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Abstract

In this paper, we propose AsyncQVI, an
asynchronous-parallel Q-value iteration for
discounted Markov decision processes whose
transition and reward can only be sampled
through a generative model. Given such a
problem with |S| states, |A| actions, and
a discounted factor v € (0,1), AsyncQVI
uses memory of size O(|S|) and returns an
g-optimal policy with probability at least 1—§

using
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samplesE] AsyncQVI is also the first

asynchronous-parallel algorithm for dis-
counted Markov decision processes that has a
sample complexity, which nearly matches the
theoretical lower bound. The relatively low
memory footprint and parallel ability make
AsyncQVTI suitable for large-scale applications.
In numerical tests, we compare AsyncQVI
with four sample-based value iteration meth-
ods. The results show that our algorithm is
highly efficient and achieves linear parallel
speedup.

1 Introduction

Markov Decision Processes (MDPs) are a fundamental
model to encapsulate sequential decision making under
uncertainty. They have been indepthly studied and

We use O to omit polylogarithmic factors, i.e., @(f) =
O(f - (log £)°).
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successfully applied to many fields, especially Reinforce-
ment Learning (RL). As a rapidly developing area of ar-
tificial intelligence, RL is being flourishingly combined
with deep neural network (Mnih et al.; [2015] 2016; |Li,
2017)) and used in many domains including games (Mnih
et al., [2015; Silver et al., |2016]), robotics (Kober et al.|
2013]), natural language processing (Young et al., [2018)),
finance (Deng et al.| 2016), healthcare (Kosorok and
Moodie, [2015) and so on. With the advent of big-data
applications, computational costs have increased sig-
nificantly. Therefore, parallel computing techniques
have been applied to reduce RL solving time (Grounds
and Kudenkol 2008} Nair et al., [2015)). Recently, asyn-
chronous (async) parallel algorithms have been widely
researched in RL and gained empirical success (Mnih
et al., |2016; [Babaeizadeh et al.| 2016} |Gu et al.l 2017}
Stooke and Abbeel, |2018; |Zhang et al., 2019). Com-
pared to synchronous (sync) parallel algorithms, where
the agents must wait for the slowest agent to finish its
task before they can all proceed to the next one, async-
parallel algorithms allow agents to run continuously
with little idling. Hence, async-parallel algorithms
complete more tasks than their synchronous counter-
parts (though information delays and inconsistencies
may negatively affect the task quality). Async-parallel
algorithms have other advantages (Bertsekas and Tsity
siklis, [1991)): the system is more tolerant of computing
faults and communications glitches; it is also easy to
incorporate new agents.

In contrast to promising empirical results in async-
parallel RL, its theoretical property has not been fully
understood. In this paper, we are trying to mitigate
the gap between theory and practice. Specifically, we
will asynchronous-parallelly solve Discounted Infinite-
Horizon Markov Decision Processes (DMDPs) which is
not fully known in advance. A DMDP is described by
a tuple (S, A, P,r,7), where S is a finite state space,
A is a finite action space, P contains the transition
probabilities, r is the collection of instant rewards, and
~v € (0,1) is a discounted factor. At time step ¢, the
controller or the decision maker observes a state s; € S
and selects an action a; € A according to a policy ,
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where m maps a state to an action. The action leads
the environment to a next state s;11 with probability

Dsts,.,- Meanwhile, the controller receives an instant
reward r¢_ . Here, rl is a deterministic value
StSt+1 7 StSt41

given the transitional instance (s, a¢, s¢+1). If only
s¢ and a; are specified, rgt is a random variable and
ref = rgts, ., with probability pgf, . Given a policy
7:8 — A, we denote v* € RIS the state-value vector

of m. Specifically,

7”\7:5‘|]T7 of =E[ 370, yirdts,  lso = i,

where the expectation is taken over the trajectory
(s0,a0,51,01,...,S¢,a¢...) following 7, i.e. a; = 7, .
The objective is to seek for an optimal policy 7* such
that v™ is maximized component-wisely.

