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Abstract

Data-driven design (DDD) is viewed in materials science as a promising avenue
to accelerate materials discovery by narrowing the search space for candidate
materials with desirable properties, and relies on correctly-extracted information
from prior literature. Existing methods for DDD-related information extraction,
however, rely on either laborious, hand-engineered pipelines, or the annotation
of significant amounts of hard-to-collect data. We therefore propose DDD as a
benchmark for zero- and few-shot document understanding focused on text, tables,
and charts. Accurate generalization to new, unseen material domains is a way to
accelerate scientific discovery by enabling the use of DDD in previously unexplored
domains.

1 Introduction

Data-driven design (DDD), a process by which materials scientists use information extracted from the
literature to inform future experiments, has emerged in the past decade as an important accelerator of
materials discovery (Olivetti et al., 2020). As NLP methods have evolved, so too has their application
to information extraction piece of data-driven design problems, from pipeline-based approaches
relying heavily on rules-based, handwritten heuristics (Kim et al., 2017; Court & Cole, 2018; Jensen
et al., 2019, inter alia) to end-to-end approaches involving fine-tuning large language models (LLMs)
to act as information extractors and assistants (Zheng et al., 2023), or generate structured output
describing properties directly (Dagdelen et al., 2024).

We choose to focus on information extraction, rather than end-to-end hypothesis generation, for
multiple reasons. Focusing primarily on information extraction accelerates a difficult component
of the DDD process, while leaving intact the rich ecosystem of specialized methods in materials
science, such as physics-informed modeling Lee et al. (2024). From a machine learning perspective,
information extraction is immediately verifiable in that metrics can be deterministically computed, as
opposed to hypothesis generation, where evaluation remains difficult (Si et al., 2025). Further, the
information extraction for DDD involves subtasks – parsing complicated information layouts and
reasoning about the normalization and comparison of quantities – that are of practical use, in addition
to being crucial to the success of model-based reasoning more broadly.

However, even current, LLM-based data-driven design work relies on laboriously collected annotated
data. The method proposed in Dagdelen et al. (2024), for instance, suggests annotating “ 100–500
text passages” in order to fine-tune an LLM to produce structured data. This type of data can be
difficult to produce: it often requires domain expertise to collect, verify, and postprocess into a
format that is appropriate for training such models, to say nothing of the challenges of the finetuning
itself. This problem is exacerbated when considering that data-driven design efforts often seek to
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extract information into subdomain-specific, non-overlapping schemas, limiting the possibility of
data sharing or transfer learning between separate DDD efforts. Further complicating the process of
DDD is the inherently multimodal nature of the extraction: information is stored across text, tables,
and charts in papers that are variously available as either XML or PDF documents.

As such, the development of models capable of extracting information from these various modalities
in a zero- or few-shot setting presents an exciting opportunity to accelerate data-driven design and
thereby materials discovery. This work also takes advantage of increasingly multimodal LLMs,
many of which now explicitly prioritize document understanding and visual question answering
(VQA) as a primary objective in pretraining (Wang et al., 2024; Liu et al., 2024), and directs that
development towards a task with huge potential impact; the tasks involved in DDD-related extraction,
such as layout understanding, reference resolution and disambiguation, and numeric normalization
also remain at the frontier of contemporary model capability (Miret & Krishnan, 2024).

2 Dataset Development

Setting and Evaluation We conceptualize this benchmark dataset as a few- and zero-shot evaluation
of the task of extracting and normalizing quantities and strings from papers in their commonly
distributed forms – XML and PDF. This extraction must be standardized into the form that existing
DDD studies publish, typically a spreadsheet. Researchers targeting this benchmark would present
a system that remains unchanged across domains, receives a description of the schema and test
instances, and produces a tabular output in the presented schema.

Preliminary Dataset We piloted this task using Jensen et al. (2019). We observe a number of
characteristics that place the task of IE for DDD at the frontier of contemporary model capability.
These challenges include visual document understanding (particularly of tables, which we demonstrate
with a worked example in appendix A, and charts, with examples in appendix B), in-document symbol
and coreference resolution, and numeric reasoning to normalize quantities and units across papers.
Baseline results displays significant variation based on prompt and data presentation (appendix C).

Broad Domain Coverage To accurately assess a model’s degree of generalization to new domains,
we wish to expand this dataset to several additional domains, including glasses Gupta et al. (2023),
magnetic materials Itani et al. (2024), and metal-organic frameworks Zheng et al. (2023), inter alia.

Data correction and grounding. Recent DDD work increasingly trends towards automatically
extracted datasets at scale with some manual validation. This extraction therefore focuses on
modalities that models can handle – most often text, sometimes tables, and almost never charts. In
developing this dataset further, we would like to extend the scope of the manual annotation and
correction, ensuring accurate measurement, and covering all available modalities. Additionally, we
propose annotating the original documents with the locations of where information was extracted and
its format, allowing for fine-grained error analysis of where and why models fail.

