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ABSTRACT

The remarkable success of rationale generation provokes precise Evidence Dis-
covery, which aims to identify a small subset of the inputs sufficient to support a
given claim. However, existing general extraction methods still fall short in quan-
tifying the support of evidence and ensuring its completeness. This paper intro-
duces a heuristic search framework, Elementary, which formulates the Evidence
Discovery as a multi-step prompt construction process. Specifically, we offer a
clear perspective that the LLMs prompted with according to, without fine-tuning
on domain-specific knowledge, can serve as an excellent reward function to assess
sufficiency. Based on this, Elementary explores various potential reasoning pat-
terns and uses future expected rewards, including independent and pattern-aware
rewards, to find the optimal prompt as evidence. Experiments on three common
task datasets demonstrate that the proposed framework significantly outperforms
previous approaches, additional analysis further validates that Elementary has ad-
vantages in extracting complex evidence.

1 INTRODUCTION

A key aspect of human intelligence lies in our capability to reason and solve complex problems
(Negnevitsky, 2005). Recently, language models are steadily improving on making decisions and
question-answering (Wang et al., 2019; Srivastava et al., 2022; Touvron et al., 2023; Team et al.,
2024). But users still can’t easily trust any given claim a model makes, because language models can
hallucinate convincing nonsense (Maynez et al., 2020; Ji et al., 2023). To ensure trustworthiness and
reliability, many rationalization methods focus on how to use evidence to yield prediction results,
such as self-supported question-answering (Menick et al., 2022; Huang et al., 2024) and shortcuts
discovery (Yue et al., 2024). Yet, high-quality evidence plays a critical role in trustworthy and
explainable artificial intelligence, answering “which part of the input should drive model to predict?”
(Evidence Discovery) is still a relatively unexplored task.

There are two tasks that are close to Evidence Discovery: Evidence Retrieval (Cartright et al., 2011;
Bellot et al., 2013) and Evidence Detection (Rinott et al., 2015). However, Evidence Retrieval fo-
cuses on identifying whole documents, and Evidence Detection’s goal is to pinpoint an independent
text segment which can be used directly to support a claim, similar to Textual Entailment (Dagan
et al., 2010). Additionally, although Evidence Discovery has been involved in fields such as sum-
marization, fact-verification, and question-answering (Dou et al., 2021; Jiang et al., 2021; Zheng
et al., 2024), there is still a lack of systematic research, most methods are task-specific, and require
expensive manual annotation for supervised learning. The majority of existing approaches for Evi-
dence Discovery adopt off-the-shelf embedding models or LLMs to retrieve relevant sentences from
given input documents (Guo et al., 2022; Wang et al., 2024a; Zhu et al., 2023). Unfortunately, these
methods have two obvious drawbacks. Firstly, relevant information may be insufficient to support
the claim, existing methods ignore to evaluate sufficiency. Secondly, evidence typically doesn’t ap-
pear in the form of a single sentence (Cattan et al., 2023). Previous work doesn’t sufficiently capture
the interactions between sentences when extracting evidence, limiting the exploration of potential
reasoning patterns.

To address the evidence supportiveness problem, we turn to LLM reasoning with according to
prompts (Weller et al., 2024). Recently, many works have demonstrated that LLMs can be ef-
fectively guided by natural language prompts (Ganguli et al., 2023; Wan et al., 2023). Inspired by
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this, we attempt to use the according to prompt to ensure the model’s grounding in context, in order
to quantify the support of evidence for a given claim. Notably, we further verify that LLMs are
sensitive to the strength of evidence support when guided by the according to prompt.

People explore different reasoning patterns by performing deductions in advance to discover chains
of evidence that support a given claim. This process involves filtering, reorganizing, and integrating
known information (Hattie & Jaeger, 1998). Inspired by this, we propose a pattern-aware heuris-
tic search framework, named Elementary. Elementary formalizes evidence discovery as a multi-step
prompting construction process, and uses LLMs with according to prompts to simultaneously evalu-
ate independent and pattern-aware rewards. Based on this, Elementary can effectively explore more
complete sets of evidence to support the given claims.