™

e [T T
vTi=[of, v,

In our setting, P and r are unknown, which is also
the case for RL. Thus, an optimal policy cannot be
obtained through dynamic programming approach but
learned from transitional samples. Depending on the
applications, one can have access to either trajectories
samples or a generative model. Specifically, given any
state-action pair (i,a), a generative model returns a
next state j with probability pf; and the instant reward
r{.. One can repeatedly call it with the same input
(i,a). Although the generative model is a stronger
assumption than trajectories samples, it is natural and
practical in many cases. Our algorithm must access a
generative model; as a benefit, the algorithm requires
only O(|S|) memory and achieves a nearly optimal
sample complexity.

We use notation p{ := [pfy,plh, -, pfig] " and 7§ :=
Zje spiri; and assume, without loss of generality,
ry; € [0,1], Vi,j € S,a € A. We let v* denote the
optimal value vector associated with an optimal policy
7. A policy 7 is e-optimal if ||v* — v7 | <e.

In this paper, we propose the algorithm Asynchronous-
Parallel Q-Value Iteration (AsyncQVI), the first async-
parallel RL algorithm that has a sample complexity
result. AsyncQVI returns an e-optimal policy with
probability at least 1 — § using

5(_ISIIA| 1
o lg(5))
(1= ez 85
samplesm, provided that each coordinate is updated
at least once within O(|S||A]) time and the async
delay is bounded by O(|S||A]). |Sidford et al.| (2018a))
established the lower bound on the sample complexity
of any DMDP with a generative model as
|S[IA] 1
log(5))

Q((1 — )32 Og(5

for finding an e-optimal policy m with probability at
least 1 — 0. Therefore, our result nearly matches the

lower bound up to (1 — )2 and logarithmic factors.
Besides, AsyncQVI requires only O(|S|) memory, which
is minimal possible (without using dimension reduction)
to store .

With a near-optimal sample complexity, the minimal
memory requirement, and asynchronous-parallel imple-
mentation, AsyncQVI is a competitive RL algorithm.

Notation We write a scalar in italic type, a vector
or a matrix in boldface, and their components with
subscripts. For example, v and v; are a vector and its
1th component, respectively.

2 Related Works

AsyncQVTI is not the first attempt to solve DMDP
problems with asynchronous parallel. As early as in
Bertsekas and Tsitsiklis| (1989), the authors proposed
async-parallel dynamic programming methods. They
established and analyzed fundamental asynchronous
models, which are characterized by coordinate update
and asynchronous delay. This seminal work inspires
the later study of async-parallel algorithms for DMDPs
that are not fully known beforehand and can only be
accessed by samples.

Tsitsiklis| (1994]) adapted Q-learning to async-parallel
setting and provided the convergence guarantee. How-
ever, although several works have established sample
complexity results for single-threaded cases (Kearns
et al.l [2002; [Even-Dar and Mansour, 2003 |Azar et al.l
2011}, 12013} [Kalathil et al.l |2014} |Sidford et al., 2018a)bj;
Agarwal et al., |2019)), there have been no such results
for async-parallel algorithms. Moreover, considering
the latent huge cost of taking samples, an explicit com-
plexity result is more and more concerned and is an
important algorithm comparison reference.

One may notice that to achieve promising complex-
ity results, several works adopt the generative model,
e.g., Kearns et al.| (2002)); |Azar et al.| (2011, 2013]);
Kalathil et al.| (2014); Sidford et al.| (2018aljb). This
model is proposed by [Kearns et al.| (2002)). It is indeed
a sample oracle which takes any state-action pair (i, a)
as input and returns a next state j with probability
p;j; and the corresponding instant reward rf;. Our al-
gorithm is also built under the generative model and
we develop the first async-parallel algorithm that has
an explicit sample complexity.

