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ABSTRACT

Personalized document summarization helps readers focus on the “content-of-
interest”, a subjective and time-variant quantity. Recent news recommendation
and summarization models often assume that preferences follow a memoryless
or short-memory random walk on interaction graphs, i.e., a Markovian diffusion
seeded at the latest interaction or compressed into a short hidden state or prompt.
We ask whether such a hypothesis also holds for personalized summarization.
To this end, we propose Walk2Pers, a lightweight encoder-decoder framework
that extends the walk view with action-conditioned geometric steps, decomposed
into a (i) a magnitude controlling shift strength, and (ii) an orientation capturing
continuity vs. novelty. The process is mediated by dual memory lanes that rein-
force consistent interests while suppressing disinterest, and is augmented with a
drift term for summary requests. We show theoretically that such structured walks
approximate first-order action-conditioned kernels, and empirically validate the
hypothesis on three benchmark datasets – PENS, OpenAI-Reddit, and Personal-
Sum. Using PerSEval, a personalization metric with strong human correlation,
Walk2Pers outperforms specialized personalized summarizers by an average of
0.41 ↑, and strong LLM baselines (DeepSeek-R1-14B, LLaMA-2-13B, Mistral-
7B, Zephyr-7B) by 0.22 ↑. Our analyses further confirm cross-domain robustness
(0.19 ↑ over the best LLM) and stability on long histories. Together, these results
support viewing personalized summarization as an action-biased geometric walk
with memory, offering both interpretability and efficiency.

1 INTRODUCTION

With the problem of information overload, personalized summarization has become essential for
tailoring updates to a reader’s individual interests, especially in multi-aspect documents covering
diverse topics (Dasgupta et al., 2024). Existing approaches typically rely on static persona attributes
(Dou et al., 2021; He et al., 2022; Li et al., 2023). Yet, datasets capturing user reading behav-
iors, such as MS/CAS PENS (Ao et al., 2021), reveal that user preferences evolve over time and
shift across fine-grained subtopics. This creates difficulties even for state-of-the-art (SOTA) Large
Language Models (LLMs), which show degraded performance when long user-interaction histories
are embedded in prompts for in-context personalized summarization (Liu et al., 2024; Patel et al.,
2024). This suggests that both existing personalized summarizers and LLMs struggle to capture
subtle, action-specific user interactions within user logs.

A natural follow-up question is how do user preferences predictably evolve over time? In most
recommendation and personalized summarization systems, user preference evolution has been mod-
eled using simple Markovian assumptions, the most basic case being pure Random Walk, where
each new preference state is treated as an isotropic perturbation of the previous one, without any
action semantics conditioning. A stronger variant is the Action-conditioned Random Walk, which
biases each step by the most recent action type, while still remaining memoryless. More recently,
graph-based Random Walk with Restart (RWR) methods, including Personalized PageRank and its
extensions, have been widely applied in news recommendation, where user interests are modeled
as a diffusion process seeded at the last interaction. Notably, S-Walk (Qiu et al., 2022) restructures
the transition kernel to improve session-level modeling, and D-RDW (Zhang et al., 2025) diversifies
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restart paths to mitigate popularity bias. Although these models remain competitive as lightweight
graph baselines, extensive benchmarking under the same evaluation regimes (e.g., MIND, Adressa)
has shown them to be outperformed by neural encoders such as NAML (Wu et al., 2019a), NRMS
(Wu et al., 2019b), and EBNR (Okura et al., 2017), which aggregate user click histories via CNNs,
Transformers, or GRUs. However, these models reduce long histories into compressed embeddings,
providing only shallow memory. Similarly, preference-prompted mid-sized LLM summarizers can
condition on past interactions, although their windowed prompts impose a hard memory cap, with
no persistent reinforcement or suppression. Collectively, graph-based diffusion, short-memory neu-
ral encoders, and prompt-based LLMs fall under the Markovian Drift Hypothesis (MDH) – each new
state depends primarily on the most recent interaction, overriding long-horizon action dynamics.

In this paper, we test how well MDH holds for personalized summarization. As an alternative exten-
sion to MDH, we propose the Structured Walk Hypothesis (SWH). SWH decomposes the preference
state update due to each user interaction (click, skip, summarize) into (i) a magnitude, controlling
the strength of the action-specific nudge, and (ii) an orientation, determining whether the evolution
follows the existing trajectory (continuity) or departs into a new direction (novelty). In this way,
SWH is an action-conditioned geometric walk. To go beyond MDH, SWH incorporates dual mem-
ory lanes that reinforce consistent interests while suppressing disinterest (for a comparative table of
SOTA MDH models see Table 10). We propose Walk2Pers, a personalized summarization model,
as a concrete realization of SWH. To test the adequacy of MDH, we pose three research questions.
RQ1: Is MDH sufficient for modeling preference evolution in summarization? RQ2: Do dual
memory lanes and action-conditioned geometric steps with magnitude–orientation decomposition,
provide systematic and complementary gains over MDH variants? RQ3: How does Walk2Pers,
as an instantiation of SWH, compare against short-memory neural encoder augmented personalized
summarizers, prompt-personalized LLMs, and oracle summarizers?

For RQ1 and RQ2, we benchmark MDH-based neural encoder models, along with our own sim-
ple action-conditioned Short-Memory Drift (SMD) and an action-category sensitive Action-Gated
drift (AGD), on the next user behavior prediction task. We show that these MDH baselines do not
sustain asymmetric reinforcement / suppression or disentangle continuity from novelty. In contrast,
structured walks with dual memory and geometric decomposition achieve systematic gains, with
Walk2Pers outperforming the best AGD model by 0.07/0.12/0.18↑w.r.t AUC/MRR/nDCG@5/10
metrics. For RQ3, we assess downstream personalized summarization. On the PENS dataset,
Walk2Pers surpasses specialized summarizers (PENS-NAML, NRMS, EBNR, GTP, SP) by an
average of 0.42/0.36/0.43↑ across personalization metrics (PSE-JSD/SU4/METEOR). It also out-
performs four mid-sized LLMs (Zephyr-7B, LLaMA2-13B, Mistral-7B, DeepSeek-R1-14B) under
2-shot+history prompting (the best configuration), with DeepSeek-R1 lagging by 0.20/0.29/0.35.
Together, these results demonstrate that while MDH models can be competitive in recommendation-
style ranking, SWH with explicit magnitude-orientation decomposition, dual memories, and drift,
faithfully captures evolving user preferences for personalized summarization.

2 RELATED WORK

Personalized Summarization Evaluation. Personalized summarization has been increasingly rec-
ognized as essential for tailoring updates to a reader’s interests, especially when documents cover
multiple aspects. Existing evaluations of summarization quality (e.g., ROUGE, METEOR, BLEU)
do not explicitly account for personalization. Recent work (Vansh et al., 2023; Dasgupta et al.,
2024) has emphasized the need for personalization-aware metrics. EGISES proposed a framework
for evaluating semantic shift under personalization, while Dasgupta et al. (2024) introduced PerSE-
val, which we adopt in this paper as it correlates strongly with human judgment.

Datasets for personalized summarization. To study evolving user preferences, we require datasets
with (i) temporal orders of user interactions, (ii) user-specific expected summaries for shared con-
tents, and (iii) diverse, shifting topics and subtopics. In this direction, the MS/CAS PENS dataset
(Ao et al., 2021) contains click/skip logs with multi-aspect articles and user-target summaries (per
trajectory: 13.6 topics; 52.83 sub-topics, with topic change rate of 0.77). It has become a bench-
mark for testing personalization-aware models (Ao et al., 2021; Song et al., 2023; Lian et al., 2025).
PersonalSum (Zhang et al., 2024), The Norwegian dataset derived from Adressa, augments news
interaction logs with personalized gold summaries. It highlights preference drift and is suitable for
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multilingual evaluation. OpenAI-Reddit (Völske et al., 2017) provides long-range user interac-
tion traces (posts and comments) with subjective summaries. This non-news multi-domain dataset
stresses long-horizon dependencies and temporal drift, and is used for cross-domain generalizability
test. Dataset details are in Appendix C.

Personalized Summarization Models. Most existing personalized summarizers rely on static user
personas, as in GSUM, CTRLSum, TMWIN, and Tri-Agent (Dou et al., 2021; He et al., 2022;
Kirstein et al., 2024; Xiao et al., 2024). Dynamic extensions such as PENS (Ao et al., 2021) in-
corporate external news-recommendation encoders like NRMS Wu et al. (2019b), NAML Wu et al.
(2019a), and EBNR Okura et al. (2017), while GTP (Song et al., 2023) leverages latent editing
controls and SCAPE (Lian et al., 2025) blends content with stylistic features. However, these ap-
proaches remain within the scope of the MDH. The few-shot LLM personalization (Patel et al.,
2024) achieves competitive performance against such models, but is ultimately stalled by prompt
length and memory constraints. In contrast, our work explores SWH, where preference evolution is
modeled as a memory-aware, action-conditioned geometric walk. Walk2Pers serves as one con-
crete instantiation capturing evolving user histories beyond the limits of MDH-style summarizers.

3 METHODOLOGY: USER PREFERENCE EVOLUTION REPRESENTATION

3.1 PREFERENCE DATA AS USER–INTERACTION GRAPH (UIG)

We represent user histories as a User–Interaction Graph (UIG), a directed acyclic graph G =
⟨N,E⟩ where the node set N consists of three disjoint types: (i) u-nodes u(t0) denoting a user at
initial timestep t0, (ii) d-nodes d(ti) representing documents interacted at timestep ti, and (iii) s-
nodes s(tj)u representing user-specific summaries requested or generated at time tj for a document
viewed at tj−1. The edge set E encodes user actions: a

(ti)
d ∈ {click,skip,summarize}

on documents, and a
(tj)
s as the follow-up summGen action connecting a document d(tj−1) to its

summary s
(tj)
u . A user trajectory τu is then a time-ordered sequence of such interactions, beginning

at u(t0). Each trajectory can be decomposed into behavior duplets b(ti)u = ⟨a(ti), tl(ti)⟩, pairing an
action with its tail node tl(ti). The UIG T is a pool of trajectories, used as Ttrain for training and Ttest
for evaluation. For UIG construction, see Appendix C.4; Figure 4.

While UIG captures rich temporal detail, directly modeling its raw structure quickly becomes com-
putationally expensive and noisy over long horizons. This is particularly challenging in personalized
summarization, where fine-grained shifts in preference must be retained without overwhelming the
model. Recent work in sequential recommendation suggests that hierarchical abstractions improve
long-horizon accuracy by condensing low-level interactions into higher-order behavioral units (Cho
& Hyun, 2023; Ou et al., 2025; Zhu et al., 2023; Pan & Wang, 2021; Zhang et al., 2020). Motivated
by this, we adopt a bi-level hierarchy – the u-layer records raw interactions: user nodes u(t0), docu-
ment nodes d(t), and summary nodes s(t), connected by action edges a(t), and the b-layer abstracts
these into behavior duplets b

(t)
uj = ⟨a(t), tl(t)⟩, represented as b-nodes. Sequential dependencies

are captured by nextBehavior edges. This abstraction provides a compact yet expressive substrate
for modeling preference evolution. Having established the representational basis, we now ask a
fundamental question: how do preferences evolve along b-layer trajectories?

3.2 MODELING USER PREFERENCE EVOLUTION

We model preference evolution on the b-layer. Each visited b-node b
(t)
u is associated with a latent

preference embedding e
(t)
b,u ∈ Rd summarizing user u’s state after timestep t. We first state the

prevailing Markovian Drift assumption, then contrast it with our Structured Walk Hypothesis.

3.2.1 MARKOVIAN DRIFT HYPOTHESIS (MDH)

Under MDH, the next state depends only on the immediately preceding state (or a short compressed
representation), while longer histories are discounted or collapsed into a recency prior q:

e
(t+1)
b,u = f

(
e
(t)
b,u, a

(t), q
)
+ ϵ(t), ϵ(t) ∼ N (0,Σ(a(t))). (1)
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Table 1: SWH (vs. MDH): (i) explicit trajectory modeling across b-nodes, (ii) dual memory lanes
(h+, h−) for reinforcement and suppression, and (iii) action-aware updates per a(t).

Aspect Markovian Drift Hypothesis Structured Walk Hypothesis
History usage Collapsed into last state or seed q Explicit trajectory across b-nodes
Memory None or short-lived (hidden states, attention) Dual memory lanes (h+, h−) for reinforcement/suppression
Action conditioning Minimal (recency, weak prompt) Explicit action-aware updates per a(t)

Step dynamics Magnitude: implicit (via GRU/attention weights/prompt tokens) Magnitude: mag(a(t))
Orientation: not modeled explicitly Orientation: θ(a(t))

Long-term preferences Forgotten beyond 1 step Persist through memory-conditioned updates
Interpretability Opaque embeddings/hidden states Geometric (continuity vs. novelty) and stochastic (controlled walk)

Here Σ(a(t)) ∈ Rd×d controls how stochastic drift spreads across embedding dimensions. The
action-conditioning lets skips be noisier than focused clicks. A pure Random Walk (PRW) is:
f(e

(t)
b,u, a

(t), q) = e
(t)
b,u. Short-memory neural encoders (NAML, NRMS, EBNR) and prompt-

personalized LLMs also fit this umbrella by compressing history into short-term aggregates.