To validate the effectiveness of Elementary, we conduct experiments on three datasets, each from
the areas of summarization, question-answering, and fact-checking, respectively. These scenarios
challenge the generality of existing Evidence Discovery methods. Experimental results empirically
show that Elementary consistently outperforms the competitive embedding-based and LLM-based
baselines by a significant margin. Additionally, further analysis demonstrates that our method can
capture deeper reasoning patterns, enabling more thorough Evidence Discovery.

2 RELATED WORKS

2.1 EVIDENCE DISCOVERY IN DIFFERENT TASKS

In many context-sensitive scenarios, developing a method to attribute claims is likely to be crucial for
both system developers and users. For example, to obtain faithful abstractive summaries, previous
studies (Dou et al., 2021; Wang et al., 2022; 2024b) attempt to find different types of guidance to
support the output, Liu & Lapata (2019) uses a greedy algorithm to search for the evidence set most
similar to the reference. In tasks such as generative question answering and fact-checking, many
studies (Thorne et al., 2018; Augenstein et al., 2019; Su et al., 2021; Huang et al., 2023) commonly
adopt a retrieval-enhanced framework: an evidence retriever is employed to query the background
corpus for relevant sentences, to serve as evidence for the subsequent claim. However, even though
evidence discovery has garnered widespread attention, most of methods are still task-specific and
may require expensive manual annotation (Hanselowski et al., 2019; Kotonya & Toni, 2020; Zhang
et al., 2023). In this paper, we argue this issue and propose a general Evidence Discovery framework
to handle different scenarios.

2.2 EVIDENCE DISCOVERY BASED ON INFORMATION RETRIEVAL

Current approaches to identifying high-quality evidence typically adopt off-the-shelf retrieval mod-
els from the information retrieval (IR) field (Ma et al., 2019; Jiang et al., 2021; Chen et al., 2022).
Existing retrieval methods can be broadly categorized into three types: statistical-based, embedding-
based, and generative. Statistical-based methods, such as BM25 or ROUGE (Robertson et al., 2009;
Liu & Lapata, 2019), rank a set of candidates based on the query terms appearing in each candidate,
regardless of their proximity within the context. To address this issue, embedding-based methods
use rich semantic features from pre-training. Embeddings make it possible to represent both can-
didates and claims as dense vectors in a high-dimensional semantic space and then use similarity
score for nearest-neighbor retrieval (Soleimani et al., 2020; Wang et al., 2024a). However, this in-
dependent scoring paradigm fail to capture the interactions among sentences. Recently, generative
models, particularly LLMs, have attracted an increasing amount of attention in the information re-
trieval field (Sun et al., 2023a; Qin et al., 2024). For example, Ma et al. (2023) and Sun et al. (2023b)
design listwise prompt for document retrieval. Although prompted LLMs have improved retrieval
accuracy by enabling more nuanced matching between queries and sources (Zhu et al., 2023), we
remain skeptical about whether this sequence-to-sequence paradigm can effectively explore the or-
ganizational patterns within the evidence. Besides, it is also worth noting that the aforementioned
retrieval method fails to consider the sufficiency and completeness of the evidence from a holistic
perspective.
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3 METHODS

3.1 TASK DESCRIPTION & FORMULATION

We introduce several concepts which will be used throughout this paper. Claim: a general, con-
cise statement that something is the case, typically query-based or aspect-based. Context: a set
of sentences potentially relevant to the claim, usually sourced from open-source news or articles.
Evidence: any sentence of the context that supports or undermines the claim. For the purpose
of this work, we assume that we are given a concrete claim c and potentially relevant context
S = {s0, s1, . . . , sn}, provided either manually or by automatic methods(Roush et al., 2024;
Levy et al., 2014). The task, Evidence Discovery, aims to automatically extract an evidence set
E = {e0, e1, . . . , em} from the unstructured context S that support the given claim c. It is worth
noting that, unlike fact-checking(Thorne et al., 2018), Evidence Discovery assumes that the claim is
partially or entirely correct based on the context.

