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Abstract

Integrating mathematical programming, and in particular
Bilevel Optimization Programming, within deep learning ar-
chitectures has vast applications in various domains from ma-
chine learning to engineering. Bilevel programming is able
to capture complex interactions when two actors have con-
flicting objectives. Previous approaches only consider single-
level programming. In this paper, we thus propose Differenti-
ating through Bilevel Optimization Programming (BiGrad) as
approach for end-to-end learning of models that use Bilevel
Programming as a layer. BiGrad has wide applicability and
it can be used in modern machine learning frameworks. We
focus on two classes of Bilevel Programming: continuous
and combinatorial optimization problems. The framework ex-
tends existing approaches of single level optimization pro-
gramming. We describe a class of gradient estimators for
the combinatorial case which reduces the requirements in
term of computation complexity; for the continuous vari-
ables case the gradient computation takes advantage of push-
back approach (i.e. vector-jacobian product) for an efficient
implementation. Experiments suggest that the proposed ap-
proach successfully extends existing single level approaches
to Bilevel Programming.

1 Introduction

Neural networks provide unprecedented improvements in
perception tasks, however, they struggle to learn basic logic
operations (Garcez et al. 2015) or relationships. When mod-
elling complex systems, for example decision systems, it
is not only beneficial to integrate optimization components
into larger differentiable system, but also to use general pur-
pose solvers (e.g. for Integer Linear Programming or Non-
linear Programming (Bertsekas 1997; Boyd and Vanden-
berghe 2004)) and problem specific implementation, to dis-
cover the governing discrete or continuous relationships. Re-
cent approaches propose thus differentiable layers that in-
corporate either quadratic (Amos and Kolter 2017), convex
(Agrawal et al. 2019a), cone (Agrawal et al. 2019b), equi-
librium (Bai, Kolter, and Koltun 2019), SAT (Wang et al.
2019) or combinatorial (Poganci¢ et al. 2019; Mandi and
Guns 2020; Berthet et al. 2020) programs. Use of opti-
mization programming as layer of differentiable systems, re-
quires to compute the gradients through these layers, which
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is either specific to the optimization problem or zero al-
most everywhere, when dealing with discrete variables. Pro-
posed gradient estimates either relax the combinatorial prob-
lem (Mandi and Guns 2020), or perturb the input variables
(Berthet et al. 2020; Domke 2010) or linearly approximate
the loss function (Pogancic et al. 2019).

These approaches though, do now allow to directly ex-
press models with conflicting objectives, for example in
structural learning (Elsken, Metzen, and Hutter 2019) or
adversarial system (Goodfellow et al. 2014). We thus con-
sider the use of bilevel optimization programming as a layer.
Bilevel Optimization Program (Kleinert et al. 2021; Colson,
Marcotte, and Savard 2007; Dempe 2018; Stackelberg et al.
1952), also known as generalization of Stackelberg Games,
is the extension of single-level optimization program, where
the solution of one optimization problem (i.e. the outer prob-
lem) depends on the solution of another optimization prob-
lem (i.e. the inner problem). This class of problems can
model interactions between two actors!, where the action of
the first depends on the knowledge of the counter-action of
the second. Bilevel Programming finds application in var-
ious domains, as in Electricity networks, Economics, En-
vironmental policy, Chemical plant, defence and planning
(Dempe 2018; Sinha, Malo, and Deb 2017). In general,
Bilevel programs are NP-hard (Sinha, Malo, and Deb 2017),
they require specialized solvers and it is not clear how to
extend previous approaches, since standard chain rule is not
directly applicable.

By modelling the bilevel optimization problem as an im-
plicit layer (Bai, Kolter, and Koltun 2019), we consider the
more general case where 1) the solution of the bilevel prob-
lem is computed separately by a bilevel solver; thus lever-
aging on powerfully solver developed over various decades
(Kleinert et al. 2021); and 2) the computation of the gradient
is more efficient, since we do not have to propagate gradient
through the solver. We thus propose Differentiating through
Bilevel Optimization Programming (BiGrad):

* BiGrad comprises of forward pass, where existing
solvers can be used, and backward pass, where BiGrad
estimates gradient for both continuous and combinatorial
problems based on sensitivity analysis;

* we show how the proposed gradient estimators relate

"'In the following section we provide concrete example of
applications.
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Figure 1: The Forward and backward passes of a Bilevel Pro-
gramming layer: the larger system has input d and output
u = hy o H o hg(d); the bilevel layer has input z and output
x,y, which are solutions of a Bilevel optimization problem
represented by the implicit function H(z,y, z) = 0.

to the single-level analogous and that the proposed ap-
proach is beneficial in both continuous and discrete
cases.

Examples of Bilevel Optimization Problems

Physical System with control sub-system example
Bilevel Programming is to model the interaction of a dy-
namical system (x) and its control sub-system (y), as for
example an industrial plant or a physical process. The con-
trol sub-system changes based on the state of the underlying
dynamical system, which itself solves a physics constraint
optimization problem (Raissi, Perdikaris, and Karniadakis
2019; de Avila Belbute-Peres et al. 2018).

Interdiction problem example Two actors discrete Inter-
diction problems (Fischetti et al. 2019), where one actor ()
tries to interdict the actions of another actors (y) under bud-
get constraints, arise in various areas, from marketing, pro-
tecting critical infrastructure, preventing drug smuggling to
hinder nuclear weapon proliferation.

