2024.

Barras, B., Boutin, S., Cornes, C., Courant, J., Filliatre,
J.-C., Gimenez, E., Herbelin, H., Huet, G., Munoz, C.,
Murthy, C., et al. The Coq proof assistant reference
manual: Version 6.1. PhD thesis, Inria, 1997.

Beurer-Kellner, L., Fischer, M., and Vechev, M. Guiding
LLM:s the right way: Fast, non-invasive constrained gener-
ation. In International Conference on Machine Learning
(ICML), 2024.

Blaauwbroek, L., Olsak, M., Rute, J., Massolo, F. I. S.,
Piepenbrock, J., and Pestun, V. Graph2Tac: Online repre-
sentation learning of formal math concepts. In Interna-
tional Conference on Machine Learning (ICML), 2024.

Blanchette, J. C. and Nipkow, T. Nitpick: A counterexample
generator for higher-order logic based on a relational

https://sites.google.com/view/ai4mathworkshopicml2024/challenges
https://sites.google.com/view/ai4mathworkshopicml2024/challenges

Position: Formal Mathematical Reasoning—A New Frontier in Al

model finder. In International Conference on Interactive
Theorem Proving (ITP), 2010.

Brandfonbrener, D., Henniger, S., Raja, S., Prasad, T,
Loughridge, C. R., Cassano, F., Hu, S. R., Yang, J.,
Byrd, W. E., Zinkov, R., and Amin, N. VerMCTS: Syn-
thesizing multi-step programs using a verifier, a large
language model, and tree search. In The 4th Work-
shop on Mathematical Reasoning and Al at NeurIPS 24,
2024. URL https://openreview.net/forum?
id=HmB9uZzZTzaD.

Bundy, A., Jamnik, M., and Fugard, A. What is a proof?
Philosophical Transactions of the Royal Society A: Math-
ematical, Physical and Engineering Sciences, 2005.

Buzzard, K. Can Al do maths yet? thoughts from a math-

ematician. https://xenaproject.wordpress.

com/2024/12/22/can-ai—-do-maths—-yet—
thoughts—-from-a-mathematician/, 2024.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168,
2021.

de Moura, L., Kong, S., Avigad, J., Van Doorn, F., and von
Raumer, J. The Lean theorem prover (system description).
In International Conference on Automated Deduction
(CADE), 2015.

Dohmke, T. GitHub Copilot X: The Al-powered de-
veloper experience. https://github.blog/
news—insights/product-news/github-
copilot-x-the-ai-powered-developer-
experience, 2023.

Dong, Y., Jiang, X., Liu, H., Jin, Z., and Li, G. General-
ization or memorization: Data contamination and trust-
worthy evaluation for large language models. In Findings
of the Association for Computational Linguistics: ACL,
2024.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The Llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Ferdowsi, K., Huang, R., James, M. B., Polikarpova, N.,
and Lerner, S. Validating Al-generated code with live
programming. In Conference on Human Factors in Com-
puting Systems (CHI), 2024.

First, E., Rabe, M. N., Ringer, T., and Brun, Y. Baldur:
Whole-proof generation and repair with large language
models. In ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE), 2023.

10

Fleureau, Y., Li, J., Beeching, E., Tunstall, L., Lip-
kin, B., Soletskyi, R., Huang, S. C., and Ra-
sul, K. How NuminaMath won the 1st AIMO
Progress Prize. https://huggingface.co/
blog/winning—aimo-progress—prize, 2024.

Gao, G., Ju, H,, Jiang, J., Qin, Z., and Dong, B. A
semantic search engine for Mathlib4. arXiv preprint
arXiv:2403.13310, 2024.

Gao, G., Wang, Y., Jiang, J., Gao, Q., Qin, Z., Xu, T,
and Dong, B. Herald: A natural language annotated
Lean 4 dataset. In International Conference on Learning
Representations (ICLR), 2025.

Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang,
Y., Callan, J., and Neubig, G. PAL: Program-aided lan-
guage models. In International Conference on Machine
Learning (ICML), 2023.