We model the Evidence Discovery process as constructing multi-step prompts with optimal rea-
soning pattern, and introduce a heuristic search process to select evidence prompts step-by-step.
Referring to the classical finite Markov Decision Process (MDP), we define the four ingredients of
Elementary namely states, actions, transitions and rewards as follows: State: a state o is a tuple
(c, Ê) for c a claim and Ê = {a0, a1, . . . , ak} a set of sentences already selected from the context
S. Action: an action a is a sentence in the given context S. Transition: a transition T at step
t is a tuple (ot, at, ot+1), where ot = (c, Êt), ot+1 = (c, Êt+1) and Êt+1 = Êt

⋃
at. Reward:

the rewardR for a transition (ot, at, ot+1) is to measure how well the claim c is supported by ot+1.
Typically, we employ LLMs to generate policy π(at|ot) = P (at|ot), where at ∈ S−Êt. The policy
π tends to select candidates related to the preceding context, which helps maintain consistency in
reasoning. In practice, we also introduce a length penalty to balance candidates of different lengths.
Based on the LLM policy π, the value of transition (ot, at, ot+1) is given by a Q-function:

Qπ(ot, at) = Eπ

[
K∑

k=0

γkR(at+k, ot+k)

]
. (1)

Then, following the Bellman equation, the optimal policy π⋆ of the MDP process should satisfy:

Qπ⋆(ot, at) = R(at, ot) + γ max
at+1∈S−Êt+1

Qπ⋆(ot+1, at+1). (2)

3.2 QUANTIFY THE SUPPORT OF EVIDENCE USING according to PROMPT

Figure 1: Prompting LLMs to ground in context.

Before introducing the Elementary formally,
we discuss how to quantify the support of an
input for a target claim, which is the founda-
tion of Elementary. When making decisions, or
engaging in critical analysis, humans typically
organize and integrate information to logically
derive specific conclusions, a process known
as deductive reasoning. Similarly, the answer
generation process of common LLMs is auto-
regressive, where the prediction of the next to-
ken depends on the previous context. There-
fore, this work assumes that LLMs are excel-
lent deducers, capable of accurately perceiving
the sufficiency of evidence prompt: the more
logical the prompt, the greater the likelihood
that the LLM will generate the target claim.

However, considering that LLMs may tend to produce outputs that deviate from the input, known
as hallucination or inconsistency, we first introduce according-to prompts to ground LLMs’ out-
put in a given context Ŝ. Figure 1 shows the proposed prompt. Then, we force LLMs to de-
code the given claim c and directly compute the log probability as score, where score(c, Ŝ) =∑|c|

1 logP (ci|c<i,prompt(Ŝ)).

3
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Figure 2: An illustration of value function f . Here, we set k=1 for ease of demonstration.

3.3 ELEMENTARY: PATTERN-AWARE HEURISTIC SEARCH

Elementary uses a value function f to approximate the real Q-function, aming to overcome the vast
and complex search space. Unlike previous approaches that rely on supervised learning to fit the
Q-function, based on section 3.2, we design an unsupervised value function to evaluate the reward
of taking action at in the state ot. Specifically, f is defined as:

f(ot, at) = g(ot, at) + γh(ot, at), (3)

where g(ot, at) represents the cumulative reward of state ot after taking action at, and h(at) denotes
a heuristic function for estimating the expected future reward of taking action at. Besides, γ is a
discount factor used to balance the importance of g(·) and h(·).
Cumulative Reward. As shown in equation 4, the cumulative reward g(ot, at) consists of two
parts: gind(ot, at), assessing the independent contribution of each at′ to c in a context-independent
manner; gpat(ot, at), concatenating at with a0:t−1 to explore the ”chemical reaction” between at
and the selected evidence, evaluate the current reasoning patterns. We use λ to balance gind(·) and
gpat(·).

g(ot, at) = gind(ot, at) + λgpat(ot, at)

s.t.