Min-max problem example Min-max problems are used
to model robust optimization problems (Ben-Tal, El Ghaoui,
and Nemirovski 2009), where a second variable represents
the environment and is constrained to an uncertain set that
captures the unknown variability of the environment.
Adversarial attack in Machine Learning Bilevel pro-
bram is used the represents the interaction between a ma-
chine learning model (y) and a potential attacker (x) (Gold-
blum, Fowl, and Goldstein 2019) and is used to increase the
resilience to intentional or unintended adversarial attacks.

2 Differentiable Bilevel Optimization Layer

We model the Bilevel Optimization Program as an Implicit
Layer (Bai, Kolter, and Koltun 2019), i.e. as the solution
of an implicit equation H (z,y,z) = 0, in order to derive
the gradient using the implicit function theorem, where z is
given and represents the parameters of our system we want
to estimate, and x, y are output variables (Fig.1). We also as-
sume we have access? to a solver (z,y) = Solveg (2). The
bilevel Optimization Program is then used a layer of a dif-
ferentiable system, whose input is d and output is given by

% Finding the solution of the bi-level problem is not in the scope of
this work.

u = hy o Solvey o hg(d) = hy ¢(d), where o is the func-
tion composition operator. We want to learn the parameters
1, 0 of the function hy ¢(d) that minimize the loss function
L(hy g(d), u), using the training data D* = {(d,u)N"}.
In order to be able to perform the end-to-end training, we
need to back-propagate the gradient of the Bilevel Optimiza-
tion Program Layer, which can not be accomplish only using
chain rule.

2.1 Continuous Bilevel Programming

‘We now present the definition of the continous Bilevel Opti-
mization problem, which comprises of two non-linear func-
tion f, g, as

i 1
min y Garggggg(x,y,Z) (1)

where the left part problem is called outer optimization
problem and resolves for the variable x € X, with X = R”.
The right problem is called the inner optimization problem
and solves for the variable y € Y, with Y = R™. The vari-
able z € RP is the input variable and is a parameter for
the bilevel problem. Min-max is special case of Bilevel op-
timization problem min,cy max,ex g(z,y, z), where the
minimization functions are equal and opposite in sign.

2.2 Combinatorial Bilevel Programming

When the variables are discrete, we restrict the objective
functions to be multi-linear (Greub 1967). Various impor-
tant combinatorial problems are linear in discrete variables
(e.g. VRP, TSP, SAT 3), one example form is the following

gél)?(z,asﬂ + <y7$>37 Y€ argggg}<w7y>c + <$,y>D
2

The variables x,y have domains in x € X,y € Y, where
X,Y are convex polytopes that are constructed from a set
of distinct points X C R™, Y C R™, as their convex hull.
The outer and inner problems are Integer Linear Programs
(ILPs). The multi-linear operator is represented by the in-
ner product {x,y)a = 2T Ay . We only consider the case
where we have separate parameters for the outer and inner
problems, z € RP and w € RY.

3 BiGrad: Gradient estimation

Even if the discrete and continuous variable cases share a

similar structure, the approach is different when evaluating

the gradients. We can identify the following common basic
steps (Alg.1):

1. In the forward pass, solve the combinatorial or continu-
ous Bilevel Optimisation problem as defined in Eq.1(or
Eq.2) using existing solver;

2. During the backward pass, compute the gradient d,L
(and d,,L) using the suggested gradients (Sec.3.1 and
Sec.3.2) starting from the gradients on the output vari-
ables VL and VL.

3 Vehicle Routing Problem, Boolean satisfiability problem.



Algorithm 1: BiGrad Layer: Bilevel Optimization Program-
ming Layer using BiGrad

1. Input: Training sample (d, @)
2. Forward Pass:
(a) Compute (z,y) € {z,y : H(xz,y,z) = 0} using
Bilevel Solver: (z,y) € Solvey(z)
(b) Compute the loss function L(hy o H o hg(d), @),
(c) Save (x,y, z) for the backward pass
3. Backward Pass:
(a) update the parameter of the downstream layers v using
back-propagation
(b) For the continuous variable case, compute based on
Theorem 2 around the current solution (x, y, z), with-
out solving the Bilevel Problem
(c) For the discrete variable case, use the gradient es-
timates of Theorem 3 or Section 3.2 (e.g. Eq.11 or
Eq.12) by solving, when needed, for the two separate
problems
(d) Back-propagate the estimated gradient to the down-
stream parameters 6

3.1 Continuous Optimization

To evaluate the gradient of the variables z versus the loss
function L, we need to propagate the gradients of the two
output variables x, y through the two optimization problems.
We can use the implicit function theorem to approximate
locally the function z — (z,y). We have thus the following
main results*.

