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ABSTRACT

In this work, we explore whether pretrained models can provide a useful represen-
tation space for datasets they were not trained on, and whether these representa-
tions can be used to group novel unlabelled data into meaningful clusters. To this
end, we conduct experiments using image representation encoders pretrained on
ImageNet using either supervised or self-supervised training techniques. These
encoders are deployed on image datasets that were not seen during training, and
we investigate whether their embeddings can be clustered with conventional clus-
tering algorithms. We find that it is possible to create well-defined clusters using
self-supervised feature encoders, especially when using the agglomerative clus-
tering method, and that it is possible to do so even for very fine-grained datasets
such as iNaturalist. We also find indications that the Silhouette score is a good
proxy of cluster quality for self-supervised feature encoders when no ground truth
is available.

1 INTRODUCTION

Self-supervised learning (SSL) has seen a large amount of interest in recent years across almost
every machine learning sub-field, due to the promise of being able to harness the large quantities
of unlabelled data available and obtaining generic feature embeddings useful for a variety of down-
stream tasks [Balestriero et al.| (2023)). This has for example led to the development of impressive
large language models (Brown et al.,|2020) and computer vision systems trained on 1 billion images
Goyal et al.[(2021).

However, while the embeddings from an SSL-trained feature extractor can perform well on down-
stream tasks after fine-tuning the network, there has been little investigation into the utility of the
embeddings without fine-tuning the network. Prior work by |Vaze et al.|(2022) and [Zhou & Zhang
(2022) suggests that the SSL feature encoders generate embeddings that are suitable for clustering,
but nonetheless still further adjust the feature encoders through fine-tuning. Yet, widespread interest
in application of large pre-trained models on custom datasets, combined with prohibitive cost of
compute, make this question important and increasingly urgent

We find that there has so far been no investigation into whether SSL-trained feature encoders can
generate informative clusters of embeddings on datasets that were totally unseen to the encoder.
In this work, we therefore perform a zero-shot transfer learning task, evaluating the performance
of a suite of SSL-trained feature encoders across a diverse set of datasets, using different classical
clustering methods. In summary, we make the following contributions:

* We conduct the first investigation into zero-shot clustering of SSL feature encoders, finding
that Contrastive and Multi-Modal SSL approaches can produce meaningful clusters across
a variety of datasets without per-dataset parameter tuning.

* We find that the Agglomerative Clustering method is consistently strong across SSL en-
coders, backbones, and datasets.

* We find that the Silhouette score is highly correlated with the Adjusted Mutual Information

score, and can be a strong proxy of clustering performance without access to ground truth
labels.
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2 RELATED WORK

Our work builds upon two broad fields of research: self-supervised learning for computer vision
applications, and clustering. We give a general overview of each field.

Self-Supervised Learning (SSL) has recently received an increasing amount of interest from the
computer vision domain, in part due to its promising results in natural language processing (Brown
et al., [2020). Whilst SSL has a long history of research, the currently dominant methods can be
divided into five general categories as follows (Balestriero et al., 2023). (1) Contrastive Learning
approaches, which build on metric learning, in which embeddings of multiple views of the same
instance are brought together and embeddings from different instances are pushed apart Chen et al.
(2020); He et al|(2020); |Chen et al| (2021). (2) Self-Distillation approaches, where a student and
teacher encoder process an input image with distinct transforms applied, and the student is tasked
with predicting the embeddings of the teacher (Grill et al., [2020; (Chen & Hel 2021} [Caron et al.}
2021;/Oquab et al.,2023)). (3) Canonical Correlation Analysis approaches, where the feature embed-
dings are analyzed in terms of the cross-covariance matrix, through mechanisms such as minimizing
covariance across feature dimensions and minimizing correlation across feature embeddings for dif-
ferent inputs (Zbontar et al., [2021; Bardes et al., 2022)). (4) Masked Image Modelling approaches,
where large parts of the input image are masked out and have to be reconstructed in image-space
(He et al.} 2022; [Zhou et al.| 2022; Bao et al., 2022). (5) Multi-Modal Learning approaches, where
the utilized data consists of different modalities, such as image-text pairs, which are separately em-
bedded and must be aligned (Radford et al., [2021]).

Clustering is one of the most common tasks in a large variety of applications and can be defined
as the task of finding local structures that are homogeneous and separated without explicit label
supervision (Everitt et al., |2011). This problem has been studied for centuries resulting in methods
using clustering criteria based on partitioning (Lloyd, |1982; |Arthur & Vassilvitskii, [2007), fuzzy
theory (Bezdek et al.l [1984)), graph theory (Frey & Dueck}2007;|[Yu & Shil [2003), density (Ankerst
et al., [1999; [Ester et al.| |1996; Mclnnes & Healyl [2017)), hierarchies (Ward, |1963; |Sokal & Mich-
enerl, |1958)), and many more (Xu & Tian, 2015). These methods have traditionally necessitated a
disjointed processing pipeline, as the clustering algorithms have been optimized independently of
the feature generators. However, in recent years several methods have been proposed to jointly learn
feature extractors and clustering processes (Pakman et al., [2020; |Caron et al., | 2018}; [Tapaswi et al.}
2019; |Ronen et al., 2022} |Yang et al.} 2017} [Van Gansbeke et al., [2020).

3 EXPERIMENTAL DESIGN

We consider the task of zero-shot clustering of feature embeddings obtained from pretrained self-
supervised encoders. The aim of this task is to cluster the feature embeddings from various as-yet
unseen datasets, in a way such that the clusters are intrinsically well-defined and, ideally, match
the ground truth label assignments. Our feature encoders and clustering methods are only tuned
on data from a single dataset, the commonly used ImageNet-1k (Russakovsky et al.l [2015). This
methodology is then deployed on all other tested datasets without re-tuning any of the parameters.