{
gind(ot, at) =

1
t

∑t
t′=0 score(c, at′)

gpat(ot, at) = score(c, a0:t)

(4)

Future Reward. A heuristic function h(ot, at), similar to g(ot, at), is introduced to estimate the
potential future benefit of taking action at. As shown in Figure 2, starting from the state-action pair
(ot, at), we perform rollout with policy pi to form a trajectory pool, representing different reasoning
patterns. In practice, we usually select the top-N trajectories to approximate the solution. Then,
the highest future reward of the best reasoning pattern is regarded as the potential value of taking
action at. The purpose of h(ot, at) is to provide guidance on which unselected context sentences
might, together with (ot, at), form a reasoning pattern that strongly supports the given claim c. In
equation 5, K is a hyperparameter used to determine how many steps to look ahead, and δ is a
balancing factor. By using this function, our search framework can prioritize exploring states that
appear to be closer to the end goal, thus reducing the overall search time and making the search
process more efficient.
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Algorithm 1 Framework of pattern-aware Evidence Discovery.
Input:

Claim c; the set of context sentences, S;
LLM policy π; the maximum evidence size, max step.

Output:
Evidence Ê.

1: Initialize Ê0 ← ∅; o0 ← (c, Ê0); t← 0.
2: while t ≤ max step do
3: fvalues ← dict()

4: for si in π(·|Êt, S) do
5: g(ot, si)← gind(ot, si) + λgpat(ot, si)

6: ât+1:t+K ← argmax
T ∼π(·|Êt

⋃
si,S)

K∑
k=1

γk−1(hind(ot+k, Tk) + δhpat(ot+k, Tk))

7: h(ot, si)←
K∑

k=1

γk−1(hind(ot+k, ât+k) + δhpat(ot+k, ât+k))

8: fvalues[si]← g(ot, si) + γh(ot, si)
9: end for

10: update at ← argmax
si

fvalues[si]; Êt+1 ← Êt

⋃
at; ot+1 ← (c, Êt+1); t← t+ 1

11: end while
12: return Êt;

h(ot, at) = max
T ∼π

at+k∈T

K∑
k=1

γk−1(hind(ot+k, at+k) + δhpat(ot+k, at+k))

s.t.

{
hind(ot, at) = score(c, at+k)
hpat(ot, at) = score(c, at:t+k)

(5)

Algorithm 1 give a overview of Elementary. Specifically, Elementary uses a greedy strategy to
determine how to expand the current evidence prompts. At each iteration of the main loop, we
associate each candidate si with a f -value estimating how much reward will be attained if we expand
si, and the candidate with the highest f -value is selected to update state ot. The algorithm continues
until a specified number of sentences are selected.

4 EXPERIMENTS

4.1 SETTING

4.1.1 DATASETS

Ideal test dataset should meet three conditions: first, we hope the claims are completely or partially
correct, facilitating the search for supporting sentences; second, the claims should have a certain
level of abstraction, requiring contextual reasoning with a reasoning path length greater than 1;
finally, the test datasets should cover multiple domains to test the generalizability of the methods.
Based on this, we conduct experiments on three common benchmarks, including HoVer (Jiang et al.,
2020), PubMedQA (Jin et al., 2019), and CovidET (Zhan et al., 2022). Among them, HoVer is a
multi-hop dataset with manually annotated evidence, ensuring the claims are abstract. However,
since HoVer was originally designed for fact-checking, the claims may not be correct. Therefore,
we randomly selected 200 instances labeled as true for testing. Besides, PubMedQA is a generative
question-answer dataset in the biomedical field, while CovidET is an abstract summarization dataset
in the COVID-19 domain. Both tasks require a deep understanding of the context to generate an-
swers; therefore, we consider the reference answers as claims. However, since both datasets lack
evidence annotations, we selected 200 instances from each dataset for manual annotation.

5
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Table 1: Results on HoVer, PubMedQA and CovidET Datasets.