3.2.2 STRUCTURED WALK HYPOTHESIS (SWH)

Evidence from PENS (Ao et al., 2021), PersonalSum (Zhang et al., 2024), and OpenAI-Reddit
(Völske et al., 2017) indicates long-horizon dependencies: clicks reinforce, skips suppress, and
summary requests induce systematic drifts. We posit the SWH: preference evolution is a structured,
action-conditioned geometric walk with memory:

e
(t+1)
b,u = e

(t)
b,u +Φ

(
a(t), trajectory-context

)
+Ψ

(
h+
t , h

−
t

)
+∆

(
a(t)
)
, (2)

where Φ(·) decomposes trajectory-context into a momentum direction u(t) (continuity) and an
orthogonal novelty direction o(t), Ψ(·) aggregates asymmetric reinforcement/suppression via
(h+

t , h
−
t ), and ∆(·) captures special action drifts (e.g., summGen). This decomposition is inspired

by advances in trajectory-based dynamic embeddings (e.g., JODIE (Kumar et al., 2019a)) and angle-
based relational models (e.g., RotatE, ChronoR (Sun et al., 2019; Anshelevich et al., 2021)), but
adapted to the summarization setting with explicit action bias and memory. To illustrate, frequent
climate-policy clicks keep movement near u(t) and accumulate in h+

t ; repeated skips of celebrity
content load h−

t and downweight entertainment; issuing summGen after dense reports triggers ∆(·),
nudging toward concise representations. This view generalizes random walks into a controlled dif-
fusion governed by state, action, and memory traces (Kumar et al., 2019b; Balcer & Lipinski, 2025).

SWH Model Family. Refining Eq. equation 2, we obtain a generic structured walk family:

e
(t+1)
b,u = e

(t)
b,u +mag(a(t))

(
cos θ(a(t))u(t) + sin θ(a(t)) o(t)

)︸ ︷︷ ︸
Φ: geometric step: continuity vs. novelty

+ Ψ(h+
t , h

−
t )︸ ︷︷ ︸

Ψ: dual memory: reinforcement vs. suppression

+ δ · I[a(t) = summGen]︸ ︷︷ ︸
∆: summary-specific drift

.
(3)

Here mag(a(t)) scales the step (single click = small shift; repeated clicks = larger shift). The angle
θ(a(t)) steers between u(t) and o(t): small θ (so cos θ≈ 1, sin θ≈ 0) favors continuity; larger θ in-
creases novelty. Ψ(h+

t , h
−
t ) persists asymmetric signals from past actions, and the drift δ (active for

summGen) captures shifts due to specific interest signal. Different models may parameterize mag,
θ, and Ψ differently, but all share this decomposition. In the next section, we present Walk2Pers
as one concrete instantiation of this family. Theoretical relationship to the MDH is in Appendix D.

3.3 WALK2PERS MODEL AS SWH INSTANTIATION

3.3.1 WALK2PERS ENCODER: HISTORY ENCODING WITH STRUCTURED WALKS

We instantiate SWH (Eq. 3) in Walk2Pers by encoding user trajectories as action-aware b-cells,
augmented with dual memories for persistence and geometric steps for continuity–novelty tradeoff.
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Figure 1: Walk2Pers: Novel instantiation of SWH – b-node embedding is formed from the u-layer
and fed into the SWH-Encoder; Predictor estimates the next b-node, the embedding of which is
fed into the Inverse Approximator, which extracts the latent summary (s-node); Contextualizer
computes cross-attention of latent s-node, user history, with query document; T5-decoder finetuned
(top-layers only) to generate personalized summary. b-node embedding details in Figure 2.

Action-biased B-cell composition. Each d-node and s-node is initialized with a T5-base en-
coder (Raffel et al., 2020), while each action at timestep ti is represented as a 4-d one-hot vec-
tor (click, skip, summarize, summGen). A b-cell fuses the action with its tail-node content:
c
(ti)
tl = tanh

(
f (a,ti)

)
⊙ e

(ti)
tl ; e

(ti)
b,u = tanh

(
Wb · c(ti)tl

)
. where f (a,t) is an action-conditioned gate.

We borrow the AGD(·) function of the baseline Action-Gated Drift model (AGD) (Section 4.2; Ap-
pendix E.1), which generates action-specific f (a,t) for action type (click, skip, summarize,
summGen). Here, click strengthens the fused representation, skip weakens it, and summGen
anchors it to a summary node.

Dual memories and drift (Realization of Ψ and ∆). To capture long-term asymmetries,
Walk2Pers models history as a linear combination of dual memory lanes: h(t) = ω(t)h(+,t) +
(1−ω(t))h(−,t) (ω is learnable scalar), where h(+) accumulates reinforcement signals (clicks), and
h(−) accumulates suppression signals (skips) as follows:

h(+,ti) = h(+,ti−1) +m(ti) ⊙ c
(ti)
tl ; h(–,ti) = h(–,ti−1) ⊙ (1−m(ti)) + c

(ti)
tl . (4)

In case where the action is summGen, triggering a drift vector ∆(t), h(+,ti) = h(+,ti−1) +m(ti) ⊙
∆(ti), where ∆(t) = (I−e(t−1)

tl )·e(t)tl , and m(ti) = SoftMax
(
Wh ·h(ti−1)+Wc ·c(ti)tl

)
. ∆ nudges

the preference state toward condensed representations since summarize-summGen is a stronger
positive signal. The corresponding action-gate is then applied as: f (a,ti) = AGD(ea, ti)⊙h(t) (see
Appendix E.1). The b-node embedding is computed as e(ti)b,u = tanh

(
Wb ·(tanh

(
f (a,ti)

)
⊙ e

(ti)
tl )

)
.

Geometric step decomposition. Finally, Walk2Pers models preference evolution as a directed,
structured geometric step, balancing persistence with novelty Φ(·):

ec
(t)
b,u = e

(t)
b,u +mag(t)

(
cos θ(t) · u(t−1) + sin θ(t) · o(t)

)
, (5)

where u(t−1) is the momentum axis (continuity), o(t) its orthogonal novelty axis, mag(t) the step
size, and θ(t) the rotation angle interpolating between persistence (θ≈0) and novelty (θ large). This
realizes the Φ term in & Eq. 3 (Implementation & theoretical equivalence: Appendices G G.2).

Training. The encoder is supervised via two complementary objectives. First, the next-node pre-
diction head maps the final contextualized embedding to the predicted query b-node: e

(t+1)
bq,u

=

Wnext · ec(t)b,u + bnext. Second, a position classifier enforces alignment between the contextualized

trajectory and its constituent steps: p̂
(t)
b = SoftMax(Wpos · ec(t)b,u). The joint objective combines

these two signals: Lalign = − 1
l

∑l
i=1 log p̂

(ti)
b ;Lnext = − log p̂

(t)
b ;Lenc = αLalign + (1 − α)Lnext;

α = 0.6 so as to avoid cumulative cascading of Lalign on Lnext. The alignment term ensures that each
intermediate b-node in the trajectory is recoverable from the contextualized embedding, regularizing
the walk so it respects positional consistency across steps. The next-node prediction term directly

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

trains the encoder to forecast the upcoming behavior node, making the walk predictive rather than
descriptive. Together, these losses encourage Φ (geometric step), Ψ (dual memories), and ∆ (drift)
to cooperate in producing embeddings that are both history-faithful and forward-looking.

3.3.2 DECODER: CONTEXTUALIZING USER INTENT FOR SUMMARIZATION

While the encoder (Sec. 3.3.1) is the core instantiation of the Structured Walk Hypothesis, we at-
tach the same backbone decoder of the encoder-decoder model used to generate seed embeddings,
T5-base, that consumes the contextualized query embedding ecdq,u

and generates the personalized
summary. Training optimizes a combined objective: Ldec = Average(Lgen,Lenc), where Lgen is
cross-entropy under teacher forcing and Lenc is the structured-walk encoder loss from Sec. 3.3.1.
This ensures that the encoder faithfully models user trajectories while the decoder exploits those
states to produce preference-aware summaries. We evaluate two decoder variants: T5-CA (Contex-
tualized Attention) and T5-UCA (User-aware CA). The T5-CA-Decoder contextualizes the query
document embedding edq with the latent summary intention vector (s-node) via cross-attention.
This injects summary intent but leaves the document representation agnostic of the user’s history.
T5-UCA-Decoder builds on that by gating the query document embedding with the user’s trajec-
tory state e

(tl)
q,buj

. The gating suppresses aspects aligned with h− (e.g., topics repeatedly skipped)

and amplifies aspects aligned with h+ (reinforced interests), producing a user-aware document vec-
tor. This ensures that the same document is viewed through Alice’s preference lens differently than
through Bob’s. The gated representation is then contextualized with the latent summary intent, as in
CA. While CA adapts summaries to “what this document is generally about given the latent sum-
mary signal”, UCA further adapts to “what this document means for this user given their interaction
history.” As shown in Sec. 5.2, UCA yields stronger personalization, while CA serves as a weaker
control. Full derivations of latent s-node extraction and gating functions are in Appendix G.3.

4 EVALUATION

We design the experiments to address the following research questions (RQ): RQ1: Is MDH suffi-
cient for modeling preference evolution in summarization? RQ2: Do the necessary components of
the SWH, i.e., dual memory lanes + summary-specific drift & action-conditioned geometric steps
with magnitude–orientation decomposition, yield systematic gains over MDH variants? RQ3: How
does Walk2Pers, as an instantiation of SWH, compare against specialized personalized summa-
rizers, prompt-personalized LLMs, and oracle summarizers?

4.1 EXPERIMENT SETUP

Training (& Test) Datasets. We evaluate across three corpora capturing diverse personalization
signals: (i) PENS (Ao et al., 2021), a large-scale news summarization dataset with user clicks/skips;
(ii) PersonalSum (EN) (Zhang et al., 2024), a manually curated dataset translated to English with
explicit summary requests; (iii) OpenAI-Reddit (Völske et al., 2017), where summaries are user-
rated and span diverse domains. We construct UIGs for each dataset Ttrain and slice trajectories be-
fore every (d–s) pair, yielding history τ

uj

h , query document dq , and target summary s∗q,uj
. For PENS

(T PENS-D
train ), we sample 55K training trajectories (avg. 134 d-nodes, 5 s-nodes per trajectory). For

OpenAI-Reddit (T OAI
train ), 18K training trajectories (avg. 39 d-nodes, 10 s-nodes per trajectory). For

PersonalSum-EN (T PS-EN
train ) (translated into English using M2M-100 (Fan et al., 2020)), 700 trajec-

tories (highly curated, long-horizon). The corresponding Test sets (Ttest) reflect the same structure,
with additional random skips injected (50–70 per user in PENS) to stress-test suppression memory1.

Training Setup. Walk2Pers is trained end-to-end with the joint encoder–decoder objective Ldec
for 6 epochs. Then the encoder is frozen while the decoder (including the last 6 layers of the T5
decoder) is further finetuned for 18 epochs. This ensures encoder quality is the primary driver of
downstream summarization gains. Training details are in Appendix H.2 and Table 13.

1For detailed stress test results see Appendix I.2 and I.3.
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4.2 BASELINES

A. Encoder Baselines We benchmark Walk2Pers for RQ-1 & 2 against five MDH models:

I. Short-Memory Drift (SMD). This minimal baseline captures the pure MDH stance: each new b-
node embedding is computed only from the immediate past state and the current action embedding.
No reinforcement, suppression, or geometric structure is retained. User preference evolution reduces
to a one-step drift, overwriting longer histories. Details in Appendix E.1.

II. Action-Gated Drift (AGD). This stronger MDH variant replaces the update rule of SMD with
action-specific gates. Different parameterizations are applied for click, skip, genSumm, and
summGen, allowing the model to qualitatively differentiate between actions. However, the updates
remain short-memory: past interactions vanish quickly, and no persistent reinforcement or suppres-
sion is maintained. Details in Appendix E.1.

III. Short-Memory Neural-Encoders. We also include NAML (Wu et al., 2019a), NRMS (Wu
et al., 2019b), and EBNR (Okura et al., 2017), widely used in personalized recommendation and
summarization pipelines (e.g., PENS). These models differ in mechanism. NAML employs additive
self-attention over multi-view document features, NRMS uses multi-head self-attention, and EBNR
leverages a GRU over clicked entities. However, all collapse long histories into compressed short-
memory embeddings, consistent with MDH.

These baselines constitute strong MDH realizations for the next-b-node prediction task. The
candidate set contains 151 b-nodes (including the target). We report average AUC, MRR, and
nDCG@5/10 over the PENS test set (metric definitions in Appendix B), with full baseline for-
malizations in Appendix E.1. These metrics directly measure a model’s ability to predict real user
behavior because each ground-truth b-node corresponds to an actual user action (click, skip,
summarize) and, for <sumGen, s-node> pairs, to a human-written summary. Hence, RQ1/2
evaluate behavioral faithfulness.

B. Personalized Summarizers To validate the efficacy of Walk2Pers in terms of the downstream
personalized summarization task, we also compare against SOTA personalized summarizers.

I. Neural-Encoder Augmented Summarizers. For RQ-3, we compare against three SOTA per-
sonalized summarizers: PENS (Ao et al., 2021), GTP (Song et al., 2023), and Signature-Phrase (Cai
et al., 2023). PENS pairs a pointer generator with external user encoders; GTP integrates the TrRMIo
encoder internally. Within PENS, we use NAML (Wu et al., 2019a) (T-1), EBNR (Okura et al., 2017)
(T-1), and NRMS (Wu et al., 2019b) (T-2), with injection (T-x) details in Appendix E.2.1. TrRMIo
is an integrated full-sequence Transformer, while Signature-Phrase models user-specific keyphrases.
All baselines are finetuned on T P

train under the same regime as Walk2Pers.

II. LLMs-as-Summarizers. To extend RQ-3, we evaluate six frozen instruction-tuned
LLMs—Gemini-2.5-Flash, Qwen3-235B (Team, 2025), Mistral-7B-Instruct (Jiang et al., 2023),
DeepSeek-R1-14B (DeepSeek-AI et al., 2025), LLaMA-2-13B-Chat-HF (Touvron et al., 2023), and
Zephyr-7B (Tunstall et al., 2023). Gemini and Qwen are included for their SOTA LongBench per-
formance. We use the best 0-shot and 2-shot prompting recipes from Patel et al. (2024) and apply
prompt-chaining for DeepSeek-R1-14B and Mistral-7B-Instruct. Prompt formats are in Appendix J.