Theorem 1. Consider the bilevel problem of Eq.1, we can
build the following set of equations that represent the equiv-
alent problem around a given solution x*,y*, z*:

F(z,y,2) =0 G(z,y,2) =0 3)

where
F(z,y,2) =Vof =V, fV,GV,G, G(z,y,2)=Vyug
4)
where we used the short notation f = f(z,y,2),9 =

g(x7y7z)7F = F(x7y7z)’G = G(‘T"’y5z)

Theorem 2. Consider the problem defined in Eq.1, then
the total gradient of the parameter z w.r.t. the loss func-
tion L(x,y,z) is computed from the partial gradients
Vol, VL, V.L as

-1

d.L=V.L—|V,L VyL‘g oy

F
G

+F
=G

The implicit layer is thus defined by the two conditions
F(z,y,z) = 0 and G(z,y,z) = 0. We notice that Eq.5
can be solved without explicitly computing the Jacobian
matrices and inverting the system, but adopting the Vector-
Jacobian product approach we can proceed from left to right
to evaluate d, L. In the following section we describe how

* Proofs are in the Supplementary Material

affine equality constraints and nonlinear inequality can be
used when modelling f, g. We also notice that the solution
of Eq.5 does not require to solve the original problem, but
only to apply matrix-vector products, i.e. linear algebra, and
the evaluation of the gradient that can be computed using
automatic differentiation.

Linear Equality constraints To extend the model of Eq.1
to include linear equality constraints of the form Az = b and
By = con the outer and inner problem variables, we use the
following change of variables

zr — zo+ Atx, y — yo + By, (6)

where AL, B+ are the orthogonal space of A and B, i.e.
AAL = 0,BB+ = 0, and o, yo are one solution of the
equations, i.e. Azg = b, Byy = c.

Non-linear Inequality constraints Similarly, to extend
the model of Eq.1 when we have non-linear inequality con-
straints, we use the barrier method approach (Boyd and Van-
denberghe 2004), where the variable is penalized with a log-
arithmic function to violate the constraints. Specifically, let
us consider the case where f;, g; are inequality constraint
functions, i.e. f; < 0,¢g; < 0, for the outer and inner prob-
lems. We then define new functions

k.

f=tf =Y In(=f), g=tg=> In(=g). @

i=1 i=1

where ¢ is a variable parameter, which depends on the vio-
lation of the constraints. The closer the solution is to violate
the constraints, the larger the value of ¢ is.

Bilevel Cone programming We show here how
Theorem.2 can be applied to bi-level cone program-
ming extending single-level cone programming results
(Agrawal et al. 2019b), where we can use efficient solvers
for cone programs to compute a solution of the bilevel
problem (Ouattara and Aswani 2018)

min ¢’z + (Cy) Tz
st. A+ z+ R(y)(x —r)=b, se K (8a)
y €cargmind’y + (Dx)Ty
y

st. By+u+ P(z)(y—p)=f,uek (8b)

In this bilevel cone programming, the inner and outer prob-
lem are both cone programs, where R(y), P(x) represents
a linear transformation, while C, r, D, p are new parameters
of the problem, while /C is the conic domain of the variables.
In the hypothesis that a local minima of Eq.8 exists, we can
use an interior point method to find such point. To compute
the bilevel gradient, we then use the residual maps (Busseti,
Moursi, and Boyd 2019) of the outer and inner problems. In-
deed, we can then apply Theorem 2, where F' = Ny (z, Q, y)
and G = Ny(y, @, x) are the normalized residual maps de-
fined in (Busseti, Moursi, and Boyd 2019; Agrawal et al.
2019a) of the outer and inner problems.



3.2 Combinatorial Optimization

When we consider discrete variables, the gradient is zero
almost everywhere. We thus need to resort to estimate gradi-
ents. For the bilevel problem with discrete variables of Eq.2,
when the solution of the bilevel problem exists and its solu-
tion is given (Kleinert et al. 2021), Thm.3 gives the gradients
of the loss function with respect to the input parameters.

Theorem 3. Given the Eq.2 problem, the partial variation
of a cost function L(x,y, z, w) on the input parameters has
the following form:

d.L=V.L+[V,L+V,LV,y|V.x (92)
Aol = VoL + [VoLVyz + V,L[Vyy  (9b)

The V. y,V,z terms capture the interaction between
outer and inner problems. We could estimate the gradients in
Thm.3 using the perturbation approach suggested in (Berthet
et al. 2020), which estimate the gradient as the expected
value of the gradient of the problem after perturbing the in-
put variable, but, similar to REINFORCE (Williams 1992),
this introduces large variance. While it is possible to reduce
variance in some cases (Grathwohl et al. 2017) with the use
of additional trainable functions, we consider alternative ap-
proaches as described in the following.

Differentiation of blackbox combinatorial solvers
(Poganci¢ et al. 2019) propose a way to propagate
the gradient through a single level combinatorial
solver, where V.L ~ 21[z(z + 7V,L) — x(z)] when
z(z) = argmax,cx(z,z). We thus propose to compute
the variation on the input variables from the two separate

problems of the Bilevel Problem:

V.L=~1/7[x(z+TAV.L,y) — z(z,9)] (10a)
VoL~ 1/7[y(w+7CV, L, z) — y(w, )] (10b)

or alternatively, if we have only access to the Bilevel solver
and not to the separate ILP solvers, we can express

V.wl = 1/7[s(v+TEVy,L) — s(v)] (11)

where z(z,y) and y(w, x) represent the solutions of the two
problems separately, s(v) = (z,w) — (x,y) the complete
solution to the Bilevel Problem, 7 — 0 is a hyper-parameter
and £ = {61 g} . This form is more convenient than Eq.9,
since it does not require to compute the cross terms, ignoring
thus the interaction of the two levels.