Method HoVer PubMedQA CovidET
P R F1 P R F1 P R F1

Top-3
ROUGE 57.3 52.4 54.8 39.0 45.1 41.7 44.3 41.3 42.8
BM25 58.0 53.1 55.4 40.0 46.7 43.1 48.7 45.3 46.9

MPNet-base 58.7 53.7 56.1 44.7 52.1 48.1 53.7 50.0 51.8
GTE-large 60.0 54.9 57.3 46.0 53.7 49.6 55.7 51.9 53.7

Gemma-Retriever 59.7 54.6 57.0 41.6 48.3 44.7 55.3 51.5 53.4
Gemma-Reranker 61.0 55.8 58.3 45.3 52.8 48.8 56.7 52.8 54.7

RankGPT 62.2 55.2 58.5 43.3 50.6 46.7 55.9 51.9 53.8
Elementary 64.7 59.2 61.8 48.0 55.6 51.4 60.7 56.6 58.5

Top-5
ROUGE 47.0 69.8 56.2 34.0 66.5 45.2 37.6 58.4 45.7
BM25 48.9 72.6 58.4 33.4 65.0 44.1 38.4 59.6 46.7

MPNet-base 49.5 73.5 59.1 36.0 68.8 47.3 43.8 68.0 53.3
GTE-large 50.5 75.0 60.3 36.7 70.1 48.1 43.6 67.7 53.0

Gemma-Retriever 52.2 72.9 60.8 34.9 66.2 45.7 43.1 63.5 51.4
Gemma-Reranker 51.0 75.7 60.9 37.1 70.8 48.7 43.7 67.9 53.2

RankGPT 53.6 79.6 64.0 35.9 68.1 47.0 44.1 65.2 52.6
Elementary 55.2 82.0 66.0 38.0 73.5 49.9 45.4 70.5 55.2

4.1.2 IMPLEMENTATION DETAILS

We use Gemma-2b-it1 to generate the policy π and quantify support, its advantages lie in its
lightweight design and strong inference performance. The implementation of our framework based
on transformers library2. Specifically, the hyperparameters γ, δ, and λ are set to 0.9, 1, and 1, respec-
tively. When exploring potential reasoning patterns to obtain the maximum future reward, we look
ahead K = 4 steps and calculate the N = 10 paths with the highest probabilities. All experiments
were conducted on a 6xRTX3090 machine with 16-bit quantization enabled. All decoding/sampling
settings were kept default. Following previous works, we use Precision, Recall and F1 score as the
evaluation metrics for Evidence Discovery (Zhang et al., 2023).

4.1.3 BASELINES

we select several representative general extraction methods as baselines:

• ROUGE (Chin-Yew, 2004): count the number of overlapping units between the candidates
and the given claim.

• BM25 (Robertson et al., 2009): rank candidates based on the claim term occurrence and
rarity across the whole context.

• MPNet (Song et al., 2020): use the all-mpnet-v2-base version3 to calculate the similarity
between the sentence embeddings of each candidate and the given claim.

• GTE (Li et al., 2023): a general text embedding model trained with multi-stage contrastive
learning, we use GTE-large4 to calculate the candidate-claim similarity.

• Gemma-Retriever: concatenate all candidate sentences as input and prompts Gemma-7b-it5
to directly generate the top-k most relevant sentences.

1https://huggingface.co/google/gemma-2b-it
2https://github.com/huggingface/transformers
3https://huggingface.co/sentence-transformers/all-mpnet-base-v2
4https://huggingface.co/thenlper/gte-large
5https://huggingface.co/google/gemma-7b-it
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Table 2: Quantifying the strength of evidence support.

-w/o according to -w according to

not related -4.3625 -4.4688
not relevant -4.2188 -4.1875

sufficient -3.2344 -2.9464
-w/o 1 sentence -3.5000 -3.2656
-w/o 2 sentences -3.8594 -3.7188
-w/o 3 sentences -4.0312 -3.9844
-w/o 4 sentences -4.3125 -4.4062
-w/ not related -3.2656 -2.9862
-w/ not relevant -3.1106 -2.9672

• Gemma-Reranker: concatenate all sentences that pass the initial filter by the GTE-large
model as input and prompts Gemma-7b-it to rerank these candidates.

• RankGPT (Sun et al., 2023b): similar to gemma-retriever, a listwise prompting-based ap-
proach using GPT-3.5-turbo.

