Born a Transformer — Always a Transformer? On the
Effect of Pretraining on Architectural Abilities

Mayank Jobanputra'”, Yana Veitsman'*, Yash Sarrof !, Aleksandra Bakalova',
Vera Demberg!, Ellie Pavlick?, Michael Hahn!

!Saarland University 2Brown University

{mayank,mhahn}@lst.uni-saarland.de

Abstract

Transformers have theoretical limitations in modeling certain sequence-to-sequence
tasks, yet it remains largely unclear if these limitations play a role in large-scale
pretrained LLMs, or whether LLMs might effectively overcome these constraints
in practice due to the scale of both the models themselves and their pretraining
data. We explore how these architectural constraints manifest after pretraining,
by studying a family of retrieval and copying tasks inspired by Liu et al. [2024a].
We use a recently proposed framework for studying length generalization [Huang
et al., 2025] to provide guarantees for each of our settings. Empirically, we observe
an induction-versus-anti-induction asymmetry, where pretrained models are better
at retrieving tokens to the right (induction) rather than the left (anti-induction) of
a query token. This asymmetry disappears upon targeted fine-tuning if length-
generalization is guaranteed by theory. Mechanistic analysis reveals that this
asymmetry is connected to the differences in the strength of induction versus
anti-induction circuits within pretrained transformers. We validate our findings
through practical experiments on real-world tasks demonstrating reliability risks.
Our results highlight that pretraining selectively enhances certain transformer
capabilities, but does not overcome fundamental length-generalization limits'.

1 Introduction

Transformers [Vaswani et al., 2017] have become the backbone of most LLMs [Radford et al., 2019,
Brown et al., 2020, Touvron et al., 2023]. Given the widespread usage of LLMs, there has been a long
line of research to understand their theoretical underpinnings. Early analyses showed that transformers
can approximate any sequence-to-sequence function at fixed input length [Yun et al., 2019] and
even simulate Turing machines [Pérez et al., 2019] when given unbounded compute. However,
subsequent studies have uncovered fundamental expressibility and learnability limitations, finding
classes of problems which transformers cannot express across arbitrary input lengths [e.g. Hahn,
2020, Strobl et al., 2024, Merrill and Sabharwal, 2023, Sanford et al., 2024], or which transformers
systematically struggle to learn and generalize on [e.g. Hahn and Rofin, 2024, Zhou et al., 2024].
Empirical work confirms that small transformers trained from scratch do instantiate such limitations
[e.g. Bhattamishra et al., 2020, Huang et al., 2025, Delétang et al., 2023, Zhou et al., 2024]. For
instance, transformers trained from scratch struggle to generalize to longer or more challenging
examples even on tasks as simple as copying a long string with repeated symbols [Zhou et al., 2024],
or retrieving which token followed the last occurrence of some query token in a long context [Liu
et al., 2024a] — findings in close agreement with theoretical arguments about transformer’s learning
biases [Huang et al., 2025].

*These authors contributed equally.
"https://github.com/lacoco-1lab/always_a_transformer

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/lacoco-lab/always_a_transformer

However, it remains unclear if such results on expressiveness and generalization have any bearing on
large-scale pretrained models. Modern LLMs have many more layers, and many orders of magnitude
more parameters than the small-scale transformers typically used for testing theoretical limitations.
Model scale alone might make theoretical limitations irrelevant at realistic input lengths. Perhaps
even more importantly, LLMs are pretrained on a massive scale, with trillions of tokens of varied data
that may impart fundamentally new inductive biases and algorithmic abilities [Rytting and Wingate,
2021] that may be invisible in models trained from scratch on the target task alone [Amos et al.,
2024]. Indeed, LLMs’ capabilities scale in ways that are difficult to foresee: empirical “laws” relate
performance to model, data, and compute budget [Kaplan et al., 2020, Hoffmann et al., 2022] and
qualitatively new behaviors such as in-context learning, chain-of-thought reasoning, and tool use
emerge abruptly at scale [Wei et al., 2022, Ganguli et al., 2022, Bubeck et al., 2023]. Since pretraining
reshapes both the model’s inductive biases and the sub-circuits it relies on, length-generalization
failures observed in small models might not transfer automatically to their large-scale counterparts.

Scope. We focus on retrieval and copying as fundamental operations that provide a test bed for
answering these questions. These operations are critical building blocks for many real-world LLM
applications, such as question answering and summarization [Wiegreffe et al., 2025, Fan et al., 2024].
On a mechanistic level, retrieving from context via induction heads is key to performing in-context
learning [Olsson et al., 2022, Song et al., 2025, Crosbie and Shutova, 2025], while faithfully copying
exact spans makes retrieval-augmented generation more effective [Yu et al., 2024]. Understanding
the potential impact of architectural limitations on LLMs is thus of great interest for these tasks.

In this work, we revisit the theory of length generalization for these operations, ask how its predictions
hold up for pretrained transformers, and diagnose which abilities are amplified by pretraining and
which limitations persist. We study a family of retrieval and copying tasks? (Figure 1) inspired by Liu
et al. [2024a], Zhou et al. [2024]. We organize retrieval into two umbrella categories of unigue and
non-unique induction, respectively, in which the query token appears exactly once or multiple times
respectively. In each variant, the model must return a token located either before or after a designated
occurrence of that query token. We make an analogous distinction in copying between copying
unique tokens or repeated tokens, and between copying in the forward or the reverse direction.

All retrieval and copying tasks we consider are expressible by transformers in principle; however,
theory predicts systematic differences in length generalizability®. Specifically, we show (Section 3)
that theory predicts transformers to have a uniqueness bias (i.e., unique-token induction is easier
than its non-unique counterpart) [Huang et al., 2025, Zhou et al., 2024]; but for it to not have a
directional bias (i.e., that forward and reverse variants are equally hard). Theory also predicts that
within non-unique induction, retrieving is easier from the first occurrence of the query character than
from the last one.

However, given the impressive capabilities of transformer-based LLMs, it is reasonable to posit that
the massive scale of both such models and of pretraining might overcome these limitations. For
instance, high prevalence of non-unique copying in natural language might lead transformers to learn
specialized circuits or components for handling such situations. Here, we directly test whether these
architectural limitations remain relevant to pretrained LLMs. We study 8 pretrained LLMs from
Llama-3 and Qwen2.5 families [Grattafiori et al., 2024, Yang et al., 2024]. Our findings show that
large-scale pretraining produces a directional bias (Section 4.1). In addition to showing our results
on synthetic settings, we show how these limits might surface and the reliability risks they pose for
practitioners in more natural settings as well (Section 4.2). While targeted fine-tuning can even out
the directional bias born out of pretraining, we find that the fundamental architectural uniqueness
bias still binds pretrained transformers (Section 4.3).

2 Background, Notation & Definitions

Task Description. We examine two primary task types, Retrieval and Copying, each instantiated
under Unigue and Non-unique conditions, as illustrated in Figure 1. In Retrieval, the sequence has the
form X = (bos)x1,...xN_1(sep)xy, where each z; € some alphabet ¥ and x5 = ¢ is the query
token. The query ¢ appears ¢ times in the context, indexed as q1,...q with1 < ¢q; < --- < g < N.
Transformer has to predict a single token as the output given the input. For the Unique condition, we

%i.e., copying of the input, not the training data, similar to Jelassi et al. [2024]
3ability to correctly solve tasks on instances longer than those seen during training



RETRIEVAL COPYING

Query appears once (unique) in the context UF (Unique forward copying)
¥ Unique tokens | b | a I d ITI<eos>|
|<bos>|d|a|b|d|#|a|Ans| |<bos>|b|a|d|c|#|
uL=d _ UR=b Leld]a]b [w«os|
(Unique Induction Left)  (Unique Induction Right) UB (Unique backward copying)

Query appears multiple (non-unique) times in the context

NF (Non Unique forward copying)

FIRST LAST Repeated tokens la|b]a]b]<eos]
[woss[d]a[b]ac[a]d][#][a]Ans] [wos]a[b[a]b]#]
NLFirst=d NRFirst=b NLLast=c NRLast=d [b]a] b'l a [<eos’] '
(Non Unique Left / Right (Non Unique Left / Right NB (Non Unique backward copying)
First Retrieval) Last Retrieval)

Figure 1: Overview of our task variants (formal definitions in Section 2). Retrieval: A ‘# marks
the separator; the token that follows is the query that may appear once (unique) or multiple times
(non-unique). With non-unique queries we return the token immediately left/right of either the first or
the last occurrence, creating 6 sub-tasks in total. Copying: We want to model to copy the context
which consists of either only unique tokens or repeated tokens in the forward or reverse direction.
Tasks in green lie in C-RASP[pos] and length-generalize; those in red do not (proofs in Section 3).

define UL (Unique Induction Left) and UR (Unique Induction Right) respectively when the output
expected is the token preceding or following the query’s single occurrence, i.e., 24, —1 and 24, 4+1.
Under the Non-unique condition, NLFirst (Non-unique Left First) and NRFirst (Non-unique Right
First) use the first occurrence to predict x4, —; and x4, 41 as the output, while NLLast (Non-unique
Left Last) and NRLast* (Non-unique Right Last) use the last occurrence to produce ZTg,—1 and Tq, 1
respectively.

For Copying, the sequence is X = (bos)zy ...z (sep) and the expected output is a continuation
TN+1---Zon. The decoder is expected to replicate the latter segment based on the first. For Unique
conditions all of the tokens in X are unique. UF (Unique Forward copying) and UB (Unique
Backwards copying) denote forward and reverse copying of the input segment. For Non-unique
settings there is no uniqueness constraint on the x; values and NF and NB also denote the forward
and reverse copying of the input segment.

Induction and Anti-Induction Heads. Induction heads were characterized by Elhage
et al. [2021] as part of a two-head circuit present in autoregressive transformers
and were later shown to be critical
to performing in-context learning

Pass : My Identity

Forward Copying

3 - PREVIOUS TOKEN HEAD
[OlSSOn et al:’ 2022]A pr_eVlous Write the predecessor into the |<h°S>I b | a I d I c I # I b I a |—’|I|
token head in ]ayer ¢ writes the residual stream of the next token INDUCTION HEAD 4

embedding of the immediately foreverypos%somelayerd ey wsmre“““””
preceding token into the residual  [wes] b [a [d ] c ] #]

stream. An induction head in a Query : My Identity ?
Predecessor for °d” : "a” written

/ . .
some layer E > g then querles (information available for querying at B:ckV\Ilar;C]opylnf d I I # | I d }—PE
for positions whose stored “pre- layer >L) o a ¢ ¢ 7

vious token” equals the current to- M ey @ .

ken and copies the corresponding U o
value vector forward, enabling the ) . . .. . ..
model to predict the token after a  Figure 2: Tlustration of the induction and anti-induction Circuits.

repeated bigram. Our UR retrieval as well as the UF copying task setups are not novel and are meant
to test this induction circuit ability and compare with our other task setups.

We hypothesize that, by symmetry, an anti-induction circuit should in principle exist and be able to
copy information backwards. Here, the same previous-token head caches the token immediately to the
left, but is paired with an anti-induction head that looks back to the earlier occurrence of the same

*The NRLast variant is conceptually equivalent to the Flip-Flop task of Liu et al. [2024a].



token. Because that earlier token received the value of its own predecessor from the previous-token
head, the anti-induction head can retrieve that predecessor, allowing the model to predict one step to
the left. Such a two-head motif should thus enable exact solutions to our UL and UB tasks. Retrieval
heads of Wu et al. [2025] subsume both induction and anti-induction heads (see Appendix E for
discussion).

3 Theoretical Length Generalization Guarantees for Our Tasks

We derive theoretical predictions for transformers’ length-generalization abilities on the retrieval and
copying tasks introduced above, using the framework of Huang et al. [2025], which links length-
generalizability to expressiveness in C-RASP [Yang and Chiang, 2024]. Of particular interest is
C-RASP [Yang and Chiang, 2024], which restricts the usage of positional information and arithmetic
operations. Huang et al. [2025] further added positionally-aware primitives to C-RASP to construct
the language C-RASP[pos]’. Doing so, they established—both theoretically and empirically—a tight
link between the existence of a C-RASP[pos] program for a task and the ability of decoder-only
transformers (with absolute or no positional encodings) to length-generalize on that same task: in
particular, if C-RASP[pos] program exists, a decoder-only model provably generalizes to longer
inputs under a specific formal model of training (Theorem 7 in Huang et al. [2025]). More precisely,
this guarantee applies to APE Transformers under an idealized training procedure, where all training
data up to some maximum input length NV are available and the exact minimizer of a regularized
loss is found. Under these specific conditions, the existence of a C-RASP[pos] program for that
task guarantees length generalization to larger lengths. While theory has only been worked out for
this specific setup, empirically we observe converging results across different PE types and realistic
SGD-based training (as shown in Huang et al. [2025] as well as in the experiments in Appendix B).
As a converse to this length generalization guarantee, extensive experimental evidence in Huang et al.
[2025] suggests that, if no C-RASP program exists, such models fail to generalize to longer inputs.®

We therefore adopt the following strategy for providing length generalizing guarantees across our
retrieval and copying tasks:

Construct a C-RASP[pos] program = the task length-generalizes to arbitrary n.

We start by considering the “Right” versions of our Retrieval tasks. In the unique case (UR), a
transformer can solve retrieval using a standard induction circuit (Figure 2): an induction head
retrieves the symbol that followed the unique occurrence of the query. These operations can be
simulated in C-RASP[pos] (Lemma 4), ensuring a theoretical length generalization guarantee. In the
non-unique case, expressibility — and hence the length generalization guarantee — varies:

Theorem 1. NRFirst is expressible in C-RASP[pos]. NRLast is not expressible in C-RASP[pos].

The proof is in the Appendix (Lemmas 5 and 6). An extension of the induction circuit performs
NRFirst: first, at each z;, an attention head checks whether this symbol has appeared previously.
Given a query w, an induction circuit then retrieves the symbol immediately following the (unique,
if any exist) first appearance of w. A C-RASP[pos] program formalizes this (Lemma 5). On the
other hand, the inexpressibility of NRLast is proven by reduction to the regular language (a|ble)*ae*,
provably not in C-RASP (Lemma 6). Regarding copying tasks, Huang et al. [2025] shows that UF is
in C-RASP[pos], while NF is not. The construction for UF again uses an induction circuit.

So far, we have considered “right” and “forward” versions—in fact, in all tasks, C-RASP[pos]
expressibility is equivalent for the left (backward) settings:

Theorem 2. Across all tasks, there is no C-RASP[pos] expressibility difference between R vs L
versions, and F vs B versions.

SReferred to as C-RAsP[local, periodic] in Huang et al. [2025]. See Appendix A.1.

SWhile Huang et al. [2025] focuses on absolute (APE) or no positional encodings (NoPE), our empirical
results show that the conclusions also match the behavior of Rotary Positional encodings (RoPE) (See Appendix
B). Full theoretical understanding for RoPE length generalization remains an interesting problem. One interesting
aspect is that, while training RoPE for UF and UB did not show perfect generalization, we did obtain perfect
generalization when instead autoregressively decoding from models trained for UR/UL. In APE, we obtained
perfect generalization when training directly for UF and UB, in line with C-RASP[pos] expressivity.



That is, C-RASP[pos] expressivity is the same for UL and UR, the same for UF and UB, etc.
(Corollary 9). All tasks are annotated in Figure 1 with their C-RASP[pos] expressibility. Experiments
in Appendix B show that transformers trained from scratch on these tasks exhibit length generalization
as predicted by the theoretical results.