Gauthier, T., Kaliszyk, C., Urban, J., Kumar, R., and Norrish,
M. TacticToe: learning to prove with tactics. Journal of
Automated Reasoning, 2021.

Glazer, E., Erdil, E., Besiroglu, T., Chicharro, D., Chen, E.,
Gunning, A., Olsson, C. F,, Denain, J.-S., Ho, A., Santos,
E. d. O, et al. FrontierMath: A benchmark for evaluating
advanced mathematical reasoning in Al. arXiv preprint
arXiv:2411.04872, 2024.

Google DeepMind. Al achieves silver-medal stan-
dard solving international mathematical olympiad
problems. https://deepmind.google/
discover/blog/ai-solves—imo-problems—
at-silver-medal-level/, 2024.

Gordon, M. From LCF to HOL: a short history. 2000.

Gou, Z., Shao, Z., Gong, Y., Shen, Y., Yang, Y., Duan, N.,
and Chen, W. CRITIC: Large language models can self-
correct with tool-interactive critiquing. In International
Conference on Learning Representations (ICLR), 2024a.

Gou, Z., Shao, Z., Gong, Y., Shen, Y., Yang, Y., Huang,
M., Duan, N., and Chen, W. ToRA: A tool-integrated
reasoning agent for mathematical problem solving. In

International Conference on Learning Representations
(ICLR), 2024b.

Gowers, T. How can it be feasible to find proofs?
https://drive.google.com/file/d/1-
FFa6nMVgl8mlzPtoAQrFalwpx2YaGK4/view,
2022.

Gu, A., Li, W.-D., Jain, N., Olausson, T. X., Lee, C., Sen,
K., and Solar-Lezama, A. The counterfeit conundrum:
Can code language models grasp the nuances of their
incorrect generations? In Findings of the Association for
Computational Linguistics: ACL, 2024.

https://openreview.net/forum?id=HmB9uZTzaD
https://openreview.net/forum?id=HmB9uZTzaD
https://xenaproject.wordpress.com/2024/12/22/can-ai-do-maths-yet-thoughts-from-a-mathematician/
https://xenaproject.wordpress.com/2024/12/22/can-ai-do-maths-yet-thoughts-from-a-mathematician/
https://xenaproject.wordpress.com/2024/12/22/can-ai-do-maths-yet-thoughts-from-a-mathematician/
https://github.blog/news-insights/product-news/github-copilot-x-the-ai-powered-developer-experience
https://github.blog/news-insights/product-news/github-copilot-x-the-ai-powered-developer-experience
https://github.blog/news-insights/product-news/github-copilot-x-the-ai-powered-developer-experience
https://github.blog/news-insights/product-news/github-copilot-x-the-ai-powered-developer-experience
https://huggingface.co/blog/winning-aimo-progress-prize
https://huggingface.co/blog/winning-aimo-progress-prize
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://drive.google.com/file/d/1-FFa6nMVg18m1zPtoAQrFalwpx2YaGK4/view
https://drive.google.com/file/d/1-FFa6nMVg18m1zPtoAQrFalwpx2YaGK4/view

Position: Formal Mathematical Reasoning—A New Frontier in Al

Gu, R., Shao, Z., Chen, H., Wu, X. N., Kim, J., Sjoberg, V.,
and Costanzo, D. CertiKOS: An extensible architecture
for building certified concurrent OS kernels. In Sympo-

sium on Operating Systems Design and Implementation
(OSDI), 2016.

Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K., Zhang, W.,
Chen, G., Bi, X., Wu, Y,, Li, Y. K., Luo, F, Xiong, Y., and
Liang, W. DeepSeek-Coder: When the large language
model meets programming—the rise of code intelligence.
arXiv preprint arXiv:2401.14196, 2024.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P, Bi, X., et al. DeepSeek-R1:
Incentivizing reasoning capability in LLMs via reinforce-
ment learning. arXiv preprint arXiv:2501.12948, 2025.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring
mathematical problem solving with the MATH dataset.
In Neural Information Processing Systems (NeurlPS),
Datasets and Benchmarks Track, 2021.

