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ABSTRACT

Deep clustering has been dominated by flat clustering models, which split a dataset
into a predefined number of groups. Although recent methods achieve extremely
high similarity with the ground truth on popular benchmarks, the information con-
tained in the flat partition is limited. In this paper, we introduce CoHiClust, a Con-
trastive Hierarchical Clustering model based on deep neural networks, which can
be applied to large-scale image data. By employing a self-supervised learning ap-
proach, CoHiClust distills the base network into a binary tree without access to any
labeled data. The hierarchical clustering structure can be used to analyze the rela-
tionship between clusters as well as to measure the similarity between data points.
Experiments performed on typical image benchmarks demonstrate that CoHiClust
generates a reasonable structure of clusters, which is consistent with our intuition
and image semantics. Moreover, by applying the proposed pruning strategy, we
can restrict the hierarchy to the requested number of clusters (leaf nodes) and ob-
tain the clustering accuracy outperforming existing hierarchical baselines.

1 INTRODUCTION

Clustering, a fundamental branch of unsupervised learning, is often one of the first steps in data
analysis, which finds applications in anomaly detection Barai & Dey (2017), personalized recom-
mendations Zhang et al. (2014) or bioinformatics Lakhani et al. (2015). Since it does not use any
information about class labels, representation learning becomes an integral part of deep clustering
methods. Initial approaches use representations taken from pre-trained models Guérin et al. (2017);
Naumov et al. (2021) or employ auto-encoders in joint training of the representation and the clus-
tering model Guo et al. (2017a); Mautz et al. (2019). More recent works designed to image data
frequently follow the self-supervised learning principle, where representation is trained on pairs of
similar images automatically generated by data augmentations Li et al. (2021b); Dang et al. (2021).
Since augmentations used for image data are class invariant, the latter techniques often obtain very
high similarity with the ground truth classes. However, we should be careful when comparing clus-
tering techniques only by inspecting their accuracy with ground truth classes because the primary
goal of clustering is to deliver information about data and not to perform classification.

Most works in the area of deep clustering focus on producing flat partitions with a predefined number
of groups. Although hierarchical clustering gained notable attention in classical machine learning
and has been frequently applied in real-life problems Zou et al. (2020); Śmieja et al. (2014), its role
has been drastically marginalized in the era of deep learning. In the case of hierarchical clustering,
the exact number of clusters does not have to be specified because we can inspect the partition at
various tree levels. Moreover, we can analyze the clusters’ relationships, e.g. by finding super-
clusters or measuring the distance between groups in the hierarchy. The above advantages make
hierarchical clustering an excellent tool for analyzing complex data. However, in order to take full
advantage of hierarchical clustering, it is necessary to create an appropriate image representation,
which is possible thanks to the use of deep neural networks. To the best of our knowledge, DeepECT
Mautz et al. (2019; 2020) is the only hierarchical clustering model trained jointly with the neural
network. Nevertheless, this method has not been examined to large image datasets, which appear in
practical applications.

To fill this gap, we introduce CoHiClust (Contrastive Hierarchical Clustering), which creates a
hierarchy of clusters and can be applied to large image data. CoHiClust uses a neural network
to generate a high-level representation of data, which is next distilled into the tree hierarchy by
applying the projection head, see Figure 2. The whole framework is trained jointly in an end-
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to-end manner without labels using our novel contrastive loss and automatically generated data
augmentations following the self-supervised learning principle.

The constructed hierarchy uses the structure of a binary tree, where the sequence of decisions made
by internal nodes determines the final assignment to clusters (leaf nodes). In consequence, similar
examples are processed longer by the same path than dissimilar ones. By inspecting the number of
edges needed to connect two clusters (leaves), we obtain a natural similarity measure between data
points. Although CoHiClust assumes a pre-defined tree structure with a fixed height, we introduce
a pruning mechanism, which removes the least informative leaf nodes until the requested number of
leaves is obtained. In contrast to typical pruning strategies or tree cuts, where neighboring leaves are
only merged to ancestor node, we allow for reassigning data points between clusters by finetuning
the whole model, which further improves topology of the tree.

Figure 1: A tree hierarchy generated by CoHiClust for F-MNIST (images in the nodes denote
mean images in each sub-tree). The right sub-tree contains clothes while the other items (shoes and
bags) are placed in the left branch. Looking at the lowest hierarchy level, we have clothes with long
sleeves grouped in the neighboring leaves. The same holds for clothes with designs. Observe that
CoHiClust assigned white-colored t-shirts and dresses to the same cluster, while trousers are in the
separate one. Small shoes such as sneakers or sandals are considered similar (neighboring leaves)
and distinct from ankle shoes. Concluding, CoHiClust is able to retrieve meaningful information
about image semantics, which is complementary to the ground truth classification.