III. Non-Personalized Summarizers as Oracles. As part of RQ-3, we evaluate three strong non-
personalized summarizers, BigBird-Pegasus (Zaheer et al., 2020), SimCLS (Liu & Liu, 2021), and
T5-base (Raffel et al., 2020), under the “oracle” protocol of Vansh et al. (2023). We replace each
query document’s title with the user’s gold-reference title to inject the true preference cue. This
assesses whether frozen models can exploit the cues to produce seemingly personalized outputs.

5 RESULTS AND OBSERVATIONS

We present results w.r.t the three RQs (Section 4). All results have a significance of p < 0.05.

5.1 WALK2PERS-ENCODER PREDICTION ACCURACY

RQ1 — Are MDH models sufficient? We observe that MDH baselines fail to anticipate user
trajectories reliably. Short-memory neural encoders (NAML/NRMS/EBNR) hover at chance AUC

7
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Table 2: RQ-1/2: Next b-node Prediction (PENS Dataset): Details in Table 14; Cross-task trans-
ferability on Sequential News Recommendation (MIND Dataset): App I.4, Table 17.

Category Models AUC MRR nDCG@5 nDCG@10

MDH based

NAML 0.498 0.001 0.0004 0.0007
NRMS 0.499 0.0009 0.0002 0.0004
EBNR 0.499 0.0009 0.0003 0.0005
SMD (ours) 0.415 0.094 0.052 0.065
AGD (ours) 0.446 0.113 0.069 0.073

SWH based Walk2Pers-Encoder w/o Geometric Step (ours) 0.474 0.121 0.082 0.132
Walk2Pers-Encoder Full (ours) 0.532 0.23 0.198 0.249

Table 3: (RQ-3:) Walk2Pers-Encoder Validation: Personalized summarization performance
(w.r.t PSE-JSD/SU-4/METEOR) comparison with SOTA baselines on the PENS dataset.

Category Model PSE-JSD PSE-SU4 PSE-METEOR

Oracle Summarizers (via Cue Injection)
BigbirdPegasus 0.253 0.143 0.168
SimCLS 0.157 0.032 0.116
T5-base 0.073 0.011 0.022

LLMs (w/ 0-shot user history)

LLaMA-13B 0.187 0.069 0.078
Zephyr-7B 0.211 0.081 0.089
Mistral-7B 0.212 0.082 0.098
DeepSeek-14B 0.152 0.078 0.084

LLMs (w/ 2-shot user history)

LLaMA-13B 0.227 0.078 0.081
Zephyr-7B 0.231 0.085 0.086
Mistral-7B 0.235 0.087 0.084
DeepSeek-14B 0.248 0.094 0.097
Qwen-3-235B 0.105 0.082 0.082
Gemini-2.5-Flash 0.222 0.104 0.124

LLMs (Prompt-chaining) Mistral-7B 0.072 0.026 0.023
DeepSeek-14B 0.078 0.028 0.024

Fine-tuned Specialized (Personalized) ∼MDH

PENS-NAML-T1 0.021 0.014 0.016
PENS-EBNR-T1 0.015 0.010 0.011
PENS-EBNR-T2 0.011 0.008 0.009
PENS-NRMS-T1 0.015 0.011 0.011
PENS-NRMS-T2 0.008 0.007 0.007
GTP 0.024 0.017 0.019
SP-Individual 0.017 0.015 0.014

Markov Drift (MDH) Encoders (ours) SMD + T5-UCA-Decoder 0.143 0.136 0.107
AGD + T5-UCA-Decoder 0.286 0.214 0.248

Walk2Pers-Encoders (∼ SWH) (ours)
– w/o Geometric Step + T5-UCA-Decoder 0.306 0.334 0.321
– Full + T5-CA-Decoder 0.418 0.341 0.422
– Full + T5-UCA-Decoder 0.452 0.383 0.449

(≈ 0.5) and collapse on rank metrics (MRR ≤ 0.001, nDCG ≤ 5×10−4), showing that compressed
hidden states carry little predictive signal. Among controlled variants, action gating helps (AGD >
SMD, e.g., MRR 0.113 vs. 0.094), but overall accuracy remains low, as past signals vanish quickly
and reinforcement/suppression is absent.

RQ2 — Do SWH components yield systematic gains? We find that adding dual memories
and drift (Walk2Pers-Enc. w/o Geo) already surpasses the best baseline AGD (AUC +0.028,
nDCG@10 +0.059). Geometric magnitude–orientation step yields large additional jumps (AGD:
AUC +0.086/+ 0.117/ + 0.176 w.r.t AUC/MRR/nDCG@5/10). These results confirm that mem-
ory lanes preserve reinforcement/suppression, while geometric steps capture continuity vs. novelty.

5.2 RQ-3: WALK2PERS END-TO-END SUMMARIZATION PERFORMANCE

To address RQ3, we benchmark Walk2Pers against the strong summarizer baselines as described
in Section 4.2. Evaluation is conducted on PENS and OpenAI (Reddit) datasets and further validated
using the PersonalSumm dataset using the three PerSEval metrics (PSE-JSD/SU4/METEOR), which
correlate strongly with human preference ratings (Appendix A.2.1).

Comparison with Specialized Personalized Summarizers. We see that Walk2Pers consistently
outperform all specialized models (Table 3). While SOTA frameworks like GTP and SP yield PSE
scores in the 0.017–0.024 range, Walk2Pers achieves 0.452/0.383/0.449 (JSD/SU4/METEOR),
corresponding to average absolute gains of 0.41 over these fine-tuned MDH instantiations. This
highlights that explicit geometric-step modeling with dual memory lanes captures preference evolu-
tion more effectively than both RNN- and Transformer-based encoders.

Comparison with LLMs. LLMs improve when conditioned with user histories. However, they
remain substantially below Walk2Pers. For instance, the best two-shot configuration (DeepSeek-
14B) is outperformed by Walk2Pers by margins of 0.20/0.29/0.35. On average, Walk2Pers
yields gains of 0.22 across all LLMs (including long context models Gemini and Qwen3). Prompt-
chaining is even less effective, falling behind even MDH baselines. Furthermore, evaluation on the
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Table 4: (RQ-3) Cross-domain generalizability on OpenAI (Reddit)
Category Model PSE-JSD PSE-SU4 PSE-METEOR

LLMs (w/ 2-shot user history)

LLaMA-13B 0.232 0.093 0.107
Zephyr-7B 0.214 0.087 0.104
Mistral-7B 0.226 0.088 0.103
DeepSeek-14B 0.243 0.095 0.109

Walk2Pers Full + T5-UCA-Decoder 0.339 0.303 0.350

Table 5: Personalized Summarization Performance w.r.t Human-Judgment Ratings: Avg. in-
terpolated rating (w/ RMSD dist. from gold reference) on OpenAI (Reddit) dataset

Category Model RMSD (generated vs. gold reference) HJ Rating

Fine-tuned Specialized (Personalized) ∼MDH

PENS+EBNR-T1 0.932 2
PENS+EBNR-T2 0.938 2
PENS+NAML-T1 0.926 2
PENS+NRMS-T1 0.911 2
PENS+NRMS-T2 0.919 2
GTP+TrRMIo 0.939 2
SP 0.881 3

Best-forming LLMs (w/ 2-shot user history) Mistral 0.791 5
Gemini 0.782 5
DeepSeek 0.779 5

T5-UCA-Decoder + MDH Encoders SMD 0.836 4
AGD 0.701 6

SWH w/ T5-UCA-Decoder Walk2Pers w/o Geometric Step 0.461 7
Walk2Pers (Full) 0.396 7

OpenAI (Reddit) dataset (Table 4) confirms that Walk2Pers indicates cross-domain general-
ization, outperforming the strongest LLM baseline by 0.09/0.20/0.24 across JSD/SU4/METEOR.
We also evaluate Walk2Pers on the translated PersonalSum dataset and observe scores of
0.31/0.28/0.3 w.r.t. PSE-JSD/SU4/METEOR, underscoring the efficacy in datasets tailored for
personalized summarization. These results suggest that while prompting improves LLMs, it cannot
substitute a dedicated action-aware encoder that explicitly models user trajectories.

Comparison with Oracle Summarizers. We observe that oracle summarizers, augmented with
gold preference cues, fall short. BigBird-Pegasus, the strongest oracle, is outperformed by a margin
of 0.20/0.24/0.28. Relative to SimCLS and T5-base, the margins are even larger (0.29/0.35/0.43
and 0.43/0.37/0.38, resp.). This underscores that Walk2Pers utilizes evolving preferences better
than the best-possible performance of non-personalized architectures.

5.3 HUMAN-RATING GROUNDED EVALUATION

While RQ1/2 provide behavioral faithfulness against human trajectories, as a part of RQ-3, we
complement this by assessing how generated summaries align with what users prefer. Using the
multi-domain non-news OpenAI-Reddit dataset, which contains multiple (5781) human-rated sum-
maries of 9 models for 642 query documents, we identify 1042 top-rated (i.e., 7) one per user as
the human-preferred reference. We then measure the SBert-embedding-space RMSD-divergence of
the model-generated summaries from the reference and create a ground rating-to-RMSD-range map
table, where each rating row has its corresponding average min-max range. Using this table, we
interpolate the HJ-rating of our baseline models as in Table 5. We observe that both full and w/o ge-
ometric step variants (trained on OpenAI-train) of Walk2Persachieve an average rating of 7 out of
7, while MDH-models are significantly underperforming, with the exception of AGD. Interpolation
computation details in Appendix I.1. We also report the standard accuracy metrics-based evaluation
in Table 18.

6 CONCLUSION

In this paper, we contrast the Markovian Drift Hypothesis (MDH) with our proposed Structured
Walk Hypothesis (SWH), which models preference evolution as an action-conditioned geometric
walk with memory. Walk2Pers, our proposed instantiation of SWH, encodes trajectories through
action-aware b-cells, dual memory lanes, and magnitude–orientation steps, balancing continuity
with novelty. Experiments show that the next behavior (b-node) prediction, the primary test of SWH,
outperforms MDH baselines. At the same time, downstream personalized summarization confirms
that stronger preference modeling yields more user-aligned outputs. While limited by fixed memory
kernels and reliance on limited noisy logs, Walk2Pers demonstrates that preference evolution is
better framed as SWH than as shallow MDH.

9
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CODE OF ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics2. In conducting this work, we: (i) contributed to
society and human well-being by advancing methods for trustworthy personalized summarization;
(ii) upheld high standards of scientific excellence through transparent reporting, reproducibility,
and acknowledgement of prior work; (iii) avoided harm by ensuring that our methods were tested
responsibly, with no foreseeable misuse to compromise safety, security, or privacy; (iv) were honest,
trustworthy, and transparent in disclosing our methods, limitations, and potential risks; (v) acted
fairly and without discrimination, considering inclusivity in data and evaluation; (vi) respected the
work and rights of others via proper citation and intellectual property compliance; and (vii) respected
privacy by not using personally identifiable or sensitive information in our datasets. (viii) used LLMs
(GPT-5) limited to structural changes (paraphrasing and summarization of our own content, which
has not been used verbatim in most of the paper), table format corrections, and extensive literature
review (using Deep Research). We have not used LLM for any content generation purpose.

REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. All details of the pro-
posed Walk2Pers framework, including the encoder and decoder variants, training objectives, and
evaluation protocols, are provided in Sections 3.3 and 4. Hyperparameter choices, model configu-
rations, and training details are documented in Appendix H.2 and Table 13. Dataset descriptions,
preprocessing steps, and evaluation metrics (PSE-JSD, SU-4, METEOR) are clearly specified in
Section 2, Appendices C, A.2.1, and B. We also provide ablation studies (Tables 2 & 3) to demon-
strate robustness to design choices. To facilitate independent verification, we include a zip file of
our source code and scripts in the supplementary material, which allows reproduction of all reported
experiments.
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A MEASURING DEGREE-OF-PERSONALIZATION

A.1 MOTIVATION

Vansh et al. (2023) proposed EGISES– a metric to measure the degree of insensitivity-to-
subjectivity for relative benchmarking of how much models lack personalization (i.e., a lower
score is better within the range [0, 1]) instead of assigning an absolute goodness score. Based on
this notion, they defined (summary-level) “deviation” of a model Mθ,u(later termed as Degree-of-
Responsiveness (DEGRESS) by Dasgupta et al. (2024)) as follows:

Summary-level DEGRESS. Given a document di and a user-profile uij (user j’s ex-
pected summary), the summary-level responsiveness of a personalized model Mθ,u, (i.e.,
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DEGRESS(suij
|(di, uij))), is defined as the proportional divergence between model-generated sum-

mary suij
of di for j-th user from other user-specific summary versions w.r.t a corresponding diver-

gence of uij from the other user-profiles.