3.1 FEATURE ENCODERS

In order to capture the diverse methodologies within the self-supervised learning field, we compare
methods from the major self-supervised paradigms within computer vision (Balestriero et al.,[2023).
We choose one representative method per paradigm, and compare the clusterability of their features
against those of a model pretrained with cross-entropy supervision using the ImageNet-1k labels.
The SSL models selected are as follows:

* Contrastive Learning: MoCo-v3 (Chen et al., [2021)
Self-Distillation: DINO (Caron et al., [2021])
* Canonical Correlation Analysis: VICReg (Bardes et al., [2022)
* Masked Image Modelling: MAE (He et al., 2022)

Multi-Modal Learning: CLIP (Radford et al., 2021])
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For each method we consider two common backbone networks, ResNet-50 (He et al., 2016)) and
ViT-B (Dosovitskiy et al.} 2021) trained on the ImageNet-1k dataset, using publicly available check-
points. However, it should be noted that (1) the MAE model only supports transformer architec-
tures and so does not have a ResNet-50 checkpoint; (2) VICReg does not have a pretrained ViT-B
checkpoint; and (3) the CLIP model makes several modifications to the backbone architectures.
Furthermore, the CLIP model was not trained on ImageNet-1k, and was instead trained on a dif-
ferent, non-disclosed, large dataset of paired images and text captions. We include the CLIP model
nonetheless since it has previously been shown to perform well on zero-shot classification tasks
when supplied with text embeddings of the classes against which to compare (Radford et al., [2021]).

3.2 CLUSTERING METHODS

In order to cluster the feature embeddings, we considered several classical clustering methods: K-
Means (Lloyd,|1982) (with K-Means++ initialization|Arthur & Vassilvitskii|(2007)), Agglomerative
Clustering (AC) (Everitt et al.,[2011), Affinity Propagation (Frey & Dueck, |[2007), and HDBSCAN
(Mclnnes & Healy, [2017). These clustering methods were chosen because they have few hyper-
parameters to tune, cover several clustering paradigms (partition, hierarchical, graph-theory, and
density), and include both parametric and non-parametric methods. As K-Means requires the num-
ber of clusters in order to run, we assume that this is known a priori. In contrast, HDBSCAN, AC,
and Affinity Propagation automatically determine the number of clusters in the data, with AC also
optionally able to operate with the number of clusters defined beforehand.

Among these, HDBSCAN can identify samples which belong to no cluster (noise samples). Unless
stated otherwise, we consider the noise class to be its own class when computing the AMI (see
[Eq. 2). This unfortunately sets HDBSCAN at a disadvantage, since the samples it identifies as
noise are typically distributed across all ground-truth classes, but is fairer than ignoring samples it
identifies as noise since that would evaluate it only on easier samples.

We actively choose not to consider neural clustering methods, such as Neural Clustering Processes
(Pakman et al.,[2020) or DeepCluster (Caron et al.,|2018)), as these methods jointly learn the feature
encoder and clustering step, which is outside the scope of our investigation. In this work, we focus
solely on how well the feature embeddings of pretrained self-supervised encoders can be clustered.

3.3 DATASETS

We evaluate the different permutations of feature encoders and clustering methods on a diverse set
of datasets, see[Table I] These datasets span tasks with differing levels of label granularity, number
of classes and samples, domain shifts, and degree of class imbalance. Out of all these datasets only
the ImageNet training split has previously been observed during training of the feature encoder{] as
well as setting the hyperparameters of the clustering method. All other datasets have not previously
been observed and the considered methods are not tuned in any way on these.

3.4 EVALUATION METRICS

We evaluate the performance of a clustering using two metrics: Adjusted Mutual Information (AMI)
(Vinh et al.l [2009) and the Silhouette score (Rousseeuw, [1987). AMI measures the agreement be-
tween the constructed clusters and the ground truth clustering, while the Silhouette score measures
how well-defined the clusters are irrespective of whether the cluster elements are correctly assigned.

3.4.1 ADJUSTED MUTUAL INFORMATION

Since we are evaluating the clustering on annotated datasets, we evaluated a candidate clustering
assignment against the “ground truth” cluster labels, from an information theoretic perspective. The
Normalized Mutual Information (NMI) between two label assignments V' an U is defined as

MI(U, V)
mean(H(U) + H(V))’

NMI(U, V) = (1)

"Except potentially the CLIP models, for which we don’t know whether or not it was trained on these
datasets.
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Table 1: Dataset overview. For our zero-shot clustering protocol we consider a diverse set of
experiments of differing levels of task granularity, number of classes and samples, domain shift, and
class imbalance. The reported numbers are on the publicly available test splits. If the test labels are
not publicly available the public validation split is used instead. The class imbalance, p, is measured
with the ratio between the number of samples in the largest and smallest classes in the dataset.

Dataset #Samples #Classes p  Description
ImageNet-1k (Russakovsky et al.|[2015) 50,000 1,000  1.00 Diverse general objects
CIFARI10 (Krizhevsky!|2009) 10,000 10 1.00 Diverse general objects
CIFAR100 (Krizhevsky!|2009) 10,000 100 1.00 Diverse general objects
MNIST (Lecun et al.|[1998) 10,000 10 1.27 Handwritten digits
Fashion MNIST (Xiao et al.|[2017) 10,000 10 1.00 Clothing articles
SVHN (Netzer et al.|[2011) 26,032 10 3.20 House numbers
Oxford Flowers (Nilsback & Zisserman,[2008) 6,149 102 11.90 Flower variants

FGVC Aircraft (Maji et al.[[2013) 3,333 100 1.03  Aircraft variants
NABirds (Van Horn et al.[[2015) 24,633 555 6.67 Bird species
iNaturalist (2021) (Van Horn et al.|[2021) 100,000 10,000 1.00 Plant & animal species

where MI(U, V') is the mutual information between label assignments V' an U, and H() is the
Shannon entropy of the considered label assignment. NMI is a relative measure of the amount of
information between two label sets, and hence is bounded between 0 and 1 with 1 occurring for a
perfect match, and 0 occurring when there is absolutely no mutual information between the label
assignments.