We list related async-parallel methods for DMDPs in
Table [[] and the generative model methods in Table
Note that some papers (Even-Dar and Mansour}, 2003;
Azar et all [2011} Kalathil et al., 2014) use the word
“asynchronous” for single-threaded coordinate update
methods. In constrast, our algorithm is not only multi-



Yibo Zeng, Fei Feng, Wotao Yin

Table 1: Related Async-parallel Methods For DMDPs.

. . Sample
Algorithms Assumption Async Delay Complexity Memory References
Totally Async o Bertsekas and
OVI Fully known DMDP Unbounde N/A O(S]Al) Tsitsiklis (1989)
Partially Async . Bertsekas and
QVI Fully known DMDP  Uniformly Bounded N/A O(IS]] Al Tsitsiklis (1989)
Async Q-learning  Trajectory samples Unbounded? - O(|S||A])  [Tsitsiklis (1994)
AsyncQVI Generative model ~ Uniformly Bounded Vv o(Ss)) This Paper
Table 2: Related Algorithms For DMDP With A Generative Model.
Algorithms Async Sample Complexity Memory References
Variance-Reduced VI X O:( 1|SLY|;3LQ log(3)) O(|S]|A]) |Sidford et al.| (2018b)
Variance-Reduced QVI X Q( (I'fg)f;; log(1))  O(|S]|A4]) [Sidford et al|(2018a)
AsyncQVI 4 O (1|f£;§‘52 log($)) O(|S]) This Paper

threaded, but also allows stale information and async

obtain V i € S, 7} = argmax, Q;ﬁ,aa

* *
vi = max, @],

delay. Further, the lower sample complexities achieved
by |Sidford et al.| (2018alb)) rely on the variance reduc-
tion technique, which requires periodic synchronization
and O(|S||A|) memory footprint to update and store
a basis, say p?TVO, VieS,ae A In order to take
advantage of fully async-parallel structure and achieve
the minimal memory complexity O(|S|), we do not
implement variance reduction and therefore, obtain a
slightly higher sample complexity.

The last thing to mention is that there are some other
nice async-parallel works about fixed point problems
in a Hilbert space, e.g. [Peng et al.| (2016)); [Hannah
and Yin (2018]), while our algorithm is based on a
contraction with respect to the £,, norm.

3 Preliminaries

In this section, we review several key results on Q-value
iteration and async-parallel algorithms.

3.1 Q-value Iteration

Given a DMDP (S, A, P, r,v) and a policy 7, we define
the action-value vector Q™ with entries

o0
ra= E”[Z ’ytrfj:StH’ S0 =1,a9 = al.
t=0

For an optimal policy 7*, we let Q* denote the corre-
sponding optimal action-value vector. From Q*, we can

2Under the assumption: Vi, 7, lim;_ 0 T; (t) = oo holds
with probability 1.

Hence, to derive an optimal policy 7*, it suffices to com-
pute the optimal action-value vector Q*. To reach this
end, we first define an operator T' : RISIAI — RISIIA]
as

TQli,a = § DT + ’YE Pl max Qjar ;
JES JES
—_——

expected instant reward

expected discounted future reward

(1)
where Q € RISIMI and [T'Q); 4 is the ((i—1) x |.A|4+a)th
component of TQ with 1 < i < [§],1 < a < |A].
Actually, T is the well-known Bellman operator. It is
an y—contraction under £, norm and Q* is the unique
fixed point (see e.g. (Puterman, |2014))). Therefore,
one can apply fixed-point iterations of T to recover
Q*. Next, we introduce the async-parallel coordinate
update fashion of fixed-point iterations.