DEGRESS(suij |(di, uij)) is formulated as:

DEGRESS(suij |(di, uij)) =
1

|Udi |

|Udi
|∑

k=1

min(Xijk, Yijk) + ϵ

max(Xijk, Yijk) + ϵ

Xijk =
exp(w(uij |uik))

|Udi
|∑

l=1

exp(w(uij |uil))

· σ(uij , uik); Yijk =
exp(w(suij |suik ))

|Udi
|∑

l=1

exp(w(suij |suil))

· σ(suij , suik )

w(uij |uik) =
σ(uij , uik)

σ(uij , di)
; w(suij |suik ) =

σ(suij , suik )

σ(suij , di)

(6)

Here, |D| is the total number of documents in the evaluation dataset, |U| is the total number of
users who created gold-reference summaries that reflect their expected summaries (and thereby,
their subjective preferences), and |Udi

| (= |Sdi
|) is the number of users who created gold-references

for document di. w is the divergence of the model-generated summary suij
(and the correspond-

ing expected summary uij) from document di itself in comparison to all the other versions. It
helps to determine how much percentage (therefore, the softmax function) of the divergence (i.e.,
σ(suij , suik

) should be considered for the calculation of DEGRESS. If suij is farther than suik
w.r.t di

then DEGRESS(suij |(di, uij)) < DEGRESS(suik
|(di, uik)), implying that Mθ,u is more responsive

to the k-th reader. A lower value of DEGRESS(suij |(di, uij)) indicates that while reader-profiles
are different, the generated summary suij

is very similar to other reader-specific summaries (or vice
versa), and hence, is not responsive at the summary-level. The system-level DEGRESS and EGISES
have been formulated as follows:

DEGRESS(Mθ,u) =

|D|∑
i=1

|Udi
|∑

j=1
DEGRESS(suij

|(di,uij))

|Udi
|

|D| (7)

A.2 PERSEVAL : FORMULATION

As can be noted, the DEGRESS formualtion does not enforce any penalty on accuracy drop. To
rectify this Dasgupta et al. (2024) proposed PerSEval. The design of PerSEval had two key
goals: (i) to penalize models for poor accuracy, while simultaneously (ii) ensuring that the evaluation
of responsiveness (i.e., DEGRESS) is not overshadowed by high accuracy. This penalty is referred to
as the Effective DEGRESS Penalty Factor (EDP). If a model achieves 100% accuracy, no EDP will
be applied, and the PerSEval score will equal the DEGRESS score. The following formulatiown
of PerSEval guarantees these properties:

PerSEval(suij |(di, uij)) = DEGRESS(suij |(di, uij))× EDP(suij |(di, uij))

where, EDP(suij |(di, uij)) = 1− 1

1 + 10α≥3 · exp
(
−(10β≥1 · DGP(suij |(di, uij)))

) ,
DGP(suij |(di, uij)) = ADP(sui* |(di, ui*)) + ACP(suij |(di, uij))

(8)

Here, ADP is a document-level penalty due to a drop in accuracy for the best-performance of the
model (i.e., the model-generated summary of document di (suij ) is closest to the corresponding
reader’s expected summary uij). ADP is formulated as follows:

ADP(sui* |(di, ui*)) =
1

1 + 10γ≥4 · exp
(
−10 · σ∗(sui• ,ui•)|di−0

(1−σ∗(sui• ,ui•)|di)+ϵ

)
where, σ∗(sui• , ui•)|di =

|Udi
|

min
j=1

σ(suij , uij)|di

and {ϵ : An infinitesimally small number ∈ (0, 1)}

(9)
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ADP ensures that even if the DEGRESS score is acceptable, a penalty due to accuracy drop can
still be imposed as a part of EDP. ADP, however, fails to address the scenario where the best-case
scenario is acceptable (i.e., accuracy is fairly high) but is rather an outlier case – i.e., for most of
the other model-generated summary versions, there is a considerable accuracy drop. To address
this issue, the second penalty component within EDP called Accuracy-inconsistency Penalty (ACP)
was introduced which evaluates whether a model consistently performs w.r.t accuracy for a specific
generated summary compared to its average performance. ACPis formulated as:

ACP(suij |(di, uij)) =
1

1 + 10γ≥4 · exp
(
−10 ·

σ(suij
,uij)|di−σ∗(sui• ,ui•)|di

(σ(sui• ,ui•)|di−σ∗(sui• ,ui•)|di)+ϵ

)
where, σ(sui• , ui•)|di =

1

|Udi |

|Udi
|∑

j=1

σ(suij , uij)|di

(10)

The system-level PerSEval score is as follows:

PerSEval(Mθ,u) =

|D|∑
i=1

|Udi
|∑

j=1
PerSEval(suij

|(di,uij))

|Udi
|

|D| (11)

The system-level PerSEval ∈ [0, 1] and is bounded by the system-level DEGRESS score.

A.2.1 PSE METRICS

PerSEval-RG-SU4 (or PSE-SU4) is the PerSEval variant that uses ROUGE-SU4 (Lin, 2004)
as a distance metric (i.e., σ) in the PerSEval formula. PSE-SU4 has been reported to have high
human-judgment correlation (Pearson’s r: 0.6; Spearman’s ρ: 0.6; Kendall’s τ : 0.51) Dasgupta et al.
(2024). The ROUGE-SU4 score is based on skip-bigrams, which are pairs of words that appear in
the same order within a sentence but can have up to four other words between them. The formula is
as follows:

For a given generated summary G and reference summary R, the ROUGE-SU4 score is calculated
as:

Skip-Bigram Recall (RSU4):

RSU4 =
Count of matching skip-bigrams between G and R

Total skip-bigrams in R

Skip-Bigram Precision (PSU4):

PSU4 =
Count of matching skip-bigrams between G and R

Total skip-bigrams in G

F1 Score (F1SU4): The F1 score is the harmonic mean of precision and recall:

F1SU4 =
2× PSU4 ×RSU4

PSU4 +RSU4

Where:

• A skip-bigram consists of two words in the correct order but with zero to four words
skipped in between.

• Matching skip-bigrams are counted between the generated summary and the reference sum-
mary.

The final ROUGE-SU4 score is typically reported as the F1 measure, balancing precision and recall.
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PerSEval-JSD (or PSE-JSD) is the PerSEval variant that uses the Jensen–Shannon Diver-
gence (JSD) (Menéndez et al., 1997) as the distance metric σ in the PerSEval formula. JSD is a
smoothed and symmetric version of Kullback–Leibler divergence between the unigram (or n-gram)
distributions of the generated summary G and reference summary R. Its formulation is:

JSD(P ∥Q) = 1
2
KL

(
P
∥∥M)

+ 1
2
KL

(
Q
∥∥M)

where M = 1
2
(P +Q) (12)

here, P and Q are the normalized n-gram probability distributions of G and R respectively, and

KL(P∥M) =
∑
x

P (x) log
P (x)

M(x)
.

We then define the divergence as: σJSD(G,R) = JSD
(
PG∥PR

)
and plug σJSD into all occurrences

of σ in Equations equation 6–equation 11 to obtain PSE-JSD.

PerSEval-Meteor (or PSE-Meteor) uses the METEOR score Banerjee & Lavie (2005); Lavie &
Agarwal (2007) as the similarity metric; we convert it into a distance by 1−METEOR. METEOR
aligns unigrams (with synonymy, stem, and paraphrase matching) and combines precision, recall,
and a fragmentation penalty. Its formulation is:

P =
|matched unigrams|
|unigrams(G)|

, R =
|matched unigrams|
|unigrams(R)|

, (13)

Fα =
P R

αP + (1− α)R
, α ∈ [0, 1], (14)

Penalty = γ

(
#chunks

|matched unigrams|

)β

, γ, β > 0, (15)

METEOR(G,R) = (1− Penalty)× Fα. (16)

We then set σMeteor(G,R) = 1 − METEOR(G,R), and substitute σMeteor for σ in Equations
equation 6–equation 11 to yield PSE-Meteor.

B PREDICTION METRICS

In this section, we provide definitions of the evaluation metrics used in our experiments: AUC, MRR,
and nDCG@k. Each metric captures a complementary aspect of ranking quality when comparing
the predicted next-step positions against the ground-truth target.

Area Under Curve (AUC) AUC measures how well the model ranks the ground-truth item rela-
tive to all other candidates. Formally, if r is the rank (1-based) of the ground-truth item among C
candidates, we define:

AUC =
C − r

C − 1
.

This normalizes the rank to the interval [0, 1], where higher values indicate that the true item is
ranked closer to the top. Intuitively, AUC reflects the overall discriminative ability of the model.

Mean Reciprocal Rank (MRR) MRR emphasizes how highly the correct item appears in the
ranked list. Given the rank r of the ground-truth item, its reciprocal rank is:

RR =
1

r
.

MRR is the average of RR values across all queries. MRR rewards systems that consistently place
the true item very close to the top of the ranking.
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Figure 2: Walk2Pers-Encoder: The b-cell generates a b-node embedding e
(ti)
b,u at timestep ti

using the tail-node embedding e
(ti)
tl , the action embedding etia , and the history h(ti−1) from the

previous tail-cell content cti−1

tl (inside the corresponding b-cell); cti−1

tl updates the dual memory
lanes (h+, h−) that persists positive (click, summarize) and negative (skip) memory resp. to create a
mixed history h(ti−1) which in turn is modulated by a action-specific gate f (a,ti) and a conditional
summGen-action-triggered drift (∆) before fusing with the tail-node e

(ti)
tl ; the generated e

(ti)
b,u then

goes through a geometric-step decomposer to re-orient the embedding w.r.t continuity vs. novelty.

Normalized Discounted Cumulative Gain (nDCG@k) nDCG@k evaluates the quality of the
top-k predictions, with stronger weight on higher-ranked positions. The gain of a relevant item at
rank r is discounted logarithmically:

DCG@k =

k∑
i=1

I{ri = target}
log2(1 + i)

,

where I{·} is an indicator function. Since there is only one relevant target per query, DCG@k
reduces to 1

log2(1+r) if the target appears within the top-k, and 0 otherwise. Normalization divides
by the best possible score (which is 1 if the target is at rank 1). Thus:

nDCG@k =

{
1

log2(1+r) , if r ≤ k,

0, otherwise.

nDCG@k highlights whether the correct prediction is placed near the very top of the model’s can-
didate list.

These three metrics together provide a comprehensive evaluation: AUC captures global rank dis-
crimination, MRR emphasizes early precision, and nDCG@k measures the quality of the truncated
top-k predictions.

C DATASETS

C.1 PENS DATASET

The PENS dataset (Ao et al., 2021) includes 113,762 news articles across 15 topics. Each article
contains an ID, title (avg. 10.5 words), body (avg. 549 words), and category, with titles linked to
WikiData entities. The dataset also includes user interaction data, such as impressions and click
behaviors, combined with news bodies and headlines from the MIND dataset Wu et al. (2020)

PENS training set. For training, 500k user-news impressions were sampled from June 13 to July
3, 2019. Each log records user interaction as [uID, tmp, clkNews, uclkNews, clkedHis], where
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Table 6: MS/CAS PENS Dataset and Interaction Statistics
Characteristic Dimension Value

Article Stats

General Stats

# Topics 15
# Articles 113,762
Avg. Title Length 10.5 words
Avg. Body Length 549 words

Train Dataset Statistics

Interaction Data

# User–News Impressions (anon.) 500,000
# Users (anon.) 445,000
Time Period June 13–July 3, 2019
User Interaction Fields [uID, tmp, clkNews, uclkNews, clkedHis]

Test Dataset Statistics

Participant Stats

# Participants 103
Participant Category English-speaking college students
# Articles 3,940
Browsed Headlines (Click + Skip) 1,000 per participant
Min. Interested (Click) Headlines 50 per participant

Gold Reference Summarized Article Bodies 200 per participant
(Participant-written Headlines) Avg. Summaries per Article 4

Figure 3: Stages of creation of testing dataset consisting of personalized headlines

‘clkNews’ and ‘uclkNews’ represent clicked and unclicked news, and ‘clkedHis’ refers to the user’s
prior clicked articles, sorted by click time. The training data for Walk2Pers, as discussed in
Section 4.1, shows high preference shift. This inherently supports that personalizing UX is strongly
dependent on the temporal dynamics of the user. The stats are in the table 6.

PENS test set. To create an offline testbed, 103 English-speaking students reviewed 1,000 head-
lines in stage-1, and then selected 50 articles, and created preferred headlines (i.e., expected gold-
reference summaries) for 200 unseen articles in stage-2 (see Figure 3). Each article was reviewed
by four participants. Editors checked for factual accuracy, discarding incorrect headlines. The high-
quality remaining headlines serve as personalized gold-standard references in the PENS dataset.

C.2 OPENAI (REDDIT) DATASET

The OpenAI (Reddit) dataset (Völske et al., 2017) comprises 123,169 Reddit posts collected from 29
distinct subreddits. This dataset provides both OpenAI-generated and human-written summaries and
is organized into two splits: Comparisons, used for training and validation, and Axis, designated for
validation and testing. A curated subset of 1,038 posts was processed by 13 different summarization
policies, resulting in the generation of 7,713 summaries. These summaries underwent evaluation
by 64 annotators who rated paired summaries based on selection preferences, confidence in their
ratings, and dimensions such as accuracy, coherence, coverage, and overall quality. Notably, unlike
datasets like PENS, these summaries are not linked to individual annotators or their reading histories,
which means they lack elements of personalization and contextual user information. Stats are in
Table 7
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Table 7: OpenAI TL;DR (Reddit) Dataset Statistics
Characteristic Dimension Value

Dataset Overview

General Stats

# Reddit Posts 123,169
# Subreddits (Domains) 29
Policy-Generated Summaries 115,579
Human-Written Summaries Available

Train + Validation Dataset Statistics

Article Stats

# Reddit Posts 21,111
# Policies 81
# Generated Summaries 107,866
# Annotators 76
# Summary-Pairs Rated 64,832

Validation Subset Statistics

Subset Details

# Reddit Posts 1,038
# Policies 13
# Generated Summaries 7,713
# Annotators 32

Test Dataset (RLHF-Tuned Policies) Statistics

Evaluation Stats
# Evaluated Policies 4
# Evaluated Reddit Posts 57 (out of 1,038)
Evaluation Method Indirect Benchmarking

Annotation and Feedback

Feedback Collection

Rating Scale 1–7
Confidence Scale 1–9
Avg. Ratings per Annotator 1,176
Annotation Format Summary-Pairs Selection

Figure 4: UIG Construction: Construction of User-Interaction Graph from preference datasets.