However, NMI is not corrected for chance so its value can increase merely by increasing the num-
ber of clusters used (Vinh et al.l 2009). In order to account for this, we use the Adjusted Mutual
Information metric proposed by Vinh et al.|(2009), defined as

MI(U, V) — EMI(U, V)]
mean(H(U) + H(V)) — EMI(U, V)]’
where E[MI(U, V)] is the expected value of the mutual information between the considered label as-
signments. Similar to NMI, an AMI of 1 represents a perfect agreement between label assignments,

but a score of 0 indicates the typical score for a completely random label assignment (negative AMI
scores are possible).

AMI(U,V) =

2

3.4.2 SILHOUETTE SCORE

The Silhouette score, S, is a clustering measure based on the intrinsic structure of the created clusters
(Rousseeuw, [1987)), defined as

1L a b
S =_—_ _ 3
N Z max(ai,bi)’ ( )
where N is the total number of data points, a; is the average distance between data point ¢ and all
other points assigned in the same cluster, and b; is the average distance from ¢ to all points in the
next nearest cluster. S is bounded between —1 and 1. A score near 0 indicates that clusters are
overlapping, as the data points are equally close to several clusters. A score of 1 indicates that the
clusters are dense with little within-cluster distance, and thereby well-clustered. Negative values

may indicate an inaccurate clustering. Since S is defined based on the relative distances of data
points, it can be computed without reference to a set of ground-truth cluster assignments.

3.5 HYPERPARAMETER SEARCH

In order to maximize the performance of each permutation of the feature encoder and clustering
methods, we conducted a staggered sweep over the relevant clustering hyperparameters. The sweep
was conducted using subsets of the training splits of ImageNet-1k, Imagenette, and Imagewoof
(Howard). Imagenette and Imagewoof are coarse- and fine-grained subsets of ImageNet-1k, respec-
tively, with 10 classes each. These datasets were selected to find hyperparameters which were robust
against changing the number of classes and their granularity, whilst only optimizing clustering per-
formance on data within the encoder’s original training set.
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For each of the three datasets, we created a validation set by taking a class-stratified random subset
of the training set, using the same number of samples as appeared in the datasets’ test set (50000,
3925, and 3929 respectively). The same split was used across all encoders, clusterers, and stages
of the hyperparameter search. For Affinity Propagation, it was not feasible to conduct this search
on ImageNet due to compute and memory scaling w.r.t. number of samples; hence we optimized
Affinity Propagation hyperparameters using Imagenette and Imagewoof only.

First, as the curse of dimensionality can negatively affect the performance of the consid-
ered clustering methods (Bellman, |1966), we searched for an appropriate dimensionality reduc-
tion process. We compared the performance of using the original un-reduced feature embed-
ding space (up to 2048-d) against applying PCA (Pearson, [1901) or UMAP (Mclnnes et al.,
2018) to reduce the number of dimensions. Specifically, we considered reducing the fea-
ture embeddings to [2,5, 10,20, 50, 100, 200, 500] with either PCA or UMAP, and considered
reducing the number of dimensions to capture a target fraction of total variance of the data
[0.75,0.8,0.85,0.9,0.95,0.98,0.99]. To perform PCA, we first took the z-score of each dimen-
sion and then used the default hyperparameters of SCIKIT-LEARN (Pedregosa et al., [2011)), without
whitening the data. To perform UMAP, we increase the number of neighbours considered to 30 and
decreased the minimum distance to 0, following the recommendations of (Mclnnes, 2018)); we oth-
erwise used the default hyperparameters of UMAP (Mclnnes et al., 2018)). In this first stage, we used
the default hyperparameters of the clustering methods as defined in SCIKIT-LEARN. For K-Means
and AC, we provided the number of annotated classes within the dataset (1000 or 10) as number
of clusters to produce. For each encoder and clusterer, we took the average AMI over the three
datasets and selected the method which yielded the highest average AMI (a particular PCA dim,
PCA variance, UMAP dim, or no reduction).

We observed that for K-Means, AC, and HDBSCAN, the majority of encoders all performed best
with UMAP-reduced embeddings and were insensitive to the choice of dimension, with minimal
change in mean AMI across the range 5 to 500. Thus for consistency, we selected a 50-dim UMAP
reduction for all encoders/clusterers where UM AP performed best. The MAE-trained ViT-B encoder
bucked this trend and performed poorly with UMAP reduction across all clusterers (and all three
datasets). For Affinity Propagation, PCA outperformed UMAP (as it failed to converge on UMAP-
reduced embeddings); most encoders worked best with a 10-dim PCA reduction.

In the second stage, using the dimensionality reductions per encoder from the first stage, we iterated
over the per-method specific hyperparameters for AC. Continuing to use the number of classes as
the number of clusters, we evaluated all combinations of distance metric (¢1, {5, £, cosine) and
linkage method (ward /5 only], complete, average, single), for 13 options in total. For each encoder,
we selected the metric and linkage which yielded the best average AMI over the three datasets. The
selected options were /5 + ward (5 encoders), ¢5 + avg (3 encoders), or £, + avg (2 encoders).