The proposed model has been examined on various image datasets and compared with both hierar-
chical and flat clustering baselines. By analyzing the constructed hierarchies, we show that CoHi-
Clust generates a structure of clusters that is consistent with our intuition and image semantics, see
Figures 1 for the illustration and discussion. Our analysis is supported by a quantitative study, which
shows that CoHiClust gives higher similarity with ground truth partition than available hierarchical
baselines, see Tables 1, 2 and 3. Moreover, it is among the three best-performing methods when
compared to the flat clustering models, see Table 3.

Our main contributions are summarized as follows:

• We introduce a hierarchical clustering model CoHiClust, which converts the base neural
network into a binary tree. The model is trained effectively with no supervision using our
novel hierarchical contrastive loss applied to self-generated data augmentations.

• We implement a pruning strategy, which not only leads to creating a fixed number of leaves
but also improves the constructed hierarchy.
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• Our experimental analysis shows that CoHiClust builds hierarchies based on the well-
defined and intuitive patterns retrieved from data.

• Since CoHiClust is the first deep hierarchical clustering model applied to large-scale image
datasets, we also deliver a new benchmark, which can be used to compare hierarchical
clustering methods.

2 RELATED WORK

In this section, we briefly introduce some recent developments in three related topics, i.e., contrastive
learning, deep clustering, and hierarchical methods.

Contrastive Learning The basic idea of contrastive learning is to learn such a feature space, in
which similar pairs stay close to each other while dissimilar ones are far apart Chopra et al. (2005). In
recent works, it was observed that in selected domains, such as computer vision, positive (similar)
pairs can be generated automatically using adversarial perturbations Miyato et al. (2018) or data
augmentation He et al. (2020), giving the rise of a new field called self-supervised learning Chen
et al. (2020). Fine-tuning a simple classifier on self-supervised representation allows for obtaining
the accuracy comparable to a fully supervised setting. SimCLR He et al. (2020) applies NT-Xent loss
to maximize the agreement between differently augmented views of the same sample. Barlow Twins
Zbontar et al. (2021) learns to make the cross-correlation matrix between two distorted versions of
the same samples close to the identity. BYOL Grill et al. (2020) claims to achieve new state-of-the-
art results without using negative samples. Other works use memory banks to reduce the cost of
computing the embeddings of negative samples in every batch Wu et al. (2018); He et al. (2020).

Deep clustering A primary focus in deep embedded clustering has merely been on flat clustering
objectives with the actual number of clusters known a priori. DEC Xie et al. (2016) is one of the
first works, which combines the auto-encoder loss with a clustering objective to jointly learn the
representation and perform clustering. This idea was further explored with some improvements in
IDEC Guo et al. (2017a), JULE Yang et al. (2016) and DCEC Guo et al. (2017b). IMSAT Hu
et al. (2017) and IIC Ji et al. (2019) use perturbations to generate pairs of similar examples and
apply information-theoretic objectives for training. PICA Huang et al. (2020) maximizes the global
partition confidence of the clustering solution to find the most semantically plausible data separation.
Following the progress in self-supervised learning, CC Li et al. (2021b) and DCSC Zhang et al.
(2022) perform contrastive learning by generating pairs of positive and negative instances through
data augmentations.

Hierarchical methods Hierarchical clustering algorithms are a well-established area within clas-
sical data mining Murtagh & Contreras (2012), but they were rarely studied in deep learning. Deep-
ECT Mautz et al. (2019; 2020) is the only method, which jointly learns the deep representation
using auto-encoder architecture and performs hierarchical clustering in a top-down manner. Un-
fortunately, there is not comparative study conducted on large image data. The experimental study
of objective-based hierarchical clustering methods performed on the embedding vectors from pre-
trained deep learning models is presented in Naumov et al. (2021). In the case of classification, there
is a growing interest in deep hierarchical methods, which in our opinion should also be reflected in
the area of unsupervised learning. SDT Frosst & Hinton (2017) is one of the first models that distills
the base neural networks into a soft decision tree. More advanced methods automatically generate
deep networks with a tree structure in a multi-step or an end-to-end manner Tanno et al. (2019);
Alaniz et al. (2021); Wan et al. (2020).

3 COHICLUST MODEL

The proposed CoHiClust builds a hierarchy of clusters based on the output of the base neural net-
work. There are four key components of CoHiClust:

• The base neural network, which generates representation used by the tree.
• The tree model, which assigns data points to clusters by a sequence of decisions.
• The regularized contrastive loss, which allows for training the whole framework.
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• The pruning strategy, which restricts the tree to the requested number of leaves.

We discuss the above components in detail in the following parts.

Tree hierarchy We use a soft binary decision tree to create a hierarchical structure, where leaves
play the role of clusters (similar to Frosst & Hinton (2017)). In contrast to hard decision trees,
every internal node defines the probability of taking a left/right branch. The final assignment of the
input examples to clusters involves partial decisions made by the internal nodes. Aggregating these
decisions induces the posterior probability over leaves.