—e-Llama 3 70B (Left/Bwd) —e—Llama 3 70B (Right/Fwd) Qwen 2.5 32B (Left/Bwd) Qwen 2.5 32B (Right/Fwd)
Retrieval Copying
UL/UR UB/UF
1.0 &<
e
~
0 8 .__aj \\‘\
~
[<F] > ~
3 3 0.6 s
9- = o S
: 8 0 4 \\ \\
. ~
2 < A \
S N
0.2 P s
»
0.0 10 20 30 40 50 100 10 20 30 40 50 100
Input Length Input Length
NLFirst/NRFirst NLLast/NRLast NB/NF

Non-unique
Accuracy

10 20 30 40 50 100 10 20 30 40 50 100
Input Length Input Length Input Length

Figure 3: In-context accuracy for Llama-3 70B and Qwen2.5-32B across all our tasks averaged
over three seeds. Across all settings, lengths, model size, and task type, we observe a Directional
Bias: Retrieving the token to the left of the query token is always more difficult compared to the
one to the right, provided all other things are constant. Similarly, copying in the forward direction
is easier than copying backwards. Detailed prompts, similar performance graphs on other models
(including instruction-tuned variants) are in Appendix C.

4 Experiments

4.1 Eliciting Abilities via In-Context Learning

We evaluate pretrained completion as well as instruction-tuned variants of the following models:
Llama3.1-8B, Llama3.1-70B, Qwen2.5-7B, and Qwen2.5-32B. For retrieval as well as copying,
each model is evaluated across various prompt variations. The prompt variations relate to the few-shot
example size (examples are equal in length to the test string or are smaller but clearer) and the
instruction templates (details on prompt templates in the Appendix C.1) with the templates adjusted
for completion as well as instruction-tuned models. All experiments use 1,500 test strings for each
length 10, 20, 30, 40, 50, 100 generated under three independent seeds. We cap the input string length
at 100 tokens to maintain a bounded vocabulary comparable to the unique setups; see Appendix C.4
for results at other lengths. The test strings contain spaced letters (including diacritics) and digits, to
ensure that every character gets tokenized as an independent token and thus, the required uniqueness /
repetitions can be maintained within the context, whenever required. Few-shot prompts contain k = 5
demonstrations, reserving one slot whenever an explicit explanation is required by the template. For
each task that belongs to the same group i.e. for Unique (UR, UL) and for Non-Unique (NRLAST,
NRFIRST, NLLAST, NLFIRST), we have the same strings on which we test the in-context ability
with different expected answers to avoid the confound of different datapoints.

Directional Bias: Pretraining induces a left-right asymmetry. We found a persistent directional
bias in all of the pretrained models we tested (Figure 3). For each task, retrieval or copying, the models
consistently performs better on rightward tasks (UR, NRFirst, NRLast, UF, NF), across models,



prompt templates, and sequence lengths. The drop in performance for the leftward tasks cannot
be attributed to lexical cues such as the words “right” or “forward” (explored in earlier work [He
et al., 2025]) because the performance asymmetry persists even when we strip all natural-language
instructions and provide only input—output pairs for the model to infer the task in-context. C-
RASP[pos] predicts symmetric performance in transformers trained from scratch within a task family
(Theorem 2). We further find that models trained from scratch do not exhibit such a left-right
asymmetry, confirming it is not inherent to the architecture (Appendix B). We therefore hypothesize
that pretraining instills this bias because induction is a more natural task than anti-induction and thus
more induction head circuits get formed during pretraining as opposed to anti-induction circuits;
Sections 4.3 and 4.4 probe this explanation in more detail.

Uniqueness Bias: Unique tasks are easier to elicit than non-unique tasks. Unique retrieval and
copying setups both perform relatively well in rightward / forward direction. In contrast, in the
non-unique settings, eliciting correct retrieval in any direction is challenging across task setups. We
observe an interesting difference to what is expected for transformers trained from scratch: First,
the underperformance of NRFirst in pretrained models does not align with what is expected for
transformers trained from scratch (Theorem 1). Copying, by contrast, is easier to elicit than retrieval,
even though copying requires predicting many tokens and hence offers more opportunities for error.
Remarkably, Non-unique-forward (NF) remains near perfect throughout. As this experiment only
considers input lengths up to 100 for comparable results vis-a-vis the unique settings, an interesting
question is how copying performs at longer lengths. The next section therefore stress-tests in-context
copying on longer paragraphs, seeking to reveal if the theoretically predicted difficulty of non-unique
copying (NF) appears in realistic settings.

Takeaway: Pretraining introduces a Directional Bias favoring retrieving and copying in the
forward/right direction over the backwards/left. Pretraining also selectively amplifies the abilities
of a transformer, as evident from the near perfect performance on copying repeated tokens, and
poor performance on certain retrieval tasks, even though the latter are better learnable in a length-
generalizable way for the architecture.

4.2 Testing Uniqueness Bias and Directional Bias in Natural Settings

Testing Uniqueness Bias by Copying Lorem Ipsum Paragraphs. In Section 4.1, forward copying
showed near-perfect performance irrespective of uniqueness (UF and NF). We now ask whether the
theoretically predicted asymmetry between unique and non-unique copying still impacts LLM behav-
ior, by having models reproduce longer, naturalistic but semantically neutral text. We here do not focus
on evaluating exact copying accuracy, instead focusing on understanding the nature of LLM mistakes.
While entirely incorrect outputs are easily de-
tectable, subtle differences in nearly accurate copies
represent the most challenging errors for users to
identify. Therefore, we focus exclusively on the
cases where the generated output is within 75% of
the length of the expected output, targeting scenar-
ios where the model clearly understands the copying
task and produces plausible copies of the input. To Qwen 2.5

confirm that our prompting setup is valid, we eval- h ﬁ h

uate the models on copying exact spans from recent
7B_Instruct 32B 32B_Instruct

I Unambiguous [ Ambiguous
LLama 3

kRE

8B_Instruct 70B 70B_Instruct

Accuracy
o .
© >
(5] o

o
©
S

o
S

Accuracy
°
©
&

arXiv papers (April 2025), finding perfect perfor-
mance.

o
©
S

We design our copying benchmark to suppress se-

mantic cues that could help the model break ambigu- Figure 4: Failures in accurate copying of
ous copy chains. Specifically, each input consists of Lorem Ipsum paragraphs are associated pri-
a randomized Lorem-Ipsum-style paragraph. Such marily with ambiguous transition indices.
content is unlikely to have appeared verbatim in the

training corpus. Each paragraph has close to 500 tokens. See Appendix C.5.1 for results at longer
lengths (upto 5k tokens).

We classify each token in the input as either unambiguous (uniquely predictive of the subsequent
token) or ambiguous (potentially followed by multiple subsequent tokens and therefore is not perfectly



predictive of the subsequent token). We perform token-level alignments using the Needleman-
Wunsch algorithm [Needleman and Wunsch, 1970], to detect token-level insertions, deletions, and
substitutions. What we are left with is an alignment sequence consisting of 4 kinds of entries: match,
insert, delete and substitute. We group consecutive entries in this alignment list if they are of the same
type and call them aligned spans if the entries consist of only ‘match’ and misaligned spans if the
entries grouped consist of any of the other types. We refer to indices where an aligned span finishes
and a misaligned span starts as transition indices. These transition indices mark critical points where
an error in copying started propagating during autoregressive generation. It should be noted that,
even if there are just a few such misaligned spans, they can each be very long, especially for the ones
consisting exclusively of ‘insert’. Such hallucinated insertions can at times snowball into a long error
chain from where the model never reorients itself to produce a correct continuation (Examples in
Appendix C.5).

We categorize the transition indices as unambiguous or ambiguous based on the nature of the
token at that index. Since an induction head would suffice to correctly predict the subsequent
token following an unambiguous token, we hypothesized that transition indices would never be
unambiguous. Conversely, ambiguous tokens were expected to be the source of where all of the
misaligned error span began, as it has similarities to the failure modes expected in NF (Non-unique
forward copying). Empirical results (Figure 4) confirm this hypothesis. Across all model variants
tested (sizes, families, completion as well instruction tuned models), a consistent pattern emerges,
the transition indices almost unilaterally always are ambiguous and cause the ‘glitches’ we see in
the final copied output. While these glitches appear across models, their exact nature appears to be
random. We did not find any pattern except for the fact that they were tied to ambiguous tokens.

Testing Directional Bias in Git Commit History: Direction-Aware Copying. While the
Lorem Ipsum setup shows how glitches in forward copying might cause reliability issues,
we now show how failures in backward copying impact real world tasks. We use a com-
pact Git history manipulation task to exemplify when the right-over-left asymmetry seen
in Section 4.1 surfaces in practice. Given a truncated git log (newest—oldest com-
mit hashes), the model must list commits that need reverting — git revert(forward or-
der) or must be cherry-picked — git cherry-pick(reverse order) onto a release branch.
Llama-3 models reproduce the forward list al-

most perfectly but accuracy drops when the or- B revert

. X . . cherrypick
der flips (Figure 5) — mirroring the asymmetry 10

. . X . > L -
seen in the synthetic experiments (Section 4.1). Y I I
Qwen models are not able to do the task at all, 5 o5
hence we exclude them from this analysis. The é(‘j -
reversal presented here does not happen here at 0.0

8B 70B 8B-IT 70B-IT

the token level, instead at the commit order level
and is thus in principle more similar to a gener-
alized copying setup. However, the theoretical
results and expectations transfer to the general-
ized scheme (See Appendix for a detailed dis-
cussion A.2.1).

Figure 5: Git Commit History Manipulation also
has the forward vs backward asymmetry seen in
Section 4.1.

Takeaway: Even though pretraining selectively amplifies certain abilities of the transformer, fun-
damental limitations inherent to the architecture have a marked impact even after the pretraining
and need to be kept in mind while deploying these models in real-world tasks.

4.3 Fine-tuning Eliminates the Directional Bias, But Not the Uniqueness Bias

Our experiments have uncovered three failure modes: (i) a Directional Bias in pretrained models,
(ii) poor performance on certain retrieval tasks that are provably length-generalizable, and (iii) the
Uniqueness Bias: sporadic “glitches” on copying tasks that are not length-generalizable. Each of these
could stem either from architectural limitations or from inductive biases imparted during pretraining.
To disentangle the two, we carry out task-specific supervised fine-tuning and see which failures are
removed. Since we wish to know whether the model has truly learned a length-generalizable solution,
we evaluate on test sequences twice as long as those seen in training, following Huang et al. [2025].
A fully correct model should therefore achieve 100% accuracy on this test set; even a single error



then flags a reasoning flaw that could undermine reliability in real-world applications, an evaluation
scheme similar to that of Liu et al. [2024a].

Experimental Setup. We fine-tune a
pretrained language model —GPT-2
1.5B (APE)’— on each retrieval
task plus unique forward and back-
ward copying.  Fine-tuning uses
the standard next-token objective but
masks the loss to the answer Span o4 UB  UF NB  NF UL WR NLFirst NRFirst  NLLast NRLast
only, mimicking inference, i.e., for

retrieval tasks, just the answer token, Figure 6: On the out-of-distribution dataset, tasks belonging
and, for the copying tasks, all tokens to C-RAsP[Pos] (UL, UR, UF, UB, NLFIRST, NRFIRST)
after the EOS delimiter in the input, retain perfect accuracy, whereas NLLAST, NRLAST, NF,
indicating the end of the input se- and NB, which are provably not in C-RASP[POS], suffer a
quence. To ensure that APE mod- drop in performance. The Directional Bias within task setups
els can generalize on longer positions is largely absent from the fine-tuned models.

than those seen during training, we ap-

ply the positional offset trick of Huang et al. [2025]: for every training input a random constant
A € (0,200 — £,,4,] is added to all position indices, ensuring that all the positional embeddings
are trained. All models see training examples whose input lengths are sampled uniformly from
[€inin, 100], where £,y is the length of the shortest well-formed instance of the task. We confirmed
that, prior to this fine-tuning, the base model’s performance on each task was effectively zero. Details
of hyperparameters and datasets are in Appendix D.

B Task In C-RASP[Pos] E Task not In C-RASP[Pos]

Accuracy

Our testbed setup for all of our tasks closely follows the setup of Bhattamishra et al. [2020], Huang
et al. [2025], with an in-distribution bin (i.e., lengths [¢,,:r,, 100]) and an out-of-distribution evaluation
bin (i.e., lengths [101, 200]). Similar to their setup, we report accuracy on our test sets only on seeds
where training loss converges to 0. For our out-of-distribution evaluation bin on Retrieval tasks, we
enforce that all instances of the query token g appear exclusively in the first half of the context C.
This way distance between the relevant tokens to which the model needs to attend increases, thereby
rigorously testing the model’s ability to generalize to longer contexts. In such settings, superficial
heuristics should be insufficient, and thus we expect that only models with robust length generalization
can perform reliably. We find that C-RASP[pos] perfectly tracks length generalization results in
our fine-tuning experiments: Every task which belongs to C-RASP[pos], and is thus predicted to
length-generalize, does so, whereas tasks not in C-RASP[pos] do not length-generalize. Additionally,
the Directional Bias of pretrained models disappears with fine-tuning, confirming the fact that it was
an artifact of pretraining. We next seek to understand what leads to the development of this asymmetry
by analyzing induction and anti-induction circuits (defined in Section 4.4) both in pretrained models,
where this asymmetry exists, and in our fine-tuned models, where it doesn’t.

4.4 Source of the Directional Bias: A Mechanistic Perspective

We hypothesize that the source of directional bias in pretrained models lies in the difference between
the presence and strength of induction and anti-induction circuits as described in Section 2. We posit
that, in pretrained models, anti-induction heads are less common, but that fine-tuning can boost these,
removing the asymmetry. We use Unique copying (UF and UB) setups to evaluate our hypothesis.

Induction and anti-induction heads are causal in both fine-tuned and pretrained models. We
conduct a patching experiment to confirm that removal of induction heads hurts performance in the
UF task, while removal of anti-induction heads hurts performance in the UB task. Indeed, both
in fine-tuned and pretrained models, removing induction heads is catastrophic for UF and has a
negligible effect in UB, and removing anti-induction heads cripples backward copying while leaving
forward copying intact. On fine-tuned checkpoints, the effect is amplified to the extreme: removing
relevant heads drops the accuracy to zero, while removing another type of heads has no effect
(Figure 7b). Thus, induction and anti-induction heads have a causal effect on model performance
(Details of patching experiment in Appendix E). Additionally, the induction and anti-induction heads
get amplified via fine-tuning (Figure 7a). Fine-tuning strengthens the heads that matter: induction
heads gain attention weight for forward copy, anti-induction heads for backward copy.

"https://huggingface.co/karpathy/gpt2_1558M_finald_hf


https://huggingface.co/karpathy/gpt2_1558M_final4_hf

Unique Forward Copy Unique Forward Copy

1.0 1.0 -
[
s 0.8
&
- 0.6 Sequence Length
o 0.5 e 5 m 7 9
£ 0.4
[
E > I ‘ I
0 0 5 0.0 E.El — | It
’ Head Index g Llama Qwen Fine-tuned GPT-2 GPT-2
o .
Unique Backward Copy < Unique Backward Copy
1.0 L0 Remove
=== |nduction Head o Anti-Induction
: . 0.8 Heads
Anti-Induction Head =2 Remove
05 —— Fine-Tuned 06 L?Sa“§§'°"
. - GPT-2 0.4 @ Vanilla
0-2 Fa
__________________ 0.0 - e m wllm
0.0 = ) Llama Qwen Fine-tuned GPT-2 GPT-2
Head Index
(a) Fine-tuning strengthens the relevant heads (b) Induction and Anti-Induction heads are causal

Figure 7: (a) Top-10-percent attention heads ranked by their attention score, i.e. the mean attention
weight that target-string tokens allocate to either the source token (anti-induction) or the next
source token (induction). Dashed lines: pretrained checkpoints; solid lines: fine-tuned. Shaded bands
cover source lengths 3—10. Fine-tuning eliminates the pretraining imbalance; for forward copying
(UF) fine-tuning strengthens induction heads, for backwards copying (UB) fine-tuning boosts anti-
induction heads. (b) Patching experiment that ablates each family of heads while measuring task
accuracy. For UF, removing induction heads (red — green) is fatal, whereas ablating anti-induction
heads is inconsequential (red — blue); the roles reverse for UB. This holds across models & sequence
lengths confirming the causal status of the two circuits.