Thirdly, we tuned the distance threshold to use for each encoder. The distance threshold provides
an alternative stopping criteria for AC so it does not need to know the number of clusters a priori.
For each encoder, we fit the clusterer on each of the 3 datasets for 21 distance thresholds sampled
logarithmically from 0.001 to 5000.0, and then selected the distance threshold which yielded the
highest average AMI.

For HDBSCAN, we noticed that for some encoders it would select very few clusters for Imagenette
and Imagewoof, reducing its performance. We verified, by clustering the full embeddings, that
decreasing the maximum cluster size mitigated this problem. We thus set the maximum cluster size
to be a generous 20% of the number of samples throughout the remainder of the experiments, so as
to ensure HDBSCAN produced more than a couple of clusters but without constraining it too much.

4 EXPERIMENTAL RESULTS

We report the zero-shot clustering capabilities of the considered SSL feature encoders and clus-
tering methods measured by AMI in [Table 24 and [Table 2b] for ResNet-50 and ViT-B backbones,
respectively.

Across both the ResNet-50 and ViT-B backbones, the best performance on ImageNet-1k (the dataset
used for training) and CIFAR-10 and CIFAR-100 (the datasets most similar in their domain to Ima-
geNet) is obtained using the encoders trained with conventional classification supervision. For Im-



Under review as a conference paper at ICLR 2024

Table 2: AMI scores of SSL encoders and clustering methods. We report the AMI score, as a
percentage, on each test dataset (see for each encoder and clusterer. The performance of
agglomerative clustering is shown twice: once using the ground-truth num. of classes as the num. of
clusters (AC w/ C), once predicting the num. of clusters (AC w/o C). The hyperparams of the cluster-
ing methods are only tuned on ImageNet-1k (IN1k). The best combination of encoder/clusterer per
dataset and backbone bolded; the best encoder per clustering method is underlined. Some Affinity
Propagation results could not be obtained due poor memory and compute scaling with n samples.

(a) AMI score (%) with a ResNet-50 backbone.

Encoder INlIk C10 CI100 MNIST fMNIST SVHN Flowers Aircraft NABirds iNat21]

Supervised 73.0 682 515 81.3 68.7 4.9 63.9 14.6 38.7 8.7
£ MoCo-v3 484 639 50.9 86.5 712 112 80.3 20.7 28.0 4.4
< VICReg 45.8 527 448 79.8 69.9 3.0 81.2 16.1 18.4 3.8
o DINO 443 493 415 74.1 64.2 0.9 81.5 17.7 18.1 3.6
CLIP 50.3 485  39.9 54.3 52.7 1.4 82.5 29.9 42.2 8.2
Supervised 73.0 67.3 518 81.6 68.9 3.7 64.1 15.2 39.0 8.9
© MoCo-v3 487 635 50.6 86.7 702 10.1 81.0 20.4 28.3 4.5
5 VICReg 46.1 53.0 452 79.2 69.3 1.4 81.8 16.4 19.0 3.9
% DINO 48.0 48.0 416 74.0 66.9 0.7 82.2 19.5 21.4 6.7
CLIP 50.1 522 388 81.2 61.1 1.1 85.9 31.4 44.3 9.8
o Supervised (3.6 67.3 49.5 74.2 65.9 5.9 56.9 17.4 47.6 220
> MoCo-v3 483 64.0 46.0 82.4 682  13.0 70.5 16.9 32.5 14.9
3 VICReg 471 526 432 76.0 66.5 4.6 72.0 10.3 25.9  14.0
U DINO 46.9 46.5  39.8 70.4 62.8 2.9 79.0 17.2 254 159
< cuLp 49.7 48.7  38.7 75.8 55.9 1.6 83.1 332 439 232
2 Supervised - 40.2 394 44.3 42.4 9.6 52.8 12.2 37.0 -
& MoCo-v3 - 381  29.7 46.4 45.2 119 46.4 14.6 20.0 -
2 VICReg 125 319 251 39.0 43.0 6.5 48.8 12.8 17.9 -
£ DINO - 311 304 43.0 40.5 7.9 59.9 16.8 18.1 -
& CLIP - 35.8 222 44.3 41.1 5.8 61.1 24.8 28.2 -
~ Supervised 64.0 36.6 42.7 70.3 48.6 5.6 55.9 10.3 27.8 7.8
S MoCov3 340 366 387 76.9 455  10.6 76.3 14.3 25.6 5.1
% VICReg 32.8 29.7  33.0 72.6 48.7 5.3 71.0 11.6 14.3 4.9
2 DINO 205 275 270 68.2 44.5 3.4 71.3 13.2 18.3 3.8
T CLIP 3.1 252 206 77.9 40.6 2.9 73.9 28.0 29.2 103

(b) AMI score (%) with a ViT-B backbone.