C.3 PERSONALSUM DATASET

The PersonalSum dataset (Zhang et al., 2024) is a crowd-annotated benchmark designed for person-
alized summarization. It consists of 441 Norwegian news articles across diverse topics and a total of
1,099 human-written summaries contributed by 39 unique annotators. Each article is paired with a
GPT-4-generated generic summary (post-edited by students for fluency and factuality), and on aver-
age, 3 personalized summaries, written by crowdworkers to reflect their individual preferences and
topical interests. Annotators also highlight the source sentences from the article that informed their
summaries, adding explicit grounding for each summary segment.

PersonalSum annotation process. The dataset was constructed in three stages. In Stage-1, a GPT-
4-generated generic summary was created for each article, refined by human editors, and tagged with
sentence-level source highlights. In Stage-2, crowdworkers were recruited to write summaries from
a personal perspective. Each worker completed comprehension questions and highlighted source
text, ensuring fidelity to the original article. In Stage-3, automatic quality checks using GPT-3.5-
based scoring (evaluating coherence, relevance, and consistency) filtered poor-quality annotations.
Only those scoring above a threshold were retained. The final dataset comprises high-quality user-
personalized summaries with source alignments and user metadata anonymized for privacy.

C.4 UIG CONSTRUCTION

To construct a User-Interaction Graph (UIG) from preference datasets, we distinguish between two
types: (i) trajectory-based datasets like PENS Ao et al. (2021), which directly encode user inter-
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Table 8: PersonalSum Dataset Statistics
Characteristic Dimension Value

Dataset Overview

General Stats

# Articles 441
# Annotators 39
# Personalized Summaries 1,099
Avg. Personalized Summaries per Article ∼3

Summary Types

Summary Stats
GPT-4 Generic Summaries (Post-edited) 441
Human-Personalized Summaries 1,099
Avg. Summaries per Annotator ∼28

Annotation Process

Stages

Stage-1: Generic Summary Creation GPT-4→ Human Editing + Highlights
Stage-2: Personalized Summarization Crowdworkers + Source Highlighting
Stage-3: Quality Filtering GPT-3.5 Scoring (Coherence, Relevance, Consistency)
Final Dataset High-quality, aligned summaries with anonymized metadata

Annotation Details

Feedback and Grounding
Source Sentence Highlighting Yes
Comprehension Questions Yes
User Metadata Anonymized

Table 9: User-Interaction Graph Statistics for our T PENS-D
train , T OAI

train and T PS-EN
train .

Characteristic T PENS-D
train T OAI

train T PS-EN
train

# u-nodes (trajectories) 55,000 18,000 700
# d-nodes per trajectory 134 39 17
# s-nodes per trajectory 15 12 4
Average trajectory length 143 47 23
# Max. trajectory length 200 50 32
# Min. trajectory length 5 25 7
Rate of Topic Shift 0.77 0.48 0.41

actions, and (ii) feedback-based datasets like OpenAI-Reddit Völske et al. (2017), which lack user
trajectories but contain document nodes (d-nodes), model-generated summaries (s-nodes), and sub-
jective user feedback (e.g., ratings with confidence scores). For PENS-style datasets, we first build a
trajectory pool T P using click and skip interactions (e.g., clkNews and uclkNews), but this yields an
incomplete user profile due to the absence of personalized s-nodes. To address this, we augment T P

with s-nodes from the test set by inserting summarize and summGen edges at the appropriate time
steps, resulting in a derived pool T P-D. For OpenAI-style datasets, we infer preference sequences by
classifying d-nodes as clicked if any associated system-generated summary received a rating above
a threshold (i.e., greater than equals to 6 out of 9), then selecting the highest-rated summary as a
surrogate s-node. The UIG construction algorithm is described in Algorithm 1.

D THEORETICAL ANALYSIS: SWH STRICTLY GENERALIZES MDH

We provide formal derivations showing that the Structured Walk Hypothesis (SWH) strictly gener-
alizes the Markovian Drift Hypothesis (MDH).

Lemma D.1 (Reduction: SWH recovers MDH). For any MDH update of the form

e
(t+1)
b,u = f(e

(t)
b,u, a

(t), q) + ϵ(t), ϵ(t) ∼ N (0,Σ(a(t))),

there exists a parameter setting of SWH (Eq. 3) that reproduces it.

Proof. Set Ψ ≡ 0 and δ ≡ 0. The increment under MDH is ∆e(t) = f(e
(t)
b,u, a

(t), q) − e
(t)
b,u. We

can select u(t) = ∆e(t)/∥∆e(t)∥, any o(t) ⊥ u(t), and set mag(a(t)) to mag(a(t)) = ∥∆e(t)∥,
θ(a(t)) = 0. Then Φ = ∆e(t), and Eq. 3 collapses to the MDH update. Noise ϵ(t) is matched by
sampling mag or adding a Gaussian head tied to a(t).

Corollary D.2 (MDH variants as special cases). The following well-known models are recovered as
degenerate cases of SWH:
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Algorithm 1 UIG Construction
0: function CONSTRUCT UIG(train, test data, type)
1: Initialize TPENS, TOAI ← ∅
2: for each user u in train data do
3: Initialize τu ← ∅
4: for each interaction in u’s data do
5: if type = PENS then
6: Map to d-node with a click/skip edge based on interaction
7: else
8: Map to d-node with click/skip edge based on rating
9: if rating confidence = max then

10: Map to d-node with gensum, and s-node with sumgen edge
11: end if
12: end if
13: Append mapped d-node to τu

14: end for
15: Add τu to TPENS or TOAI based on type
16: end for
17: if type = PENS then
18: for τu in TPENS do
19: Retrieve and insert s-nodes from test data using genSumm/sumgen edges
20: end for
21: return T PENS-D ← TPENS
22: else
23: return TOAI
24: end if
24: end function=0

• Pure Random Walk (PRW): mag = 0, Ψ = 0, δ = 0.

• Action-aware Random Walk (ARW): Same as PRW, but with action-conditioned noise ϵ(t) ∼
N
(
0,Σ(a(t))

)
.

• Random Walk with Restart (RWR): Tong et al. (2006) proposed this popular diffusion model
where, at each step, the walk either (i) follows the graph transition with probability (1−α) or (ii)
“restarts” to a fixed seed distribution q with probability α. This ensures the walk remains centered
around the most recent interaction and does not drift arbitrarily far. In our SWH framework, this
corresponds to choosing Φ = α (q − e

(t)
b,u) with θ = 0 and α ∈ (0, 1).

Lemma D.3 (Short-memory encoders are contained). Any continuous short-memory update
f̃(e

(t)
b,u, a

(t)) (e.g., GRU, attention block) is realizable by SWH with Ψ = δ = 0, since Φ =

f̃(e
(t)
b,u, a

(t))− e
(t)
b,u.

Theorem D.4 (Strict Generalization). SWH strictly generalizes MDH:

1. Every MDH update is realizable by SWH (Lemmas D.1–D.2).

2. There exist SWH updates that no MDH update can reproduce.

Proof. (i) follows from the lemmas. (ii) Consider two historiesH1,H2 with identical (e(t)b,u, a
(t)) but

distinct memories (h+
t , h

−
t ). Eq. 3 yields increments Φ+Ψ(h+

t , h
−
t )+ δ and Φ+Ψ(h′+

t , h′−
t )+ δ,

which differ. Since MDH is first-order Markov in (e
(t)
b,u, a

(t), q), it cannot separate H1 from H2.
Thus SWH has strictly greater expressivity.

Corollary D.5 (Non-Markovianity from dual memory). If Ψ aggregates asymmetric signals over
multiple timesteps, the resulting process is non-Markovian with respect to the pair (e(t)b,u, a

(t)), and
hence lies outside the scope of MDH.
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Table 10: Encoder Models are Markovian Drifters: Walk2Pers uniquely integrates all aspects
of SWH; ∗history capped by context length; no persistent memory across examples.

Models History Memory Action Conditioning Explicit Step Long-term Persistent Memory Interpretability
Oracles (BigBird-Pegasus, SimCLS, T5-base) ✗ ✗ ✗ (gold injected as cues) ✗ ✗ ✗
LLMs (Zephyr, Mistral, LLaMA-2, DeepSeek) ✓ (injected in prompt) ✗ ✗∗ ✗ ✗ ✗
PRW ✓ ✗ ✗ ✗ ✗ ✗
SMD (Short-Memory Drift) (ours) ✓ ✗ ✗ ✗ ✗ ✗
ARW ✓ ✗ ✓ ✗ ✗ ✗
RWR / D-RDW ✓ ✗ ✓ ✗ ✗ ✗
AGD (Action-Gated Drift) (ours) ✓ ✗ ✓ ✗ ✗ ✗
NAML ✓ ✓(short) ✓ ✗ ✗ ✗
NRMS ✓ ✓(short) ✓ ✗ ✗ ✗
EBNR ✓ ✓(short) ✓ ✗ ✗ ✗
GTP (w/ TrRMIo) ✓ ✓(injected short) ✓ ✗ ✗ ✗
SP (Signature-Phrase) ✓ ✓(phrases) ✓ ✗ ✗ ✗

Walk2Pers (ours) ✓ ✓(dual) ✓ ✓ ✓ ✓

Proof Sketch. Under MDH (Eq. 1), the next state depends only on the current preference embedding
e
(t)
b,u and action a(t). Thus two different histories H1 and H2 that lead to the same (e

(t)
b,u, a

(t)) are
indistinguishable. In contrast, SWH retains separate reinforcement and suppression traces via dual
memories (h+

t , h
−
t ). IfH1 contains repeated clicks on climate policy andH2 contains repeated skips

of celebrity news, both may yield the same e(t)b,u, although (h+
t , h

−
t ) differ. Consequently, Ψ(h+

t , h
−
t )

produces distinct updates in Eq. 3. Therefore the transition distribution P
(
e
(t+1)
b,u | e(t)b,u, a

(t),Hi

)
depends on the full historyHi, not just the present state, violating the Markov property.

Remark. This shows that even when the visible preference embedding e
(t)
b,u is the same,

Walk2Pers can differentiate users with distinct long-term interaction traces. This is impossi-
ble under MDH, where all memory beyond the latest step is collapsed into q. In other words, SWH
reduces to MDH when memory and drift are disabled, but enables trajectories to diverge even when
current states coincide. This matches the empirical evidence that user preferences depend on long-
horizon, action-specific dynamics (see Table 3).

E BASELINES

E.1 BASELINES FOR RQ-1/2: TESTING MDH VS. SWH COMPONENTS

To evaluate whether the Markovian Drift Hypothesis (MDH) suffices or if the Structured Walk Hy-
pothesis (SWH) is necessary, we compare Walk2Pers against a suite of encoder variants and
established news recommendation encoders:

Short-Memory Gate (SMD). This is the minimal baseline consistent with the Markovian Drift
Hypothesis. At timestep ti, the update depends only on the immediate tail state and current action
embedding via a convex gate:

c
(ti)
tl = tanh

(
f
(a,ti)
SMD

)
⊙ e

(ti)
tl , e

(ti)
b,u = tanh

(
Wb c

(ti)
tl

)
,

where the gate is defined as: f (a,ti)
SMD = η

(
Wa · e(ti)a

)
+ (1− η)

(
Wh · c(ti−1)

tl

)
. Here, η ∈ (0, 1) is a

learnable scalar which balances the contribution of the action embedding e
(ti)
a and the prior tail state

c
(ti−1)
tl . Because this update overwrites history at each step, it carries no mechanism for reinforce-

ment, suppression, or geometric decomposition, and thus strictly follows the MDH assumption.

Action-Specific Gates (AGD). Instead of a generic convex combination, each action has its own
parameterization of f(·). We design f (a,ti) separately for click, skip, summarize, and
summGen, so that each action boosts, mutes, or rebalances user interests. A click encodes posi-
tive reinforcement, implemented as a history-aware gain:

f (clk,ti) =
(
Wclk · e(ti)clk

)
⊙ c

(ti−1)
tl , c

(ti)
tl = tanh(f (clk,ti))⊙ e

(ti)
tl . (17)

If Alice clicks on “Concert in New York”, the gain reinforces music-related features in her history.
In contrast, skip reflects either disinterest in the current document or pull toward an alternative. In
terms of the timesteps of the trajectory τu, this would be a look-ahead to timestep ti+1 where c

(ti)
tl
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is compared with e
(ti+1)
tl via a dot product ⟨·⟩. We model this alternative attraction towards a more

preferred (in contrast to disinterest) alternative as a deviation η
(ti)
attr :

f (skp,ti) = tanh
(
Wskpe

(ti)
skp + g(ti)

move

)
⊙ e

(ti)
tl ;where: g(ti)

move = λ
(ti)
1 e

(ti)
tl +Wpull · λ(ti)

2 η
(ti)
attr ;

η
(ti)
attr = max

(
⟨c(ti−1)

tl , e
(ti+1)
tl ⟩, 1− ⟨c(ti−1)

tl , e
(ti)
tl ⟩

)
; c

(ti)
tl = tanh(f (skp,ti))⊙ e

(ti)
tl

(18)

Here, g(ti)
move non-linearly distorts the trajectory. λ1, λ2 are learnable constants. To illustrate, Al-

ice may choose to skip a Election Policies article (due to disinterest) or leave, say “Music During
Cooking”, for a more preferred “Latest Concerts by Pink Panther” (i.e., the future pull).