Straight-Through gradient In estimating the input vari-
ables z,w of our model, we may not be interested in the
interaction between the two variable z,y. Let us consider,
for example, the squared ¢, loss function defined over the
output variables

L*(z,y) = L*(z) + L*(y)

where L?(z) = 5|l — «*||3 and 2* is the true value. The
loss is non zero only when the two vectors disagree, and with
integer variables, it counts the difference squared or, in case
of the binary variables, it counts the number of differences.

If we compute V,L?(x) = (z — 2*) in the binary case, we

have that V,,, L%(z) = +1if 2} = 0Ax; = 1, V,, L*(z) =
—lifzj = 1 Az; = 0, and 0 otherwise. This information
can be directly used to update the z; variable in the linear
term (z, z), thus we can estimate the gradients of the input
variables as V,,L? = —\V,,L? and V,,,L? = —\V,,, L?,
with some weight A > 0. The intuition is that, the weight z;
associated with the variable x; is increased, when the value
of the variable x; reduces. In the general multilinear case we
have additional multiplicative terms. Following this intuition
(see Sec.A.3), we thus use as an estimate of the gradient of
the variables

V.L=—AV,L VoL =—CV,L (12)

This is equivalent in Eq.2 where V,z = V,,y = —I and
Vyz = 0, thus V,y = 0. This update is also equivalent to
Eq.10, without the soluton computation. The advantage of
this form is that it does not requires to solve for an additional
solution in the backward pass. For the single level problem,
gradient has the same form of the Straight-Through gradient
proposed by (Bengio, Léonard, and Courville 2013), with
surrogate gradient V,x = —1I.

4 Related Work

Bilevel Programming in machine learning Various pa-
pers model machine learning problem as Bilevel problems,
for example in Hyper-parameter Optimization (MacKay
et al. 2019; Franceschi et al. 2018), Meta-Feature Learn-
ing (Li and Malik 2016), Meta-Initialization Learning (Ra-
jeswaran et al. 2019), Neural Architecture Search (Liu, Si-
monyan, and Yang 2018), Adversarial Learning (Li et al.
2019), Deep Reinforcement Learning (Vahdat et al. 2020)
and Multi-Task Learning (Alesiani et al. 2020). In these
works the main focus is to compute the solution of the
bilevel optimization problems. In (MacKay et al. 2019; Lor-
raine and Duvenaud 2018), the best response function is
modeled as a neural network and the solution is found us-
ing iterative minimization, without attempting to estimate
the complete gradient. Many bilevel approaches rely on the
use of the implicit function to compute the hyper-gradient
(Sec. 3.5 of (Colson, Marcotte, and Savard 2007)), but do
not use bilevel as layer.

Quadratic, Cone and Convex single-level Programming
Various works have addressed the problem of differenti-
ate through quadratic, convex or cone programming (Amos
2019; Amos and Kolter 2017; Agrawal et al. 2019b,a). In
these approaches the optimization layer is modelled as an
implicit layer and for the cone/convex case the normalized
residual map is used to propagate the gradients. Contrary to
our approach, these work only address single level problems.
These approaches do not consider combinatorial optimiza-
tion.

Implicit layer Networks While classical deep neural neu-
ral networks perform a single pass through the network at in-
ference time, a new class of systems performs inference by
solving an optimization problem. Example of this are Deep
Equilibrium Network (DEQ) (Bai, Kolter, and Koltun 2019)
and NeurolODE (NODE) (Chen et al. 2018). Similar to our
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Figure 2: (a) Visualization of the Optimal Control Learning net-
work, where a disturbance ¢; is injected based on the control sig-
nal u;. (b) Comparison of the training performance for N = 2,
T = 20 and epochs=10 of the BiGrad and the Adversarial version
of the OptNet (Amos and Kolter 2017).

approach, the gradient is computed based on sensitivity anal-
ysis of the current solution. These methods only consider
continuous optimization.

Combinatorial optimization Various papers estimate
gradients of single-level combinatorial problems using re-
laxation. (Wilder, Dilkina, and Tambe 2019; Elmachtoub
and Grigas 2017; Ferber et al. 2020; Mandi and Guns 2020)
for example use /1, /5 or log barrier to relax the Integer Lin-
ear Programming (ILP) problem. Once relaxed the problem
is solved using standard methods for continuous variable op-
timization. An alternative approach is suggested in other pa-
pers. For example in (Poganci¢ et al. 2019) the loss func-
tion is approximated with a linear function and this leads
to an estimate of the gradient of the input variable similar
to the implicit differentiation by perturbation form (Domke
2010). (Berthet et al. 2020) is another approach that uses
also perturbation and change of variables to estimate the gra-
dient in a ILP problem. SatNet (Wang et al. 2019) solves
MAXSAT problems by solving a continuous semidefinite
program (SDP) relaxation of the original problem. These
works only consider single-level problems.

Discrete latent variables Discrete random variables pro-
vide an effective way to model multi-modal distributions
over discrete values, which can be used in various machine
learning problems, e.g. in language models (Yang et al.
2017) or for conditional computation (Bengio, Léonard, and
Courville 2013). Gradients of discrete distribution are not
mathematical defined, thus, in order to use gradient based
method, gradient estimations have been proposed. A class of
methods is based on Gumbel-Softmax estimator (Jang, Gu,
and Poole 2016; Maddison, Mnih, and Teh 2016; Paulus,
Maddison, and Krause 2021).