Hong, R., Zhang, H., Pang, X., Yu, D., and Zhang, C. A
closer look at the self-verification abilities of large lan-
guage models in logical reasoning. In Annual Conference
of the North American Chapter of the Association for
Computational Linguistics (NAACL), 2024.

Howard, W. A. The formulae-as-types notion of construc-
tion. To HB Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, 1980.

Huang, J., Chen, X., Mishra, S., Zheng, H. S., Yu, A. W,
Song, X., and Zhou, D. Large language models cannot
self-correct reasoning yet. In International Conference
on Learning Representations (ICLR), 2024a.

Huang, Y., Lin, X., Liu, Z., Cao, Q., Xin, H., Wang, H., Li,
Z.,Song, L., and Liang, X. Mustard: Mastering uniform
synthesis of theorem and proof data. In International
Conference on Learning Representations (ICLR), 2024b.

Irving, G., Szegedy, C., Alemi, A. A., Eén, N., Chollet,
F., and Urban, J. DeepMath - deep sequence models
for premise selection. In Neural Information Processing
Systems (NeurIPS), 2016.

Jiang, A. Q., Welleck, S., Zhou, J. P, Lacroix, T., Liu,
J., Li, W, Jamnik, M., Lample, G., and Wu, Y. Draft,
sketch, and prove: Guiding formal theorem provers with
informal proofs. In International Conference on Learning
Representations (ICLR), 2023.

Jiang, A. Q., Li, W., and Jamnik, M. Multi-language diver-
sity benefits autoformalization, 2024.

Kaliszyk, C. and Urban, J. Lemma mining over HOL Light.
In International Conference on Logic for Programming
Artificial Intelligence and Reasoning (LPAR), 2013.

Kaliszyk, C., Urban, J., and Vyskocil, J. System descrip-
tion: statistical parsing of informalized Mizar formulas.
In International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC), 2017.

Kaliszyk, C., Urban, J., Michalewski, H., and Olsdk, M.
Reinforcement learning of theorem proving. In Neural
Information Processing Systems (NeurlPS), 2018.

Karpukhin, V., Oguz, B., Min, S., Lewis, P, Wu, L., Edunov,
S., Chen, D., and Yih, W.-t. Dense passage retrieval
for open-domain question answering. In Conference

on Empirical Methods in Natural Language Processing
(EMNLP), 2020.

Klarreich, E. Titans of mathematics clash
over epic proof of ABC conjecture. https:
//www.quantamagazine.org/titans-of—-
mathematics—-clash-over—-epic-proof-of-
abc—conjecture-20180920/, 2018.

Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock,
D., Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski,
R., Norrish, M., Sewell, T., Tuch, H., and Winwood, S.
seL.4: Formal verification of an OS kernel. In Symposium
on Operating systems principles (SOSP), 2009.

Kiihlwein, D., van Laarhoven, T., Tsivtsivadze, E., Urban,
J., and Heskes, T. Overview and evaluation of premise
selection techniques for large theory mathematics. In
Automated Reasoning: 6th International Joint Confer-
ence, IJCAR 2012, Manchester, UK, June 26-29, 2012.
Proceedings 6, pp. 378-392. Springer, 2012.

Lample, G., Lacroix, T., Lachaux, M.-A., Rodriguez, A.,
Hayat, A., Lavril, T., Ebner, G., and Martinet, X. Hyper-
Tree proof search for neural theorem proving. In Neural
Information Processing Systems (NeurlPS), 2022.

Lanham, T., Chen, A., Radhakrishnan, A., Steiner, B., Deni-
son, C., Hernandez, D., Li, D., Durmus, E., Hubinger,
E., Kernion, J., et al. Measuring faithfulness in chain-
of-thought reasoning. arXiv preprint arXiv:2307.13702,
2023.