3.2 Asynchronous-Parallel Coordinate
Updates

Given an {,, 7— contraction G : R™ — R", the fixed-
point iteration x(t + 1) = G(x(t)), ¢ > 0 converges

linearly. Rewriting Gx as (G1x,...,G,Xx), we call
Gi(x(t), te T
i(t+1)= . 2
zilt +1) {xi(t)’ @

the coordinate update of Gx, where z;(t) is the ith
coordinate of x at iteration ¢ and

" :={t > 0: coordinate i is updated at iteration ¢}

is the set of iterations at which z; is updated.
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Algorithm 1: Asynchronous-Parallel Coordinate Up-
dates

Algorithm 2: AsyncQVI: Asynchronous-Parallel Q-
value Iteration

Shared variables: x°, L > 0, t < 0;
Private variable: x;
while t < L, every agent asynchronously do
select 7 € {1,2,--- ,n} according to some criterion;
read (required) shared variable to local memory
X  X;
perform an update x; + G;(X);
increment the global counter ¢ < t + 1;

We use a set of computing agents to perform coordi-
nate update in an async-parallel fashion. Unlike the
typical parallel implementation where all the agents
must wait for the slowest one to finish an update, async-
parallel algorithms allow each agent to use the (possibly
stale) information it has and complete more iterations
within the same period of time, which is preferable for
cases where the computing capacity is highly heteroge-
neous or the workload is far from balanced. See more
discussions in |[Hannah and Yin| (2017)).

We summarize a shared-memory async-parallel
coordinate-update framework in Algorithm [T, where
each agent first chooses one coordinate to update, then
reads necessary information from global memory to the
local cache, and finally updates its computed result to
the shared memory.

By Line[6]in Algorithm [} the ¢th update can be written
as

G;(x(t), te T

ey GO, e

x;(t), t¢ T

Here, X(t) := [x1(71(t)), ..., 2 (7n(t))] " represents the
possibly stale information, where x;(7;(¢)) is the most
recent version of x; available at time ¢ that is used to
compute z;(t + 1). We have that 0 < 7;(¢) <¢. The
difference t — 7;(t) is called the delay. In this paper, we
assume partial asynchronism (Bertsekas and Tsitsiklis|
1089):

Assumption 3.1 (Partial Asynchronisnﬂ). For the
async-parallel algorithm, there exists two positive inte-
gers By, By (asynchronism measure) such that:

(3)

(a) For every i and for every t > 0, at least one of the
elements of the set {t,t+1,...,t+ By — 1} belongs
to T,

(b) There holds t — By < 7;(t) < t, for all j and all
t>0.

3 Assumption 1.1 in [Bertsekas and Tsitsiklis| (1989] Sec-
tion 7.1) uses B for both By and Bs. Because B; and Bs
are different in practice, we keep them separate to derive a
tighter bound. Further, we have dropped assumption (c)
there to make our algorithm easier to implement.

@ ok W N

Input: €€ (0,(1—v)"%),6€(0,1), L, K;

Shared variables: v < 0, 7 < 0, t + 0;
Private variables: v, 7, S, g;
while t < L, every agent asynchronously do
select state i; € S and action a; € A;
copy shared variable to local memory v + v;
call GM(s¢, at) K times and collect samples
sh, .., 8 and 1, ... TR
¢ % Zlf:l etV Zf:l gy — (1_47)55
if ¢ > v;, then
mutex lock;
Vi, —q, Ty < Qy;
mutex unlock;
increment the global counter ¢ < t + 1;
return w

Assumption (a) ensures that the time interval be-
tween consecutive updates to each coordinate is uni-
formly bounded by B; and (b) ensures that the com-
munication delays are uniformly bounded by Bs. Note
that when B; = By = 1, the algorithm becomes syn-
chronous. Convergence under this assumption was
established in [Feyzmahdavian and Johansson| (2014]).