Takeaway: The directional bias in pretrained transformers can be explained by the difference in
strength and prevalence of induction vs. anti-induction heads. Fine-tuning can be used to amplify
either of these heads and thus remove the asymmetry.

5 Discussion

Related Work. Length generalization has been studied extensively [Anil et al., 2022, Abbe et al.,
2023, Zhou et al., 2024], including attempts to improve it using scratchpads [Abbe et al., 2023, Hou
et al., 2024] or specific positional embedding schemes [Press et al., 2022, He et al., 2024, Cho et al.,
2024]. Transformer limitations: besides copying and retrieval, transformers struggle with problems
including sensitive functions [Hahn and Rofin, 2024] and state tracking [Merrill and Sabharwal,
2023]. These limitations can be related to failures in LLMs on tasks such as multiplication [Frieder
et al., 2024, Satpute et al., 2024, Amiri et al., 2025] and maintaining state information [Toshniwal
et al., 2022, Kim and Schuster, 2023, Merrill et al., 2024, Zhang et al., 2025]. Induction heads have
been studied extensively since Elhage et al. [2021] and their existence has been linked to in-context
learning and copying [Olsson et al., 2022, Chen et al., 2024a, Singh et al., 2024, Crosbie and Shutova,
2025]. Retrieval heads [Wu et al., 2025] generalize this notion by conditionally copying information
from arbitrary positions, subsuming our definitions of induction and anti-induction heads.

Takeaways. While failures in length generalization in copying and retrieval tasks may not affect
typical user interaction, they pose reliability concerns in specialized applications. For instance, Al
coding assistants like GitHub Copilot [Chen et al., 2021] routinely handle non-semantic identifiers
(commit hashes, variable names, function names). Glitches in copying such strings could lead to bugs
in the deployment of critical code and would therefore be highly undesirable. Pretraining of LLMs
has been shown to impart biases, be it for specific tokens or specific entities [He et al., 2025] and
in-context performance can be brittle based on the choice of tokens used. This can lead to reliability
risks in domains requiring high precision such as medicine [Li and Chong, 2024, Bélisle-Pipon,
2024]. In contrast, the left-right asymmetry we uncover is indicative of a latent ability that is difficult
to elicit in pretrained models without explicit fine-tuning. We ask practitioners to be aware of the



existence of such biases and consider task-specific fine-tuning to eliminate this kind of asymmetry if
it is considered undesirable for a downstream application.

On the other hand, glitches in copying large semantically neutral text (SHA keys, DNA sequences)
would fall under the umbrella of repeated copying. To achieve complete reliability and compensate
for persistent architectural limitations, practitioners might need to resort to external tool usage in
LLMs. Similar to how tool usage is used to compensate for mathematical weaknesses in LLMs [Gao
et al., 2023, Chen et al., 2024b, Gou et al., 2024, Wang et al., 2024], designing principled policies that
decide when to use tools like programmatic copy-pasting could be an interesting research direction.

Limitations. We focus on two open LLM model families, not covering the entire model landscape,
especially closed source systems or models based on recurrent architectures, which might show
different sets of abilities or limitations [Sarrof et al., 2024, Grazzi et al., 2025, Siems et al., 2025].
Second, due to resource limitations, fine-tuning experiments in Section 4.3 are limited to a single,
1.5B sized model. We also do not analyze the underlying pretraining data of the models to get an
estimate of what the correct in-distribution bin should be for any of our models. Larger contexts
should in principle push the out-of-distribution boundary to higher lengths as the in-distribution size
increases. It remains an open question whether length generalization would even matter for larger
models with a huge in-distribution context size. Finally, our theoretical results linking C-RASP[pos]
to length-generalizability in Huang et al. [2025] have only been proven formally for APE, and
applicability to RoPE has only been tested empirically.

6 Conclusion

We asked whether large-scale pretraining can erase the transformer’s native length-generalization
limits, using a foundational family of retrieval and copying tasks as testbed. We find that pretraining
boosts certain abilities, but transformers remain bound by the same length-generalization limits they
were “born” with: Pretraining amplifies induction circuits, making right-/forward-oriented retrieval
and copying notably easier, but does not overcome the difficulty inherent to non-unique retrieval and
copying. Fine-tuning can rebalance induction and anti-induction heads and restore full, theory-aligned
generalization, but only by explicitly teaching the model its missing capacities. Our results thus
suggest that, while large-scale pretraining brings remarkable capabilities, it cannot fundamentally
rewrite the architecture’s core inductive biases.

Acknowledgements

We thank anonymous reviewers for their encouraging and constructive feedback. This research
is funded in part by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
— Project-ID 232722074 — SFB 1102 “Information Density and Linguistic Encoding”; Project-ID
471607914 — GRK 2853/1 “Neuroexplicit Models of Language, Vision, and Action”; and Project-ID
389792660 — TRR 248 “Foundations of Perspicuous Software Systems”. We would like to thank
Mark Rofin, Blerta Veseli, Brian DuSell, Ekaterina Shutova, Kayo Yin, Xinting Huang, Yifan Wang
for discussions and feedback on the draft.

Contributions

MIJ contributed to Sections 4.1, 4.2, 4.3, scaling experiments, paper refinement and the Appendix.
YV contributed to Sections 4.1, 4.2, 4.3, 4.4, and paper refining. YS contributed to Sections 4.1,
4.2, the Appendix, scaling experiments, paper drafting and refining. SB contributed to Section 4.4.
VD and EP provided feedback, supervision, and refined the paper. MH supervised the project and
contributed to Section 3, paper drafting, and refining.

References

E. Abbe, S. Bengio, A. Lotfi, and K. Rizk. Generalization on the unseen, logic reasoning and degree curriculum.
In Proceedings of the 40th International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

A. Amiri, X. Huang, M. Rofin, and M. Hahn. Lower bounds for chain-of-thought reasoning in hard-attention
transformers. arXiv preprint arXiv:2502.02393, 2025.

10



I. Amos, J. Berant, and A. Gupta. Never train from scratch: Fair comparison of long-sequence models requires
data-driven priors. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=PdaPky8MUn.

C. Anil, Y. Wu, A. Andreassen, A. Lewkowycz, V. Misra, V. Ramasesh, A. Slone, G. Gur-Ari, E. Dyer, and
B. Neyshabur. Exploring length generalization in large language models. Advances in Neural Information
Processing Systems, 35:38546-38556, 2022.

A. Bakalova, Y. Veitsman, X. Huang, and M. Hahn. Contextualize-then-aggregate: Circuits for in-context
learning in gemma-2 2b. arXiv preprint arXiv:2504.00132, 2025.

S. Bhattamishra, K. Ahuja, and N. Goyal. On the ability and limitations of transformers to recognize formal
languages. In B. Webber, T. Cohn, Y. He, and Y. Liu, editors, Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pages
7096-7116. Association for Computational Linguistics, 2020. doi: 10.18653/V1/2020.EMNLP-MAIN.576.
URL https://doi.org/10.18653/v1/2020.emnlp-main.576.

S. Bhattamishra, M. Hahn, P. Blunsom, and V. Kanade. Separations in the representational capabilities of
transformers and recurrent architectures. CoRR, abs/2406.09347, 2024. doi: 10.48550/ARXIV.2406.09347.
URL https://doi.org/10.48550/arXiv.2406.09347.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner,
S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models are few-shot learners. In
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract . html.

S. Bubeck, V. Chadrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg,
et al. Sparks of artificial general intelligence: Early experiments with gpt-4, 2023.

J.-C. Bélisle-Pipon. Why we need to be careful with llms in medicine. Frontiers in Medicine (Lausanne), 11:
1495582, December 4 2024. doi: 10.3389/fmed.2024.1495582.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman,
et al. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

S. Chen, H. Sheen, T. Wang, and Z. Yang. Unveiling induction heads: Provable training dynamics and feature
learning in transformers. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024a.

W. Chen, X. Ma, X. Wang, and W. W. Cohen. Program of thoughts prompting: Disentangling computation from
reasoning for numerical reasoning tasks. Transactions on Machine Learning Research, 2024b.

H. Cho, J. Cha, P. Awasthi, S. Bhojanapalli, A. Gupta, and C. Yun. Position coupling: Improving length
generalization of arithmetic transformers using task structure. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?id=5cIRAGM1uG.

J. Crosbie and E. Shutova. Induction heads as an essential mechanism for pattern matching in in-context learning,
2025. URL https://arxiv.org/abs/2407.07011.

G. Delétang, A. Ruoss, J. Grau-Moya, T. Genewein, L. K. Wenliang, E. Catt, C. Cundy, M. Hutter, S. Legg,
J. Veness, and P. A. Ortega. Neural networks and the chomsky hierarchy. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.
URL https://openreview.net/pdf?id=WbxHAzkeQcn.

N. Elhage, N. Nanda, C. Olsson, T. Henighan, N. Joseph, B. Mann, A. Askell, Y. Bai, A. Chen, T. Conerly, et al.
A mathematical framework for transformer circuits. Transformer Circuits Thread, 1(1):12, 2021.

W. Fan, Y. Ding, L. Ning, S. Wang, H. Li, D. Yin, T.-S. Chua, and Q. Li. A survey on rag meeting llms: Towards
retrieval-augmented large language models. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, KDD ’24, page 6491-6501, New York, NY, USA, 2024. Association
for Computing Machinery. ISBN 9798400704901. doi: 10.1145/3637528.3671470. URL https://doi.
org/10.1145/3637528.3671470.

S. Frieder, L. Pinchetti, R.-R. Griffiths, T. Salvatori, T. Lukasiewicz, P. Petersen, and J. Berner. Mathematical
capabilities of chatgpt. Advances in Neural Information Processing Systems, 36, 2024.

11


https://openreview.net/forum?id=PdaPky8MUn
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.48550/arXiv.2406.09347
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://openreview.net/forum?id=5cIRdGM1uG
https://arxiv.org/abs/2407.07011
https://openreview.net/pdf?id=WbxHAzkeQcn
https://doi.org/10.1145/3637528.3671470
https://doi.org/10.1145/3637528.3671470

D. Ganguli, D. Hernandez, L. Lovitt, A. Askell, Y. Bai, A. Chen, T. Conerly, N. Dassarma, D. Drain, N. Elhage,
et al. Predictability and surprise in large generative models. In Proceedings of the 2022 ACM Conference on
Fairness, Accountability, and Transparency, pages 1747-1764, 2022.

L. Gao, A. Madaan, S. Zhou, U. Alon, P. Liu, Y. Yang, J. Callan, and G. Neubig. Pal: Program-aided language
models. In International Conference on Machine Learning, pages 10764-10799. PMLR, 2023.

Z. Gou, Z. Shao, Y. Gong, Y. Yang, M. Huang, N. Duan, W. Chen, et al. Tora: A tool-integrated reasoning agent
for mathematical problem solving. In The Twelfth International Conference on Learning Representations,
2024.

A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten,
A. Vaughan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

R. Grazzi, J. Siems, J. K. Franke, A. Zela, F. Hutter, et al. Unlocking state-tracking in linear rnns through
negative eigenvalues. In ICLR, 2025.

M. Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of the Association
for Computational Linguistics, 8:156-171, 2020.

M. Hahn and M. Rofin. Why are sensitive functions hard for transformers? In Proceedings of the 2024 Annual
Conference of the Association for Computational Linguistics (ACL 2024), 2024. arXiv Preprint 2402.09963.

M. Hanna, O. Liu, and A. Variengien. How does gpt-2 compute greater-than?: Interpreting mathematical abilities
in a pre-trained language model. Advances in Neural Information Processing Systems, 36:76033-76060,
2023.

Y. He, B. He, Z. Ding, A. Lupidi, Y. Zhu, S. Chen, C. Zhang, J. Chen, Y. Ma, V. Tresp, and 1. Horrocks.
Supposedly equivalent facts that aren’t? entity frequency in pre-training induces asymmetry in llms, 2025.
URL https://arxiv.org/abs/2503.22362.

Z.He, G. Feng, S. Luo, K. Yang, L. Wang, J. Xu, Z. Zhang, H. Yang, and D. He. Two stones hit one bird: bilevel
positional encoding for better length extrapolation. In Proceedings of the 41st International Conference on
Machine Learning, ICML 24. JMLR .org, 2024.

J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. de Las Casas, L. A. Hendricks,
J. Welbl, A. Clark, et al. Training compute-optimal large language models. In Proceedings of the 36th
International Conference on Neural Information Processing Systems, pages 30016-30030, 2022.

K. Hou, D. Brandfonbrener, S. M. Kakade, S. Jelassi, and E. Malach. Universal length generalization with turing
programs. CoRR, abs/2407.03310, 2024. doi: 10.48550/ARXIV.2407.03310. URL https://doi.org/10.
48550/arXiv.2407.03310.

X. Huang, A. Yang, S. Bhattamishra, Y. Sarrof, A. Krebs, H. Zhou, P. Nakkiran, and M. Hahn. A formal frame-
work for understanding length generalization in transformers. In The Thirteenth International Conference on
Learning Representations, 2025. URL https://arxiv.org/abs/2410.02140.

S. Jelassi, S. d’Ascoli, C. Domingo-Enrich, Y. Wu, Y. Li, and F. Charton. Length generalization in arithmetic
transformers. CoRR, abs/2306.15400, 2023. doi: 10.48550/ARX1IV.2306.15400. URL https://doi.org/
10.48550/arXiv.2306.15400.

S. Jelassi, D. Brandfonbrener, S. M. Kakade, and E. Malach. Repeat after me: Transformers are better than
state space models at copying. In Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
duRRoGeoQT.

G. Kaplan, M. Oren, Y. Reif, and R. Schwartz. From tokens to words: On the inner lexicon of LLMs. In The
Thirteenth International Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=328vch6tRs.

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu, and
D. Amodei. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.

N. Kim and S. Schuster. Entity tracking in language models. In A. Rogers, J. Boyd-Graber, and N. Okazaki,
editors, Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 3835-3855, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.213. URL https://aclanthology.org/2023.acl-1long.213/.

12


https://arxiv.org/abs/2503.22362
https://doi.org/10.48550/arXiv.2407.03310
https://doi.org/10.48550/arXiv.2407.03310
https://arxiv.org/abs/2410.02140
https://doi.org/10.48550/arXiv.2306.15400
https://doi.org/10.48550/arXiv.2306.15400
https://openreview.net/forum?id=duRRoGeoQT
https://openreview.net/forum?id=duRRoGeoQT
https://openreview.net/forum?id=328vch6tRs
https://openreview.net/forum?id=328vch6tRs
https://aclanthology.org/2023.acl-long.213/

D. Li and J. Chong. Laterality: a potential pitfall in applying multimodal large language models to radiology.
Radiology, 313(2):e241421, 2024.