Lattuada, A., Hance, T., Cho, C., Brun, M., Subasinghe,
1., Zhou, Y., Howell, J., Parno, B., and Hawblitzel, C.
Verus: Verifying rust programs using linear ghost types.
Proceedings of the ACM on Programming Languages,
2023.

Lederman, G., Rabe, M., Seshia, S., and Lee, E. A. Learn-
ing heuristics for quantified boolean formulas through
reinforcement learning. In International Conference on
Learning Representations (ICLR), 2020.

https://www.quantamagazine.org/titans-of-mathematics-clash-over-epic-proof-of-abc-conjecture-20180920/
https://www.quantamagazine.org/titans-of-mathematics-clash-over-epic-proof-of-abc-conjecture-20180920/
https://www.quantamagazine.org/titans-of-mathematics-clash-over-epic-proof-of-abc-conjecture-20180920/
https://www.quantamagazine.org/titans-of-mathematics-clash-over-epic-proof-of-abc-conjecture-20180920/

Position: Formal Mathematical Reasoning—A New Frontier in Al

Leino, K. R. M. Dafny: An automatic program verifier
for functional correctness. In International Conference
on Logic for Programming Artificial Intelligence and
Reasoning (LPAR), 2010.

Leroy, X. Formal verification of a realistic compiler. Com-
munications of the ACM, 2009.

Leroy, X., Blazy, S., Kistner, D., Schommer, B., Pister,
M., and Ferdinand, C. CompCert-a formally verified
optimizing compiler. In Embedded Real Time Software
and Systems (ERTS), 2016.

Li, J., Beeching, E., Tunstall, L., Lipkin, B., Soletskyi,
R., Huang, S., Rasul, K., Yu, L., Jiang, A. Q., Shen, Z.,
Qin, Z., Dong, B., Zhou, L., Fleureau, Y., Lample, G.,
and Polu, S. NuminaMath: The largest public dataset in
Al4Maths with 860k pairs of competition math problems
and solutions. https://github.com/project-
numina/aimo-progress—prize/blob/main/
report/numina_dataset .pdf, 2024a.

Li, Z., Poesia, G., Costilla-Reyes, O., Goodman, N., and
Solar-Lezama, A. Lemma: Bootstrapping high-level
mathematical reasoning with learned symbolic abstrac-
tions. arXiv preprint arXiv:2211.08671, 2022.

Li, Z., Sun, J., Murphy, L., Su, Q., Li, Z., Zhang, X., Yang,
K., and Si, X. A survey on deep learning for theorem
proving. In Conference on Language Modeling (COLM),
2024b.

Li, Z., Wu, Y., Li, Z., Wei, X., Zhang, X., Yang, F., and
Ma, X. Autoformalize mathematical statements by sym-
bolic equivalence and semantic consistency. In Neural
Information Processing Systems (NeurIPS), 2024c.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, 1., and
Cobbe, K. Let’s verify step by step. In International
Conference on Learning Representations (ICLR), 2024.

Lin, H., Sun, Z., Yang, Y., and Welleck, S. Lean-STaR:
Learning to interleave thinking and proving. arXiv
preprint arXiv:2407.10040, 2024.

Ling, Z., Fang, Y., Li, X., Huang, Z., Lee, M., Memisevic,
R., and Su, H. Deductive verification of chain-of-thought
reasoning. In Neural Information Processing Systems
(NeurlIPS), 2024.

Liu, Q., Zheng, X., Lu, X., Cao, Q., and Yan, J. Rethink-
ing and improving autoformalization: towards a faithful
metric and a dependency retrieval-based approach. In

International Conference on Learning Representations
(ICLR), 2025.

12

Lohn, E. and Welleck, S. miniCodeProps: a minimal
benchmark for proving code properties. arXiv preprint
arXiv:2406.11915, 2024.

Loughridge, C., Sun, Q., Ahrenbach, S., Cassano, F., Sun,
C., Sheng, Y., Mudide, A., Misu, M. R. H., Amin, N.,
and Tegmark, M. DafnyBench: A benchmark for formal
software verification. arXiv preprint arXiv:2406.08467,
2024.