Proposition 3.2. (Feyzmahdavian and Johansson)

2014 Theorem 2) Consider the iterations Eq. un-

der Assumption[3.1l Suppose that G is y-contractive

under Lo norm and x* is the fived point of G. Then

Ix(8) = X*loe < [IX(0) — X locp'22" for all t > By,
1

where p = yB1tB2-T,

In many DMDP and RL problems, the transition prob-
abilities P are sparse. So for any state-action pair (i, a),
the possible next states form a tiny subset of S. Hence,
to apply async-parallel coordinate updates to Eq. ,
very few components are required and we only need to
bound async dealy over a smaller subset. Therefore, we
usually have By <« By, where By > |S||A|. Hence, the
convergence rate WW we obtain is significantly
better than ’YW from (Feyzmahdavian and Jo{

hansson, [2014, Theorem. 2); the proof is deferred to
Appendix A.

Remark 3.3 (Total Asynchronism). Here we do not
adopt the total asynchronism notion (Bertsekas and
Tsitsiklis, |1989, Section 6.1). To start with, one can-
not derive convergence rate results under total asyn-
chronism since it allows arbitrarily long delays and no
improvement can be said for finite iterations. On the
contrary, partial asynchronism can avoid this case and
be practically enforced (Bertsekas and Tsitsiklis, |1989,
Section 7.1).



Yibo Zeng, Fei Feng, Wotao Yin

4 AsyncQVI: Asynchronous-Parallel
Q-value Iteration

In this section, we present AsyncQVI and its conver-
gence analysis.

AsyncQVT (Algorithm [2)) is an asynchronous stochastic
version of Eq. . To develop AsyncQVI, we first apply
the asynchronous framework (Algorithm [1)) to Eq. ,
obtaining

2Py 2P max Q. (t), t€ T
J

Qi,a(t =+ 1) = J )
{Qi,a(t)y t ¢ gz,a.
(4)

Since there is no knowledge of the transition prob-
ability, we approximate the expectations ). p;- by
random sampling (Lines |§| and (7, Algorithm . This
is done by accessing a generative model GM, which
takes a state-action pair (4,a) as input and returns a
next state j with probability pf; and the correspond-
ing instant reward r;. So instead of (#)), we substi-
tute >, pfr; and >, pf; maxy Q;.ar (t) by their em-
pirical means, i.e., r(t) == &>, T?ﬁts; and S(Q(t)) :=
L3, max, Qs;,a/ (t), respectively. For the purpose
of analysis, we also tune the update slightly by sub-
stracting a small constant (1 — «y)e/4. Consequently,

AsyncQVI is equivalent to

r(t) +vS(Q(t) — (L —v)e/4 te The;
Qia(t), t¢ Tha,
(5)

ISILAl

Qi,a(t+1) = {

For memory efficiency, we do not form Q € R
Instead, since only the values max, @; . are used
for update, we maintain two vectors v, € RISl
at each iteration ¢, we ensure v;(tf) = max, Q; (1),
mi(t) = argmax, Qi .(t) and 0;(t) = maxy Q) q (t).
By this means, we reduce the memory complexity from
O(|S]|A]) to O(|S]), which is of a great advantage in
real applications.

Remark 4.1 (Coordinate Selection). To guarantee
convergence, the coordinate should be selected to satisfy
Assumption[3.1] In practice, however, if all agents have
similar powers, one can simply apply either uniformly
random or globally cyclic selections.

Remark 4.2 (Parallel Overhead). In AsyncQVI, over-
head can only occur during copying variable from global
memory to the local memory (Line|9) and where a mem-
ory lock is implemented (Lines . For the former
case, the time complexity is O(|S|), which is negligi-
ble when O(|S]) is small or the process of querying
samples is much slower. Otherwise, one can consider
copying in a less frequent fashion, i.e., updating v ev-
ery lo iterations. Although it will increase Bs by lg,

the sample complexity is still near-optimal as long as
B; + By = O(|S||A|). For the latter case, a memory
lock (e.g. mutex) ensures that v; and m; are indeed
the maximum value and a maximizer of the vector Q;,
respectively. Since only two scalars are accessed and
altered, the collision is rare.