S Experiments

We evaluate BiGrad with continuous and combinatorial
problems to shows that improves over single-level ap-
proaches. In the first experiment we compare the use of Bi-
Grad versus the use of the implicit layer proposed in (Amos

Table 1: Optimal Control Average Cost; Bilevel approach im-
proves (lower cost) over two-step approach, because is able to bet-
ter capture the interaction between noise and control dynamics.

LQR  OptNet Bilevel

Adversarial 2.736 0.2722  0.2379
(10 steps)
(30 steps) - 0.2511 0.2181

and Kolter 2017) for the design of Optimal Control with ad-
versarial noise. In the second part, after experimenting with
adversarial attack, we explore the performance of BiGrad
with two combinatorial problems with Interdiction, where
we adapted the experimental setup proposed in (Poganci¢
et al. 2019). In these latter experiments, we compare the
formulation in Eq.11 (denoted by Bigrad(BB)) and the for-
mulation of Eq.12 (denoted by Bigrad(PT)). In addition we
compare with the single level BB-1 from (Poganci¢ et al.
2019) and single level straight-through (Bengio, Léonard,
and Courville 2013; Paulus, Maddison, and Krause 2021),
with the surrogate gradient V,x = —I, (PT-1) gradient
estimations. We compare against Supervised learning (SL),
which ignores the underlay structure of the problem and di-
rectly predicts the solution of the bilevel problem.

5.1 Optimal Control with adversarial disturbance

We consider the design of a robust stochastic control for a
Dynamical System (Agrawal et al. 2019b). The problem is
to find a feedback function v = ¢(z) that minimizes

T
. 1
minE 5 > el + o (@)’ (13a)
t=0

s.t. T4l = A.Tt + B¢(It) + wt,Vt (13b)

where z; € R" is the state of the system, while w; is ai.i.d.
random disturbance and x( is given initial state. To solve
this problem we use Approximate Dynamic Programming
(ADP) (Wang and Boyd 2010) that solves a proxy quadratic
problem

Hzlbi,n u?Put + z:Qus + qtuy st fJugll2 <1 (14)
We can use the optimization layer as shown in Fig.2(a) and
update the problem variables (e.g. P, @, q) using gradient
descent. We use the linear quadratic regulator (LQR) so-
lution as initial solution (Kalman 1964). The optimization
module is replicated for each time step ¢, similarly to Recur-
sive Neural Network (RNN).

We can build a resilient version of the controller in the hy-
pothesis that an adversarial is able to inject a noise of limited
energy, but arbitrary dependent on the control u, by solving
the following bilevel optimization problem

st |le]] <o (152)

st ulla <1 (15b)

max Q(us, 70 +¢)
ug(€) = argmin Q(uy, )

where Q(u, z) = u! Pu+ x;Qu+ ¢'u and we want to learn
the parameters z = (P, Q, q), where y = u;, * = € of Eq.1.



gradient
type train

accuracy [12x12 maps]

accuracy [18x18 maps]
validation  train

accuracy [24x24 maps]
validation  train validation

BiGrad(BB) 95.8 +0.2

945+02 971+£00 964+02 98.0+00 97.8+0.0

BiGrad(PT) 91.7£0.1 916 £0.1 943£00 942+£0.1 95700 956=+0.1
BB-1 959402 91.7+£0.1 967+£02 945+£0.1 97.1+0.1 963402

PT-1 883 £0.2 87502 909+£04 90.6+05 928+01 928+£0.2

SL 100.0+00 262+24 999+0.1 202+05 991+02 140+£1.0

Table 2: Performance on the Dynamic Programming Problem with Interdiction. SL uses ResNet18.

DCNN Bi-DCNN  CNN CNN*

@
0 629+03 640+04 634+0.7 63.6x+05
5 426+10 445+02 438+12 443+10

10 235+15 253+£08 243+1.0 242+£1.0

15 144+£14 15.6+07 146=+07 143+£04
20 9.1+12 10.0 0.6 92+04 89+£02
25 6110 6.8 £0.5 6.0+0.2 59£02
30 39+0.7 44+£05 39+£02 39£0.1

Table 3: Performance on the adversarial attack with discrete fea-
tures, with @ = 10. DCNN is the single level discrete CNN, Bi-
DCNN is the bilevel discrete CNN, CNN is the vanilla CNN, while
CNN* is the CNN where we add the bilevel discrete layer after
vanilla training.

We evaluate the performance to verify the viability of
the proposed approach and compare with LQR and OptNet
(Amos and Kolter 2017), where the outer problem is substi-
tuted with a best response function that computes the adver-
sarial noise based on the computed output; in this case the
adversarial noise is a scaled version of Qu of Eq.14. Tab.1
and Fig.2(b) present the performance using BiGrad, LQR
and the adversarial version of OptNet. BiGrad improves over
two-step OptNet (Tab.1), because is able to better model the
interaction between noise and control dynamic.