Lu, J., Wan, Y., Liu, Z., Huang, Y., Xiong, J., Liu, C,,
Shen, J., Jin, H., Zhang, J., Wang, H., Yang, Z., Tang, J.,
and Guo, Z. Process-driven autoformalization in Lean 4.
arXiv preprint arXiv:2406.01940, 2024.

Martin-Lof, P. and Sambin, G. Intuitionistic type theory.
Bibliopolis Naples, 1984.

Mathlib community. The Lean mathematical library. In
Certified Programs and Proofs (CPP), 2020.

Meurer, A., Smith, C. P, Paprocki, M., Certl’k, 0., Kirpichev,
S. B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J. K.,
Singh, S., et al. SymPy: symbolic computing in Python.
PeerJ Computer Science, 2017.

Mikuta, M., Tworkowski, S., Antoniak, S., Piotrowski, B.,
Jiang, A. Q., Zhou, J. P., Szegedy, C., Kucisski, L., Milos,
P., and Wu, Y. Magnushammer: A transformer-based ap-
proach to premise selection. In International Conference
on Learning Representations (ICLR), 2024.

Mirzadeh, 1., Alizadeh, K., Shahrokhi, H., Tuzel, O., Bengio,
S., and Farajtabar, M. GSM-Symbolic: Understanding the
limitations of mathematical reasoning in large language
models. arXiv preprint arXiv:2410.05229, 2024.

Misu, M. R. H., Lopes, C. V., Ma, 1., and Noble, J. Towards
Al-assisted synthesis of verified Dafny methods. In ACM
Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2024.

Moura, L. d. and Ullrich, S. The Lean 4 theorem prover and
programming language. In International Conference on
Automated Deduction (CADE), 2021.

Mugnier, E., Gonzalez, E. A., Jhala, R., Polikarpova, N.,
and Zhou, Y. Laurel: Generating Dafny assertions using
large language models. arXiv preprint arXiv:2405.16792,
2024.

Murphy, L., Yang, K., Sun, J., Li, Z., Anandkumar, A.,
and Si, X. Autoformalizing Euclidean geometry. In
International Conference on Machine Learning (ICML),
2024.

https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf

Position: Formal Mathematical Reasoning—A New Frontier in Al

Newell, A. and Simon, H. The logic theory machine—a com-
plex information processing system. IRE Transactions
on information theory, 1956.

Nipkow, T., Wenzel, M., and Paulson, L. C. Isabelle/HOL:
a proof assistant for higher-order logic. 2002.

Olausson, T., Gu, A., Lipkin, B., Zhang, C., Solar-Lezama,
A., Tenenbaum, J., and Levy, R. LINC: A neurosymbolic
approach for logical reasoning by combining language
models with first-order logic provers. In Conference

on Empirical Methods in Natural Language Processing
(EMNLP), 2023.

OpenAl. Learning to reason with LLMs.
https://openai.com/index/learning-
to-reason-with-1lms/, 2024.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. BLEU:
a method for automatic evaluation of machine translation.
In Annual Meeting of the Association for Computational
Linguistics (ACL), 2002.

Pearce, H., Ahmad, B., Tan, B., Dolan-Gavitt, B., and Karri,
R. Asleep at the keyboard? assessing the security of
Github Copilot’s code contributions. In Symposium on
Security and Privacy, 2022.

Perry, N., Srivastava, M., Kumar, D., and Boneh, D. Do
users write more insecure code with Al assistants? In

Conference on Computer and Communications Security
(CCS), 2023.

Poesia, G. and Goodman, N. D. Peano: learning formal
mathematical reasoning. Philosophical Transactions of
the Royal Society A, 2023.

Poesia, G., Broman, D., Haber, N., and Goodman, N. D.
Learning formal mathematics from intrinsic motivation.
In Neural Information Processing Systems (NeurIPS),
2024a.

Poesia, G., Gandhi, K., Zelikman, E., and Goodman, N. D.
Certified deductive reasoning with language models.
Transactions on Machine Learning Research (TMLR),
2024b.