B. Liu, J. Ash, S. Goel, A. Krishnamurthy, and C. Zhang. Exposing attention glitches with flip-flop language
modeling. Advances in Neural Information Processing Systems, 36, 2024a.

N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and P. Liang. Lost in the middle: How
language models use long contexts. Transactions of the Association for Computational Linguistics, 12, 2024b.

W. Merrill and A. Sabharwal. The parallelism tradeoft: Limitations of log-precision transformers. Transactions
of the Association for Computational Linguistics, 11:531-545, 2023.

W. Merrill, J. Petty, and A. Sabharwal. The illusion of state in state-space models. In Proceedings of the 41st
International Conference on Machine Learning, pages 35492-35506, 2024.

S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similarities in the amino acid
sequence of two proteins. Journal of molecular biology, 48(3):443—-453, 1970.

C. Olsson, N. Elhage, N. Nanda, N. Joseph, N. DasSarma, T. Henighan, B. Mann, A. Askell, Y. Bai, A. Chen,
et al. In-context learning and induction heads. CoRR, 2022.

O. Press, N. Smith, and M. Lewis. Train short, test long: Attention with linear biases enables input length
extrapolation. In International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=R8sQPpGCvO.

J. Pérez, J. Marinkovi¢, and P. Barceld. On the Turing completeness of modern neural network architectures. In
International Conference on Learning Representations, 2019.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are unsupervised multitask
learners. OpenAl Blog, 1(8):9, 2019.

C. Rytting and D. Wingate. Leveraging the inductive bias of large language models for abstract textual reasoning.
Advances in Neural Information Processing Systems, 34:17111-17122, 2021.

C. Sanford, D. J. Hsu, and M. Telgarsky. Representational strengths and limitations of transformers. Advances
in Neural Information Processing Systems, 36, 2024.

Y. Sarrof, Y. Veitsman, and M. Hahn. The expressive capacity of state space models: A formal language
perspective. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=eV5YIrJPdy.

A. Satpute, N. GieBing, A. Greiner-Petter, M. Schubotz, O. Teschke, A. Aizawa, and B. Gipp. Can llms master
math? investigating large language models on math stack exchange. In Proceedings of the 47th international
ACM SIGIR conference on research and development in information retrieval, pages 2316-2320, 2024.

J. Siems, T. Carstensen, A. Zela, F. Hutter, M. Pontil, and R. Grazzi. Deltaproduct: Improving state-tracking in
linear rnns via householder products. In ICLR 2025 Workshop on Foundation Models in the Wild, 2025.

A. K. Singh, T. Moskovitz, F. Hill, S. C. Chan, and A. M. Saxe. What needs to go right for an induction head? a
mechanistic study of in-context learning circuits and their formation. In International Conference on Machine
Learning, pages 45637-45662. PMLR, 2024.

J. Song, Z. Xu, and Y. Zhong. Out-of-distribution generalization via composition: a lens through induction
heads in transformers. Proceedings of the National Academy of Sciences, 122(6):e2417182122, 2025.

L. Strobl, W. Merrill, G. Weiss, D. Chiang, and D. Angluin. What Formal Languages Can Transformers Express?
A Survey. Transactions of the Association for Computational Linguistics, 12:543-561, 05 2024. ISSN
2307-387X. doi: 10.1162/tacl_a_00663. URL https://doi.org/10.1162/tacl_a_00663.

Q. Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

S. Toshniwal, S. Wiseman, K. Livescu, and K. Gimpel. Chess as a testbed for language model state tracking. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 11385-11393, 2022.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Roziere, N. Goyal, E. Hambro,
F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971,
2023.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.. Kaiser, and 1. Polosukhin. Attention
is all you need. In Advances in Neural Information Processing Systems, pages 5998-6008, 2017.

13


https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=eV5YIrJPdy
https://doi.org/10.1162/tacl_a_00663
https://arxiv.org/abs/2505.09388

K. Wang, A. Variengien, A. Conmy, B. Shlegeris, and J. Steinhardt. Interpretability in the wild: a circuit for
indirect object identification in gpt-2 small, 2022. URL https://arxiv. org/abs/2211.00593, 2, 2022.

K. Wang, H. Ren, A. Zhou, Z. Lu, S. Luo, W. Shi, R. Zhang, L. Song, M. Zhan, and H. Li. Mathcoder: Seamless
code integration in llms for enhanced mathematical reasoning. In /CLR, 2024.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. H. Chi, Q. Le, and D. Zhou. Chain of thought prompting elicits
reasoning in large language models. CoRR, abs/2201.11903, 2022. URL https://arxiv.org/abs/2201.
11903.

S. Wiegreffe, O. Tafjord, Y. Belinkov, H. Hajishirzi, and A. Sabharwal. Answer, assemble, ace: Understanding
how LMs answer multiple choice questions. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=6NNAOMxhCH.

W. Wu, Y. Wang, G. Xiao, H. Peng, and Y. Fu. Retrieval head mechanistically explains long-context factuality. In
The Thirteenth International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=EytBpUGB1Z.

A. Yang and D. Chiang. Counting like transformers: Compiling temporal counting logic into softmax trans-
formers. In First Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
FmhPg4UJOK.

Q. A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, G. Dong, H. Wei, H. Lin,
J. Yang, J. Tu, J. Zhang, J. Yang, J. Yang, J. Zhou, J. Lin, K. Dang, K. Lu, K. Bao, K. Yang, L. Yu, M. Li,
M. Xue, P. Zhang, Q. Zhu, R. Men, R. Lin, T. Li, T. Xia, X. Ren, X. Ren, Y. Fan, Y. Su, Y.-C. Zhang, Y. Wan,
Y. Liu, Z. Cui, Z. Zhang, Z. Qiu, S. Quan, and Z. Wang. Qwen2.5 technical report. ArXiv, abs/2412.15115,
2024. URL https://api.semanticscholar.org/CorpusID:274859421.

H. Yu, A. Gan, K. Zhang, S. Tong, Q. Liu, and Z. Liu. Evaluation of retrieval-augmented generation: A survey.
In CCF Conference on Big Data, pages 102—120. Springer, 2024.

C. Yun, S. Bhojanapalli, A. S. Rawat, S. J. Reddi, and S. Kumar. Are transformers universal approximators of
sequence-to-sequence functions?, 2019.

Y. Zhang, W. Du, D. Jin, J. Fu, and Z. Jin. Finite state automata inside transformers with chain-of-thought: A
mechanistic study on state tracking. arXiv preprint arXiv:2502.20129, 2025.

H. Zhou, A. Bradley, E. Littwin, N. Razin, O. Saremi, J. M. Susskind, S. Bengio, and P. Nakkiran. What
algorithms can transformers learn? A study in length generalization. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=AssIuHnmHX.

14


https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://openreview.net/forum?id=6NNA0MxhCH
https://openreview.net/forum?id=EytBpUGB1Z
https://openreview.net/forum?id=EytBpUGB1Z
https://openreview.net/forum?id=FmhPg4UJ9K
https://openreview.net/forum?id=FmhPg4UJ9K
https://api.semanticscholar.org/CorpusID:274859421
https://openreview.net/forum?id=AssIuHnmHX

A Detailed Theoretical Proofs

A.1 C-RAspP[pos] as a Framework for Predicting Length Generalization

C-RASsP[pos] (pos for “positional information”) was introduced as C-RASP[periodic,local] by Huang et al.
[2025]® as a formalization of RASP-L and the RASP-L conjecture of Zhou et al. [2024]. It extends C-RASP
[Yang and Chiang, 2024] by incorporating positional information. Huang et al. [2025] connected expressibility
in C-RASP[pos] to length generalization for transformers both theoretically and empirically:

1. They proved that transformers, when trained with an idealized model of learning, generalize on
problems expressible in C-RASP[pos].

2. Across a battery of algorithmic and formal language problems, they showed that problems expressible
in C-RASP[pos] show length generalization when transformers are trained with SGD.

3. For problems in this battery that are not expressible in C-RASP[pos], they showed that length general-
ization was empirically unsuccessful.

These results unify and explain a variety of prior results; for instance, the link between C-RASP[pos] and length
generalization explains why transformers show persistent glitches in FlipFlop (empirically observed by Liu et al.
[2024a]), it explains why length generalization on copying is difficult in the presence of repetition [Zhou et al.,
2024, Jelassi et al., 2023], and why length generalization on addition is difficult [Zhou et al., 2024]. Importantly,
C-RAsP[pos] offers a single framework for understanding length generalization, with well-understood methods
for understanding expressivity. It is more fine-grained than various other methods for understanding transformers’
expressivity: For instance, all tasks considered in Zhou et al. [2024], Huang et al. [2025] are in T° C° and in
principle expressible by transformers, but length generalization varies substantially in line with C-RASP[pos]
expressivity. Thus, C-RASP[pos] provides a more fine-grained perspective by focusing on length generalizability.

C-RASP[pos] can thus be viewed as a formal model of the space of problems that transformers can represent
across different input lengths and are likely to length-generalize on. transformers can in principle represent prob-
lems outside of C-RASP[pos], but these are then likely to not show length generalization because representations
at increasing lengths will require increases in model size or parameter norm — if learning tends to find simpler
solutions, one will expect length generalization to fail [Zhou et al., 2024, Huang et al., 2025]. For instance,
one can construct a transformer performing copying over strings of any fixed length N, e.g. by hard-coding
matching pairs of positions [Bhattamishra et al., 2024], but any construction that works across all lengths up to
< N will require a growth of model size (in a sense made formal by Huang et al. [2025]) as N increases, i.e.,
length generalization is unlikely.

As Huang et al. [2025] formalizes the RASP-L conjecture of Zhou et al. [2024], we expect that the same
conclusions would likely be reached using the RASP-L language from Zhou et al. [2024]; the advantage of
C-RASP[pos] as compared to RASP-L is that its expressiveness is provably understood (including impossibility
proofs), and is theoretically linked to length generalization (Theorem 7 in Huang et al. [2025]).

For self-containedness, we recapitulate the operations used in C-RASP[pos] here:

Definition 3. Let X be an alphabet.
Let ® be a set of unary relations ¢ : N — {_L, T} where each ¢ satisfies

* (Periodicity) for some A > 0, it holds that ¢(i) = ¢(i + A) forall i
Let U be a set of binary relations ¢ : N x N — {_L, T} here each (i, j) satisfies’

* (Depends only on Distance) 1 (i, j) only depends on i — j
* (Restricted to Bounded Distance) {i : ¥ (i,j) = T} is finite, forany j € N

Here, 1 stands for “false” and T stands for “true”.

A C-RASP[pos] program P is defined as a sequence P, . .., Py of operations, each of the following types:

8We use a shorter name just for convenience.
These properties were referred to as translation invariance and locality in Huang et al. [2025].

15



Boolean-Valued Operations Count-Valued Operations

Initial P(i) == Qo (7) Counting C(i):=#[7 <i,v,75)] P3)
foroc e X forp e WU{T}
Boolean P(i) :== —P1(4) Conditional C(i) := P(i) ? C1(i) : Ca(4)
P) = PG A P0) Addition  C(i) = C1(3) + Cad)
Constant P@) =T Subtraction  C(i) := C1(i) — Ca(i)
Positional P) ::fo(?(;)) cd Constant C(i):=1

Comparison  P(i) := C1(i) < C2(7)

The most important construct is the Counting operation, which returns an integer indicating for how many
positions j < i both P(j) and (4, j) hold. In the special case where ¢ = T (i.e., a predicate that always
returns “true”), the operation just counts how often P(j5) holds for j < 7. Another important operation is the
Initial operation, where Q- (%) is true if and only if the i-th symbol in the string equals o. We refer to Huang
et al. [2025] and Yang and Chiang [2024] for detailed definitions of the semantics.

The most important example for a function ) € W is the “predecessor” predicate checking if j = 7 — 1:

T ifj=i—1
w(i,ﬁ:{l o M

We will follow Huang et al. [2025], Yang and Chiang [2024] in using, as syntactic sugar, 3[j < i, (i, 7)]P(j)
as a shorthand for 1 < #[j < 4,9(%, )| P(j), and #[j < i] P(j) for#[j <1, T] P(j).

In this paper, we are interested in tasks that, given a prefix, produce a token: either the overall output symbol in a
retrieval task, or the next output symbol when copying a string. To formalize this, we assume that every program
contains Boolean-valued operations named NEXT, (%) for each a € ¥ such that NEXT, () holds if and only
if the correct next symbol is a. Thus, we say that a task is expressible in C-RASP[pos] if there is a program
defining NEXT, (¢) for each a € X such that, for each 4 in the span of the output (a single position for a retrieval
task, the full output string for a copying task), NEXT, (%) holds (i.e, returns “true”) at the final position 7 if and
only if the correct next symbol is a. Generation stops when none of these operations return “true”.

A.2 Expressiveness Results

We show:
Lemma 4. UL, UR are expressible in C-RASP[pos].

Proof. A UR program is given in Huang et al. [2025]; the UL program is analogous; overall:

C-RASP[pos] program for UR, UL

PRED, (i) := 3[j < 4,j = i — 1]Qa(j) )
foreacha € &
CBIGRAMgp := 3[j < i]Qs(j) APRED(j) ?2)
foreach a,b € &
NEXT, (i) := \/ [Qo(i) A CBIGRAM,(i)] (UR version) (3)
oY
foreacha € &
NEXT, () := \/ [Qo(7) A CBIGRAM,, ()] (UL version) (4)
AN
foreacha € X

This program is a direct formalization of the (anti-)induction head circuit, and basic to the other C-RASP[pos]
programs constructed below. The first line checks for each a € %, at each position ¢, whether position 7 — 1
holds the symbol a. The second line checks, for each bigram ab € ¥ x ¥ whether it appears at some position in
the context up to the i-th position. The third line then states that, in UR, the correct next token is a if and only if
the bigram oa has appeared in the context, where o is the symbol at position ¢. The fourth line is the analogous
instruction for UL: Here, a is predicted if and only if the bigram ac appears in the context. O

16



Lemma 5. NRFirst and NLFirst are expressible in C-RASP[pos].

Proof. We first show the construction for NRFirst; it builds on the construction from Lemma 4:

C-RASP[pos] program for NRFirst

ISLEFTMOST(i) := \/ [Qa(4) A (#[j < i]Qa(4)) < 1] )
a€EX

PRED, (i) := 3[j <1i,j =i — 1] [Qa(j) A ISLEFTMOST(5)] )
foreacha € ¥
CBIGRAM,; := 3[j < 4] [Qs(j) A PREDq(j)] 3)
foreach a,b € ¥
NEXT, (i) := \/ [Qo (i) A CBIGRAM,, ()] 4)
oED
foreacha € ¥

where NEXT, (%) holds at the final position if and only if the desired completion is the symbol a. The first line
in the program checks, at each position, if it is the leftmost representative of the symbol that it holds: That is,
whether there is a symbol a € X that occurs at position ¢ but at no earlier position. For each a € 3, the second
line checks, at position ¢, whether the preceding position ¢ — 1 holds the symbol a — simulating the operation
of a Previous-Token head. Additionally it also uses the computations made in the first line to check whether
position ¢ — 1 was the leftmost representative with such a property. For each possible bigram ab € ¥ x 3, the
third line checks whether it has appeared or not. Finally, the fourth line says that a is the correct next token if
and only if the current position holds a symbol ¢ such that ca appears as a bigram in the context. This last line
is the one that simulates the operation of the Induction head itself.