5.2 Adversarial ML with discrete latent variables

Machine learning models are heavily affected by the injec-
tion of intentional noise (Madry et al. 2017; Goodfellow,
Shlens, and Szegedy 2014). Adversarial attack typically re-
quires the access to the machine learning model, in this
way the attack model can be used during training to include
its effect. Instead of training an end-to-end system as in
(Goldblum, Fowl, and Goldstein 2019), where the attacker
is aware of the model, we consider the case where the at-
tacker can inject a noise at feature level, as opposed at input
level (as in (Goldblum, Fowl, and Goldstein 2019)), this al-
lows us to model the interaction as a bilevel problem. Thus,
to demonstrate the use of a bilevel layer, we design a system
that is composed of a feature extraction layer, followed by
a discretization layer that operates on the space of {0, 1},
where m is the hidden feature size, followed by a classifica-
tion layer. The network used in the experiments is composed
of two convolutional layers with max-pooling and two linear
layers, all with relu activation functions, while the classifi-
cation is a linear layer. We consider an more limited attacker
that is not aware of the loss function of the model and does
not have access to the full model, but rather only to the input
of the discrete layer and is able two switch ) discrete vari-

ables, The interaction of the discrete layer with the attacker
is described by the following bilevel problem:

;Icrélél Eyéag(z +z,y). (16)
where () represents the sets of all possible attack, B the
budget of the discritization layer and y is the output of the
layer. For the simulation, we compute the solution by sort-
ing the features by values and considering only the first B
values, while the attacker will obscure (i.e. set to zero) the
first ) positions. The output y thus will have ones on the
@ to B non-zero positions, and zero elsewhere. We train
three models, on CIFAR-10 dataset for 50 epochs. For com-
parison we consider:1) the vanilla CNN network (i.e. with-
out the discrete features); 2) the network with the single
level problem (i.e. the single-level problem without attacker)
and; 3) the network with the bilevel problem (i.e. the min-
max discretization problem defined in Eq.16). We then test
the networks to adversarial attack using the PGD (Madry
et al. 2017) attack similar to (Goldblum, Fowl, and Gold-
stein 2019). Similar results apply for FGSM attack (Fast
Gradient Sign Attack) (Goodfellow, Shlens, and Szegedy
2014). We also tested the network trained as vanilla network,
where we added the min-max layer after training. From the
results (Tab.3), we notice: 1) The min-max network shows
improved resilience to adversarial attack wrt to the vanilla
network, but also with respect to the max (single-level) net-
work; 2) The min-max layer applied to the vanilla trained
network is beneficial to adversarial attack; 3) The min-max
network does not significantly change performance in pres-
ence of adversarial attack at the discrete layer (i.e. between
Q=0 and Q=10). This example shows how bilevel-layers can
be successfully integrated into Machine Learning system as
differentiable layers.

5.3 Dynamic Programming: Shortest path with
Interdiction

We consider the problem of Shortest Path with Interdiction,
where the set of possible valid paths (see Fig.3(a)) is Y and
the set of all possible interdiction is X. The mathematical
problem can be written as

minmax(z +z © w 17
min max 'Y) (17)
where © is the element wise product.This problem is multi-
linear in the discrete variables x, y, z. The z, w variables are
output of neural network whose input are the Warcraft II
tile images. The aim is to train the parameters of weight



gradient accuracy accuracy accuracy

type k train validation k train validation k train validation
BiGrad(BB) 8 892+£0.1 894+02 10 919+£0.1 92.0+0.1 12 935+0.1 935402
BiGrad(PT) 8 893+0.0 894+0.1 10 920£00 919+0.1 12 93.7+0.1 93.7+0.1
BB-1 8§ 840+04 839+04 10 874+03 875+£04 12 893=£0.1 893+£0.1
PT-1 8§ 84.1+04 841+£03 10 873+£03 87.0+£03 12 893+0.0 89.5+02
SL 8 942+50 107£39 10 927+54 94+04 12 914+23 93=£12

Table 4: Performance in term of accuracy of the TSP use case with interdiction. SL has higher accuracy during train, but fails in at test time.

(a)

standard with interdiction interdiction

()

Figure 3: (a) Example Shortest Path in the Warcraft II tile set of
(Guyomarch 2017). (b) Example Shortest Path without (left) and
with interdiction (middle). Even a small interdiction (right) has a
large effect on the output.

network, such that we can solve the shortest path problem
only based on the input image. For the experiments, we fol-
lowed and adapted the scenario of (Poganci¢ et al. 2019)
and used the Warcraft II tile maps of (Guyomarch 2017).
We implemented the interdiction Game using a two stage
min-max-min algorithm (Kdmmerling and Kurtz 2020). In
Fig.3(b) it is possible to see the effect of interdiction on the
final solution. Tab.2 shows the performances of the proposed
approaches, where we allow for B = 3 interdictions and we
used tile size of 12x 12, 18 x 18, 24 x 24. The loss function is
the Hamming and ¢; loss evaluated on both the shortest path
y and the intervention x. The gradient estimated using Eq.11
(BB) provides more accurate results, at double of computa-
tion cost of PT. Single level BB-1 approach outperforms PT,
but shares similar computational complexity, while single
level PT-1 is inferior to PT. As expected, SL outperforms
other methods during training, but completely fails during
validation. Bigrad improves over single-level approaches,
because includes the interaction of the two problems.