A summary request, i.e. summarize indicates focused intent anchored in the title of the document:

f (summ,ti) = (Wsumm · e(ti)summ)⊙ c
(ti−1)
tl , c

(ti)
tl = tanh(f (summ,ti))⊙ e

(ti)
title(tl). (19)

Finally, generated summary summGen evaluates whether the summary is concise in terms of expec-
tations and faithful to the source content:

f (summGen,ti) = −γ log
(
exp(gsummGen ⊙ e

(ti)
tl ) + exp((1− gsummGen)⊙ e

(ti−1)
tl )

)
,

c
(ti)
tl = tanh(f (summGen,ti))⊙ c

(ti−1)
tl , gsummGen = σ

(
Wmin(WsummGen · e(ti)summGen)

)
.
(20)

The gate gsummGen balances coverage of the source along with history alignment, with a learnable γ
tuning the trade-off between them. We generalize the gates as: f (a,ti) = AGD(ea, ti) ⊙ ehistory,
where AGD determines which function to trigger based on the action a and ehistory is the embedding
of the previous state history.

E.2 BASELINES FOR RQ-3 (PERSONALIZED SUMMARIZATION PERFORMANCE)

For downstream evaluation on personalized summarization, we compare against three categories of
strong baselines:

E.2.1 BASELINE PERSONALIZED MODELS

PENS-NRMS Injection-Type 1. The PENS framework (Ao et al., 2021) generates personalized
summaries by incorporating user embeddings along with the input news article. For this variant,
user embeddings are derived using NRMS (Neural News Recommendation with Multi-Head Self-
Attention) (Wu et al., 2019b), which includes a multi-head self-attention based news encoder to
represent news titles, and a user encoder that captures browsing behavior through multi-head self-
attention over clicked articles. Additive attention mechanisms are employed to highlight important
words and articles. In Injection-Type 1, the NRMS user embedding is injected by initializing the
decoder’s hidden state, thereby directly influencing the summary generation process from the start.

PENS-NRMS Injection-Type 2. This variant also uses NRMS for user embedding, but personal-
ization is introduced differently. Instead of initializing the decoder, the user embedding is injected
into the attention mechanism of the PENS model. This modulates the attention weights over the
news body, enabling the model to focus on content aligned with the user’s preferences.

PENS-NAML Injection-Type 1. NAML (Neural News Recommendation with Attentive Multi-
View Learning) (Wu et al., 2019a) generates news representations by attending over multiple views,
including titles, bodies, and topic categories. The user encoder learns from interacted news and
selects the most informative content for personalization. The resulting user embedding is integrated
into the PENS decoder using Injection-Type 1, i.e., by initializing the decoder’s hidden state.

PENS-EBNR Injection-Type 1. EBNR (Embedding-based News Recommendation) (Okura
et al., 2017) models user preferences using an RNN over browsing histories to produce user em-
beddings. These embeddings are injected into the PENS model via Injection-Type 1 by initializing
the decoder, thereby influencing the initial decoding steps with user-specific information.
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PENS-EBNR Injection-Type 2. This configuration uses the same user encoder from EBNR but
applies Injection-Type 2. Here, the user embedding is incorporated into the decoder’s attention
layers, allowing the model to personalize attention distributions over the news body during decoding.

General Then Personal (GTP). General Then Personal (GTP) (Song et al., 2023) is a two-stage
framework for personalized headline generation. In stage-1, a Transformer-based encoder–decoder
model is pre-trained on large-scale news article–headline pairs to learn robust, content-focused head-
line generation without personalization. In stage-2, a separate “headline customizer” refines the gen-
eral headline by incorporating user-specific preferences, which are encoded as a control code by the
user encoder TrRMIo. To bridge the gap between general generation and personalized refinement,
GTP introduces two mechanisms: (i) Information Self-Boosting (ISB), which reintroduces relevant
content details from the article to prevent information loss during customization; and (ii) Masked
User Modeling (MUM), which randomly masks parts of the user embedding during training and
reconstructs them, reducing the model’s over-reliance on its general parameters.

Signature Phrase. Another line of personalization focuses on condensing a user’s reading history
into a collection of signature phrases (Cai et al., 2023). These phrases, derived through contrastive
learning over news articles without annotated data, act as dynamic user profiles that adapt as interests
evolve. Such phrases need not appear verbatim in the user’s history but instead encode higher-level
signals. Using these phrases, the model learns to generate personalized headlines that connect new
articles with the user’s inferred interests, yielding outputs that are engaging, relevant, and grounded
in article content rather than drifting toward clickbait.

These encoders serve as competitive MDH-aligned baselines, since they reduce trajectories into
compressed short-term embeddings with no explicit long-term reinforcement or novelty modeling.

E.2.2 BASELINE LLMS

Zephyr 7B β. Zephyr(Tunstall et al., 2023) is a 7 billion parameter transformer model fine tuned
from Mistral 7 billion using Direct Preference Optimization on publicly available and synthetic data.
It removes traditional alignment constraints to improve raw performance and achieves strong results
on benchmarks such as MT Bench where it reports a score of 7.34 in comparison with 6.86 for
LLaMA 2-70B Chat. Zephyr is optimized for helpful dialogue and is openly available under an
MIT license. It focuses on efficiency and high quality responses without relying on reinforcement
learning from human feedback. The model supports an input context length of 32K tokens.

Mistral 7B. Mistral Instruct(Jiang et al., 2023) is a dense transformer model that uses grouped
query attention and sliding window attention to efficiently scale with long context inputs. It is
pretrained on approximately two trillion tokens and provides strong performance across natural lan-
guage and code generation benchmarks, surpassing models such as LLaMA 2-13B in many evalua-
tions. Mistral Instruct is fully open source under the Apache 2.0 license and includes an instruction
tuned variant that is widely adopted for fine tuning and deployment. The model supports an input
context length of 32K tokens.

LLaMA 2 13B. LLaMA two(Touvron et al., 2023) 13 billion by Meta is an autoregressive trans-
former trained on two trillion tokens of public data with a context length of 4096 tokens. It sup-
ports chat interaction through instruction tuning and reinforcement learning from human feedback.
Although originally state of the art among open models, it is surpassed in many tasks by newer ar-
chitectures such as Mistral-7 billion. LLaMA-2 remains an influential and widely used foundation
model with extensive documentation and open access under the Meta license.

DeepSeek R1 14B. DeepSeek R1(DeepSeek-AI et al., 2025) is a 14.8 billion parameter model dis-
tilled from Qwen-2.5 14 billion and is designed for strong performance on mathematical reasoning,
coding, and multi step logical tasks. It is fine tuned on eight hundred thousand examples gener-
ated by a larger DeepSeek R1 model and is released under an MIT license. Despite its moderate
size, it rivals substantially larger models on benchmarks such as AIME and MATH while remaining
efficient for customization and deployment. The model supports an input context length of 128K
tokens.
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Gemini 2.5 Flash. Gemini-2.5 Flash is a compact and highly optimized member of the Gemini
family designed for fast inference, large scale retrieval augmented generation, and multimodal in-
teraction. It provides high throughput generation with reduced latency and is suitable for production
applications that require consistent responsiveness. Gemini 2.5 Flash incorporates the same unified
multimodal architecture used across the Gemini series and has been trained on a large mixture of
text, code, and image data. The model supports an input context length of 1 million tokens, making
it particularly effective for long document synthesis and extended conversational sessions.

Qwen 3 235B. Qwen-2 235 billion is a large scale frontier transformer model developed as part of
the Qwen three family. It is trained on extensive multilingual and multimodal datasets with a focus
on reasoning, tool use, and high fidelity generation. The model is designed for advanced analytical
tasks, multi hop reasoning, and instruction following at very high capability levels. Qwen-3 serves
as a foundation for many distilled and specialized variants and is openly available for research and
commercial use under a permissive license. The model supports an input context length of 256K,
allowing it to operate effectively on extremely long sequences in both textual and mixed modality
settings.

E.2.3 BASELINE GENERIC SUMMARIZERS

BigBirdPegasus. BigbirdPegasus, proposed by (Zaheer et al., 2020) is an extension of Trans-
former based models designed specifically for processing longer sequences. It utilizes sparse atten-
tion, global attention, and random attention mechanisms to approximate full attention. This enables
BigBird to handle longer contexts more efficiently and, therefore, can be suitable for summarization.

SimCLS. A Simple Framework for Contrastive Learning of Abstractive Summarization (Liu &
Liu, 2021) uses a two-stage training procedure. In the first stage, a Seq2Seq model (Lewis et al.,
2020) is trained to generate candidate summaries with MLE loss. Next, the evaluation model, initi-
ated with RoBERTa is trained to rank the generated candidates with contrastive learning.

T5. (Text-To-Text Transfer Transformer) is based on the Transformer-based Encoder-Decoder ar-
chitecture that operates on the principle of the unified text-to-text task for any NLP problem, includ-
ing summarization. Some recent analyses on the performance of T5 on summarization tasks can be
found in (Raffel et al., 2020; Tawmo et al., 2022; Ramesh et al., 2022; Etemad et al., 2021).

F LICENSE AND USAGE STATEMENT

In this work, we utilize the following pre-trained large language models (LLMs): DeepSeek-R1 14B
(MIT License), Mistral-7B-Instruct (Apache 2.0), LLaMA2-13B (Llama 2 Community License),
and Zephyr 7B (β) (MIT License). All models are used according to their respective licenses and
terms provided by their original creators. Proper attribution is given to each model’s developers as
cited in our references. We also use the following datasets:

• MS/CAS PENS dataset: We comply with the dataset’s terms of use, which is de-
rived from the Microsoft Research License (https://github.com/msnews/MIND/
blob/master/MSR%20License_Data.pdf).

• OpenAI Reddit dataset: We comply with the MIT License specifications as set
by OpenAI (https://github.com/openai/summarize-from-feedback/
blob/master/LICENSE)

We have ensured that all datasets and models are used responsibly, respecting privacy, consent,
and ethical guidelines. When applicable, data is anonymized and handled according to the ethical
standards set forth by NeurIPS.
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G WALK2PERS ARCHITECTURAL DETAILS

G.1 WALK2PERS-ENCODER ARCHITECTURAL DETAILS

Magnitude and Orientation Computation. To capture the direction and magnitude of movement
in a complex embedding-based manifold, we proposed a geometrical walk of behaviors 3.3.1. This
walk conceptualizes preference evolution as a sequence of directed steps in semantic space where
each behavior is obtained by rotating and scaling the previous embedding to get the geometrically
contextualized ec

(ti)
buj

. We compute the orientation degree of the update as follows:

θ(ti) = π · tanh
(
Wθ σ

(
Wangle e

(ti−1)
b,u

))
; o(ti) =

v(ti) − ⟨v(ti), u(ti−1)⟩u(ti−1)

max
(
∥v(ti) − ⟨v(ti), u(ti−1)⟩u(ti−1)∥2, ε

) ,
v(ti) =

e
(ti)
b,u − e

(ti−1)
b,u

max
(
∥e(ti)b,u − e

(ti−1)
buj

∥2, ε
) ; u(ti−1) =

e
(ti)
b,u

max
(
∥e(ti)b,u ∥2, ε

) .
(21)

The angle θ(ti) ∈ (−π, π) serves as a directional drift controller, deciding whether the trajectory
should continue smoothly (small θ(ti)) or shift sharply (large θ(ti)). The vector u(ti−1) represents
the forward direction inherited from past context (carrying forward the momentum of current flow
of history), while o(ti) denotes the orthogonal novelty axis derived from the raw transition direction
v(ti). For example, if Alice has consistently read Climate Science Articles, u(ti−1) encodes this mo-
mentum, while a sudden click on a Policy Debate yields a transition vector with a strong orthogonal
component o(ti); a small θ(ti) implies smooth thematic extension (science into policy), whereas a
large θ(ti) reflects a sharp diffusion toward politics.

To determine how far e(ti)b,u travels along the chosen direction, the magnitude of movement is regu-
lated as:

mag(ti) = Softplus
(
Wm ·Wh · e(ti−1)

b,u

)
, (22)

where mag(ti) acts like the distance of the walk, dictating whether the model advances cautiously
or moves decisively.

ec
(ti)
buj

= e
(ti)
b,u +mag(ti)

(
cos θ(ti) · u(ti−1) + sin θ(ti) o(ti)

)
. (23)

This ensures that preference evolution is represented as a directed step, combining alignment with
historical momentum and deviation toward orthogonal novelty. For Alice, this means her reading
trajectory can smoothly extend within climate science when θ(ti) is small and mag(ti) is low (steady
interest), or make a decisive turn into politics when θ(ti) is large and mag(ti) accelerates the shift
(sharp interest change).

G.2 WALK2PERS-ENCODER AS AN INSTANTIATION OF SWH

We now formalize how the Walk2Pers-encoder concretely realizes the SWH update (Eq. 3). For
reference, recall the SWH rule:

e
(t+1)
b,u = e

(t)
b,u +mag(a(t))

(
cos θ(a(t))u(t) + sin θ(a(t)) o(t)

)︸ ︷︷ ︸
Φ: geometric step

+Ψ(h+
t , h

−
t )︸ ︷︷ ︸

dual memory

+ δ · 1[a(t) = summGen]︸ ︷︷ ︸
drift

.
(3)

Theorem G.1 (Walk2Persan instantiation of SWH). With the definitions of Sec. 3.3.1, the
Walk2Pers-encoder update is exactly of the form Eq. 3.

Detailed Sketch. We match each component of Eq. 3 to the Walk2Pers.
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(A) Geometric step. The encoder produces two scalar heads (m̂t, θ̂t) for each action a(t):

mag(a(t)) = softplus(m̂t) ≥ 0,

θ(a(t)) = π · σ(θ̂t) ∈ (0, π).