Polu, S. and Sutskever, I. Generative language model-
ing for automated theorem proving. arXiv preprint
arXiv:2009.03393, 2020.

Polu, S., Han, J. M., Zheng, K., Baksys, M., Babuschkin, 1.,
and Sutskever, I. Formal mathematics statement curricu-
lum learning. In International Conference on Learning
Representations (ICLR), 2023.

Reichel, T., Henderson, R., Touchet, A., Gardner, A., and
Ringer, T. Proof repair infrastructure for supervised mod-
els: Building a large proof repair dataset. In International
Conference on Interactive Theorem Proving (ITP), 2023.

13

Ren, Z., Shao, Z., Song, J., Xin, H., Wang, H., Zhao, W.,
Zhang, L., Fu, Z., Zhu, Q., Yang, D., et al. DeepSeek-
Prover-V2: Advancing formal mathematical reasoning
via reinforcement learning for subgoal decomposition.
arXiv preprint arXiv:2504.21801, 2025.

Ringer, T. Proof Repair. University of Washington, 2021.

Ringer, T., Palmskog, K., Sergey, 1., Gligoric, M., and Tat-
lock, Z. QED at large: A survey of engineering of for-
mally verified software. Foundations and Trends® in
Programming Languages, 2019.

Robertson, S., Zaragoza, H., et al. The probabilistic rele-
vance framework: BM25 and beyond. Foundations and
Trends® in Information Retrieval, 2009.

SAE. Taxonomy and definitions for terms related
to driving automation systems for on-road motor
vehicles. https://www.sae.org/standards/
content/j3016_202104/,2024.

Sanchez-Stern, A., Alhessi, Y., Saul, L., and Lerner, S.
Generating correctness proofs with neural networks. In
SIGPLAN International Workshop on Machine Learning
and Programming Languages, 2020.

Seshia, S. A. Combining induction, deduction, and structure
for verification and synthesis. Proceedings of the IEEE,
2015.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Zhang, M.,
Li, Y., Wu, Y., and Guo, D. DeepSeekMath: Pushing
the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Shi, F., Chen, X., Misra, K., Scales, N., Dohan, D., Chi,
E. H., Schirli, N., and Zhou, D. Large language models
can be easily distracted by irrelevant context. In Interna-
tional Conference on Machine Learning (ICML), 2023.

Si, X., Naik, A., Dai, H., Naik, M., and Song, L. Code2Inv:
A deep learning framework for program verification. In
International Conference on Computer Aided Verification
(CAV), 2020.

Song, P, Yang, K., and Anandkumar, A. Towards large
language models as copilots for theorem proving in Lean.
arXiv preprint arXiv: Arxiv-2404.12534, 2024.

Stechly, K., Valmeekam, K., and Kambhampati, S. On
the self-verification limitations of large language mod-
els on reasoning and planning tasks. arXiv preprint
arXiv:2402.08115, 2024.

Sun, C., Sheng, Y., Padon, O., and Barrett, C. Clover:
Closed-loop verifiable code generation. In International
Symposium on Al Verification, 2024a.

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://www.sae.org/standards/content/j3016_202104/
https://www.sae.org/standards/content/j3016_202104/

Position: Formal Mathematical Reasoning—A New Frontier in Al

Sun, Z., Yu, L., Shen, Y., Liu, W., Yang, Y., Welleck, S.,
and Gan, C. Easy-to-hard generalization: Scalable align-
ment beyond human supervision. In Neural Information
Processing Systems (NeurlPS), 2024b.

Szegedy, C. A promising path towards autoformalization
and general artificial intelligence. In International Con-
ference on Intelligent Computer Mathematics (CICM),
2020.

Tao, T. The potential for Al in science and mathe-
matics. https://www.youtube.com/watch?v=
_sTDS074D8Q, 2024.

Thakur, A., Tsoukalas, G., Wen, Y., Xin, J., and Chaud-
huri, S. An in-context learning agent for formal theorem-
proving. In Conference on Language Modeling (COLM),
2024.