4.2 MAIN RESULTS

We start by evaluating the effectiveness of Elementary on three general benchmarks. Table 1 com-
pares its performance with state-of-the-art baselines under the topk-3 and topk-5 settings. We high-
light three key observations: 1). Elementary consistently outperforms various evaluated baselines
across different tasks. In contrast, none of the baseline approaches consistently perform well across
all three datasets. 2). The statistical-based methods perform the worst when the claims are rela-
tively abstract. The LLM-based methods, such as Gemma-Retriever and RankGPT, do not signifi-
cantly outperform the embedding-based methods. On the PubMedQA dataset, the performance of
LLM-based methods is even markedly lower than that of embedding-based methods. 3). The El-
ementary framework executed with Gemma-2b-it significantly outperforms the Gemma-Retriever
and Gemma-Reranker based on Gemma-7b-it, achieveing up to 3.8%-6.7% higher F1 score than
Gemma-Retriever and 3.8%-6.7% higher F1 score 1.2%-5.1% than Gemma-Reranker.

5 ANALYSIS

5.1 ARE LLMS SENSITIVE TO THE DEGREE OF SUPPORT FOR EVIDENCE?

Previous works have demonstrated that LLMs can be prompted to calculate the relevance between
two sentences (Qin et al., 2024). However, these scoring methods often lack a point of reference,
making it difficult to quantify the variations in the degree of support. In this section, we verify
that the output probability given by the LLM with according to prompt can serve as an effective
metric for quantifying evidence support. As shown in Table 2, We categorize the input into the
following cases based on the degree of support it provides for the claim: 1) not related. Randomly
select m sentences from contexts unrelated to the given claim as input; 2) not relevant. Randomly
select m non-evidence sentences from the context corresponding to the given claim; 3) sufficient.
Concatenate all sentences in the golden evidence set as input; 4) -w/o m sentences. Randomly
remove m sentences from the set of golden evidence, and concatenate the remaining sentences as
input. as input; 5) -w/ not related. Add sentences from the not related set to the set of golden
evidence; 6) -w/ not relevant. Add sentences from the not relevant set to the set of golden evidence.
We report the average log probability (token-level) of each claim.

Based on the results shown in Table 2, we have the following findings: 1) Without introducing
additional input noise, the LLM can accurately perceive the sufficiency of the evidence, regardless
of whether the according to prompt is used. However, after using the according to prompt, this
perception becomes more sensitive and shows greater fluctuations; 2) The according to prompt
helps LLMs to perceive related but irrelevant noise; 3) The feedback from the LLM prompted with
according to aligns with human performance on different inputs, making it an ideal reward function.

7
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Table 3: Performance on 1/2/3/4-hop data.

Method FEVER-1 HoVer-2 HoVer-3 HoVer-4
F1 EM F1 EM F1 EM F1 EM

ROUGE 45.0 45.0 63.0 41.0 55.7 16.5 59.5 10.0
BM25 51.0 51.0 68.5 47.5 59.3 17.0 59.0 10.0

MPNet-base 52.5 52.5 69.0 46.5 61.3 16.0 59.3 10.5
GTE-large 50.0 50.0 73.0 53.0 59.0 16.5 59.8 13.0

Gemma-Retriever 59.5 59.5 65.0 43.0 55.3 14.5 56.0 9.5
Gemma-Reranker 62.0 62.0 71.0 50.5 63.0 19.0 53.0 11.0

RankGPT 70.0 70.0 68.5 46.5 61.7 18.5 63.0 14.0
Elementary 61.0 61.0 76.0 57.5 66.3 26.0 68.8 21.5

Figure 3: Performance comparison on the HoVer dataset under different size of the trajectory pools.