These control the length and orientation of the step. Next, Walk2Pers maintains two orthogonal
unit axes: - u(t): the “momentum” direction, aligned with recent preference drift. - o(t): an orthog-
onal “novelty” axis obtained via Gram–Schmidt. Together, these yield the geometric increment

Φt = mag(a(t))
(
cos θ(a(t))u(t) + sin θ(a(t))o(t)

)
.

Intuition: This term says each action either pushes the state forward in a continuity-preserving
direction (small θ) or rotates into a novel axis (large θ), with strength controlled by mag(a(t)).

(B) Dual memory. Walk2Pers keeps two asymmetric accumulators:

h+
t = h+

t−1 +m(t) ⊙ c(t),

h−
t = h−

t−1 ⊙ (1−m(t)) + c(t).

Here m(t) = SoftMax(Whh
(t−1) + Wcc

(t)) is an action gate, and c(t) is the content embedding.
Thus: - h+ reinforces positively gated interactions (e.g. clicks), accumulating them additively. - h−

suppresses negatively gated interactions (e.g. skips), attenuating old signals via (1−m(t)).

The two lanes are blended with a learnable weight ω ∈ (0, 1):

h(t) = ωh+
t + (1− ω)h−

t .

Finally, a linear projection produces the memory contribution:

Ψ(h+
t , h

−
t ) = WΨ[h

+
t ;h

−
t ].

Intuition: Unlike MDH, which forgets everything beyond the last step, this mechanism lets
Walk2Pers reinforce long-term positive signals while still allowing suppression of repeated dis-
interest. Thus Ψ injects non-Markovian, history-dependent bias into the walk.

(C) Drift. For the summGen action, Walk2Pers triggers an extra summary drift term. A drift
vector δ = Wδϕδ(xt) is generated and added only when a(t) = summGen:

∆(t) = δ · 1[a(t) = summGen].

Intuition: This nudges the preference state toward more “condensed” representations when the user
explicitly asks for a summary, acknowledging that summarization requests are qualitatively different
from passive clicks or skips.

Putting together (A)–(C), the Walk2Pers update rule is

e
(t+1)
b,u = e

(t)
b,u +Φt +Ψ(h+

t , h
−
t ) + ∆(t),

which is identical to Eq. 3. Hence Walk2Persa concrete instantiation of the Structured Walk
Hypothesis.

Remark By parameter restriction: setting Ψ ≡ 0 and δ ≡ 0 collapses Walk2Pers to a pure
geometric update. Further restrictions recover PRW, ARW, and RWR as shown in Cor. D.2.

G.3 WALK2PERS-DECODER DETAILS

Latent Summary Contextualization The query b-node embedding e
(tl+1)
bq,u

predicted by the en-
coder represents a geometrical alignment infused entanglement of behavior duplet ⟨genSumm, sq⟩.
The sq represents the latent s-node embedding of the query document dq . Since e

(tl+1)
bq,u

has in-
fused the learned action embedding, it becomes difficult for a decoder to feed on it and generate a
personalized summary. To address this, we extract the latent s-node embedding from e

(tl+1)
bq,u

.
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Latent s-Node Contextualizer. Although latent s-node embedding ê
(tl+1)
sq,u represents the user’s

personalized summary intention, it lacks the contextualization of the query document dq . The base
decoder contextualizes dq with ê

(tl+1)
sq,u using cross-attention, and feeds to a summarizer decoder.

The query document edq
serves as the query, and ê

(tl+1)
sq,u acts as both key and value, resulting sum-

mary contextualized query embedding as:

ecdq
= SoftMax

(
(Wq · edq

)⊤(Wk · ê
(tl+1)
sq,u√

d

)
· (Wv · ê(tl+1)

sq,u ) (24)

This contextualizes the document to be summarized with the latent summary intention of the user,
but the query document edq

lacks explicit user-preference representation.

User-based d-Node Encoding. To incorporate explicit user preferences into the document repre-
sentation, we enrich the query document embedding with the user’s interaction history. Specifically,
the encoder of the summarizer model produces the base document embedding edq

. In parallel, the fi-
nal user history vector e(tl)bq,u

from the Walk2Pers encoder is applied as a gating signal to modulate
edq , yielding the user-aware document embedding:

edq,u = σ
(
Wg · e(tl)bq,u

)
⊙ edq , (25)

The gating makes the query document align with the user’s own preference, while irrelevant aspects
are suppressed. This ensures the document is passed through the lens of Alice for generating the
expected summary for her, and the same document passes through the lens of Bob for generating his
expected summary. edq,u encodes both the semantic content of the document and the personalized
preference profile of the user, enabling more faithful contextualization in subsequent cross-attention.
The latent s-node then contextualizes edq,u to produce ecdq,u

, as discussed in Section 3.3.2.

Personalized Summarization. The Walk2Pers decoder generates a personalized summary by
feeding on contextualized query document embedding ecdq,u

. We use the T5-base (Raffel et al.,
2020) decoder for the summarization.

Decoder Training. The decoder training objective (Ldec) is a linear combination of two loss func-
tions, Generation Loss (Lgen) and the earlier encoder loss (Lenc; see Section 3.3.2), as Ldec =
β · Lgen + (1 − β) · Lenc. Here, Lgen is the cross-entropy loss between predicted tokens ŷ and
ground-truth y∗ under teacher forcing with the T5 decoder. Optimizing Lgen updates the cross-
attention layers and language-modeling head of T5 decoder, contextualizer weights Wk, Wq , Wv

and inverse-mapping weights W+
summ, W+

c . Fine-tuning the cross-attention layers ensures that the
decoder learns how to properly fuse the contextualized document embedding e

(dq,uj)
c with the la-

tent s-node embedding, thereby injecting user-specific preference signals into the decoding process,
and fine-tuning the language modeling head adapts the token generation distribution to reflect this
personalized conditioning, improving lexical and stylistic alignment with the user’s history. This
ensures accurate latent s-node reconstruction ê

(tl+1)
sq,u and stronger cross-attention with document

embedding, thus improving summary relevance.

All notations related to methodology are enumerated in Table 11.

H IMPLEMENTATION DETAILS

H.1 COMPUTE RESOURCES

All data preprocessing (behavior graph generation, embedding lookup, and probability space map-
ping) was performed on CPU machines with 16GB memory per core. Embedding tables for news
bodies, headlines, and summaries were initialized using a shared vector space seeded from pre-
trained transformer T5-base encoder model Raffel et al. (2020). All training and inference experi-
ments for Walk2Pers were conducted using mixed-precision (FP32) training on L40S and A100
GPUs. We gratefully acknowledge Lightning.ai for providing virtual compute resources with A100
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and L40S GPUs. Walk2Pers utilizes almost 95% cheaper resource utilization and costs than the
best baseline LLM DeepSeek-R1. We summarize the detailed training and deployment details of
Walk2Pers in comparison to best LLM DeepSeek-R1 inference in Table 12.

H.2 TRAINING

Model training was conducted end-to-end across the full pipeline for 6 epochs (approx. 20 hours),
and then with frozen encoder for 18 epochs (approx. 35 hours), over 63K unique behavior se-
quences. Optimization employed Adam (PyTorch v2.0.1) with learning rate of 1 × 10−3. The
decoder operated with teacher-forced supervision using T5, with a learned adapter vector injected
as the decoder token in the first layer to guide personalized generation. Loss was a weighted com-
bination of classification loss over encoding of nodes, behavior node prediction and cross-entropy
loss on the personalized summary output. Hyperparameter details are in Table 13.

H.3 T5 MODEL

The Text-to-Text Transfer Transformer (T5) (Raffel et al., 2020) is a unified framework that casts
all NLP tasks, ranging from translation and summarization to question answering and classification,
into a text-to-text format. This design choice enables the use of a single model architecture and
training objective across a diverse set of tasks. The T5 model is built upon the standard Transformer
architecture and is trained on a large corpus called the “Colossal Clean Crawled Corpus” (C4).
Among its variants, T5-base consists of 12 Transformer layers in both the encoder and decoder,
with a hidden size of 768 and 16 attention heads, totaling approximately 770 million parameters.

Decoder. The decoder in T5 follows the autoregressive language modeling paradigm, predicting
the next token conditioned on previous outputs and the encoder’s representations. It incorporates
a stack of masked self-attention layers, encoder-decoder cross-attention layers, and feed-forward
layers. Unlike the encoder, which allows full bidirectional attention, the decoder’s self-attention is
causal (i.e., left-to-right masked) to prevent information leakage during training and inference. Each
decoder layer attends to both the previously generated tokens and the encoder outputs, enabling
the model to align and condition generation on the input sequence effectively. Position-wise feed-
forward layers and layer normalization are used after each attention block. During fine-tuning, the
decoder is trained to generate task-specific outputs, such as summaries or translations, making it
central to the T5’s generalization across tasks.

I DETAILED RESULTS

I.1 HUMAN-JUDGMENT INTERPOLATION FROM OPENAI-REDDIT DATASET.

The interpolation of human judgment scores is performed by leveraging the OpenAI-Reddit dataset,
which provides multiple human-rated summaries for each article. For every article, the highest-
rated human summaries (7 out of 7) are designated as the benchmark reference. All candidate
summaries, including the benchmark, are first embedded into a high-dimensional semantic space
using a SentenceTransformer (Reimers & Gurevych, 2019) model. The semantic deviation between
the benchmark embedding Vb and any other summary embedding Vo is quantified via the Root Mean
Square Deviation (RMSD), which in this context is equivalent to the Euclidean distance:

RMSD(Vb, Vo) =

√√√√ n∑
i=1

(bi − oi)2 .

In practice, this computation is implemented efficiently using NumPy’s linear algebra module,
np.linalg.norm. The resulting RMSD values are then grouped according to the original hu-
man rating of each summary (e.g., 7/7, 6/7). By averaging the RMSD values within each rating
group, we obtain a mapping between human-judged quality scores and embedding-space distances.
Notably, the RMSD for summaries rated 7/7 is not always zero, as there may exist multiple distinct
summaries with a top score for the same article; while all such summaries are judged as equally
high-quality by humans, their semantic embeddings can still differ due to variations in phrasing,
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emphasis, or lexical choices. These aggregated averages form the scoring thresholds used for inter-
polating human judgment in our evaluation framework.

I.2 ABLATION ON CLICK-ONLY TRAJECTORIES.

We ablate Walk2Pers under click-only trajectories, which results in highly imbalanced action dis-
tributions to investigate whether dual-memory components degenerate when skip actions become
extremely sparse. We observe that removing the geometric aligner leads to a moderate degrada-
tion (avg.−0.08), reaffirming that sparsity weakens cross-action disentanglement. However, the
dual-memory encoder still remains stable and continues to extract preference signals from docu-
ment transitions, outperforming all competing baselines even in this extreme regime. Although
Qwen-3 shows the smallest range of degeneration of performance w.r.t. the original performance,
Walk2Pers consistently outperform and show moderate degeneration. These results confirm that
(i) the geometric aligner is necessary for full robustness under skewed action distributions, and (ii)
the dual-memory lanes themselves do not collapse, even when skip/summarize actions nearly dis-
appear. Results are in Table 15.

I.3 ABLATION ON LOW FREQUENCY TOPICS.

We also ablate on 200 subset trajectories from the test data to understand whether rare, infrequent
but relevant topics get oversuppressed by the memory lanes or geometric novelty of Walk2Pers.
These 200 trajectories have a higher topic frequency (121 vs. 105) and a higher rate of topic change
within a trajectory (0.63 vs. 0.54) than the entire test dataset, indicating the occurrence of rare, infre-
quent topics within these trajectories. We find that although there is a degradation in performance,
the model still extracts stable user preferences, validating that the design principle of incorporating
learnable memory lanes and a geometric novelty aligner is necessary to understand users’ evolving
interests in any real-world setting. Detailed results are in Table 16.

I.4 CROSS-TASK PERFORMANCE

As a further validation of Walk2Pers encoder, we evaluate the sequential recommendation perfor-
mance of it on widely adopted MIND news recommendation dataset. We find Walk2Pers encoder
(Full, with geometric step), which was trained end-to-end for personalized summarization task, to
surpass the MIND recommendation leaderboard baselines by a significant margin. It outperforms
the best baseline (Fastformer+PLM-NR-Ensemble) by 1.2↑ on MRR, 1.8↑ on nDCG@5, and 3.5↑
on nDCG@10. This result demonstrates the cross-task transferability of Walk2Pers encoder. De-
tailed results are in 17.

I.5 PERFORMANCE W.R.T. ACCURACY.

We evaluate the accuracy of Walk2Pers w.r.t. gold-reference summaries under standard accuracy
evaluation metrics Rouge-L and Rouge-SU4 (Lin, 2004), and find that Walk2Pers outperforms
the baselines by an average margin of 22.3/24.1 on RG-L and RG-SU4, respectively. This confirms
that a boost in personalization capability also bridges the lack of accuracy gap. Results are in Table
18.

J PROMPT SETUP

2-shot w/ history. This setup provides the model with a complete user history that includes inter-
actions with previous articles in the form of clicks, skips, and summaries. Two in-context examples
are shown before the actual task, where each example contains the article content and a personalized
headline rewritten by the user. These few-shot examples serve as demonstrations to help the model
learn the structure of the desired output. Given a new query document, the model is instructed to
generate a personalized headline by considering the user’s history: click indicates positive inter-
est, skip indicates disinterest, and summarized indicates focused preference. The headline is to
be returned in a specified format.
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Figure 5: 0-shot Prompt-Template for LLM baselines.

0-shot w/ history. In this variant, the user history is again presented as a list of past interactions
including clicks, skips, and summarizations, but no in-context examples are shown. Instead, a single
task prompt is provided that explains the significance of each action type. The model is instructed
to directly use this user history to infer the user’s interest and produce a personalized headline for a
given query document. This prompt relies on the model’s zero-shot reasoning capabilities without
relying on demonstrations.