4.1 Convergence Analysis

Next, we establish convergence for AsyncQVTI; all proofs
in this section are deferred to Appendix B. To distin-
guish different sequences, we let (Q®(¢)) denote the
asynchronous coordinate update sequence generated
through Eq. , where the superscript represents the
updates with real expectations. Specifically, if Async-
QVI produces a sequence according to Eq. with

Q(t) = [Q1,1(111(8)), ... Qis), 14 (Tis],1.4/ ()] T, then

Py max Q. (1), te T
J

talt); t¢ T,

(6)
where Q¥(t) = [QF 1 (11,1(2)), .- - >QI|ES\,\A|(TIS\,IA\(75))]T
There are two things to notice:

Ta(t+1) =

(i) (QE(t))L, and (Q(t))L, have the same initial
point;

(ii) at any iteration, (Q(t))L, shares exactly the
same choice of coordinate (i, a;) and the same

asynchronous delay with (Q(t))E,.

These properties are important to our analysis. Recall
that we assume partial asynchronism (Assumption
for AsyncQVI. Then Eq. @ also meets Assumption
Hence, Eq. @ converges following the fact that T
is a y—contraction and Proposition Since Eq.
is an approximation of Eq. (6]), we can leverage the
convergence of Eq. @ to establish the convergence
of AsyncQVI. To this end, we first use Hoeffeding’s
Inequality (Hoeffding), [1963) to analyze the sampling
error. Specifically, if we take enough samples per it-
eration, then the error can be controlled with high
probability.

Proposition 4.3 (Sample Concentration). With K =
[ﬁlog (%ﬂ, AsyncQVI generates a sequence
(r(t), S(Q(t)Ey that satisfies |r(t)+vS(Q(t)) — 7 —
vp?:—r\?(t)‘ < %, V0<t<L-—1, with probability
at least 1 — 9.

Proposition [£.3] indeed establishes a control over a one-
step approximation error between Eq. and Eq. @
provided that Q = Q]E. However, for the two sequences
(Q(t)) and (QF(t)) that only share the same initial
point, the error can accumulate. To tackle this issue,
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we further utilize the y-contraction property to weaken
previously cumulative error. More specifically, if the
newly made error and the previously accumulated error
keep the ratio (1 —«) : 1 for each iteration, the overall
error remains (1 — y)e + ye = ¢. By this means, we
can control the difference between (Q(t)) and (Q%(t))
by induction.

Proposition 4.4. Given the total iteration num-
ber L, accuracy parameters € and §, with K =
{ﬁ log (%ﬂ, AsyncQVI can generate a sequence
(Q(t))i= satisfying |Q(t) — Q%(t)]|os < /2, V 1 <
t < L with probability at least 1 — 9.

Since (QF(t)) converges to Q* linearly, combining
Propositions [3.2] and [£.4] gives the desired result.
Theorem 4.5 (Linear Convergence). Under As-
sumption given accuracy parameters € and ¢,
. _ Bi+Bs—1 2 _
with L = [2B; + #5227 log (%5:)| and K =
[ﬁlog (%ﬂ, AsyncQVI can produce Q(L) €
RISIAL and v(L) € RIS satisfying |Q* — Q(L)| < €
and |[v* = v(L)||eo < & with probability at least 1 — 6.

4.2 e-optimal Policy

In the following theorem, we show that the vector
7 maintained through the iterations is an e-optimal
policy; the proof is deferred to Appendix C. Using this
theorem, we shall present the sample complexity of
AsyncQVTI in Corollary (.7}
Theorem 4.6. Under Assumption given ac-
curacy parameters € and 0, with L = {231 +
Bi+Bs—1 2 _ 8 4L
11—’3 IOg ((1—7)5)-‘ and K = ’7(1—7)452 log (T)-"
AsyncQVI returns an e-optimal policy m with probabil-
ity at least 1 — 0.
Corollary 4.7. Under Assumption AsyncQVI

returns an €-optimal policy m with probability at least
1 — 6 at the sample complexity

By + By 1

~(mlog(5)).