Synthetic Data Generation. Given the existence of open knowledge bases of materials that reflect
the high dimensionality of materials datasets like the Materials Project Horton et al. (2025), we
additionally propose to generate new PDF and XML synthetic data that capture the variation in
layouts and presentation of information such that models can be trained specifically for this task.

Open release of data. We plan to release initial version of this data as a list of DOIs, along with
scripts that allow for the programmatic reconstruction of the dataset given the appropriate licenses.
Longer-term, we plan to work directly with publishers for direct, scoped access to the papers in the
chosen datasets, to allow open access to this benchmark.

3 Conclusion

We present information extraction (IE) for data-driven design as a high-impact benchmark task.
Accurate IE across subdomains presents an instantly useful technology to materials scientists seeking
to start DDD projects in unexplored domains, while guiding the development of document-centric
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VLMs. We outline an existing, preliminary dataset and the challenges it presents, as well as next steps
to develop this dataset into an open, ecolologically valid benchmark for document understanding.
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A Worked example from Jensen et al. (2019)

Figure 4 represents indices 375-390 from our dataset. We reproduce the first four rows of this table
here, and demonstrate how to extract the relevant columns in the first row.

If present, the silicon content is always the basis of normalization, and so receives a value of 1 in the
Si column. This therefore leads us to normalize the germanium value, in the ratio of Si:Ge 0.4:0.6,
to 0.667. This paper uses neither aluminum nor boron, leading to 0 values for both of those. Water
and HF content are similarly normalized by dividing by 0.6.

In the table in Figure 4, the R column is interpreted as the OSDA, even though this is not specified
in the paper. This is a common substitution, alongside others, such as using “T” as the basis for
normalization. We therefore use the values in the R column for the SDA value.

Text found elsewhere on the page provides additional information that must be incorporated. Synthesis
paragraph 2.1 implies that the OSDA is also the source of OH ions: “and 3-ethyl-1-methyl-3H-
imidazol-1-ium bromide (98%, Solvionic), which was transformed into its OH form by ion exchange
in water.” The time and temperature (170°C for 14 days) are from the same paragraph; 14 days must
be normalized to 336 hours.

The name of the OSDA is specified in the table caption. The names of the products are extracted into
column S, but must be expanded using the table footnotes to indicate that “Arg” is argutite, and “Q”
is quartz.

This table demonstrates several of the challenges in this dataset, from table understanding, to resolving
in-table references, having conventional knowledge, and using contextual text that is not explicitly
part of the table being considered or extracted.

Si Ge Al OH H2O HF SDA B Time Temp SDA Type Extracted
1 0.667 0 0.8335 33.34 0 0.8335 0 336 170 3-ethyl-1-meth... TON+MFI+argutite
1 0.667 0 1.667 33.34 0 1.667 0 336 170 3-ethyl-1-meth... MFI+unknown
1 0 0 0.5 8 0.5 0.5 0 336 170 3-ethyl-1-meth... Amorphous
1 0.25 0 0.625 10 0.625 0.625 0 336 170 3-ethyl-1-meth... IM-16+unknown

Table 1: Sample rows from our dataset, filtered from Jensen et al. (2019). This table represents the
first four rows of the table seen in Figure 4

B Example Charts

These example charts are reproduced from Cunningham et al. (2025).
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Figure 1: Example table from the dataset, reproduced from Lorgouilloux et al. (2009, Table 1).
This table demonstrates several of the challenges with table extraction in this dataset, including: (1)
Generic table layout understanding; (2) Processing information related to tables, such as captions and
footnotes; (3) Understanding and resolving in-document substitutions; and (4) Numerical reasoning
to normalize ratios. Note that table understanding, being partially in text, remains easier than chart
understanding.
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Figure 2: An example chart from a materials science paper. This example features a 3-D visualization,
which should likely not be parsed, along with a chart that makes precise use of color and line to
convey information.
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Figure 3: A second example chart from a materials science paper. This example features the side-
by-side presentation of data visualization alongside the output of instruments. Ideally, all of these
modalities contribute to the information extraction we propose.

C Baseline Results on Preliminary Datasets

These results come from running a GPT-4o based pipeline on a preliminary version of our dataset.
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Figure 4: Results from GPT-4o on the preliminary version of our dataset. Groups indicate where
information is found in a paper; "Column" and "Cross-Indexed" indicate two common table formats.
MS- and NLP- indicate prompts from authors who were more familiar with materials science and NLP,
respectively, and -Vis and -XML indicate the PDF and XML settings. These results imply a significant
variance based on prompt construction, information modality, and information presentation; charts
are not present in the original dataset at all.

8


	Introduction
	Dataset Development
	Conclusion
	Worked example from jensenmachine2019
	Example Charts
	Baseline Results on Preliminary Datasets