Prompt-Chaining w/ history. This method adopts a multi-stage interaction design. In the first
step, the model receives a single document and a user action (e.g., click), and is asked to extract
topics, keyphrases, and user preferences based on that interaction. The output of each step is ac-
cumulated to incrementally build a structured user profile. As new interactions (e.g., skips or sum-
maries) occur, the model is repeatedly prompted to refine or update the user’s inferred preferences.
Finally, when the query document is given, the model uses the constructed user preference profile to
generate a personalized headline. This setup simulates long-term personalization via chaining and
stateful interaction across multiple prompts.
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Figure 6: 2-shot Prompt-Template for LLM baselines.
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Table 11: Notations used across Sections 3–4 and the Appendix. We group symbols by (i) the
User–Interaction Graph (UIG), (ii) hypotheses and structured walk components (SWH), and (iii) the
Walk2Pers instantiation (encoder, contextualizer, decoder).

Symbol Explanation
User–Interaction Graph (UIG)
G = ⟨N,E⟩ User–Interaction Graph with nodes N and edges E
u(t0) User node at initial timestep t0
d(t) Document node at timestep t

s
(t)
j Summary node at timestep t for d(t−1)

a(t) Action at time t (click, skip, genSumm, summGen)
b
(t)
u Behavior duplet ⟨a(t), tl(t)⟩ (action + tail node)
τu User trajectory (ordered sequence over t)
Ttrain, Ttest Training and test trajectory pools

Hypotheses & Structured Walk (MDH vs. SWH)

e
(t)
b,u Latent preference state at b-node b after timestep t
f(·) One-step update under MDH (short-memory)
q Recency prior (e.g., restart distribution in graph diffusion)
ϵ(t) Stochastic perturbation in MDH updates
Σ(a(t)) Action-conditioned covariance of ϵ(t)
Φ(·) Geometric step: continuity vs. novelty (SWH)
Ψ(·) Dual memory: reinforcement (h+) vs. suppression (h−)
∆(·) Drift: special action-induced shift (e.g., summGen)
u(t) Momentum axis at t (continuity direction)
o(t) Orthogonal novelty axis at t
mag(a(t)) Step magnitude (strength of update)
θ(a(t)) Step orientation angle (mix u(t) vs. o(t))
h+, h− Positive/negative memory lanes (click reinforcement / skip suppression)
δ Summary-specific drift vector (active for summGen)

Walk2Pers Encoder (b-layer), Sec. ??

f (a,t) Action-gate function inside a b-cell at time t

e
(t)
tl Raw tail-node embedding at time t

e
(t)
a Action embedding (4-d one-hot or learned) at time t

c
(t)
tl Tail-cell content (flowing history) at time t

Wclk Click-specific projection used for cold-start at t0
Wb Projection to b-node space
e
(t)
b,u b-node embedding produced by the b-cell at t

h(t) Combined memory state at time t
h(+,t), h(−,t) Positive (reinforcement) / Negative (suppression) lanes
m(t) Gate for memory routing/strength (e.g., SoftMax over features)
∆(t) Drift vector injected on summGen, (I− e

(t−1)
tl ) e

(t)
tl

θ(t) Predicted orientation angle at time t
u(t−1), o(t) Momentum axis (from t− 1), novelty axis (at t)
mag(t) Predicted step magnitude at time t

e
c (t)
b,u Contextualized b-node after applying Φ,Ψ,∆

Wnext Linear head to predict next b-node embedding
e
(t+1)
q,b,u Predicted next b-node embedding (query b-node)

Wpos Position classifier weight for alignment objective
p̂
(t)
b Predicted position distribution for alignment
Lalign,Lnext,Lenc Encoder objectives: position alignment, next-b-node, joint

Latent Summary Contextualization (Decoder-side signals)

ê
(tl+1)
sq,u Latent s-node (summary-intent) for document dq

edq
Base query-document embedding (backbone encoder)

edq,u User-aware doc embedding (gated by trajectory state)
ecdq

Doc embedding contextualized by latent s-node
ecdq,u

Final user-conditioned doc embedding for decoding
Wq,Wk,Wv Cross-attention projections (query, key, value)
Wg Gating projection for edq,u

W+
summ, W

+
c Inverse-mapping weights used to extract latent s-node

Decoder Objective
Lgen Token-level generation loss (cross-entropy, teacher forcing)
Ldec Decoder objective: βLgen + (1− β)Lenc
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Table 12: Training and Deployment Resources Summary of Walk2Pers in comparison to best
performing LLM baseline DeepSeek-R1.

Metric Our Model (170M) 2-shot LLM (14B) Relative Gain
Parameters 170M 14B 82× smaller
Avg. summary length 20 tokens 20 tokens –
FLOPs/summary 2.04× 1010 1.68× 1012 82× lower
Inference time (per summary, est.) 0.2–2 s 15–160 s 60–80× faster
Running cost (GPU-hours) 18 42 orders lower
VRAM footprint <1 GB >28 GB edge-deployable

Table 13: Learned Weights and Hyperparameters of Walk2Pers.
Component Shape / Type Notes / Init
Training Configuration
Batch size 38 Fixed across encoder/decoder
Optimizer AdamW PyTorch 2.0 impl.
Learning rate (end-to-end) 2× 10−4 End-to-end Training
Learning rate (decoder finetuning) 3× 10−3 Decoder fine-tuning
Epochs 6 + 18 6 joint, 18 decoder-only
Action Encodings
eclk, eskp, esumm, esumgen 4 One-hot action basis
Wclk,Wskp,Wsumm,Wsumgen (768, 4) Action transforms, no bias
State & Memory Transforms
Wpull (768, 1) Skip attraction transformation
Ws,Wd (768, 768) State transforms
Wh,Wc (768, 768) Memory routing gates
h+, h− 768 Reinforcement / suppression memories
ω(t) scalar Memory lane mixing weight; learnable
Fusion Layers
Wh,Wc,Wz (768, 768) Fusion linear transforms
bz 3 Fusion bias (zeros)
Wemb (768, 768), bias 768 Embedding proj., std init
bemb 768 Zeros init
Geometric Step (Orientation and Magnitude)
Wangle (768, 768) Transforms to direction signal
Wθ (1, 768) Orientation angle transformation
Wh (768, 768) Shared with fusion
Wm (1, 768) Magnitude scaling transformation
θ(t) scalar Orientation angle, (−π, π)
mag(t) scalar Step magnitude
Prediction / Decoder
Wb (768, 768) Tail→ b-node proj.
Wnext, bnext (768, 768), 768 Next-node prediction
Wpos (768, 768) Positional alignment classifier
Wq,Wk,Wv (768, 768) Cross-attention projections
Wg (768, 768) User-aware doc gating
W+

summ,W
+
c (768, 768) Inverse mapping for latent s-node

Complexity
Per-step O(d) For each b-cell update
Condensed b-layer O(pd), p≪T Long-horizon compression
Decoder ∼ O(Ld2) Transformer (T5-base)

Table 14: RQ-1/2: Next b-node Prediction (PENS Dataset) – Mean (µ) & Standard Deviation
(σ): Standard Deviation of SOTA MDH user-encoders is close to the Mean, thereby strengthening
the reported performance gain; †NT: Originally published results were on the news recommendation
task in contrast to next behavior prediction.

Metric NAML† NRMS† EBNR† Walk2Pers-Enc. w/o Geo. (mean) Walk2Pers-Enc.Full (mean)
MRRµ 0.001 0.0009 0.0009 0.121 0.23MRRσ 0.0163 0.008 0.0101

nDCG@5µ 0.0004 0.0002 0.0003 0.082 0.198nDCG@5σ 0.0176 0.01 0.012

nDCG@5µ 0.0007 0.0004 0.0005 0.132 0.249nDCG@5σ 0.0199 0.0128 0.0146
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Table 15: Performance degradation under sparse-click evaluation. Left value indicates the original
score; right value indicates sparse-click score; percentage drop from original values under this sub-
set. Lower drop indicates better robustness to interaction sparsity.

Model (Sparse Click-only Test) PSE-JSD PSE-SU4 PSE-METEOR
DeepSeek-R1-14B (2-shot) 0.248/0.147 (−40.7%) 0.094/0.064 (−31.9%) 0.097/0.071 (−26.8%)
Gemini-2.5-Flash (2-shot) 0.222/0.122 (−45.0%) 0.104/0.061 (−41.3%) 0.124/0.070 (−43.5%)
Qwen3-235B-Thinking (2-shot) 0.105/0.103 (−1.9%) 0.082/0.073 (−11.0%) 0.082/0.071 (−13.4%)
Best MDH Baseline (GTP) 0.024/0.016 (−33.3%) 0.170/0.009 (−94.7%) 0.019/0.011 (−42.1%)

Walk2Pers (w/o Geometric Step; Only Dual Memory) 0.306/0.231 (−24.5%) 0.334/0.253 (−24.3%) 0.321/0.234 (−27.1%)
Walk2Pers (Full) 0.452/0.378 (−16.4%) 0.383/0.301 (−21.4%) 0.449/0.310 (−31.0%)

Table 16: Performance on Top 200 Low–Topic–Frequency Trajectories. Left value indicates the
original score; right value indicates sparse-click score; percentage drop from original values under
this subset. Lower drop indicates better robustness to topical sparsity.

Category Model PSE-JSD PSE-SU4 PSE-METEOR

Best Baseline Variants

DeepSeek-R1-14B 0.248/0.091 (-63.3%) 0.094/0.074 (-21.3%) 0.097/0.082 (-15.5%)
Gemini-2.5-Flash 0.222/0.092 (-58.6%) 0.104/0.081 (-22.1%) 0.124/0.083 (-33.1%)
Qwen-3-235B-Thinking 0.105/0.094 (-10.5%) 0.082/0.073 (-11.0%) 0.082/0.077 (-6.1%)
GTP (Best MDH) 0.024/0.016 (-33.3%) 0.170/0.013 (-92.4%) 0.019/0.015 (-21.1%)

Walk2Pers Variants Walk2Pers (w/o Geometric Step) 0.306/0.280 (-8.5%) 0.334/0.290 (-13.2%) 0.321/0.280 (-12.8%)
Walk2Pers-Full 0.452/0.410 (-9.3%) 0.383/0.320 (-16.4%) 0.449/0.380 (-15.4%)

Table 17: RQ-3(b): Sequential Recommendation on MIND-Large. (sorted by MRR) Baselines show
paper-reported means. Walk2Pers results are reported with mean ± variation from resampling.

Methods (Venue, Year) AUC MRR nDCG@5 nDCG@10
DKN (WWW’18) 64.07 30.42 32.92 38.66
GRU (Baseline, 2016) 65.42 31.24 33.76 39.47
EBNR (KDD’17) 65.46 31.26 32.18 39.04
NPA (KDD’19) 65.92 32.07 34.72 40.37
NAML (IJCAI’19) 66.46 32.75 35.66 41.40
LSTUR (ACL’19) 67.08 32.86 35.95 40.94
Linear Transformers (ICML’20) 67.76 32.94 35.91 41.97
ProFairRec (SIGIR’22) 67.64 33.08 35.32 41.67
NRCLS (Appl. Sci.’24) 68.35 33.12 36.70 43.03
Linformer (arXiv’20) 68.02 33.19 36.22 42.10
Poolingformer (ICML’21) 68.54 33.20 36.69 42.60
NRMS (EMNLP-IJCNLP’19) 67.66 33.25 36.28 41.98
BigBird (NeurIPS’20) 68.14 33.28 36.42 42.18
Transformer (NeurIPS’17) 68.22 33.32 36.35 42.23
GERL (WWW’20) 68.10 33.41 36.34 42.03
GNewsRec (IP&M’20) 68.15 33.45 36.43 42.10
FIM (ACL’20) 67.87 33.46 36.53 42.21
HieRec (ACL-IJCNLP’21) 68.33 33.86 36.83 42.65
DCAN (arXiv’22) 68.90 33.90 36.90 42.80
ANRS (arXiv’22) 69.20 34.10 37.10 43.00
TCCM (CIKM’23) 69.75 34.42 37.53 43.25
Fastformer (arXiv’21) 69.11 34.55 37.62 43.38
FUM (SIGIR’22) 69.90 34.60 37.70 43.40
CAUM (SIGIR’22) 70.04 34.71 37.89 43.57
DIGAT (Findings ACL’22) 70.08 35.20 38.46 44.15
PLM-NR (SIGIR’21) 70.64 35.39 38.71 44.38
Fastformer+PLM-NR (Hybrid) 71.04 35.91 39.16 45.03
MINER (Findings ACL’22) 71.51 36.06 39.56 45.21
CAST-Rec (TOIS’25) 72.10 36.90 40.20 46.30
Fastformer+PLM-NR-Ensemble (Hybrid’22) 72.68 37.45 41.51 46.84
Walk2Pers-Full Encoder 53.32±1.1 38.64±1.8 43.32±1.2 50.38±1.4
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Table 18: Comparison of Specialized and Vanilla Models with Walk2Pers under standard accu-
racy metrics ROUGE-L/SU4

Category Model Rouge-SU4 Rouge-L

Specialized (Personalized)

PENS-NAML-T1 13.12 21.62
PENS-EBNR-T1 12.16 20.73
PENS-EBNR-T2 12.41 20.82
PENS-NRMS-T1 13.15 20.75
PENS-NRMS-T2 13.64 21.03
GTP-TrRMIo 21.91 28.31
SP-Individual 19.54 25.18

LLMs w/ 2-shot history)

LLaMA-13B 18.31 29.54
Mistral-7B 16.42 22.85
DeepSeek-14B 19.57 29.72
Zephyr-7B 18.45 26.45

Walk2Pers Walk2Pers-Full 43.09 47.16

Figure 7: Prompt-Chaining Template for LLM baselines.
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