Let us consider a complete binary tree with T levels, where the root is located at the level 0 and the
leaves are represented at the level T . This gives us 2t nodes at the level t denoted by tuples (t, i),
for i = 0, 1, . . . , 2t − 1, see Figure 2. The path going from the root to the node (t, i) is given by the
sequence of binary decisions y = (y1, . . . , yt) ∈ {0, 1}t made by the internal nodes, where ys = 0
(ys = 1) means that we take the left (right) branch being in the node at the level s. Observe that we
can retrieve the index j of the node at the level s from y by taking j = bs(y) =

∑s
m=1 ym2s−m. In

other words, the first s bits of y are a binary representation of the number j.

We consider the path induced by the sequence of decisions y = (y1, . . . , yt) ∈ {0, 1}t, which goes
from the root to the node (t, i), where i = bt(y). We want to calculate the probability P i

t (x) that the
input example x ∈ RD reaches node (t, i). If pbs(y)s (x) is the probability of going from the parent
node (s− 1, bs−1(y)) to its descendant (s, bs(y)), then

P i
t (x) = p

b1(y)
1 (x) · pb2(y)2 (x) · . . . pbt(y)t (x).

Observe that Pt(x) = [P 0
t (x), P

1
t (x), . . . , P

2t−1
t (x)] defines a proper probability distribution, i.e.∑2t−1

j=0 P j
t (x) = 1. In consequence, the probability distribution over clusters (leaves) equals PT (x),

see Figure 2.

Figure 2: Illustration of CoHiClust. The output neurons of the projection head π (appended to the
base network g) model decisions made by the internal tree nodes. The final assignment of the input
example to the cluster (leaf node) is performed by aggregating edge probabilities located on the path
from the root to this leaf.

Tree generation To generate our tree model, we need to parameterize the probabilities pit(x) of
taking the left/right branch in every internal node. To this end, we employ a neural network g :
RD → RN with an additional projection head π : RN → RK , where K = 2T − 1 and T is the
height of the tree. The number K of the output neurons equals the number of internal tree nodes.

The neural network g is responsible for extracting high-level information from data. It can be in-
stantiated by a typical architecture, such as ResNet, and is used to generate embeddings z = g(x) of
the input data. We do not use pre-trained networks but train the whole model end-to-end using the
proposed hierarchical contrastive loss. This allows for generating the representation, which is suited
to the underlying clustering task.

The projection head π operates on the embeddings z and parameterizes decisions made by the inter-
nal tree nodes. In our case, π is a single-layer network with the output dimension equal to the number
of internal nodes. To model binary decisions of the internal nodes, we apply the sigmoid function σ.
In consequence, the projection head is given by π(z) = [σ(wT

1 z + b1), . . . , σ(w
T
Kz + bK)], where
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wn ∈ RN and bn ∈ R are trainable parameters of π. By interpreting the output neurons of π as the
internal nodes of the decision tree, we get the probabilities of left edges in the nodes:

p2it+1(x) = σ(wT
n z + bn) , for n = 2t + i.

Note that p2i−1
t+1 (x) = 1− p2it+1(x) always corresponds to the probability of right edge.

Contrastive hierarchical loss To train CoHiClust, we introduce the hierarchical contrastive loss
function designed for trees. Our idea relies on maximizing the likelihood that similar data points
will follow the same path. The more similar data points, the longer they should be routed through
the same nodes. Since we work in the unsupervised setting, we use a self-supervised approach and
generate similar images by data augmentations.

Let us consider two data points x1, x2 and their posterior probabilities Pt(x1), Pt(x2) at the level t.
The probability that x1 and x2 reach the same node at this level is given by the scalar product Pt(x1)·
Pt(x2) =

∑2t−1
i=0 P i

t (x1)P
i
t (x2). This term is maximal if both probabilities are identical one-hot

vectors. In a training phase, we do not want to force hard splits in the nodes (binary probabilities)
because in this way the model quickly finds a local minimum by assigning data points to fixed leaves
with high confidence. Instead of sticking to hard assignments in a few training epochs, we want to
let the model explore possible solutions. To this end, we take the square root before applying the
scalar product, which corresponds to the Bhattacharyya coefficient Bhattacharyya (1946):

st(x1, x2) =
√

Pt(x1) · Pt(x2) =

2t−1∑
i=0

√
P i
t (x1)P i

t (x2). (1)

Observe that st(x1, x2) = 1, if only Pt(x1) = Pt(x2) (probabilities do not have to binarize), which
leads to the exploration of possible paths. By aggregating the similarity scores over all tree levels,
we arrive at our final similarity function s(x1, x2) =

∑T−1
t=0 st(x1, x2).

In a training phase, we take a minibatch {xj}Nj=1 of N examples and generate its augmented view
{x̃j}Nj=1. Every pair (xj , x̃j) is considered positive, which means that we will maximize their
similarity score. In consequence, we encourage the model to assign them to the same leaf node. To
avoid degenerate solutions, where all points end up in the same leaf, we treat all other pairs negative
and minimize the similarity scores for them. Finally, the proposed hierarchical contrastive loss is
given by:

CoHiLoss =
1

N(N − 1)

N∑
j=1

∑
i ̸=j

s(xj , x̃i)−
1

N

N∑
j=1

s(xj , x̃j).