Encoder INlIk C10 CI100 MNIST fMNIST SVHN Flowers Aircraft NABirds iNat21

Supervised 78.5 82.6 65.2 80.5 69.7 1.3 68.0 18.3 37.8 8.4
§ MoCo-v3 59.9 78.8 62.1 82.6 71.0 1.4 80.7 14.9 27.3 5.7
ﬁ MAE 19.4 28.7 28.8 47.6 58.1 0.6 45.6 9.8 10.2 1.2
9 DINO 66.5 774  62.3 80.5 69.2 1.0 89.2 20.5 43.5 9.4
CLIP 62.3 793 61.0 56.4 61.0 9.6 89.8 39.9 57.6 13.3
Supervised 78.5 82.6 65.5 84.2 70.8 1.7 68.4 18.2 38.5 8.7
8 MoCo-v3 61.0 799 62.1 83.9 727 14 81.1 14.9 30.6 9.7
2 MAE 24.2  28.7 294 59.3 61.8 0.5 52.9 10.2 12.0 1.8
% DINO 679 745 61.8 83.3 69.1 0.9 90.2 21.7 46.8 14.6
CLIP 61.3 799 61.1 87.7 68.9 11.7 92.8 42.9 61.8 16.9
O Supervised 69.9 79.3  60.5 79.6 66.8 2.7 57.5 18.5 45.1 20.9
5 MoCo-v3 472 771 55.0 81.9 71.7 1.3 62.1 9.8 30.1 19.6
T MAE 28.1 30.3 26.0 59.2 56.2 1.6 43.7 8.1 17.8 5.7
O DINO 53.5 72.8 49.3 81.4 69.0 0.9 777 11.4 36.0 21.9
< CLIP 57.5 754  60.0 74.9 56.8 15.3 88.9 44.8 58.9 28.6
& Supervised 21.8 52.9 36.7 44.5 44.3 4.2 42.9 12.1 32.2 -
& MoCo-v3 16.9 489 332 41.3 46.0 6.1 49.5 11.9 18.2 -
2 MAE 177  26.2 228 47.0 42.5 5.4 44.7 9.8 9.2 -
£ DINO 28.1 450 31.9 40.6 45.5 4.0 58.8 15.9 26.5 -
=< CLIP 27.7 509 325 48.8 43.6 16.1 75.7 36.6 41.6 -
7z Supervised 71.9 66.4 54.7 71.3 47.6 3.0 62.3 13.8 28.2 10.2
5 MoCo-v3 494  62.0 499 75.6 48.2 2.9 75.4 11.2 22.3 6.8
»n MAE 2.5 3.5 4.9 40.4 30.6 0.4 23.7 3.0 4.9 2.5
8 DINO 55.7 57.7  50.7 74.5 44.9 2.2 83.8 15.4 32.5 9.4
T CLIP 494 61.0 48.0 84.5 43.2 13.0 88.5 32.0 46.2 11.9




Under review as a conference paper at ICLR 2024

ResNet-50 ViT-B
= Supervised
—_— —_— MoCo-v3
MAE
o —
DINO
—_— —i s CLIP
=== \/|ICReg
—eeeey —
1 2 3 4 5 1 2 3 4 5
Rank Rank

Figure 1: Average SSL Encoder rank (lower is better). The average rank of each tested SSL
encoder plotted with + 1 standard deviation. For both the ResNet-50 and ViT-B backbones an SSL
encoder in general results in the best clustering. It is worth noting that the supervised method also
in general produces good clusters.

ageNet, the gap between the supervised and self-supervised methods is especially noticeable, with
a difference of nearly 14 percentage points with the ResNet-50 between the supervised method and
the best self-supervised method (CLIP). However, for MNIST and Fashion-MNIST, we find the SSL
encoders are much more competitive, with the contrastive MoCo-v3 encoder achieving the highest
AMI in all but one case (MNIST with ViT-B, where CLIP is the best encoder), and the supervised
network outperformed by multiple SSL encoders. For the smaller fine-grained datasets (FGVC Air-
craft, Oxford Flowers, and NABirds) as well as SVHN we find that the multi-modal CLIP encoder
achieves the best performance for both ResNet-50 and ViT-B. The supervised network performs
particularly poorly on Oxford Flowers (around 10 percentage points worse than the SSL networks).
It is worth noting also that the performance on the SVHN dataset is dramatically lower than all other
datasets. We believe this is due to the very large intra-class diversity for each digit and small inter-
class diversity among digits, originating from the different colored house walls and several digits
being visible in each image. In comparison, the images in Oxford Flowers have perceptually less
variability within classes, and the clustering has much higher agreement with the annotations for
this dataset. Lastly, we find that most combinations of encoders and clustering methods perform
poorly on iNaturalist-21, due to the large number of considered species (10,000) spanning the entire
tree of life (Van Horn et al., 2021). The exception is AC with unknown amount of clusters where
performance is dramatically higher, reaching an AMI of 28.6%.

4.1 COMPARISON OF SSL ENCODERS

In order to directly compare the different SSL-trained encoders, we rank each encoder across
datasets and clustering methods, shown in We find that there is a clear ranking for both
backbone architectures, with MoCo-v3 performing the best for ResNet-50, and CLIP best for ViT-
B. It is worth noting that with a ResNet-50 backbone the CLIP method performs poorly, even though
it is trained on a much larger dataset than ImageNet-1k. We also find that the supervised baseline
is the second-best for both backbones. It is also noticeable that the DINO self-distillation approach
performs well using a ViT-B backbone, but very poorly with ResNet-50 (the same trend as seen
for CLIP); this corroborates the findings of [Vaze et al.| (2022). Lastly, the MAE encoder performed
particularly poorly across all datasets we considered. This finding is congruent with the observation
that MAE-trained models possess details about the pixel-level contents of the stimulus, but need
fine-tuning to perform well at whole-image classification (He et al., 2022]).

4.2 COMPARISON OF CLUSTERING METHODS

We compared the performance of the clustering methods by ranking each method for each combi-
nation of SSL encoder and dataset, shown in From the average ranking, it is immediately
obvious that the best performing clustering method across both backbones is Agglomerative Clus-
tering with the number of clusters known a priori. However, we find that Agglomerative Clustering
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Figure 2: Average clustering method rank (lower is better). The average rank of each tested clus-
tering method plotted with + 1 standard deviation. The Agglomerative Clustering method performs
very well, whether the number of cluster are known a priori (Red) or not (Green).
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Figure 3: AMI-Silhouette scatter plots. The AMI and silhouette score, .S, of each SSL encoder
and clustering method combination are plotted against each other across all datasets, per backbone.
We find that there is strong correlation between the two metrics.

with an unknown number of clusters is very competitive, outperforming K-Means when using a
ResNet-50 backbone. We also find that HDBSCAN and Affinity Propagation are consistently the
worst performing clustering methods we considered.