Hence, if By + Bz = O(|S||Al), then AsyncQVI has a
near-optimal sample complexity.

Moreover, given the complete knowledge of transition
P and reward r, we can also solve it asynchronous par-
allelly. To utilize AsyncQVI, one can build a generative
model in O(|S|?|A|) prepossessing time (Wang, [2017),
and the GM produces a sample in O(1) arithmetic oper-
ations. In this sense, AsyncQVTI also has the following
computational complexity results.

Corollary 4.8 (Computational Complexity). Given
a DMDP (S, A,P,r,v), under Assumption Async-
QVI returns an e-optimal policy with probability at least

1 — 6 at the computational complezity

|SIIA| 1

O(ISI*| Al + mbg((g))’

provided that By + Bs = O(|S||Al).

5 Numerical Experiments

5.1 Sailing Problem

To investigate the performance of AsyncQVI, we
solve the sailing problem from [Vanderbei (1996) on
a 100 x 100 grid with 80000 states and 8 actions.
Each state contains the sailor’s current position (z,y)
and the wind direction. Each action is one of the
eight directions {(0,1), (0,-1), (1,0), (-1,0), (1,1),
(1,-1), (—=1,1), (—=1,-1)}. The goal is to reach the
target position (50,50) at the lowest cost. Different
from the original settings, we add more randomness to
the system. Under the action (d,,d,), the sailor will
be further affected by two drift noises: a mild wind
noise A (0,0%) which occurs with probability (w.p.)
1 and a big vortex noise A'(0,0%) which occurs with
a fairly small probability p. So, the next position is
(x + 6, + N(0,0%), y+ 6, + N(0,0%)) wp. 1 —p
and (z + 6, +N(0,07 +03), y + 3, + N (0,07 + 03))
w.p. p. The wind direction at next time maintains
its current direction w.p. 0.3, changes 45 degrees to
either direction w.p. 0.2 each direction, changes 90
degrees to either direction w.p. 0.1 each, changes 135
degrees to either direction w.p. 0.04 each, and reverses

direction w.p. 0.02. We set the instant reward as
angle between wind and action directions :

d x| = l, wherte dis a

constant hyperparameter. When the reward is lower,

we can take it as a higher cost. If the sailor reaches
the target position, the reward is 1.

5.2 Implementation

We compare five algorithms with a sample oracle
(SO): AsyncQVI, Asynchronous-Parallel Q-learning
with constant stepsize (AQLC), Asynchronous-
Parallel Q-learning with diminishing stepsize
(AQLD)(Tsitsiklis, [1994), Variance-reduced Value
Iteration (VRVI)(Sidford et al.| [2018b)), and Variance-
reduced Q-value Iteration (VRQVI)(Sidford et al.l
2018a)). All algorithms and the SO are implemented
in C4++411. We use the thread class and pthread.h
for parallel computing.

The tests were performed with 20 threads running
on two 2.5GHz 10-core Intel Xeon E5-2670v2 pro-
cessors. We chose the optimal sample method (uni-
formly random, cyclic, Markovian sampling) and opti-
mal hyperparameters (sample number, iteration num-
ber, learning rate, exploration rate) for each algorithm
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individually. The learning rate of AQLD was set as
1/t951 according to its theoretical analysis, where ¢
is the iteration number. Our code is available in
https://github.com/uclaopt/AsyncQVIl

5.3 Policy Evaluation

Given a policy, we let the agent start from a random
initial state and take actions following the policy for
200 steps. Then, we evaluate the policy by recording
the total discounted rewards (v = 0.99) and whether
the agent reaches the target position (flag = 1 if so).
We repeat 100 episodes of this process and calculate
the average total discounted rewards and total flags. A
policy with higher rewards and more flags is preferred.