By minimizing the above loss, we maximize the likelihood that similar data points follow the same
path (second term) and minimize the likelihood that dissimilar ones are grouped together.

Regularization Final cluster assignments are induced by aggregating several binary decisions
made by the internal tree nodes. In practice, the base neural network may not train all nodes and,
in consequence, use only a few leaves for clustering. While selecting the number of clusters in
flat clustering is desirable, here we would like to create a hierarchy, which is not restricted to a
given number of leaves. To enable end-to-end training of the base neural network with the arbitrary
number of leaves, we consider two regularization strategies.

The first regularization (dubbed R1) explicitly encourages the model to use both left and right sub-
trees equally Frosst & Hinton (2017). We realize this postulate by minimizing the cross-entropy
between the desired distribution [0.5, 0.5] and the actual distribution for choosing the left or right
path in a given node.

The second regularization (dubbed R2) does not directly influence the routing in the tree but focuses
on improving the output representation of the base network g. For this purpose, we use NT-Xent
loss Chen et al. (2020) on the embedding space z = g(x). With the NT-Xent loss, we maximize the
cosine similarity on the embedding space for all positive pairs and minimize the cosine similarity on
the embedding space for all negative pairs.
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Taking together the contrastive loss CoHiLoss with two regularization functions R1 (for entropy)
and R2 (for NT-Xent), we arrive at our final loss:

Loss =CoHiLoss + β1R1 + β2R2, (2)

where β1, β2 are the hyperparameters defining the importance of regularization terms R1 and R2,
respectively. To generate a full hierarchy (complete tree with the assumed height), we set β1 propor-
tional to the depth of the tree β1 = 2−T and β2 = 1. In appendix, we show that CoHiClust can also
detect the number of clusters automatically by putting β1 = 0 (see appendix for the ablation study).

Pruning The proposed model builds a complete tree with 2T leaves. Although such a structure is
useful for analyzing the hierarchy of clusters, in some cases we are interested in creating a tree with
the requested number of groups. For this purpose, we introduce a pruning strategy that reduces the
least significant leaf nodes.

We start with calculating the probability of leaves P i
T = 1

|X|
∑

x∈X P i
T (x), which describes the

expected fraction of data points assigned to a given leaf. Assuming that the importance of the cluster
is related to the average number of assigned examples, we reduce a leaf with the lowest probability.
After removing the leaf, we fine-tune the whole model using CoHiClust loss (2). If we want to
reduce more leaves, we perform leaf pruning and model retraining iteratively until the requested
number of leaves is obtained. The resulting tree is binary, but can have an arbitrary structure and
does not have to be complete. Consequently, pruning is also a way of improving the topology of the
tree model.

Alternatively, we could also perform the pruning strategy without applying fine-tuning step. This
potentially saves the computational resources, but does not adjust hierarchy to the modified number
of groups. In appendix, we show that this approach generates partition of lower quality than the
model with fine-tuning.

4 EXPERIMENTS

Table 1: Dendrogram purity (DP) of cluster-
ing hierarchies (higher is better).

Method MNIST F-MNIST
DeepECT 0.82 0.47
DeepECT + Aug 0.94 0.44
IDEC + Single 0.39 0.34
IDEC + Complete 0.40 0.35
AE + Bisecting 0.53 0.38
AE + Single 0.11 0.10
AE + Complete 0.25 0.26
CoHiClust 0.97 0.52

Table 2: Clustering metrics of partitions gen-
erated from the tree hierarchies on MNIST and
F-MNIST (higher is better).

Method MNIST F-MNIST
NMI ACC NMI ACC

DeepECT 0.83 0.85 0.60 0.52
DeepECT + Aug 0.93 0.95 0.59 0.50
IDEC 0.86 0.85 0.58 0.53
AE + k-means 0.70 0.77 0.52 0.48
CoHiClust 0.97 0.99 0.62 0.65

We evaluate our method with several datasets of increasing difficulty. We show that CoHiClust
outperforms hierarchical clustering models and is among the three best-performing flat clustering
methods in terms of similarity with the ground truth classes.In addition, we analyze the constructed
hierarchies, which in our opinion are equally important in practical use-cases. Our experiments
demonstrate that CoHiClust reveals novel patterns and relations between data points beyond those
contained in ground truth classes.

Comparison with hierarchical clustering methods First, we compare CoHiClust with hierarchi-
cal baselines. To the best of our knowledge, DeepECT Mautz et al. (2019) is the only hierarchical
clustering method based on deep neural networks. Following their experimental setup, we also
consider classical hierarchical algorithms evaluated on the latent representation created by the au-
toencoder and IDEC Guo et al. (2017a). We report the results on two popular image datasets1:
MNIST and F-MNIST.