4.3 EFFECT OF DATASET GRANULARITY

We observe that the performance varies on the smaller fine-grained datasets. While seemingly ar-
bitrary, we find that the performance correlates with how fine-grained the datasets are when con-
sidering the proposed granularity measure from |Cui et al.| (2019). Specifically we find that FGVC
Aircraft is the most challenging dataset, matching the finding by |Cui et al.| (2019) that it is the
most fine-grained dataset of the ones considered, while NABirds and Oxford Flowers gradually be-
comes more coarse-grained, and easier to correctly cluster. Similarly, we find that the large scale
iNaturalist-21 dataset is in general a very hard dataset. These observations echo the recent results
from |Cole et al.| (2022), where it was determined that current SSL methods are not suitable for
fine-grained tasks.

4.4 CORRELATION BETWEEN AMI AND SILHOUETTE SCORE

In the prior analysis we have focused on the AMI metric, which provides a performance measure by
directly comparing the predicted clusters with the ground truth clusters. However, in the context of
SSL this is problematic since there is no ground truth available. Therefore, the intrinsic Silhouette
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Table 3: AMI and Silhouette score correlations. We compute the Pearson correlation between the
AMI and S metrics for each dataset and each clustering method.

(a) Per-dataset correlation coefficients. A clear correlation is determined for the ImageNet, CIFAR, and
MNIST style datasets. In contrast, the majority of the fine-grained datasets have a weaker correlation, except
for Oxford Flowers, while SVHN is completely uncorrelated.

Backbone INlk CI10 C100 MNIST fMNIST SVHN Flowers Aircraft NABirds iNat21

ResNet-50 0.82 0.89 0.76 0.95 097 -0.10 0.75 0.28 0.40 0.40
ViT-B 091 087 0.82 0.95 091 -0.09 0.84 0.33 0.57 0.51

(b) Per-clusterer correlation coefficients. A strong correlation is determined for Agglomerative Clustering
and HDBSCAN. Affinity Propagation exhibit the weakest correlation with a ResNet-50 backbone, but achieve
a much stronger correlation with a ViT-B backbone.

Backbone K-Means Affinity Prop ACw/C ACw/oC HDBSCAN

ResNet-50 0.61 0.15 0.91 0.86 0.94
ViT-B 0.60 0.55 0.82 0.66 0.94

metric, S, calculated from just the predicted clusters is potentially valuable for evaluation of SSL
encoders. However, it is unclear whether AMI and S are correlated. Therefore, we compare the AMI
and S of each SSL encoder and clustering method across all datasets for both backbones, see[Fig. 3]
and compute the Pearson correlation coefficient (r) across all datapoints. Here we find that AMI and
S are in general strongly correlated, with low AMI scores having correspondingly low Silhouette
scores. When looking at per-dataset r values, see we find that strongest correlations are
obtained for ImageNet, CIFAR-10, CIFAR-100, MNIST and Fashion MNIST. However, for all fine-
grained datasets (except Oxford Flowers) the strength of the correlation drops dramatically. For
SVHN the metrics are not correlated at all, since AMI was very low across all models, irrespective
of S. Looking at the per-clustering method results, see[Table 3b we find that the AMI and .S metrics
are strongly correlated for the Agglomerative Clustering and HDBSCAN methods, while Affinity
Propagation is very weakly correlated when using a ResNet-50 backbone.

Therefore, we can conclude that the Silhouette score can be a good proxy when ground truth labels
are not available, but that the effectiveness of the proxy diminishes as the data becomes more fine-
grained and further from the training domain.

5 CONCLUSION

We have empirically investigated how well the feature embeddings produced by pretrained networks
can be clustered in a zero-shot setting, exploring two different architectures trained using one of six
different methodologies (one supervised, five self-supervised), on 10 different datasets, using five
classic clustering methods.

We find that it is possible to create well-defined clusters across nearly all tested datasets, even for
notoriously hard fine-grained datasets such as NABirds. In many cases, the performance on novel
datasets was equal or comparable to that on the in-domain test set of ImageNet-1k. Agglomerative
Clustering is found to be the consistently strongest clusterer when the number of clusters is known a
priori, and also the strongest choice when the number of classes are not known, provided its distance
threshold is tuned on a labelled dataset. In contrast, there is not a single overall best SSL paradigm.
Instead, we find the contrastive MoCo-V3 method is the best method with a ResNet-50, whereas the
multi-modal CLIP approach is the strongest when using a ViT-B backbone.

To cluster embeddings of a novel dataset, we recommend reducing the dimensionality down using
UMAP (we used 50d, any amount of dimensions in the range 5-100 should work), then applying
Agglomerative Clustering on the reduced embeddings. We also show promising results that the Sil-
houette score can be used to evaluate SSL methods for clustering when no ground truth is available.

We believe these results shed an important light on the capabilities of SSL trained feature encoders,
and highlight that they in many cases can produce meaningful clusters on new datasets without any
additional tuning.
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Table 4: Predicted number of clusters. For each clusterer, we report the number of clusters gener-
ated. We report the ground-truth number of classes in the dataset (Num targets), information which
the clusterer was blinded to.

(a) ResNet-50 backbone.