5.2 IS ELEMENTARY A GENERAL-PURPOSE EVIDENCE DISCOVERY METHOD?

Table 1 demonstrates that Elementary exhibits a clear advantage over the mainstream embedding-
based and LLM-based extraction methods across different tasks and domains. Here, we further
validate that Elementary can extract evidence of varying complexity. Specifically, we categorize the
HoVer test set based on the number of evidence corresponding to each claim, and then randomly se-
lect 200 examples from each category for testing. We also conduct experiment on the 1-hop FEVER
dataset (Thorne et al., 2018). In addition to the F1 score, we also report the Exact-Match (EM) score
to assess the ability of each method to extract complete evidence. Our method shows significant
improvement in extracting complex evidence, with greater improvement as the number of hops in-
creases. Additionally, in the 1-hop scenario, Elementary can achieve satisfactory performance using
only the independent reward.

5.3 HOW DOES THE SIZE OF THE TRAJECTORY POOL AFFECT PERFORMANCE?

Elementary uses a rollout policy π for expansion. A larger trajectory pool represents more candidate
paths but increases inference cost. In Figure 3, we compare the performance of our Elementary
across different sizes of the trajectory pools, using the 2/3/4-hop HoVer datasets. We highlight two
key observations: 1). At the initial stage, the performance of evidence extraction improves as the
number of candidate reasoning paths increases. 2). The more complex the evidence, the slower its
corresponding curve converges.

5.4 HOW DOES THE CHOICE OF BASE MODEL AFFECT PERFORMANCE?

In this section, we discuss the impact of model size and instruction fine-tuning on the performance
of the proposed framework. The experimental results on the HoVer dataset are shown in Figure 4.
Specifically, we compared the performance of Gemma-2b, Gemma-2b-it, Gemma-7b, and Gemma-
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Figure 4: Performance comparison on the HoVer dataset under different number of rollouts.

Table 4: Performance of ablation study.

FEVER-1 HoVer-2 Hover-3 Hover-4
F1 EM F1 EM F1 EM F1 EM

Elementary 61.0 61.0 76.0 57.5 66.3 26.0 68.8 21.5
-w/o according to 54.0 54.0 72.0 53.0 59.0 20.0 65.3 18.5

-w/o pattern 61.0 61.0 73.5 51.5 60.3 19.5 63.0 17.5
-w/o independent 61.0 61.0 75.5 55.5 63.7 24.5 67.0 22.0

-w/o h(·) 61.0 61.0 74.5 52.0 62.0 21.0 65.3 18.0
-w/o π 61.0 61.0 76.0 54.0 65.7 24.0 68.3 20.5

7b-it under the top-3 and top-5 settings. We found that instruction fine-tuning yields a more sig-
nificant performance improvement than merely increasing the model size. This is likely because
instruction fine-tuning enhances the model’s ability to follow prompts effectively.

5.5 ABLATION ANALYSIS

We design ablation studies to verify the effectiveness of core modules. As shown in Table 4, remov-
ing the according to prompt results in the worst performance, indicating that it plays a key role in
Elementary. Comparatively, removing the independent rewards (gind and hind) achieves superior
performance on EM metric over removing the pattern-aware rewards (gpat and hpat), demonstrat-
ing that the pattern-aware rewards are particularly advantageous for sufficient Evidence Discovery.
Besides, the future reward h(·) is also important for extracting complex evidence. Finally, planning
reasoning paths with policy π performs better than random selection.

6 CONCLUSION

In this paper, we highlight the importance of the task of Evidence Discovery and its distinction
from similar tasks. We argue that current general extraction methods struggle to accurately quan-
tify the strength of evidence and ensure its completeness. Therefore, we present a heuristic search
framework called Elementary, which treats Evidence Discovery as a multi-step prompt construction
process. Specifically, we verify that LLMs, when prompted with according to, can act as an effec-
tive reward function to evaluate sufficiency. Based on this, we introduce pattern-aware future reward
to explore potential optimal reasoning paths. Experiments across three common task datasets show
that our framework significantly surpasses previous methods, and further analysis confirms Elemen-
tary’s strength in extracting complex evidence completely. We also realize that our framework has
certain limitations. For example, its input length is constrained by the maximum positional encoding
of LLMs, which hinders fine-grained evidence discovery in long text environments, we will explore
this question in the future. Nevertheless, we believe that Elementary can enhance awareness of
evidence discovery and facilitate rationale generation in various domains.
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