1We intentionally do not use two remaining datasets: USPS which is analogous to MNIST and Reuters
which is not an image database.
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We run CoHiClust with 16 leaves (4 tree levels) using ResNet18 as a base neural network. The initial
model is trained for 50 epochs on MNIST and 100 epochs on F-MNIST using a minibatch size of
256. Next, we perform pruning with an additional 50 and 100 epochs of fine-tuning on MNIST
and F-MNIST, respectively, to end up with 10 clusters, which equals the true number of classes for
considered datasets. To evaluate the cluster hierarchies against ground truth flat partition, we use
dendrogram purity (DP) Kobren et al. (2017); Yang et al. (2019),which attains its maximum value
of 1 if and only if all data points from the same class are assigned to some pure sub-tree.

The results summarized in Table 1 demonstrate that CoHiClust outperforms all baselines on both
MNIST and F-MNIST datasets. Interestingly, DeepECT benefits from data augmentation in the case
of MNIST, while on F-MNIST it deteriorates its performance. All methods except CoHiClust and
DeepECT failed completely to create a hierarchy recovering true classes, which confirms that there
is a lack of powerful hierarchical clustering methods based on neural networks.

To further evaluate the performance on MNIST and F-MNIST, we measure the normalized mutual
information (NMI) and the clustering accuracy (ACC) between the ground truth partition and the
flat clustering generated from the tree hierarchy. We exclude the combinations of hierarchical and
embedding methods from the comparison due to their poor performance. Instead, we consider two
flat clustering methods: IDEC and k-means evaluated on the latent representation generated by the
autoencoder. It can be seen from Table 2 that CoHiClust outperforms baseline methods across all
datasets and metrics. The disproportion between the results obtained on MNIST and F-MNIST
demonstrates that recovering true classes of clothes is a significantly more challenging task than
recognizing the hand-written digits.

Analyzing the clustering hierarchies Although comparing constructed clustering with the
ground truth partition is a widely-used evaluation measure in the literature, it is even more impor-
tant from a practical point of view to visualize the results and perform their qualitative assessment.
Figure 1 presents the clustering tree constructed for F-MNIST (see appendix for the hierarchy of
MNIST). Images in nodes show the means calculated over data points assigned to the respective
nodes. For every leaf, we also present sample images classified to this cluster and the percentage
of images from dominant classes in the group (with a fraction higher than 15%). Visual inspection
shows that neighboring leaves contain images with similar patterns, see description in Figure 1 for
detailed findings.

The hierarchy also allows us to define the distance d(a, b) between two examples a, b using the
number of edges that connect them. We use the average of this score to calculate the similarity
between ground truth classes A and B given by d(A,B) = 1

Z

∑
a∈A

∑
b∈B d(a, b), where Z is the

number of all pairs. The above distance is small if examples from classes A and B are located in the
nearby leaf nodes (on average).

The obtained distance matrix presented in Figure 4 (left) confirms that clusters discovered by Co-
HiClust reveal many different patterns than the information encoded in the ground truth classes.
While clothes are well separated from other items (number of edges greater than 6), we cannot dis-
tinguish particular clothes items from each other (distance between 3 and 4). As can be seen in
Figure 1, CoHiClust generated the hierarchy based on the sleeve length or the presence of designs.
From this point of view, we can say that the results obtained by CoHiClust are complementary to
the ground truth classification. However, we can also observe some similarities with ground truth
classification: it is evident that the elements of the following 5 classes have not been spread between
clusters: ”trousers”, ”sandals”, ”sneakers”, ”bags” and ”ankle boots” (we have d(A,A) < 0 for
these classes).

Evaluation on large image datasets In addition to comparing CoHiClust with hierarchical base-
lines on gray images, we perform the evaluation on large datasets of color images: CIFAR-10,
STL-10, ImageNet-Dogs, and ImageNet-10. Since none of the previous hierarchical methods have
been examined on these datasets, we use typical agglomerative hierarchical algorithms applied ei-
ther to raw image data or to the representation generated by our model. Additionally, to compare
with a more diverse set of methods, we use the benchmark including flat clustering methods re-
ported in Li et al. (2021a). It is expected that flat clustering methods will perform better because
they directly focus on partitioning data into a given number of groups. Hierarchical models, such
as CoHiClust, build a hierarchy with the number of leaves exceeding the number of classes, which
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Figure 3: A tree hierarchy generated by CoHiClust for ImageNet-10. The left sub-tree contains
examples related to the means of transport with neighboring leaves occupied by visually similar
classes such as sports cars and trailer trucks (first two leaves from the left) as well as airliners,
airships, and container ships (next three leaves). Interestingly, airliners and airships photographed
in the sky are assigned to a different cluster than analogical objects located on the ground. In the
right sub-tree, CoHiClust almost perfectly clustered examples of two classes: Maltese dog and snow
leopard. Surprisingly, images with a ball in the foreground (without people) are grouped together
with oranges because of their circular shape. Soccer balls accompanied by the player are considered
more similar to the images with penguins (their shapes are also similar). Nevertheless, all images of
penguins are assigned to the neighboring leaves.

(a) F-MNIST (b) ImageNet-10

Figure 4: Distance matrices retrieved from the constructed hierarchies for ground truth classes, see
text in the paper for the interpretation.

makes it difficult to obtain so high a resemblance with the ground truth as flat models. Moreover,
the optimization of hierarchy is a more difficult and challenging process because final assignments
rely on aggregating several binary decisions made by the internal nodes.