Encoder INlIk CI10 CI100 MNIST fMNIST SVHN Flowers Aircraft NABirds iNat21

Num targets 1000 10 100 10 10 10 102 100 555 10000
%) Supervised 147 12 22 16 15 33 21 9 38 76
% MoCo-v3 63 14 19 14 15 32 25 8 28 72
2 VICReg 70 16 22 16 15 30 29 7 29 69
&t) DINO 84 27 38 26 20 54 54 21 41 64
CLIP 70 28 41 32 27 61 57 31 47 44
& Supervised - 392 459 401 338 1041 340 385 974 -
& MoCo-v3 - 295 348 296 194 839 254 132 536 -
Z VICReg 1394 320 346 318 231 807 234 130 529 -
£ DINO - 741 872 754 623 3051 636 371 1507 -
< CLIP - 286 366 288 207 696 224 132 632 -
7 Supervised 1181 228 201 81 178 617 181 98 526 1617
Zﬂ) MoCo-v3 1302 222 232 81 214 544 140 114 414 1685
% VICReg 1212 225 242 83 180 594 156 115 563 1687
8 DINO 1163 265 250 87 188 678 153 109 376 1683
T CLIP 1072 276 252 57 225 631 160 83 462 1328
(b) ViT-B backbone.
Encoder INIk CI10 C100 MNIST fMNIST SVHN Flowers Aircraft NABirds iNat21
Num targets 1000 10 100 10 10 10 102 100 555 10000
o) Supervised 226 14 25 13 16 31 20 8 36 78
5 MoCo-v3 93 16 20 14 11 13 23 6 18 28
E MAE 131 26 30 35 27 68 22 10 60 218
St) DINO 90 8 14 9 9 6 33 5 18 17
CLIP 111 30 71 35 55 125 58 40 78 79
& Supervised 1456 164 274 261 198 712 223 168 426 -
& MoCo-v3 1274 205 293 292 185 756 234 101 440 -
Z MAE 2009 422 461 400 304 840 355 170 948 -
£ DINO 1090 246 330 284 201 698 222 98 420 -
&< CLIP 738 196 314 250 192 617 174 108 566 -
=z Supervised 1123 118 209 100 209 594 174 92 502 1325
Zﬂ) MoCo-v3 1145 105 235 85 171 548 162 97 456 1592
»n MAE 133 19 21 17 14 51 52 10 50 40
g DINO 1142 144 226 7 215 634 152 110 477 1555
T CLIP 968 138 237 40 231 630 128 142 449 1390

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot:
Image bert pre-training with online tokenizer, 2022.

Xingzhi Zhou and Nevin L. Zhang. Deep clustering with features from self-supervised pretraining,
2022.

A APPENDIX

A.1 PREDICTED NUMBER OF CLUSTERS

We report the predicted number of clusters for the three clusterers which do not require a number of
clusters to be provided to the clusterer.

As shown in the number of clusters predicted is typically a consistent order of magnitude
for a given clusterer and dataset, irrespective of the encoder used. However there is great variability
between clusterers. Affinity propagation predicted a couple of hundred clusters, irrespective of the
dataset. Agglomerative clustering predicted the fewest clusters, even predicting only in the order of
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Table 5: Silhouette scores, with ResNet-50 backbone. We report the Silhouette score, on each
tested dataset (see for each combination of SSL encoder and clustering method. The per-
formance of Agglomerative Clustering is shown twice, either using the ground-truth number of
classes as the number of clusters to generate (AC w/ C), or predicting the number of clusters (AC
w/o C). The hyperparameters of the clustering methods are only tuned on ImageNet-1k (IN1k). The
best combination of SSL encoder and clustering method per dataset and backbone is highlighted in
bold, while the best SSL encoder per clustering method is underlined. We also present the Silhou-
ette scores attained for the embeddings using the “ground-truth” classes as per the dataset annotation
(G.T.).

Encoder IN1k C10 CI100 MNIST fMNIST SVHN Flowers Aircraft NABirds iNat21
Supervised 0.57 0.46 0.38 0.58 0.57 0.23 0.45 0.29 0.31 0.24
. MoCo-v3 0.34 0.42 0.35 0.72 0.58 0.22 0.52 0.30 0.28 0.22
S VICReg 0.34 0.34 0.33 0.62 0.58 0.20 0.55 0.30 0.25 0.22
DINO 0.33 0.32 0.30 0.48 0.53 0.20 0.58 0.29 0.26 0.21
CLIP 0.34 0.34 0.30 0.55 0.44 0.20 0.63 0.33 0.29 0.19
Supervised  0.65  0.49 0.39 0.69 0.61 0.32 0.47 0.30 0.32 0.24
§ MoCo-v3 0.38 0.47 0.37 0.80 0.62 0.33 0.55 0.31 0.29 0.22
ﬁ VICReg 0.38 0.38 0.34 0.69 0.62 0.31 0.60 0.31 0.27 0.22
9 DINO 0.35 0.39 0.31 0.54 0.57 0.30 0.57 0.31 0.27 0.22
CLIP 0.03 0.05 0.01 0.10 0.12 0.05 0.09 0.02 0.03 0.00
Supervised _0.65 0.47 0.37 0.68 0.59 0.27 0.45 0.29 0.30 0.23
8 MoCo-v3 0.36 0.44 0.33 0.78 0.60 0.26 0.57 0.29 0.26 0.21
2  VICReg 0.36 0.35 0.32 0.66 0.61 0.26 0.61 0.30 0.24 0.22
% DINO 0.33 0.36 0.28 0.55 0.55 0.21 0.60 0.28 0.25 0.20
CLIP 0.34 0.37 0.28 0.68 0.49 0.25 0.64 0.34 0.28 0.19
B Supervised 0.48 0.46 045 0.48 0.55 0.20 0.44 0.39 043 0.31
% MoCo-v3 0.32 0.40 0.39 0.67 0.56 0.22 0.49 0.36 0.32 0.26
3 VICReg 0.32 0.33 0.38 0.58 0.55 0.20 0.50 0.39 0.32 0.27
O DINO 0.32 0.27 0.31 0.41 0.50 0.19 0.59 0.29 0.30 0.28
< CLIP 0.41 0.30 0.33 0.43 0.40 0.20 0.65 0.34 0.39 0.33
S Supervised - 0.00 0.01 0.03 0.01 0.01 0.03 —0.01 0.01 -
& MoCo-v3 - 0.08  0.08 0.09 0.10 0.07 0.10 0.09 0.08 -
2 VICReg 0.07 0.07 0.08 0.09 0.10 0.07 0.11 0.10 0.08 -
£ DINO - —-0.01 —-0.01 0.00 0.01 —0.01 0.03 0.01 0.00 -
< CLIP - 0.08 0.07 0.09 0.10 0.07 0.12 0.10 0.07 -
7 Supervised 042 —-0.27 -0.01 0.31 0.03 —0.48 0.14 —0.19 —-0.25 —0.41
5 MoCo-v3 —-0.11 -0.28 —-0.11 0.52 0.00 —0.52 0.38 —0.18 —0.02 —0.43
@ VICReg -0.12 -0.35 -0.14 0.47 0.04 —-0.50 0.45 —0.15 —-0.28 —0.43
g DINO —-0.19 —-0.34 -0.24 0.32 —-0.05 —0.46 0.41 —0.24 —0.11 —0.49
T CLIP -0.19 -0.35 -0.19 0.37 —-0.08 —0.45 0.40 0.04 —0.24 —-0.36