The program for NLFirst is very similar, it only differs in the fourth line:

C-RASP[pos] program for NLFirst

ISLEFTMOST(i) := \/ [Qa(i) A =3[j < 1Qa ()] M

aex
PRED,(47) := 3[j < 4,5 =t — 1] [Qa(j) A ISLEFTMOST, (j)] )
foreacha € ¥
CBIGRAM,; := 3[j < 4] [Qs(5) APRED(j)] 3)
for each a,b € X
NEXT,(7) := \/ [Qa(7) A CBIGRAM (7)) (€))
cex
foreacha € 3

where NEXT, (¢) holds at the final position if and only if the desired completion is the symbol a.

Lemma 6. NRLast and NLLast are not expressible in C-RASP[pos].

Proof. We show this by reducing them to Lemma 36 in Huang et al. [2025]. Assume, for the sake of contradiction,
that NRLast was expressible in C-RASP[pos]. This program would discriminate between the two languages

(wO|wl|i)*wli (sep)w (retrieving a “1”) (3)
and
(wO]w1lz)*w0i* (sep)w (retrieving a “0”) (6)
Such a program could be turned into a program discriminating between the two languages
(wO]wllz)*wle™ )
and
(wO|w1|i)*w0i* (®)

By a simple transformation of the alphabet, this in turn would amount to discriminating between the two
languages
(albli)"ai” ©)

17



and
(albli)"bi* (10)

As described in the proof of Lemma 36 in Huang et al. [2025], a C-RASP[pos] program discriminating between
these two languages could be used to create a C-RASP[pos] program for recognizing the language

(albli)*bi*b(alb]i)* (11)

which in turn is impossible by Lemma 35 in Huang et al. [2025]. The same reasoning holds for NLLast. O

Lemma 7. UFE UB are expressible in C-RASP[pos].

Proof. This task can be viewed as iterated application of UL and UR, respectively, and can thus be done with
the same program. The only complication is that (i) at the beginning of copying, at (sep), the program needs to
retrieve the symbol that had followed (bos), and that (ii) generation should stop once (sep) has been generated a
second time. These extra conditions can be encoded into C-RASP[pos]. O

Lemma 8. NF, NB are not expressible in C-RASP[pos].

Proof. Huang et al. [2025] (Theorem 12) show that NF is not in C-RASP[pos] by showing that all problems
expressible C-RASP[pos] have logarithmic communication complexity in the model where Alice and Bob have
access to the first and second halves of the string, respectively. Because NF has no sublinear communication
protocol in this model, it is not in C-RASP[pos]. The same argument applies to NB. O

We conclude from all lemmas in this section that there is no theoretical difference between left and right versions
of our retrieval and copying tasks:

Corollary 9 (Repeated from Theorem 2). Across all tasks, there is no C-RASP[pos] expressibility difference
between R vs L versions, and F vs B versions.

Proof. Immediate from the lemmas in this section. O

A.2.1 Generalized reverse copying

Let the token alphabet be ¥ = {o1,...,0.} U {0} where O represents separators. ¥, = X \ {{J} are all
tokens that can be part of a word. Define the language L = (X )*Z{. Every & € L can be written uniquely
as x = w1 Ow0- - - Ow,, with w; € Z$ (i.e. each w; represents a word.) and also as z = 1 ... t,,, where
each ¢; € X and is the token level representation of the string. We can think of copying this string z € L in 2
ways.

Ptok(tl e tm) = tm e t17 pword(wﬂj s Dwn) = wnD e le.

Prok(t1 - . . tm) is the same as our backward copying setup, while pwora (w10 - - - Twy, ) more closely matches
how a typical user would ever want to interact with an LLM to reverse a string if ever.

Corollary 10. pword is not expressible in C-RASP[pos].

Proof sketch. Theorem 5 states that Non-Unique Copy backwards which is the same as pox—Tlies outside
C-RASP[pos] by a communication-complexity argument. To transfer this inexpressibility to pwora consider the
following reduction.

Reduction. Embed any token string ¢1 . . . ¢, € X into L by inserting separators:
41060+ Oty, € L.
Because each “word” now has length 1, applying pwora yields
pword (1100 -+ - Otyn) = tmO--- Oty

and deleting the OJ symbols recovers piok (1 - - - tm ). Hence an algorithm for pwora would give one for piox
with constant overhead, contradicting Theorem 5. O

Intuition. py.orq reverses a list of chunks, whereas pyox does the same when every chunk is a single token.
When each word has length 1 the two coincide, so solving word-order reversal would solve Non-unique
copy-backwards as a special case—which creates a contradiction, and thus pwora should also not be solvable.

18



Problem Model Size LR Max Steps
UL, UR, UF, UB 2 layer; 4 head; 64 dim le-3 30k
NLFirst, NRFirst 4 layer; 4 head; 64 dim le-3 30k
NLLast, NRLast, NF, NB 4 layer ; 4 head; 256 dim  le-4 30k
Table 1: Hyperparameters for training with APE on transformers trained from scratch

Problem Model Size LR Max Steps
UL, UR, UF, UB 2 layer; 4 head; 64 dim le-3 30k
NLFirst, NRFirst 2 layer; 4 head; 64 dim le-3 30k
NLLast, NRLast, NF, NB 4 layer ; 4 head; 256 dim le-4 30k

Table 2: Hyperparameters for training with RoPE on transformers trained from scratch

B From Scratch Training Experiments

Here, we validate theoretical predictions about the success of transformers in length generalization on all retrieval
and copying tasks, by training small transformers from scratch. We particularly validate that results hold both
for APE (as in GPT-2, as originally targeted by the theory of Huang et al. [2025]) and RoPE (as found in various
other modern LLMs). We adopt the methodology from Huang et al. [2025] to demonstrate all our experiments
when training transformers from scratch. Like Zhou et al. [2024], we sample independent training batches on
the fly instead of using a finite-size training set. In contrast, each fest set contains 2000 samples that are sampled
at the beginning of each experiment.

We train models with the default CausalLMLoss from the transformers library, the length of inputs is sampled
uniformly from minimum up to maximum length in the specified range. This is true for training data where the
range is (min, 50) Where Iy, is the minimum length possible for a given task (varies from 2 - 4, depending on
the task variant and the minimum length of characters required to make the string valid). Our test sets have the
size = (lmin, 50), (51, 100), (101, 150). At each step, the model outputs the correct continuation — for retrieval
the correct token to be retrieved, for copying the subsequent next token from the input sequence. The models are
trained on a whole sequence of tokens. We train decoder-only transformer from scratch, using implementations
from HuggingFace transformers for APE (GPT2LMHeadModel) and RoPE (LlamaForCausalLM). We train
models for maximum 30K steps with a batch size of 64. We stop training early once the model’s accuracy
reaches 100% on the in-distribution test set (the one in range [Imin, 50]. The model is trained with a dropout
rate of 0.0, and we use AdamW, with a weight decay rate of 0.01 (choices based on Huang et al. [2025]).

For experiments with APE, at training time, we add random offsets to position indices so that all position
embeddings are trained (following Huang et al. [2025]). The offsets are sampled uniformly at random in the
range [0, 150 — Leyrr| Where £eyrr is the length of the current string. For RoPE, such an offset is not required in
training'’; instead a scaling factor of 32.0 is set; the RoPE scaling type used was linear.

In preliminary experiments, we found that different model architectures, while achieving 100% accuracy on
in-distribution data, may perform differently on out-of-distribution data. To draw a conclusion about how
the model performs on a problem in general, we determine the hyperparameters as follows: We consider
configurations of {1, 2, 4} layers, {1, 2, 4} heads and model dimension of {16, 64, 256}, and learning rate
of {0.001, 0.0001}. We sweep all the configurations by iterating over every combination and choose the one
that achieves the highest accuracy on [51, 100] among those configurations whose accuracy on [lmin, 50] is
100%. When there are multiple such options, e.g., their accuracy on [51, 100] is 100%, the one with the simplest
architecture is selected (when estimating complexity, we assume the following priority: number of layers >
number of heads > model dimension). The final hyperparameters we used for each task are shown in Table 1
and 2. After we determine the hyperparameter configuration, we run the experiments with multiple random
seeds and report the average accuracy of 3 successful runs (those runs where the model achieves 100% accuracy
on in-distribution data).

UF, UB vs UR, UL: While training UF and UB with RoPE, we did not observe perfect length generalization
when directly training on the task, unlike what we observed with APE. However, we note that UF and UB can be
thought of as repeated applications of UR and UL, for which we did obtain perfect length generalization even
with RoPE — showing that length-generalizable RoPE transformers do exist for UF and UB.!! We thus use the
ROPE transformers for UR and UL to model UF and UB. We take separate versions of transformers on UR and

1%In fact, relative positional encodings such as RoPE are by definition invariant to the addition of a constant
offset to the indices

"'We leave to future research to determine whether this phenomenon reflects some deeper discrepancy between
RoPE and APE, or superficial optimization difficulties.

19



UL (without any separator before the query token) and autoregressively use the UR and UL models to generate a
full continuation till an EOS is reached to get correct solutions for UF and UB. Therefore we format the input as:
X = (bos)(sep)x1 ... xzn(eos)(sep). Upon seeing the separator, the model predicts 1, and then z2 and so on
till we get to zn, and then an (eos) is predicted. We do the same with UL to get predictions for UB.

—e— In C-RASP[Pos] —— Not in C-RASP[Pos]

UF (Unique Forward) UB (Unique Backward) NF NB UR
1006——o—— 4| 100—o—— 4| 100 100 100 = L L
80 80 80 80 80
60 60 60 60 60
40 40 40 40 40
20 20 20 20 20
V] V] V] V] V]
Bin 1 Bin 2 Bin3 Binl Bin 2 Bin3 Binl Bin 2 Bin3 Binl Bin 2 Bin3 Binl Bin 2 Bin 3
UL NRFirst NLFirst NRLast NLLast
100 = g # 100w & # 100 = L —u| 100 100
80 80 80 80 80
60 60 60 60 60
40 40 40 40 40
20 20 20 20 20
V] V] V] V] V]

Bin 1 Bin 2 Bin3 Binl Bin 2 Bin3 Binl Bin 2 Bin3 Binl Bin 2 Bin3 Binl Bin 2 Bin 3

Figure 8: Transformers trained from scratch with APE, perfectly aligns with C-RASP[pos] predictions.

—e— In C-RASP[Pos] —s— Not in C-RASP[Pos]

UF (Unique Forward) UB (Unique Backward) NF NB UR
100 - e 1001® - e| 100 100 100 = = ]
80 80 80 80 80
60 60 60 60 60
40 40 40 40 40
20 20 20 20 20
V] V] o V] V]
Bin 1 Bin 2 Bin3 Binl Bin 2 Bin3 Binl Bin 2 Bin3 Binl Bin 2 Bin3 Binl Bin 2 Bin 3
uL NRFirst NLFirst NRLast NLLast
100 = = # 100 ® = # 100 ® L ——am| 100 100
80 80 80 80 80
60 60 60 60 60
40 40 40 40 40
20 20 20 20 20
o V] o V] V]

Bin 1 Bin 2 Bin3 Binl Bin 2 Bin3 Binl Bin 2 Bin3 Binl Bin 2 Bin3 Binl Bin 2 Bin 3

Figure 9: Transformers trained from scratch with RoPE, aligns with C-RASP[pos] predictions, even
though the length generalizability guarantees given by C-RASP[pos] only apply to APE. It should be
noted that the accuracy on UF, UB plotted here are not obtained by directly training, but by applying
UR, UL repeatedly as described in the paragraph B. The bins here correspond to the evaluation bins
of sizes (Inin, 50), (51, 100), (101, 150)).

C Additional experimental details and results

C.1 Prompting: In-Context Retrieval Templates (Section 4.1)

Table 3 below lists the three prompt factors and their possible values. A Cartesian product of all prompt settings
across the 3 categories given below was taken to generate 20 prompt templates.

Separator Examples
The input string is given in the following format based on the category.

e SEP:z1,22...2n—1||Zn
e NOSEP:-z1,22..cn—12n

20



Table 3: Prompt Template Grid Factors

Factor Options

Separator  SEP, NOSEP
Few-shot SMALL, SAME
Template BARE, SIMPLE_RULE, SIMPLE_RULE_EXPL., MATH_RULE MATH_RULE_EXPL.

Few-Shot Pools
¢ SMALL — Examples drawn from a held-out pool with lengths smaller than the input string X .

* SAME — Examples sampled from the same evaluation set as the input string X (excluding X itself).

Instruction Templates

The different possible instruction templates for each of the tasks are given below. In every case, the prompt ends
with the unresolved query line, prompting the model to emit the answer token.

BARE This template provides only the few-shot examples without any additional instructional or explanatory
text. It requires the completion model to infer the task directly from the presented examples. Example for UR :

SIMPLE_RULE The task is introduced through a concise English-language description defining the resolution
rule. The idea of the setup is the test whether the model can follow explicit instructions based on linguistic
clarity. The format across the tasks is as follows.

Each line is written as ‘context|query: target’.

The vertical bar ‘|’ separates the context from the query token.
A1l strings below follow this rule: {rule_simple}

{examples}

Table 4: Simple Rules for each of the tasks

Task Template

UL The answer is the token immediately to the left of the single instance of the query token

UR The answer is the token immediately to the right of the single instance of the query token.

NLLast  When the query appears multiple times, the answer is the token just to the left of its last appearance.
NRLast  When the query appears multiple times, the answer is the token just to the right of its last appearance.
NLFirst When the query appears multiple times, the answer is the token just to the left of its first appearance.
NRFirst ~ When the query appears multiple times, the answer is the token just to the right of its first appearance.

SIMPLE_RULE_EXPLAINED This template enhances the simple English rule format by providing an
additional worked example explanation. It begins by stating the simple rule, then illustrating through an example
how the rule is actually applied. Following the same, the model is presented with some few-shot examples to
reinforce the rule understanding.

MATH_RULE This template explicitly formulates the task using formal mathematical definitions and notation.
It introduces variables to clearly define the input string, context, query token, token indices, and continuation
token. The mathematical notation precisely indicates conditions under which the continuation token should be
selected, leaving no ambiguity regarding the required solution path. The template is as follows.

Let $X = x_1 \ldots x_n$ with $n \ge 4$ and $x_i \in \Sigma$ (token vocabulary).

The final token $x_n$ is the query token $q$. In the context $x_1 \ldots x_{{n-13}1}$,
$q$ appears $t$ times at indices $q_1, \ldots, q_t$ ($1 \le g_1 \le g_t \le n-1$).
Continuation token $x_{{n+1}}$ is defined by: {rule_math}

Examples:

{examples}

MATH_RULE_EXPLAINED Similar to the SIMPLE_RULE_EXPLAINED, this template begins with a detailed
mathematical formulation of the task and is then followed by a worked-out example and then finally some
few-shot set of strings.

21



Table 5: Math Rule Template
Task Template

UL t =1and Tp41l = Tgy—1
UR t =1and Tp4+1l = Tg+1
NLLast ¢ >1land 2,41 = 24,1
NRLast ¢t > land zp41 = Tg,+1
NLFirst ¢t > 1and 41 = T, —1
NRFirst ¢t > 1land 41 = Tg, 41

C.2 Prompting: In-Context Copying Templates (Section 4.1)

Template variants. For our In-context Copying task suite, we use three lightweight prompt styles. There is
no Cartesian grid as in retrieval, as each of the prompts had statistically little variance, and eliciting this ability
from our LLMs was not as challenging as in retrieval.
* BARE — few-shot examples only, no instructional text.
* OBEY — a one-line English rule (rule_simple) introducing the few-shot block.
* HINT — a short hint (rule_hint) that highlights the input—output relation; mainly useful for backward
copying.