We test with different randomness and rewards which
represent various MDP settings (see Figure . In the
first test, one-step transition rewards are dominated by
rewards for reaching the target (d = 0.05 is very small
compared with 1) and only the wind noise is considered
in positioning. The agent mainly aims at finding the
target, which is relatively easy with minor noises. This
leads to a fast convergence of policies with low sampling
request and bold learning rate. In the second test, with
increasing transition rewards (d = 0.15), the agent
needs to take a more economical way to reach the goal.
This prolongs the learning process with more samples
and more prudent learning rate. The next two tests
make the situation more complicated with a big vortex
noise, which gives rise to higher sampling numbers and
more conservative learning rates. This phenomenon
occurs in VRVI and VRQVI as well. We skip the
detailed parameters here.

In these four tests, AsyncQVI and AQLC are almost
equivalently outstanding in terms of time and achieve
an at least 10x speedup compared to VRQVI and VRVI
with 20 threads running parallel. Further, VRQVI and
VRVI have lower sample complexities, especially on
complicated cases. The testing results verify our theory.
In the sequel, we further analyze the performance of
AsyncQVI and AQLC and provide heuristics on how
to set sample number and learning rate.

5.4 Performance Analysis and Heuristics

Recall that AsyncQVI derives from the Q-value opera-
tor T (see Eq. (I))). Let Ty, :== (1 — a)I + T, where
« is the learning rate. One can get AQLC through
the same approach. What’s special is, AQLC only
takes one sample each time. This seems to be a very
inaccurate approximation and might cause devastating
error. However, note that when applying T, sample
range is also discounted by «. For fixed § and e, the re-
quested sample number m decreases quadratically with
respect to «, since m > C":—j log (%) by Hoeffedings

Inequality (Hoeffding} [1963)). Hence, when « is smaller,
AQLC converges more stably. On the other hand, a
tiny learning rate also leads to slow progress, since T,,’s
contractive factor (1 — a+ a~y) approaches 1. Similarly,
for AsyncQVI, when the sample number K is larger, it
converges more stably but also more slowly. Therefore,
we propose a trade-off heuristic of adaptively increas-
ing the sample number or decreasing the learning rate.
Specifically, in our test, we set K; = min([t>17®, 35)
for AsyncQVI and a; = max(t~°%1,0.1) for AQLC,
where ¢ is the iteration number. The results are de-
picted in Figure

The above interpretation also shows that AQLC is
a special case of AsyncQVI (with T, and K = 1),
which explains the similarity in their optimal perfor-
mances. However, since AsyncQVI takes %' X memory
of AQLC, our algorithm is still preferable for high
dimensional applications.

5.5 Parallel Performance

We also test the parallel speedup performance of Async-
QVI using 1, 2, 4, 8, and 16 threads (see Figure [3)).
The result shows an ideal linear speedup.

5.6 Summary

AsyncQVI and AQLC have similar numerical perfor-
mance, and they are faster than VRQVI, VRVI and
AQLD. In general, async algorithms speed and scale
up very well as the number of threads increases, and
AsyncQVI is not an exception. On the other hand,
AsyncQVI requires only O(|S|) memory, which is much
less than the O(|S||A|) memory of the other three;
recall Table [1] Therefore, AsyncQVI can solve much
larger problem instances.

6 Conclusions and Future Work

In this paper, we propose an async-parallel algorithm
AsyncQVI. Under mild asynchronism conditions, our
algorithm achieves near-optimal sample complexity and
minimal memory requirement. To the best of our knowl-
edge, AsyncQVTI is the first async-parallel algorithm for
DMDPs with a generative model that has an explicit
sample complexity.

For future work, we plan to integrate function approxi-
mation and policy exploration. Recently, a line of work
established sample complexity results in this direction,
e.g.,|[Yang and Wang| (2019bla); |Chen et al. (2018]). We
will also consider extending to continuous cases.
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Figure 1: Performance Comparison Under Various Settings.
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