5.4 Combinatorial Optimization: Travel
Salesman Problem (TSP) with Interdiction

Travel Salesman Problem (TSP) with interdiction consists
of finding shortest route y € Y that touches all cities, where
some connections z € X can be removed. The mathematical

“/P‘\z

—

(a) (b)

Figure 4: Example of TSP with 8 cities and the comparison of a
TSP tour without (a) or with (b) a single interdiction. Even a single
interdiction has a large effect on the final tour.

problem to solve is given by

géig;ﬂgé((z—&-x(aww (18)
where z,w are cost matrices for salesman and interceptor.
Similar to the dynamic programming experiment, we imple-
mented the interdiction Game using a two stage min-max-
min algorithm (Kdmmerling and Kurtz 2020). Fig.4 shows
the effect of a single interdiction. The aim is to learn the
weight matrices, trained with interdicted solution on subset
of the cities. Tab.4 describes the performance in term of ac-
curacy on both shortest tour and intervention. We use Ham-
ming and ¢, loss function. We only allow for B = 1 inter-
vention, but considered k£ = 8, 10 and 12 cities from a total
of 100 cities. Single and two level approaches perform sim-
ilarly in the train and validation. Since the number of inter-
diction is limited to one, the performance of the single level
approach is not catastrophic, while the supervised learning
approach completely fails in the validation set. Bigrad thus
improves over single-level and SL approaches. Since Bi-
grad(PT) has similar performance of BiGrad(BB), thus PT
is preferable in this scenario, since it requires less computa-
tion resources.

6 Conclusions

BiGrad generalizes existing single level gradient estimation
approaches and is able to incorporate Bilevel Programming
as learnable layer in modern machine learning frameworks,
which allows to model conflicting objectives as in adversar-
ial attack. The proposed novel gradient estimators are also
efficient and the proposed framework is widely applicable
to both continuous and discrete problems. The impact of Bi-
Grad has a marginal or similar cost with respect to the com-
plexity of computing the solution of the Bilevel Program-
ming problems. We show how BiGrad is able to learn com-
plex logic, when the cost functions are multi-linear.
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A Supplementary Material; BiGrad:
Differentiating through Bilevel
Optimization Programming

A.1 Relationship with other related work

Predict then optimize Predict then Optimize (two-stage)
(Elmachtoub and Grigas 2017; Ferber et al. 2020) or solv-
ing linear programs and submodular maximization from
(Wilder, Dilkina, and Tambe 2019) solve optimization prob-
lems when the cost variable or the minimization function
is directly observable. In contrary, in our approach we only
have access to a loss function on the output of the bilevel
problem, thus allowing to use as a layer.

A.2 Proofs

Proof of Linear Equality constraints. Here we show that
x(u) = xp + Atuy (19)

includes all solution of Az = b. First we have that AA+ =
0 and Azy = b by definition. This implies that Az(u) =
A(zo + Atu) = Az = b. Thus Vu — Az(u) = b. The
difference ' — xo belongs to the null space of A, indeed
Az’ —xg) = Az’ — Azg = b— b = 0. The null space of A
has size n — p(A). If p(A) = n, where A € R™*" m > n,
then there is only one solution x = 2o = A'b, A' the pseudo
inverse of A. If p(A) < n, then p(A+)) = n — p(A) is a
based of all vectors s.t. Az(u) = b, since p(A+)) = n —
p(A) is the size of the null space of A. In fact AL is the
base for the null space of A. The same applies for y(v) =
Yo + BLvand By(v) = c. O

Proof of Theorem 1. The second equation is derived by im-
posing the optimally condition on the inner problem. Since
we do not have inequality and equality constraints we opti-
mal solution shall equate the gradient w.r.t. y to zero, thus
G = Vyg = 0. The first equation is also related to the opti-
mality of the x variable w.r.t. to the total derivative or hyper-
gradient, thus we have that 0 = d,f = V. f + V,fV,y.
In order to compute the variation of y, i.e. V,y we ap-
ply the implicit theorem to the inner problem, i.e. V.G +
VGV, y = 0, thus obtaining V,y = —V;lGVxG. O

Proof of Theorem 2. In order to prove the theorem, we use
the Discrete Adjoin Method (DAM). Let consider a cost
function or functional L(x,y, z) evaluated at the output of
our system. Our system is defined by the two equations
F = 0,G = 0 from Theorem 1. Let us first consider the
total variations: dL, dF' = 0, dG = 0, where the last con-
ditions are true by definition of the bilevel problem. When
we expand the total variations, we obtain

dL = V,Ldx + V,Ldy+ V,Ldz
dF = V,Fdx+ VyFdy + V, Fdz
dG = V,Gdzx+ V,Gdy + V. Gdz

We now consider dL + dFA + dGy = [V, L + V,F\ +
VoGAldz+ [V, L+ VYV, FA+V,GAldy+ [V.L+V.FA+

V.Gr]dz. We ask the first two terms to be zero to find the
two free variables A, y:

VoL +V ,FAX+V, Gy = 0 (20)
VyL+V,FA+V,Gy = 0 21
or in matrix form
Vo F V.G|l|A _  |V.L
VyF VyF - V,L

We can now compute the d,L = V,L + V_F\ + V_ Gy
with A, v from the previous equation. O

Figure 5: Discrete Bilevel Variables: Dependence diagram

Proof of Theorem 3. The partial derivatives are obtained by
using the perturbed discrete minimization problems de-
fined by Eqs.24. We first notice that V, minycy (z,y) =
arg minyecy (z,y). This result is obtained by the fact that
mingey (z,y) = (z,y*), where y* = argmin ey (z,y)
and applying the gradient w.r.t. the continuous variable x;
while Eqgs. 23 are the expected functions of the perturbed
minimization problems. Thus, if we compute the gradient
of the perturbed minimizer, we obtain the optimal solu-
tion, proper scaled by the inner product matrix. For exam-
ple V,®, = Az*(z,y), with A the inner product matrix.
To compute the variation on the two parameter variables, we
have thatdL = V,Ldx+V,Ldy+V,Ldz 4V, Ldw and
that dw/dz = 0, dz/dw = 0 from the dependence diagram
of Fig.5 O