Our model uses ResNet34 as a base network, which better suits the complexity of the current images
and coincides with the architecture used in Li et al. (2021a). We consider a tree with 16 leaves (4
levels), which is next pruned to obtain the number of clusters equal to the number of ground truth
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classes. We train the initial complete tree with the batch size of 256 for 1000 epochs and use
100 epochs after pruning every leaf. To measure the similarity of the constructed partition with the
ground truth, we apply three widely-used clustering metrics: normalized mutual information (NMI),
clustering accuracy (ACC), and adjusted rand index (ARI). In the appendix, we also show DP of the
hierarchies generated by CoHiClust.

Table 3: Comparison with flat (top) and hierarchical (bottom) clustering methods on large image
benchmarks.

Dataset CIFAR-10 STL-10 ImageNet-10 ImageNet-Dogs
Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI
K-means Mac 0.087 0.229 0.049 0.125 0.192 0.061 0.119 0.241 0.057 0.055 0.105 0.020
SC Zelnik-Manor & Perona 0.103 0.247 0.085 0.098 0.159 0.048 0.151 0.274 0.076 0.038 0.111 0.013
AC Gowda & Krishna (1978) 0.105 0.228 0.065 0.239 0.332 0.140 0.138 0.242 0.067 0.037 0.139 0.021
NMF Cai 0.081 0.190 0.034 0.096 0.180 0.046 0.132 0.230 0.065 0.044 0.118 0.016
AE Bengio et al. 0.239 0.314 0.169 0.250 0.303 0.161 0.210 0.317 0.152 0.104 0.185 0.073
DAE Vincent et al. (2010) 0.251 0.297 0.163 0.224 0.302 0.152 0.206 0.304 0.138 0.104 0.190 0.078
DCGAN Radford et al. (2015) 0.265 0.315 0.176 0.210 0.298 0.139 0.225 0.346 0.157 0.121 0.174 0.078
DeCNN Zeiler et al. (2010) 0.240 0.282 0.174 0.227 0.299 0.162 0.186 0.313 0.142 0.098 0.175 0.073
VAE Kingma & Welling (2013) 0.245 0.291 0.167 0.200 0.282 0.146 0.193 0.334 0.168 0.107 0.179 0.079
JULE Yang et al. (2016) 0.192 0.272 0.138 0.182 0.277 0.164 0.175 0.300 0.138 0.054 0.138 0.028
DEC Xie et al. (2016) 0.257 0.301 0.161 0.276 0.359 0.186 0.282 0.381 0.203 0.122 0.195 0.079
DAC Chang et al. (2017) 0.396 0.522 0.306 0.366 0.470 0.257 0.394 0.527 0.302 0.219 0.275 0.111
DDC Chang et al. (2019) 0.424 0.524 0.329 0.371 0.489 0.267 0.433 0.577 0.345 0.239 0.306 0.128
DCCM Wu et al. (2019) 0.496 0.623 0.408 0.376 0.482 0.262 0.608 0.710 0.555 0.321 0.383 0.182
PICA Huang et al. (2020) 0.591 0.696 0.512 0.611 0.713 0.531 0.802 0.870 0.761 0.352 0.352 0.201
CC Li et al. (2021a) 0.705 0.790 0.637 0.764 0.850 0.726 0.859 0.893 0.822 0.445 0.429 0.274
Agglom. on raw image 0.085 0.043 0.207 0.079 0.042 0.207 0.181 0.072 0.293 0.101 0.017 0.151
Agglom. on pre-trained rep. 0.350 0.503 0.255 0.464 0.477 0.321 0.530 0.532 0.343 0.252 0.092 0.276
CoHiClust 0.532 0.638 0.453 0.503 0.529 0.386 0.742 0.744 0.622 0.407 0.350 0.193

The results presented in Table 3 show that CoHiClust outperforms hierarchical baselines with a
large margin (bottom rows). Moreover, it is usually among the three best-performing flat methods
(top rows). It gives very good results, compared to the baselines, on the subset of the ImageNet
dataset achieving 0.742 of NMI. Nevertheless, one should keep in mind that CoHiClust is the only
hierarchical method in this comparison, which makes it more challenging to construct flat partition,
which resembles the ground truth classes.

To better analyze the results returned by CoHiClust, we plot the constructed clustering hierarchies
and distance matrices calculated for ground truth classes. Figure 3 presents and discusses the tree
hierarchy constructed for ImageNet-10 (remaining hierarchies together with distance matrices are
presented in the appendix). Supporting the analysis with the use of a distance matrix, we can ob-
serve that examples of 5 out of 10 classes have not been spread across different clusters (we have
d(A,A) ≤ 1). Airliner and airship classes are the most semantically similar. The class king penguin
is the most distinct from the classes representing the means of transport with an average distance
greater than 7. Overall, we can see a very high similarity between classes related to the means
of transport. The distance between other classes is not as small, which suggests that there are no
evident patterns that connect e.g. king penguin, Maltese dog, or orange.