Rule strings injected by each template. The phrases referenced above are drawn from Table 6. Note that
unique and non-unique regimes share identical wording because the operation (copy vs. reverse) is independent
of token repetition once the input is fixed.

Table 6: rule_simple phrases for the four copying tasks.

Task rule_simple

UF The output is exactly the same sequence as the input.
UB  The output is the input sequence written in reverse order.
NF  The output is exactly the same sequence as the input.
NB  The output is the input sequence written in reverse order.

The corresponding rule_hint strings swap the lead-in "The output is ..." with "In every example the output
..." to make the instruction less imperative.

Few-shot sampler. All copy prompts use the same held-out k=>5-shot pool (length L=>5, N=1500) that is
disjoint from the evaluation set. Each prompt is built by picking five random lines from this pool, followed by
the query built from the current test string.

End-to-end prompt bare template example (UF)

<bos> rma js :rmajs <eos>
<bos> Hw s xn : Hw s x n <eos>
<bos> QO FGJ:QoFGJ <eos>
<bos> 0aYMF :0aY¥YMF <eos>
<bos>m I Nr D :mINTvxD <eos>
<bos> Z i b EB :

The unresolved line after is the model’s query; generation proceeds with greedy decoding (1" = 0).

C.3 Longer Vocabulary (Word-Level) Experiments (Section 4.1)

To ensure that the Uniqueness and Directional Biases observed in our primary character-level experiments are
not simply artifacts of a synthetic setup, we conducted a parallel set of experiments using a more naturalistic
word-level vocabulary. In case of LLMs, the distinction between a token-level and a word-level task may be less
sharp than it appears. Kaplan et al. [2025] shows that LLMs form an “inner lexicon” where simple or common
words are processed as cohesive semantic units. Given their results, this word-level task formulation can be
considered analogous to the character-level task.

22



Experimental Setup The setup for the word-level vocabulary mirrors the main experiments in Section 4.1
but replaces the character-based vocabulary with a vocabulary of 300+ unique English words. This allowed us to
construct longer, more complex sequences with lengths up to 300 tokens. All other aspects of the methodology,
few-shot prompting strategy, and task structures (e.g. UR vs. UL, UF vs. UB) remain identical. The exact
vocabulary we used to generate the test strings in all of the experiments is as follows.

Character-level vocabulary

a, a, a4, a, 4, 3, b, ¢, ¢, ¢, ¢, ¢, ¢, d, e, &,
&, &,8,8,¢,f,¢g, 8 B, h, b, i, i, j, 3, k,
1, my n, o, 6, 6, 6, 6, p, 9, r, s, t, u, 4, 1,
4, i, v, w, x, y, 2,

A, A, R, K, K, &, E, B, C, ¢, G, G, ¢, G, D, E,
E,E,E,E, F,G6,H, 1, I, 1,1, 1,1, I, I, J,
K, L, L, M, N\, N, 0, 0,08,0,P,QR,S, T, U,
U, 0, 0,0, v, w, X, Y, Z,

0,1, 2,3,4,5,6,7,8,9

-
-

B

Word-level vocabulary

apple, ant, arrow, anchor, artist, animal, angle, apricot, arch, armor, axis, avenue
ball, bat, book, bridge, bottle, bucket, bench, bread, bell, button, brush, branch
cat, car, cup, cloud, clock, candle, coin, chair, circle, crown, castle, cookie
dog, door, desk, drum, duck, doll, diamond, dish, dress, dream, drop, dust

egg, ear, eye, engine, elbow, earth, envelope, exit, echo, edge, event, energy
fish, fan, fork, flower, flag, feather, fire, frame, forest, farm, fruit, fence
goat, game, glass, glove, gate, garden, gift, grape, guitar, gold, gear, group
hat, hand, horse, house, hill, hammer, heart, honey, hook, horn, hug, hope

ice, iromn, ink, island, idea, image, item, ivory, icon, input, issue, idol

jar, jam, jet, jewel, jungle, jacket, juice, job, joke, joy, judge, jump

kite, key, king, knee, kitchen, knife, kitten, knight, kick, kettle, kind, koala
lamp, leaf, lion, lock, ladder, lake, lemon, line, letter, lip, light, lunch

man, map, moon, milk, mouse, mirror, mountain, market, meal, music, magnet, match
net, nose, nest, name, nail, night, number, note, neck, nurse, noise, nation

owl, oil, oven, orange, ocean, order, orbit, open, option, owner, object, office
pen, pig, pot, plate, plane, pumpkin, pearl, park, path, piano, point, paper
queen, quill, quiz, quilt, quiet, quick, quote, quest, queue, quake, quart, quark
rat, ring, rain, river, rope, road, rose, rock, rule, room, root, radio

sun, sock, star, ship, shoe, stone, sugar, song, salt, sand, seed, snake

top, toy, tree, train, table, tube, tiger, tool, time, tent, team, towel

urn, use, unit, uncle, under, upper, uniform, union, urban, urge, ultra, usual
van, vase, veil, voice, valley, visit, value, vest, vote, view, vine, victory
wax, web, wall, wind, water, wheel, wave, wolf, wing, worm, word, wood

xylophone, xerox

yam, yard, yarn, yawn, year, yellow, yogurt, yolk, youth, yield, yeti, yoga

zoo, zebra, zone, zero, zip, zinc, zeal, zest, zigzag, zoom, zombie, zodiac

C.4 Additional results and plots for in-context prompting (Section 4.1)

C.4.1 Additional results: character-level vocabulary

As evident from all the figures here (smaller completion models - Figure 10), (smaller instruct models - Figure
11), (bigger instruct models - Figure 12), the Directional Bias persists across models sizes and types. While in
the smaller models the gaps smaller for the retrieval tasks, nevertheless there is still a pronounced gap within the
copying task variants.

Amongst the prompts there was high variability for all our retrieval setups, but close to none for the copying
setups. Our bare template performed the worst in most retrieval setups, and the highest accuracy metrics were
achieved when the instruction template was — MATH_RULE_EXPLAINED, with the few shot setting as SMALL
with the presence of a separator. For copying, just the BARE setup was enough to get high accuracy numbers
without the need to specify any instructions (especially for the forward copying cases). Providing instructions
did improve the performance especially for the Qwen2.5-Instruct models.

We also carried out the same experiments with newer Qwen3 [Team, 2025] models with “thinking” variants
to see if our findings still hold. The results from Figures 13, 14, 15, 16 show that even the model trained to
explicitly generate a chain-of-thought for solving task still have the same Directional and Uniqueness biases.

23



—e~Llama 3 8B (Left/Bwd)

—e—Llama 3 8B (Right/Fwd)

—=-Qwen 2.5 7B (Left/Bwd)

—=—Qwen 2.5 7B (Right/Fwd)

Retrieval Copying
UL/UR i UBIUF
1.0 !
; 3
0.8 !
[0 > 1 LY
3 g o6 AR
.g‘ g : \
=) 04 ! ‘\ LN
1 \ ~
1 \ AN
0.2 »Z>~ H A A S§
i . [
! - b ————
0.0 ! 10 20 30 40 50 100
| Input Length
NLFirst/NRFirst NLLast/NRLast i NB/NF
1.0 i
: \
[ 0. i
2| 4 |
= | 806 |
2|3 :
f=
| < l
z i
i
1
1 = 4 - - -
10 20 30 40 50 100 1 10 20 30 40 50 100
Input Length Input Length ! Input Length

Figure 10: In-context accuracy for Qwen2.5-7B and L1lama-3-8B across all our character-level
tasks averaged over 3 seeds and prompt variations per task. The same patterns as discussed in Section
4.1 are visible.

—e-Llama 3 8B Instruct (Left/Bwd) —e—Llama 3 8B Instruct (Right/Fwd) —=-Qwen 2.5 7B Instruct (Left/Bwd) —=—Qwen 2.5 7B Instruct (Right/Fwd)

Retrieval Copying
UL/UR i UB/UF
|
1.0 ! e o
1 ./'—.——"—\.
1
0.8 !
Q > !
S g i
g £oe i
(5]
5 204 & i
= ! [N
= | N
0.2 .____.____.___..-—--\1\\\‘ i .\\\‘
| bl T YD G G -
00 10 20 30 40 50 100 i 10 20 30 40 50 100
Input Length | Input Length
__________________________________________________________________ e
NLFirst/NRFirst NLLast/NRLast | NB/NF
1.0 i
i
] 0.8 i
2|z |
1
‘S| 806 |
1
z § 0.4 !
s | < |
z 02 FmomE-TS |
i -~
=Ssal - —— - -
0.0 10 20 30 40 50 100 i 10 0 30 40 50 100
Input Length Input Length ! Input Length

Figure 11: In context accuracy for Qwen2.5-7B-Instruct and Llama-3-8B-Instruct across all
our character-level tasks averaged over 3 seeds and prompt variations per task. The same patterns as
discussed in Section 4.1 are visible.

24



—e~Llama 3 70B Instruct (Left/Bwd)

—e—Llama 3 70B Instruct (Right/Fwd)

—=-Qwen 2.5 32B Instruct (Left/Bwd)

—=—Qwen 2.5 32B Instruct (Right/Fwd)

Retrieval Copying
UL/UR i UB/UF
1
1.0 ! —
M : ]
0.8 ‘--*"‘*_ : \\\
5 oy ™. 1 AN
= © 0.6 e i SR
g 3 e | LR WD W
5 Lo4 L EaLT R S | R
S~a : \.“~~.—-—- ~
0.2 ! e
1 \
i N
0.0 10 20 30 40 50 100 i 10 20 30 40 50 100
Input Length | Input Length
NLFirst/NRFirst NLLast/NRLast i NB/NF
1.0 i
2] 0.8 ]
z 2 %~ i
S | §06 = TTea__ |
~ 1
2|3 T PN
c < 04 \\..___.\ Sso 1 ‘\\
2 Smalll> ! Y
02 i R
= N
0.0 : il —ohr b T
10 20 3 40 50 100 10 20 30 40 50 100 10 20 30 40 50 100
Input Length Input Length ! Input Length

Figure 12: In context accuracy for Qwen2.5-32B-Instruct and Llama-3-70B-Instruct across
all our character-level tasks averaged over 3 seeds and prompt variations per task. The same patterns
as discussed in Section 4.1 are visible.

—e-Qwen 3 14B (Left/Bwd) —e—Qwen 3 14B (Right/Fwd)

o
[S)

Retrieval Copying
UL/UR i UB/UF
1
1.0 | —
: k\
1 \\g
0.8 | \\\
() > ! N
= §0.6 : ‘\\
g =1 | N
[S]
S 20.4 i ‘\\\
! ~
0.2 ! N
:
.
0.0 i 10 20 30 40 50 100
! Input Length
NLFirst/NRFirst NLLast/NRLast i NB/NF
1.0 1
: N
w 1
g_ >0.8 |
1
= | 06 !
2|3 !
5 Lo4 i
1
1
z 0.2 m——gi ! %
‘-o—___.\\ 1 \\
i S S S
1
1

10 20 30 40
Input Length

50 100 10 20 30 40 50
Input Length

10 20 30 40 50 100

Input Length

Figure 13: In-context accuracy for Qwen3-14B across all our character-level tasks averaged over 3
seeds and prompt variations per task. The same patterns as discussed in Section 4.1 are visible.

25



—e-Qwen 3 4B (Left/Bwd) —e—Qwen 3 4B (Right/Fwd)

Retrieval Copying
UL/UR i UBIUF
1.0 1
i ™~
0.8 !
%) > 1
=] 8 i
g £ 06 !
o
5 204 R
i RN
0.2 i .
: R
L D G G
0.0 i 10 20 30 40 50 100
| Input Length
NLFirst/NRFirst NLLast/NRLast E NB/NF
1.0 i
1
. \
o i
=] 1
gl 3 i
c| & i
5| 3 i
[ o 1
5| < :
z i
1
1
TR T S S S
| 10 20 30 40 50 100
Input Length Input Length ! Input Length

Figure 14: In-context accuracy for Qwen3-4B across all our character-level tasks averaged over 3
seeds and prompt variations per task. The same patterns as discussed in Section 4.1 are visible.

—e-Qwen 3 4B Thinking (Left/Bwd) —e—Qwen 3 4B Thinking (Right/Fwd)

Retrieval Copying
UL/UR UB/UF
1.0
0.8
0.6

Unique
Accuracy

0.4
0.2[ T T

10 20 30 40 50 100 10 20 30 40 50 100
Input Length Input Length

NLFirst/NRFirst NLLast/NRLast ! NB/NF

1.0 i
i
o 0.8 i
| = !
= | 806 !
7|3 =
3 £04 i
1
z 0.2 i
1

0.0 ==-° i [ S S S S S |

10 20 30 40 50 100 10 20 30 40 50 100 1 10 20 30 40 50 100
Input Length Input Length ! Input Length

Figure 15: In context accuracy for Qwen3-4B-Thinking across all our character-level tasks aver-
aged over 3 seeds and prompt variations per task. The same patterns as discussed in Section 4.1 are
visible.

26



—e-Qwen 3 14B Thinking (Left/Bwd) —e—Qwen 3 14B Thinking (Right/Fwd)

Retrieval Copying
UL/UR UBIUF
1.0 o—-—‘—o——o\‘\‘
0.8 o
\

() > \
=) g 06 N
g 5 A
j= S 0.4 o
) <0 !

10 20 30 40 50 100 10 20 30 40 50 100
Input Length Input Length
NLFirst/NRFirst NLLast/NRLast NB/NF
1.0 p o
—
()
>
g
<
3
5
2 ‘\\
~
D \\
| ST G S A

10 20 30 40 50 100 10 20 30 40 50 100 10 20 30 40 50 100
Input Length Input Length Input Length

Figure 16: In context accuracy for Qwen3-14B-Thinking across all our character-level tasks
averaged over 3 seeds and prompt variations per task. The same patterns as discussed in Section 4.1
are visible.

C4.2 Results: word-level vocabulary

We find that the core asymmetries persist even in the more naturalistic word-level setting (see Figures 17, 18,
19, 20, 21, 22, 23, 24). Although length generalization improves slightly for the larger models, the pretraining
induced Directional Bias and the architecture-driven Uniqueness Bias remain clearly evident across all LLMs.

C.5 Promping: Lorem Ipsum Copying (Section 4.2)

Dataset generation. To stress-test copying while keeping text realistic, we construct a 1,500-example corpus
of synthetic Lorem Ipsum paragraphs. Generation starts from one base paragraph produced by the 1lorem Python
library and then applies light, probabilistic perturbations to increase the non-determinism of the texts.

* Sentence count. Each sample contains exactly 45 sentences (average ~350 tokens), enforced by
iterative expansion/shuffling until the target length is reached.

* Word/discourse noise. With probability 0.3 a random sentence is repeated up to four times; with
probability 0.5 random words inside a sentence are duplicated; with probability 1.0 words within a
sentence are shuffled (except the leading capital).

* Token budget. Sequences are truncated to 500 BPE tokens to stay within context limits while
preserving paragraph-level coherence.

Prompt variants. We identified successful prompts for copying naturalistic text as follows. We downloaded
research papers put up on ArXiv in April 2025, and checked if the prompt results in perfect accuracy (not even
a single mistake). Our motivation was that ArXiv text includes challenging text with equations, and, due to
recency, should not have appeared in the LLM training data. More specifically, we segregated the sections of
the papers into paragraphs, making sure the total length of the paragraph to be copied has close to 500 tokens
(while ensuring that we do not end the paragraph in the middle of a sentence). We then pre-validated our
prompts on a dataset containing 500 samples each containing 500 tokens, and even the smaller models we test —
Llama3.1-8B and Qwen2.5-7B perfectly copied the given text (not a single mistake). We proceeded with our 3
minimal prompts, shown in Table 9, which achieved perfect copying accuracy. Each of our prompts ends with
an unresolved <start> token, prompting the model to emit a verbatim repetition of the preceding paragraph.