A.3 Gradient Estimation based on perturbation

We can use the gradient estimator using the perturbation ap-
proach proposed in (Berthet et al. 2020). We thus have

(z,y) = 1sz<1> (2:9) Lo (22a)
wy<w D= OV (w2) |, (220)
Vay(z, w) = 1V226 n(@w) |, 0 (22¢)
Vy(z,y) = BTV Wy (2,9) |, 50 (22d)
V.y =V.yV.x (22e)
and
D, (2,y) = Eyurr ®(2 + nu, y) (23a)
U, (w,z) =Eyor Y(w + nu, ) (23b)
0, (z,w) = Eyury ¥(w, z + nu) (23c¢)
Wy (y, 2) = Bunv ®(z,y + nu) (23d)



, while

©(z,y) = min(z,z)4 + {y,2) 5 (24a)
yeyY

which are valid under the conditions of (Berthet et al. 2020),
while 7 and p are hyper-parameters.

A.4 Alternative derivation

Let consider the problem min,¢ i (z,x) 4 and let us define
2, a penalty term that ensures © € K. We can define the
generalized lagragian L(z, z, Q) = (z, ) 4+£2,.. One exam-
pleof Q, = ATz — K(2)| or Q, = —In|z — K(z)| where
K (z) is the projection into K. To solve the Lagragian, we
solve the unconstrained problem min, maxq, L(z,z,$,).
At the optimal point VL. = 0. Let us define F' = VL =
ATz + Q! then V., F = Q) and V. F = AT.If we have
F(z,z) = 0 and a cost function L(x, z), we can compute
d.L = V.L — V,LV;'FV.F. Now F(z,2,Q,) = 0,
we can apply the previous result and d,L = V,L —
VLU ~LAT If we assume Q” = I and V.L = 0, then
d,L =—-AV,_L.

A.5 Memory Efficiency

For continuous optimization programming, by separating
the computation of the solution and the computation of the
gradient around the current solution we 1) compute the gra-
dient more efficiently, in particular we compute second or-
der gradient taking advantage of the vector-jacobian prod-
uct (push-back operator) formulation without explicitly in-
verting and thus building the jacobian or hessian matrices;
2) use more advanced and not differentialble solution tech-
niques to solve the bilevel optimization problem that would
be difficult to integrate using automatic differentiable oper-
ations. Using VIP we reduce memory use from O(n?) to
O(n). Indeed using an iterative solver, like generalized min-
imal residual method (GMRES) (Saad and Schultz 1986),
we only need to evaluate the gradients of Eq.5 and not in-
vert the matrix neither materialize the large matrix and com-
puting matrix-vector products. Similarly, we use Conjugate
Gradient (CG) method to compute Eq.4, which requires to
only evaluate the gradient at the current solution and nor in-
verting neither materializing the Jacobian matrix. An imple-

mentation of a bilevel solver would have a memory com-
plexity of O(Tn), where T are the number of iterations of
the bilevel algorithm.

A.6 Experimental Setup and Computational
Resources

For the Optimal Control with adversarial disturbance we fol-
low a similar setup of (Agrawal et al. 2019a), where we
added the adversarial noise as described in the experiments.
For the Combinatorial Optimization, we follow the setup of
(Poganci¢ et al. 2019). The dataset is generated by solv-
ing the bilevel problem on the same data of (Poganci¢ et al.
2019). For section 5.3, we use the warcraft terrain tiles and
generate optimal bilevel solution with the correct parameters
(z,w), where z is the terrain transit cost and w is the inter-
diction cost, considered constant to 1 in our experiment. X is
the set of all feasible interdictions, in our experiment we al-
low the maximum number of interdictions to be B. For sec-
tion 5.4, on the other hand the z represents the true distances
among cities and w a matrix of the interdiction cost, both un-
known to the model. X is the set of all possible interdictions.
In these experiments, we solved the bilevel problem using
the min-max-min algorithm (Kdmmerling and Kurtz 2020).
For the Adversarial Attack, we used two convolutional lay-
ers with max-pooling, relu activation layer, followed by the
discrete layer of size m = 2024, B = 100, Q@ = 0,10. A
final linear classification layer is used to classify CIFARI10.
We run over 3 runs, 50 epochs, learning rate Ir = 3e —4 and
Adam optimizer. Experiments were conducted using a stan-
dard server with 8 CPU, 64Gb of RAM and GeForce RTX
2080 GPU with 6Gb of RAM.

A.7 Jacobian-Vector and Vector-Jacobian
Products

The Jacobian-Vector Product (JVP) is the operation that
computes the directional derivative J¢(z)u, with direction
u € R™, of the multi-dimensional operator f : R™ — R",
with respect to € R™, where J¢(z) is the Jacobian of
f evaluated at x. On the other hand, the Vector-Jacobian
product (VIP) operation, with direction v € R"™, computes
the adjoint directional derivative v7 J; (). JVP and VJP are
the essential ingredient for automatic differentiation (Elliott
2018; Baydin et al. 2018).