5 CONCLUSION AND FUTURE DIRECTIONS

We proposed a contrastive hierarchical clustering model CoHiClust, which suits well to clustering
of large-scale image databases. The hierarchical structure constructed by CoHiClust delivers signif-
icantly more information about data than typical flat clustering models. In particular, we can inspect
the similarity between selected groups by measuring their distance in the hierarchy tree and, in con-
sequence, find super-clusters. Experimental analysis performed on typical clustering benchmarks
confirms that the produced partitions have high similarity with ground truth classes. At the same
time CoHiClust allows for discovering important patterns which have not been encoded in the class
labels.

In future, we plan to apply the constructed model to other unsupervised problems such as anomaly
detection. Moreover, we will work on constructing clustering hierarchies which are not restricted to
a predefined topology. In particular, inspired by Tanno et al. (2019); Struski et al. (2021), we will
focus on models, which automatically adapt the hierarchy structure to a given dataset. Finally, it
is an open issue whether it is possible to extend flat clustering models Li et al. (2021a); Hua to the
hierarchical ones, which could further improve the clustering metrics.
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A SUPPLEMENTARY QUALITATIVE RESULTS

In Figures 5, 7, 6 and 8 we illustrate the tree hierarchies constructed by CoHiClust for the remaining
datasets. Distance matrices for ground true classes generated from these hierarchies are shown in
Figure 9.

MNIST Observe that neighboring leaves contain images of visually similar classes, e.g. 8 and 0; 4
and 9; 1 and 7. Such a property holds also for nodes in the upper levels of the tree – the left sub-tree
contain digits with circular shapes, while the digits located in the right sub-tree consist of lines.

Figure 5: Tree hierarchy constructed for MNIST.

STL-10 It is evident that images that present means of transport (car, truck, airplane, ship) were
grouped in different subtrees than images with animals (dog, cat, monkey, horse, deer). Only im-
ages of birds were mixed up between these subtrees. Birds in the sky or on water background were
grouped together with airplanes, while others were assigned to the animal subtree. Such assign-
ments are consistent with our intuition because the shape of the bird and the airplane is similar and
the background is the same. The relation of the bird class with other classes is revealed in the dis-
tance matrix, see Figure 9. The second row shows a high similarity to airplanes, while the level of
similarity to animal classes is almost equal. Ships were considered to be more similar to airplanes
than vehicles (cars, trucks), which also confirms the intuitive behavior of CoHiClust. In the case of
animal subtree, the model grouped horses and deers in the neighbor leaves, which is also reflected
in the distance matrix. Most of the images that presented dogs and cats were also classified in the
same subtree containing three leaves, suggesting their similarity.

CIFAR-10 The analysis of the hierarchy of CIFAR-10 reveals similar relations as in the case of
STL-10 – we have a division into machines and animals in the first level. Moreover, airplanes and
birds were considered to be similar classes. In contrast to STL-10, we can observe that CoHiClust
created two neighbor groups for animals with white and black fur, respectively. This grouping was
associated more with color than with the type of animal. We consider this behavior to be natural,
even if it breaks the boundary between ground-truth classes. We emphasize that decisions made by
CoHiClust are not based on classes but only on the type of augmentation. Nevertheless, CoHiClust
was able to create individual clusters dominated by the following classes: frogs, deers, horses,
trucks, and cars. By analyzing the distance matrix, we can observe pairs of similar classes: plane
and ship, dog and horse, etc.
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Figure 6: Tree hierarchy constructed for STL-10.

Figure 7: Tree hierarchy constructed for CIFAR-10.

B ANALYSIS OF THE COHICLUST MODEL

In this section, we analyze selected properties of CoHiClust including the choice of backbone net-
work, the form of the loss function, techniques for reducing the number of leaves and possible
training strategies. If not stated otherwise, the experiments were run on CIFAR-10 dataset, which
we consider the most representative.
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Figure 8: Tree hierarchy constructed for ImageNet-Dogs.

(a) MNIST (b) CIFAR-10

(c) STL-10 (d) ImageNet-Dogs

Figure 9: Distance matrices retrieved from the constructed hierarchies for ground truth classes.

B.1 RELIANCE ON BACKBONE NETWORK

In Table 4, we show how the selection of the architecture for the base network g influences the
performance of CoHiClust. As can be seen, the difference in the results is marginal.

B.2 ANALYSIS OF LOSS FUNCTION

Next, we explain the influence of particular components of CoHiClust loss function. Namely, we
remove one or both regularization terms from the loss function and report the results. As shown in
Table 5, R2 regularization (NT-XENT) has a notable impact on the metrics, since it improves the
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Table 4: Comparison of ResNet architectures.

Dataset CIFAR-10 STL-10
Metrics NMI ACC ARI NMI ACC ARI
ResNet18 0.481 0.510 0.362 0.503 0.529 0.386
ResNet34 0.532 0.638 0.453 0.498 0.467 0.366

representation of data. However, the obtained model has a tendency to build smaller tree and reduce
clusters during training (third row). The influence of R1 (entropy) on the quality of clustering is
marginal, but this term is crucial for balancing decisions made by the internal nodes and preventing
from clusters reduction (second row). Combining both regularization terms allows us to build a
complete hierarchy with satisfactory metrics.