Ratio of Ambiguous vs. Unambiguous Tokens. Table 7 reports, for each model, the average number of
ambiguous (tokens with multiple possible continuations) and unambiguous (tokens with a single continuation)

27



—e-|lama 3 70B (Left/Bwd) —e—Llama 3 70B (Right/Fwd) —=-Qwen 2.5 32B (Left/Bwd) —=—Qwen 2.5 32B (Right/Fwd)

Retrieval Copying

UL/UR

UB/UF

0010 20 30 40 50 100 200 300 10 20 30 40 50 100 200 300 10 20 30 40 50 100 200 300

Input Length Input Length Input Length

1
1
1
1
1
1
i
i
[}] >
3 206 i
= =1 N 1
[ 38 L N |
) g 04~ A !
\ o~ I
ol - 1
0.2 T g Jel : o
Sy ! \\\
00 ! Nl
710 20 30 40 50 100 200 300 ! 10 20 30 40 50 100 200 300
Input Length : Input Length
NLFirst/NRFirst NLLast/NRLast E NB/NF
1.0 i
1
2 08 |
o P 1
‘€| 206 |
Z|3 :
g < 04 !
2 i
0.2
LN
AN
i
1

Figure 17: In context accuracy for Qwen2.5-32B and L1ama-3-70B across all our word-level tasks
averaged over 3 seeds and prompt variations per task. The same patterns as discussed in Section 4.1
are visible.

—e-Llama 3 8B (Left/Bwd) —e—Llama 3 8B (Right/Fwd) —=-Qwen 2.5 7B (Left/Bwd) —=—Qwen 2.5 7B (Right/Fwd)

Non-unique
Accuracy
o
i

o
N

9010 20 30 40 50 100 200 300 10720 30 40 50 100 200 300

Input Length Input Length Input Length

Retrieval Copying

UL/UR i UB/UF
1.0 !
1
1
0.8 !
() > I
) Qo6 i
g 3 i
1
g £ 04 !
1
02| ds) i

\-:2_'21:=t==l==-.._.. H % ~

9010 20 30 40 50 100 200 300 i 10 20 30 40 50 100 200 300
Input Length : Input Length

NLFirst/NRFirst NLLast/NRLast i NB/NF
1.0 i
1
1
0.8 i
1
1
0.6 |
1
:
1
1
1
1
1
1
1
1
1
1
1

Figure 18: In-context accuracy for Qwen2.5-7B and L1ama-3-8B across all our word-level tasks
averaged over 3 seeds and prompt variations per task. The same patterns as discussed in Section 4.1
are visible.

28



—e~Llama 3 8B Instruct (Left/Bwd) —e—Llama 3 8B Instruct (Right/Fwd) —=-Qwen 2.5 7B Instruct (Left/Bwd) —=—Qwen 2.5 7B Instruct (Right/Fwd)

=L Y T
10 20 30 40 50 100 200 300
Input Length

710 20 30 40 50 100 200 300
Input Length

Retrieval Copying
UL/UR | UB/UF
1.0 i —
i
1
0.8 !
[ > 1
=] 9 I
g £00 i
[ 38 !
=) < i
i
1
,,,.-_-_--_-.__’_*_‘ i A e _
0.0 i ==
1
1
1

NLFirst/NRFirst NLLast/NRLast
1.0

0.8

o
o

0.4

Non-unique
Accuracy

0.2
\
N\

- -

S
10 20 30 40 50 100 200 300
Input Length

0.0 10 20 30 40 50 100 200 300 10 20 30 40 50 100 200 300

Input Length Input Length

Figure 19: In context accuracy for Qwen2.5-7B-Instruct and L1lama-3-8B-Instruct across all
our word-level tasks averaged over 3 seeds and prompt variations per task. The same patterns as
discussed in Section 4.1 are visible.

—e-Llama 3 70B Instruct (Left/Bwd) —e—Llama 3 70B Instruct (Right/Fwd) —=-Qwen 2.5 32B Instruct (Left/Bwd) —=—Qwen 2.5 32B Instruct (Right/Fwd)

Retrieval Copying
UL/UR UB/UF
1.0
S~
o
0.8 ""——Q\
() > S
= g N ~
T go.ﬁ - -.\\.‘\. N~
c Q “=n
5 & o4 fat S
0.2
.
0.0 10 20 30 40 50 100 200 300 10 20 30 40 50 100 200 300
Input Length Input Length
NLFirst/NRFirst NB/NF

o B
© o

Q
& =
2| oo =,
= 3 N ‘
£ | Soa . \
g < .\*-——.:-.:“"‘\ - “\
L BNEY S o Ly
0.2 | ST ] RESRINASEY TN N§ \\\\
N, e
00 == AV ol ST S A A
710 20 30 40 50 100 200 300 10 20 30 40 50 100 200 300 10 20 30 40 50 100 200 300

Input Length Input Length Input Length
Figure 20: In context accuracy for Qwen2.5-32B-Instruct and Llama-3-70B-Instruct across

all our word-level tasks averaged over 3 seeds and prompt variations per task. The same patterns as
discussed in Section 4.1 are visible.

29



—e-Qwen 3 14B (Left/Bwd)

Retrieval

—e—Qwen 3 14B (Right/Fwd)

Copying

UL/UR

UB/UF

1.0

08 .\H—’—N\

o
o

Unique
Accuracy
I
n

»

~

o
N

\\
-__.__‘__.-~*
————
 STSUE
10 20 30 40 50 100 200 300
Input Length

0.0 10 20 30 40 50 100 200 300

Input Length

NLFirst/NRFirst

NLLast/NRLast

c o
o ©

Non-unique
Accuracy
o
iy

0.0 10 20 30 40 50 100 200 300

Input Length

Input Length

Input Length

Figure 21: In-context accuracy for Qwen3-14B across all our word-level tasks averaged over 3 seeds
and prompt variations per task. The same patterns as discussed in Section 4.1 are visible.

—e-Qwen 3 4B (Left/Bwd) —e—Qwen 3 4B (Right/Fwd)

Retrieval Copying
UL/UR UB/UF
1.0
0.8
.aé_ go.e
2 §os
02 &
oo \a__.__.___.__.__.._—-

710 20 30 40 50 100 200 300
Input Length

NLFirst/NRFirst

10 20 30 40 50 100 200 300
Input Length

NLLast/NRLast

Non-unique
Accuracy

0.0 10 20 30 40 50 100 200 300

Input Length

10 20 30 40 50 100 200 300
Input Length

10 20 30 40 50 100 200 300

Input Length

Figure 22: In-context accuracy for Qwen3-4B across all our word-level tasks averaged over 3 seeds
and prompt variations per task. The same patterns as discussed in Section 4.1 are visible.

30



Unique

Non-unique

—e-Qwen 3 4B Thinking (Left/Bwd)

—e—Qwen 3 4B Thinking (Right/Fwd)

Retrieval Copying
UL/UR i UB/UF
1
1.0 !
1
1
0.8 !
© 0.6 !
3 1
g 0.4 |
< 0. . |
~ 1
0.2 "‘*o--_'___‘\\ ! L
-e- AR S
- ——_ s —
0016 20 30 40 50 100 200 300 i 10 20 30 40 50 100 200 300
Input Length ! Input Length
NLFirst/NRFirst NLLast/NRLast i NB/NF
1.0 i
1
1
0.8 i
oy i
© 0.6 :
3 1
o 1
04 i
1
P 1
0.2 TN Tmea TS i
= I
0.0 !
1
1

710 20 30 40 50 100 200 300
Input Length

10 20 30 40 50 100 200 300
Input Length

Input Length

Figure 23: In context accuracy for Qwen3-4B-Thinking across all our word-level tasks averaged
over 3 seeds and prompt variations per task. The same patterns as discussed in Section 4.1 are visible.

Unique

Non-unique

—e&-Qwen 3 14B Thinking (Left/Bwd)

—e—Qwen 3 14B Thinking (Right/Fwd)

Accuracy

Retrieval Copying
UL/UR UB/UF
1.0
0.8
oy
T 0.6 o
3 el
04 Sel
Se——t—— o
k]
0.2 Tt
‘0—__‘__‘\
0.0 Se——0——o

710 20 30 40 50 100 200 300
Input Length

NLLast/NRLast

NLFirst/NRFirst

o
o

I
IS

0.2 e—q _ e =g ————9

0.0 10 20 30 40 50 100 200 300

Input Length

10 20 30 40 50 100 200 300
Input Length

10 20 30 40 50 100 200 300
Input Length

L S S G S |
10 20 30 40 50 100 200 300
Input Length

Figure 24: In context accuracy for Qwen3-14B-Thinking across all our word-level tasks averaged
over 3 seeds and prompt variations per task. The same patterns as discussed in Section 4.1 are visible.

31



tokens per paragraph, aggregated across all random seeds. While different model families employ distinct
tokenizers, so their absolute counts vary, yet the relative balance between ambiguous and unambiguous tokens
is remarkably consistent. Each paragraph contains roughly 500 tokens, but repetition of sentences (to make
the dataset appropriate for Non-unique copying) reduces the number of unique token types to only about 70.
However, amongst those, both token types occur frequently in our data and the fact that copying “glitch” can be
traced exclusively to unambiguous tokens is remarkable.

Table 7: Average per-paragraph bigram counts by model

Model name Ambiguous tokens  Unambiguous tokens  Total tokens
Llama3_8B, L1ama3_70B 31.97 39.65 71.62
Qwen2.5_7B, Qwen2.5_32B 32.59 42.14 74.72

Example of a Hallucinated Chain. We provide here a truncated real sample (from the total 500 sequence
length of the original paragraph) of an input sequence to be copied:

. neam que Non etincidunt dolorem tempora magnam.
and the corresponding output we get for the same input is:

. neam que Non etincidunt dolorem tempora magnam velit neque.
Non etincidunt dolorem tempora magnam.

As can be seen, a long chain of hallucination starts at the point tempora magnam. However, earlier in the
truncated history, there were cases where magnam was followed by velit.

Our algorithm proceeds with this example as follows. We first tokenize both sequences to get the following lists
of tokens in the input and the output. Here, the symbol GG denotes a leading space for any token:

Input: [‘Gne’, ‘am’, ‘que’, ¢.’, ‘GNon’, ‘Get’, ‘inc’, ‘idunt’, ‘Gdol’, ‘orem’,
‘Gtemp’, ‘ora’, ‘Gmagn’, ‘am’, ¢.¢‘],

Output: [‘Gne’, ‘am’, ‘que’, ¢.°, ‘GNom’, ‘Get’, ‘inc’, ‘idunt’, ‘Gdol’, ‘orem’,
‘Gtemp’, ‘ora’, ‘Gmagn’, ‘am’, ‘Gvelit’, ‘Gne’, ‘que’, ‘.7, ‘GNon’,
‘Get’, ‘inc’, ‘idunt’, ‘Gdol’, ‘orem’, ‘Gtemp’, ‘ora’, ‘Gmagn’, ‘am’, °.¢]

The alignment we obtain between input and output tokens is:

[(‘match’ 0, 0), (‘match’ 1, 1), (‘match’ 2, 2), (‘match’ 3, 3),

(‘match’ 4, 4), (‘match’ 5, 5), (‘match’ 6, 6), (‘match’ 7, 7),

(‘match’ 8, 8), (‘match’ 9, 9), (‘match’ 10, 10), (‘match’ 11, 11),

(‘match’ 12, 12), (‘match’ 13, 13), (‘insert’, Nome, 14), (‘insert’, None, 15),
(‘insert’, None, 16), (‘insert’, None, 17), (‘insert’, None, 18),

(‘insert’, None, 19), (‘insert’, None, 20), (‘insert’, Nome, 21),

(‘insert’, None, 22), (‘insert’, None, 23), (‘insert’, None, 24),

(‘insert’, None, 25), (‘insert’, None, 26), (‘insert’, Nome, 27)]

After grouping the alignment by operation, we get:
[(‘match’ (0, 13)), (‘insert’, [14, 27))]

Finally, we analyze the transition index between these groups, which here is the index 13. The token at that index
is the word am, which appeared earlier in the context and was followed by other tokens and not a period (.).
Since this transition index at am is ambiguous, we classify the source of this hallucination chain as ambiguous.

C.5.1 Additional results for longer lengths

We conducted additional experiments with the same Lorem-Ipsum setup described above for a single seed at
even longer input lengths (up to 5000 tokens) and report the results in Table 8. We observe the same effects we
see at lengths of 500, that is, a lower success rate for ambiguous bigrams than for unambiguous ones. These
results on longer inputs align perfectly with and amplify our findings in Section 4.2.

32



Table 8: Model Performance at Longer (2k/3k/5k) Input Lengths
Unambiguous Ambiguous
Model 2k 3k Sk 2k 3k 5k

llama3-70B-Instruct 099 099 099 096 094 0.76
llama3-8B-Instruct 096 098 099 0.89 0.69 044
qwen2.5-32B-Instruct  1.00  0.99 099 095 094 093
qwen2.5-7B-Instruct ~ 0.99 0.99 099 0.75 043 0.19

Table 9: Prompt templates for copying Lorem Ipsum styled text. input stands for the test paragraph.
All templates terminate immediately after the final <start> token, leaving the closing tags for the
model to complete. The example paragraphs along with their copies are written in full in the templates
for few-shot examples (omitted here for brevity)

Name Template body

ECHO-TAG RULE : Paragraphs are repeated **exactly** as is, whenever an
Echo is seen.

Paragraph:

<start> Once upon a time ... <end>
Echo:

<start> Once upon a time ... <end>

Paragraph:

<start> input <end>
Echo:

<start>

VERBATIM-END Paragraph:

<start> input <end>

Provide a verbatim copy of the paragraph above exactly as it
appears, with no modifications. Use the tag <end> to mark the
end of the response.

<start>

P-TAG-THE_END Please repeat the following paragraph exactly as it is, without
any changes:

input

Put the repeated paragraph between <paragraph> and </paragraph>
tags. Use the phrase "THE_END" to mark the end of the
response.

<paragraph>

C.6 Prompting: Git Commit Revert vs Cherry-Pick (Section 4.2)

Dataset generation. We synthesize commit logs by creating a randomized seven-character hexadecimal hash,
an action/topic message drawn from 12 verbs and 10 subsystems. A history snippet lists ¢ commits newest,—
oldest. We export four depths (¢ = 10, 15, 20, 25) and three random seeds, yielding 4 x 3 x 1,500 = 18,000
total examples. For each snippet consisting of this generated git commit history (listed newest — oldest) we
store two reference answers:

33



* revert: the lines as shown (newest,—,oldest), matching the order a developer would pass to git
revert (thus somewhat similar to forward copying)

¢ cherrypick: the same lines reversed (oldest,—,newest), the order expected by git cherry-pick.
(thus somewhat similar to backwards copying)

All files are distributed in jsonl format with keys snippet, revert, and cherrypick.

Prompt variants. We adopt exactly two natural-language templates; one for the cherry-pick orientation, one
for the revert orientation. Each prompt describes the task in plain English, includes up to three few-shot examples
(hand-crafted, £ = 6), shows the new history under a === NEW HISTORY === delimiter, and terminates with
=== ANSWER ===, where the model must emit the ordered commit list only. An example is given below.