Trinh, T. H., Wu, Y., Le, Q. V., He, H., and Luong, T. Solv-
ing olympiad geometry without human demonstrations.
Nature, 2024.

Tsoukalas, G., Lee, J., Jennings, J., Xin, J., Ding, M., Jen-
nings, M., Thakur, A., and Chaudhuri, S. PutnamBench:
Evaluating neural theorem-provers on the Putnam math-
ematical competition. In Neural Information Process-
ing Systems (NeurlPS), Datasets and Benchmarks Track,
2024.

Vaezipoor, P., Lederman, G., Wu, Y., Maddison, C., Grosse,
R. B, Seshia, S. A., and Bacchus, F. Learning branching
heuristics for propositional model counting. In AAAI
Conference on Artificial Intelligence, 2021.

Wang, H., Xin, H,, Liu, Z., Li, W., Huang, Y., Lu, J., Yang,
Z., Tang, J., Yin, J., Li, Z., and Liang, X. Proving the-
orems recursively. In Neural Information Processing
Systems (NeurIPS), 2024.

Wang, H., Unsal, M., Lin, X., Baksys, M., Liu, J., Santos,
M. D., Sung, F.,, Vinyes, M., Ying, Z., Zhu, Z., et al.
Kimina-Prover Preview: Towards large formal reason-
ing models with reinforcement learning. arXiv preprint
arXiv:2504.11354, 2025.

Wang, Q., Kaliszyk, C., and Urban, J. First experiments
with neural translation of informal to formal mathemat-
ics. In International Conference on Intelligent Computer
Mathematics (CICM), 2018.

Wang, Q., Brown, C., Kaliszyk, C., and Urban, J. Explo-
ration of neural machine translation in autoformalization
of mathematics in Mizar. In Certified Programs and
Proofs (CPP), 2020.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F.,, Chi, E., Le, Q. V., and Zhou, D. Chain-of-thought

14

prompting elicits reasoning in large language models. In
Neural Information Processing Systems (NeurlPS), 2022.

Whalen, D. Holophrasm: a neural automated theo-
rem prover for higher-order logic. arXiv preprint
arXiv:1608.02644, 2016.

Wu, Y, Jiang, A., Li, W., Rabe, M., Staats, C., Jamnik,
M., and Szegedy, C. Autoformalization with large lan-
guage models. In Neural Information Processing Systems
(NeurIPS), 2022.

Wu, Y., Sun, Z., Li, S., Welleck, S., and Yang, Y. An
empirical analysis of compute-optimal inference for
problem-solving with language models. arXiv preprint
arXiv:2408.00724, 2024a.

Wu, Z., Huang, S., Zhou, Z., Ying, H., Wang, J., Lin, D., and
Chen, K. InternLM2.5-StepProver: Advancing automated
theorem proving via expert iteration on large-scale Lean
problems. arXiv preprint arXiv:2410.15700, 2024b.

Xie, J., Zhang, K., Chen, J., Zhu, T., Lou, R., Tian, Y.,
Xijao, Y., and Su, Y. TravelPlanner: A benchmark for real-
world planning with language agents. In International
Conference on Machine Learning (ICML), 2024a.

Xie, Y., Goyal, A., Zheng, W., Kan, M.-Y., Lillicrap, T. P.,
Kawaguchi, K., and Shieh, M. Monte Carlo tree search
boosts reasoning via iterative preference learning. arXiv
preprint arXiv:2405.00451, 2024b.

Xin, H., Wang, H., Zheng, C., Li, L., Liu, Z., Cao, Q.,
Huang, Y., Xiong, J., Shi, H., Xie, E., et al. LEGO-
Prover: Neural theorem proving with growing libraries.

In International Conference on Learning Representations
(ICLR), 2023.

Xin, H., Guo, D., Shao, Z., Ren, Z., Zhu, Q., Liu, B., Ruan,
C., Li, W,, and Liang, X. DeepSeek-Prover: Advancing
theorem proving in LL.Ms through large-scale synthetic
data. arXiv preprint arXiv:2405.14333, 2024.