Table 5: Ablation study of CoHiClust loss function performed on CIFAR-10.

DP NMI ACC ARI # Clusters
CoHiLoss 0.187 0.271 0.289 0.172 4
CoHiLoss + R1 0.192 0.260 0.296 0.181 12
CoHiLoss + R2 0.444 0.519 0.613 0.425 9
CoHiLoss + R1 + R2 0.446 0.532 0.639 0.453 16

Following the above analysis, we observe that CoHiClust can automatically detect the number of
clusters if we eliminate the entropy regularization. More precisely, R2 is essential for delivering
appropriate representation of data, while R1 is only used to maintain the requested number clusters.
If we are interested in generating hierarchy of the size automatically adjusted to a given dataset, then
we have to put β1 = 0 and β2 = 1.

B.3 ALTERNATIVE DEFINITIONS OF THE LOSS FUNCTION

Let us recall that the proposed CoHiLoss contains the square root to enable the model to explore
possible tree paths, see equation 1. If we do not use the square root, we encourage the model
to binarize decisions in nodes, which can lead to stacking in local minima at the initial phase of
training. The results in Table 6 show that the model with square root obtains better metrics than the
one without the square root. It partially confirms our initial hypothesis that using the square root
influences positively on the exploration of the tree.

Table 6: The influence of the square root in CoHiLoss.

DP NMI ACC ARI
CoHiClust w/ square root 0.402 0.446 0.425 0.297
CoHiClust + w/o square root 0.342 0.410 0.425 0.283
CoHiClust w/ square root (pruned) 0.447 0.532 0.638 0.453
CoHiClust w/o square root (pruned) 0.387 0.457 0.572 0.373

B.4 COMPARING TECHNIQUES FOR REDUCING THE NUMBER OF LEAVES

Complete hierarchy is a useful tool to analyze the relationships between data. To generate the
hierarchy with smaller number of leaves we have the following options:

• Eliminate entropy regularization from the loss function (β1 = 0). In this case, the model
automatically detects the number of groups.

• Reduce the least significant leaves simultaneously with fine-tuning the model. Fine-tuning
is performed during pruning and after obtaining the final model (our default strategy).

• Delete the least significant leaves without fine-tuning. This corresponds to one of typical
pruning strategies used in decision trees.

• Delete the least significant and next train the model from scratch but with the new tree
structure.
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Table 7 shows the clustering metrics for the obtained models evaluated on CIFAR-10. As can be
seen, pruning combined with fine-tuning gives the best results (third row), improving significantly
the clustering structure delivered by the complete hierarchy (second row). Slightly lower metrics
are obtained when we retrain the reduced tree from scratch (fifth). The model without fine-tuning
(fourth row) also gives higher scores than the base model without pruning, however the gain in
clustering metrics is not so high. This shows that fine-tuning the pruned model is an essential step
leading in adjusting the hierarchy to a given number of groups. It is notable that the model without
entropy regularization (β1 = 0) is able to reasonably well detect the number of clusters as well as
to produce satisfactory results. It obtains better clustering metrics than the model with pruning but
without fine-tuning.

Table 7: Comparing techniques for reducing the number of leaves.

DP NMI ACC ARI #Clusters
CoHiClust (β1 = 0) 0.403 0.486 0.569 0.390 9
CoHiClust (w/o pruning) 0.402 0.446 0.425 0.297 16
CoHiClust (pruning and fine-tuning) 0.447 0.532 0.638 0.453 10
CoHiClust (pruning only) 0.404 0.461 0.570 0.373 10
CoHiClust (pruning and retraining from scratch) 0.436 0.519 0.616 0.437 10

B.5 END-TO-END TRAINING VS. PRE-TRAINED REPRESENTATIONS

Finally, we examine whether end-to-end training is crucial for the performance of CoHiClust. For
this purpose, we first pretrain the base network g using NT-Xent loss, which corresponds to the
typical SimCLR model Chen et al. (2020). Next, we add the projection head π to g and train
CoHiClust using CoHiLoss+R2 loss. As can be seen in Table 8 the model trained in an end-to-end
manner obtains significantly better scores.

Table 8: Training CoHiClust end-to-end vs. training CoHiClust on representation taken from pre-
trained SimCLR.

NMI ACC ARI
end-to-end training 0.532 0.638 0.453

pretrained representation 0.434 0.480 0.297

C DENDROGRAM PURITY FOR DATASETS OF COLOR IMAGES

In Table 9, we present dendrogram purity obtained by CoHiClust for datasets of color images. This
benchmark can be used to compare other hierarchical clustering models.

Table 9: Dendrogram purity on color images.

DP
CIFAR-10 0.447

STL-10 0.345
ImageNet-10 0.613

ImageNet-Dogs 0.198
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