Prompt template examples - Cherry Pick

Below is a part of a Git commit history (newest at the top, oldest at the bottom).

Task

List every commit line that must be cherry-picked onto the release branch.
Output them **from oldest to newest** (the order ‘git cherry-pick‘ expects).

One complete commit line per output line.

Do **not** output anything else.

{{ few_shot_block }}
=== NEW HISTORY ===
{{ snippet }}

=== ANSWER ===
<start>

Prompt template examples - Revert

Below is part of a Git commit history (newest at the top, oldest at the bottom).

Task

List every commit line that must be reverted to roll the codebase back.
Output the lines **from newest to oldestx*x*.

One complete commit line per output line.

Do **not** output anything else.

{{ few_shot_block }}
=== NEW HISTORY ===
{{ snippet }}

=== ANSWER ===
<start>

Because correct output demands global re-ordering rather than token-level copy, we found no benefit in adding
separator toggles or mathematical re-statements.

Model coverage. Preliminary sweeps revealed that Qwen2.5 7B/32B models performed really poorly < 10%
on this task, even at further shorter depths { = 5, hence we exclude them from our analysis. Performance
degrades further with longer histories, indicating a difficulty with list reversal rather than context window length.

Additional prompting details for Instruction-tuned model variants. We keep the prompts very
similar to the completion models and mainly change the output formatting instructions (i.e., Put the answer
between <target>, <\target> tags). Additionally, both Qwen and L1ama family of models require and
an additional SYSTEM PROMPT, which we provide as follows:

You are a very careful and precise assistant. You always follow the instructions
and solve tasks yourself. You never generate code.

With our initial experiments, we observed that unless we specify explicitly, instruction-tuned model variants
generated code to solve both copying and retrieval tasks.

34



D Fine-Tuning Details (Section 4.3)

In general, the random seeds only affect the data shuffling and the positional offset during fine-tuning; the rest of

the things remain unaffected.

D.1 Retrieval Tasks - UL/UR

Examples.

Some sample inputs with the query token (bolded) and their UL/UR answers

Input UL answer UR answer
nsOw6up9v8| [u 6 P
qyw283zd9411w8| |3 8 z

Dataset.

The training/test dataset statistics for the UL/UR tasks are as follows:

UL UR
# train/val/test samples 45k/5k/5k  45k/5k/5k
train/val sample lengths [min, max] [4, 100] [4, 100]
test sample lengths [min, max] [101,200] [101,200]

Hyperparameters. The table below contains all the hyperparameters for fine-tuning models on the UL/UR
dataset.
Hyperparameter Value
Model name GPT-2-XL'2
Tokenization Character-level
Maximum train sequence length 100
Maximum inference sequence length 200
# Epochs 30
Batch Size 64
Learning rate (AdamW) le-5
Weight decay (AdamW) 0.01
Warmup ratio 0.15

Random seeds
Maximum gradient norm

3,71, 92,435, 541, 591, 24050, 29214
1.0

D.2 Retrieval Tasks - NLFirst/NRFirst/NLLast/NRLast

Examples.
Last targets.

Some sample inputs with the query token (char after ‘II’) and their NLFirst/NRFirst/NLLast/NR-

Input NLFirst NRFirst NLLast NRLast
g50008b6v503| o 5 0 5 3
c8rbr5r3r6r0| lr 8 5 6 0

Dataset.

The training/test dataset statistics for the NLFirst/NRFirst/NLLast/NRLast tasks are as follows:

NLFirst/NRFirst/NLLast/NRLast

# train/val/test samples
train/val sample lengths [min, max]
test sample lengths [min, max]

100k/5k/4.7k
[4, 100]
[101, 200]

35



Hyperparameters.
First/NRFirst/NLLast/NRLast dataset.

The table below contains all the hyperparameters for fine-tuning models on the NL-

Hyperparameter Value

Model name GPT-2-XL
Tokenization Character-level
Maximum train sequence length 100
Maximum inference sequence length 200

# Epochs 15

Batch Size 64

Learning rate (AdamW) le-5

Weight decay (AdamW) 0.01

Warmup ratio 0.15

Random seeds 3,47,71, 100
Maximum gradient norm 1.0

D.3 Copying Tasks - UF/UB/NF/NB

Examples. Some sample inputs and their UF/UB/NF/NB targets.

Input Config Target
Syb5DEHih0> UF Syb5DEHih0
Syb5DEHih0> UB OhiHED5byS
LnvTs1iggMt> UF LnvTs1qgMt
LnvTsiqgMt> UB tMgqlsTvnL
9975813713> NF 9975813713
9975813713> NB 3173185799
525671167> NF 525671167
525671167> NB 761176525

The training/test dataset statistics for the UF/UB/NF/NB tasks are as follows:

UF/UB/NF/NB
# train/val/test samples 50k/5k/5k
train/val sample lengths [min, max] [4, 100]
test sample lengths [min, max] [101, 200]

The train/val sample lengths are considered without the delimiter but the combined input/target length is 100,
not just the input length.

Hyperparameters.
F/NB dataset.

The table below contains all the hyperparameters for fine-tuning models on the UF/UB/N-

Hyperparameter Value

Model name GPT-2-XL
Tokenization Character-level
Maximum train sequence length 100

Maximum inference sequence length 200

# Epochs 15

Batch Size 64

Learning rate (AdamW) le-5

Weight decay (AdamW) 0.01

‘Warmup ratio 0.15

Random seeds 3,33,71,77,91
Maximum gradient norm 1.0

36



D.4 Results

We provide the training loss curves for each fine-tuning task in Figure 25.

104 1 -==- UL === NRFirst === NLLast
: UR NRLast NFwdCopy
FwdCopy NLFirst —=- NBwdCopy
81 BwdCopy
()]
(%]
S 6 ::
£ |:
(o] ||
= 49y
= I‘{'"'\
|'.\§ \\
2 A t\\
RN
N VSRl
0 T N i, R bl P S SO
0 5000 10000 15000 20000 25000
Steps

Figure 25: Averaged training loss curve for GPT-2-XL model across all our tasks. For all the tasks,

we achieve O training loss. Yet, the generalization behavior varies in line with theoretical predictions
(Figure 6).

E Further Details on Mechanistic Interpretability Analysis (Section 4.4)

Dataset. We randomly generate 100 strings containing letters of the English alphabet in lowercase. To prompt
base models to perform the tasks, we add 10 examples before the actual query for few-shot learning. We tokenize
each symbol individually, adding a preceding white space to each letter to get a more natural tokenization. We
add a BOS token in the beginning, separate few-shot examples with a dot, and separate the input and output of
each example with a comma. Fine-tuned models use the same dataset, except that tokenization and the choice of
separators are inherited from the fine-tuning setup, and they also have no BOS token and do not require few-shot
examples.

Patching details. To remove an induction head, we use path patching methodology, widely adopted in the
literature [Hanna et al., 2023, Wang et al., 2022]. An induction head can be viewed as a path consisting of two
edges connecting different positions inside an attention head: one edge connecting two adjacent positions in
the input string, and one edge connecting the second of these with a position in the target string. We remove
paths inside attention heads following Bakalova et al. [2025]. Removing all induction heads is thus done in two
forward passes:

* In all heads, replace the V activation of a token at position P in the input string with zero whenever it
is queried by the token in position P + 1 in the input string. In the same forward pass, for each head,
save K and V activations at position P + 1 in the input string. Intuitively, this intervention prepares K
and V activations at each position that carry no information about the preceding token.

In a second forward pass, in each head, replace the K activation of the token in position P + 1 in
the input string with the activation saved in the previous step whenever it is queried by a token in
position P in the rarget string. Intuitively, this intervention ensures that a head cannot attend to a
position on the basis of information about the token immediately preceding the key position. That is
precisely the behavior of induction heads [Olsson et al., 2022], i.e., induction heads are removed by
this intervention.

When removing anti-induction heads, the first step is the same, but the second step is different: In each heads,
we replace the V activation of the token in position P + 1 in the input string with the activation saved in the
first step whenever it is queried by a token in position P + 1 in the target string. Intuitively, this intervention
ensures that an attention head attending to a prior occurrence of the same token cannot retrieve the immediately
preceding token.

The above description applies to Unique Forward Copy; in Unique Backward Copy, the position indices in the
target string are appropriately reversed.

37



Unique Forward Copy Unique Backward Copy

(0]
S === |nduction Head
ﬁ 2.5 Anti-Induction Head ‘ . A A ,‘k
o V4
% 0.0 v\""\v/\ yow v | AN Aia A\W
<
0 10 20 30 40 0 10 20 30 40
Layer Layer

Figure 26: Difference in sum of attention scores per layer between fine-tuned and base models. The
higher the difference, the more amplified is this head in this layer during fine-tuning.

Layer localization. In fine-tuning, useful heads may migrate upward in depth (Figure 26). In fine-tuned
models, induction (resp. anti-induction) strength peaks in the top-third layers for forward (resp. backward) copy.
Pretrained models exhibit the same pattern but with induction heads situated later than anti-induction heads,
mirroring their superior robustness.

Relation to Retrieval Heads. Recent work by Wu et al. [2025] introduced the notion of a retrieval heads.
The experiments to find these retrieval heads in Wu et al. [2025] focus primarily on zero-shot settings compared
to the typical few shot settings for induction head studies [Elhage et al., 2021, Olsson et al., 2022, Song et al.,
2025, Crosbie and Shutova, 2025] including our setup. These retrieval heads are found by looking at tokens
being retrieved from Needle in a Haystack like test beds [Liu et al., 2024b]. There is a needle, or a short answer
span that needs to be copied in the output given a query. These answer spans / needles consist of tokens that are
sufficiently unique in the haystack (context) and thus cannot be figured out on the basis of semantics alone. A
head is called a retrieval head if it pays maximal attention to tokens being copied from a needle more number
of times than any other head. For example, if the number of tokens to be copied from a needle is 10, and the
maximal retrieval score that was calculated came out to be 0.7, that would imply that the head in question
paid the maximal attention to the 7 out of the 10 tokens while they were being copied. Thus even though
Retrieval heads are highly connected to the way we calculate our induction and anti-induction circuits, the exact
methodology is different. However retrieval heads should have a strong connection with the induction heads,
when they perform forward copying, and the anti-induction heads when they perform reverse copying. The exact
correlation however is left for future work.

F Compute Resources

We run all the prompting experiments using 4B/7B/8B parameter models on a single HI00 GPU and
14B/32B/70B parameter models on 4xH100 GPUs with full precision without any quantization. Our fine-
tuning experiments also use a single HI00 GPU for all the experiments. All of our experiments should be
reproducible with approximately 2500 H100 GPUh.

38



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction assert that (1) fundamental length-generalization limits of
small transformers may persist in large-scale pretrained LLMs (2) pretrained models exhibit a notable
induction-vs-anti-induction asymmetry; (3) this asymmetry can be traced to the relative strength of
underlying attention circuits; and (4) targeted fine-tuning can rebalance these circuits and mitigate
architectural limits, but does not entirely eliminate them. Through a mixture of synthetic as well
as real world experiments in section 4.1, 4.2 we show point 2. Through our finetuning experiments
in section 4.3 we justify point 4. We justify point 3 with experiments and discussion in section 4.4.
Finally in totality the cumulation of all of our experiments and theoretical results justifies point 1.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

* The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

« It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations of our work in Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

¢ The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

39



Justification: We base our theory on the extension of Huang et al. [2025]. In the main body of the
paper we provide informal theorems and intuitions behind our ideas (Section 3). Detailed definitions,
proofs, and remarks follow in Appendix A.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

» All assumptions should be clearly stated or referenced in the statement of any theorems.

» The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide technical details of our tasks, in-context and fine-tuning experiments in
Section 4. Specifically, we address the setup of the copying tasks in subsection 4.2 and fine-tuning
setup in subsection 4.3. Additional details on prompting and fine-tuning are provided in the Appendix
C and D respectively.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

¢ While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We attach the code and data used all across our experiments in the supplementary section.
We also have provided sufficient details all throughout the paper in each section to help the readers
reproduce any result.

40



Guidelines:

* The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

¢ The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if

applicable).

Providing as much information as possible in supplemental material (appended to the paper) is

recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We have provided exact hyperparameters in the appendix, along with all the relevant
training and test details for all experiments considering training in the appendix in sections D, B.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

» The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide exact error bars in our experiments whenever relevant. We use at least 3
seeds for each experiment of ours to confirm their validity.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

41


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer:[Yes]

Justification: We provide details of the compute resources used for all our experiments in our Appendix
in Section F.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

» The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: There is no deviation from the NeurIPS Code of Ethics guidelines mentioned. We
conform to all the guidelines.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

¢ The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: Our paper as such connects theory of Transformers and contextualizes them for LLMs.
Although we do not foresee any immediate negative positive societal impacts of our work. Long term,
we hope that our insights that can be used to make better LLMs that when deployed in some critical
domains can avoid the kind of errors we expose in LLMs

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

« Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

42


https://neurips.cc/public/EthicsGuidelines

11.

12.

13.

14.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA] .
Justification: We do not foresee any misuse of the new benchmarks we release to expose some
limitations in LL.Ms, and thus do not see the need to provide any safeguards related to the same.
Guidelines:

* The answer NA means that the paper poses no such risks.

» Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: We cite the creators of models and code we use.
Guidelines:

* The answer NA means that the paper does not use existing assets.

» The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: We contribute some new small benchmarks related to better understand limitations in
LLMs, and attach the benchmarks, along with how to re-generate them in the supplementary material.
We also attach all the code used to run our experiments in the supplementary section.

Guidelines:

* The answer NA means that the paper does not release new assets.

¢ Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

43


paperswithcode.com/datasets

15.

16.

Answer: [NA] .
Justification: We conduct no such experiments.
Guidelines:

¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA] .
Justification: We conduct no such experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [Yes]

Justification: Our paper is about studying LLMs, and hence all of our experiments involved running
LLMs to understand their behavior. Additionally we used LLMs to assist in refining our writing
throughout the paper. LLMs were not used in any other part of the paper, including our theoretical
results, coming up with our experimental design, creating our datasets and writing code.

Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

44


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background, Notation & Definitions
	Theoretical Length Generalization Guarantees for Our Tasks
	Experiments
	Eliciting Abilities via In-Context Learning
	Testing Uniqueness Bias and Directional Bias in Natural Settings
	Fine-tuning Eliminates the Directional Bias, But Not the Uniqueness Bias
	Source of the Directional Bias: A Mechanistic Perspective

	Discussion
	Conclusion
	Detailed Theoretical Proofs
	C-Rasp[pos] as a Framework for Predicting Length Generalization
	Expressiveness Results
	Generalized reverse copying


	From Scratch Training Experiments
	Additional experimental details and results
	Prompting: In-Context Retrieval Templates (Section 4.1)
	Prompting: In-Context Copying Templates (Section 4.1)
	Longer Vocabulary (Word-Level) Experiments (Section 4.1)
	Additional results and plots for in-context prompting (Section 4.1)
	Additional results: character-level vocabulary
	Results: word-level vocabulary

	Promping: Lorem Ipsum Copying (Section 4.2)
	Additional results for longer lengths

	Prompting: Git Commit Revert vs Cherry-Pick (Section 4.2)

	Fine-Tuning Details (Section 4.3)
	Retrieval Tasks - UL/UR
	Retrieval Tasks - NLFirst/NRFirst/NLLast/NRLast
	Copying Tasks - UF/UB/NF/NB
	Results

	Further Details on Mechanistic Interpretability Analysis (Section 4.4)
	Compute Resources