Yang, C., Li, X., Misu, M. R. H., Yao, J., Cui, W., Gong,
Y., Hawblitzel, C., Lahiri, S., Lorch, J. R., Lu, S., et al.
AutoVerus: Automated proof generation for Rust code.
arXiv preprint arXiv:2409.13082, 2024a.

Yang, K. and Deng, J. Learning to prove theorems via inter-
acting with proof assistants. In International Conference
on Machine Learning (ICML), 2019.

Yang, K., Deng, J., and Chen, D. Generating natural lan-
guage proofs with verifier-guided search. In Conference
on Empirical Methods in Natural Language Processing
(EMNLP), 2022.

https://www.youtube.com/watch?v=_sTDSO74D8Q
https://www.youtube.com/watch?v=_sTDSO74D8Q

Position: Formal Mathematical Reasoning—A New Frontier in Al

Yang, K., Swope, A., Gu, A., Chalamala, R., Song, P., Yu,
S., Godil, S., Prenger, R., and Anandkumar, A. Lean-
Dojo: Theorem proving with retrieval-augmented lan-

guage models. In Neural Information Processing Systems
(NeurlPS), 2023.

Yang, K., Poesia, G., He, J., Li, W., Lauter, K., Chaudhuri,
S., and Song, D. Formal mathematical reasoning: A new
frontier in Al. arXiv preprint arXiv:2412.16075, 2024b.

Ye, X., Chen, Q., Dillig, I., and Durrett, G. SatLM:
Satisfiability-aided language models using declarative
prompting. In Neural Information Processing Systems
(NeurlIPS), 2023.

Yin, S., You, W., Ji, Z., Zhong, G., and Bai, J. MuMath-
Code: Combining tool-use large language models with
multi-perspective data augmentation for mathematical
reasoning. arXiv preprint arXiv:2405.07551, 2024.

Zhang, C., Song, J., Li, S., Liang, Y., Ma, Y., Wang,
W., Zhu, Y., and Zhu, S.-C. Proposing and solving
olympiad geometry with guided tree search. arXiv
preprint arXiv:2412.10673, 2024a.

Zhang, D., Zhoubian, S., Yue, Y., Dong, Y., and Tang, J.
ReST-MCTS*: LLM self-training via process reward
guided tree search. In Neural Information Processing
Systems (NeurlPS), 2024b.

Zhang, L., Lu, S., and Duan, N. Selene: Pioneering auto-
mated proof in software verification. In Annual Meeting
of the Association for Computational Linguistics (ACL),
2024c.

Zheng, C., Zhang, Z., Zhang, B., Lin, R., Lu, K., Yu, B.,
Liu, D., Zhou, J., and Lin, J. ProcessBench: Identifying
process errors in mathematical reasoning. arXiv preprint
arXiv:2412.06559, 2024a.

Zheng, H. S., Mishra, S., Zhang, H., Chen, X., Chen,
M., Nova, A., Hou, L., Cheng, H.-T., Le, Q. V., Chi,
E. H., and Zhou, D. NATURAL PLAN: Benchmark-
ing LLMs on natural language planning. arXiv preprint
arXiv:2406.04520, 2024b.

Zheng, K., Han, J. M., and Polu, S. MiniF2F: a cross-system
benchmark for formal olympiad-level mathematics. In
International Conference on Learning Representations

(ICLR), 2022.

Zhou, J. P, Staats, C. E., Li, W., Szegedy, C., Weinberger,
K. Q., and Wu, Y. Don’t trust: Verify—grounding LLM
quantitative reasoning with autoformalization. In Interna-
tional Conference on Learning Representations (ICLR),
2024a.

15

Zhou, J. P., Wu, Y., Li, Q., and Grosse, R. B. REFACTOR:
Learning to extract theorems from proofs. In Interna-
tional Conference on Learning Representations (ICLR),
2024b.