100 clusters for Imagenet- 1k, the dataset the encoders were trained on. HDBSCAN varied more in
the number of clusters it predicted, with around the right number of classes being predicted for the
datasets which were comprised of at least 100 classes.

A.2 SILHOUETTE SCORES

We report the Silhouette scores for each clustering of the test datasets, shown for ResNet-50 archi-
tectures in and ViT-B architectures in[Table 6

Our results on the Silhouette score are broadly in line with our main finding on the AMI between
clusterings and annotation targets, reported in[§4} For both the ResNet-50 and ViT-B encoders, the
supervised model has the highest Silhouette score by a large margin of 0.25-0.3, but otherwise the
clustering quality across the encoders is very similar, achieving similar Silhouette scores to each
other. There are some exceptions to this, such as the Silhouette scores for MAE which are near 0,
illustrating the intrinsically-poor quality of the clusters it exhibited and hence it is not well-suited to
this task.

Despite the very low AMI scores, we observe the Silhouette scores for SVHN are generally compa-
rable to the Silhouette scores of the other datasets. We believe this is due to the heterogeneity within
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Table 6: Silhouette scores, with ViT-B backbone. As for|Table 5| except for encoders with ViT-B
backbones instead of ResNet-50.

Encoder IN1k C10 C100 MNIST fMNIST SVHN Flowers Aircraft NABirds iNat21
Supervised 0.74 0.70 0.50 0.68 0.57 0.23 0.46 0.27 0.32 0.24
. MoCo-v3 0.43 0.57 0.44 0.66 0.60 0.27 0.53 0.29 0.27 0.21
S MAE —0.22 0.02 0.02 0.04 0.03 0.03 0.04 0.03 0.02 —0.07
DINO 0.52 0.58 0.43 0.67 0.62 0.36 0.64 0.30 0.35 0.23
CLIP 0.42 0.53 0.41 0.65 0.50 0.21 0.73 0.39 0.38 0.19
Supervised 0.81 0.71 0.51 0.71 0.58 0.30 0.51 0.29 0.33 0.24
§ MoCo-v3 0.53 0.65 0.46 0.70 0.59 0.32 0.60 0.31 0.29 0.23
é’ MAE 0.03 0.07 0.05 0.12 0.16 0.10 0.06 0.05 0.04 0.02
9 DINO 0.59 0.59 0.45 0.67 0.59 0.36 0.69 0.30 0.34 0.23
CLIP 0.06 0.10 0.06 0.12 0.12 0.05 0.13 0.05 0.04 0.01
Supervised ~ 0.81 0.70 0.50 0.74 0.65 0.24 0.49 0.26 0.31 0.24
8 MoCo-v3 0.49 0.60 0.41 0.72 0.61 0.26 0.60 0.27 0.25 0.20
5 MAE 0.01 0.03 0.01 0.07 0.10 0.04 0.03 0.03 0.01 0.02
% DINO 0.58 0.57 0.44 0.68 0.66 0.31 0.71 0.30 0.36 0.23
CLIP 0.43 0.63 0.41 0.75 0.58 0.26 0.74 0.39 0.37 0.19
o Supervised 0.60 0.69 0.53 0.64 0.56 0.23 0.42 0.37 0.46 0.35
% MoCo-v3 0.37 0.53 0.47 0.62 0.63 0.27 0.46 045 0.41 0.42
3 MAE —0.00 0.01 0.01 0.04 0.05 0.01 0.01 0.06 0.01 —0.01
O DINO 0.47 0.58 0.41 0.67 0.65 0.36 0.59 0.43 0.50 0.44
< CLIP 0.42 0.44 0.40 0.43 0.42 0.21 0.77 0.39 0.44 0.34
2 Supervised 0.06 0.11 0.09 0.10 0.10 0.07 0.10 0.09 0.11 -
& MoCo-v3 0.07 0.09 0.09 0.09 0.10 0.07 0.11 0.10 0.09 -
2 MAE 0.02 0.02 0.02 0.04 0.03 0.03 0.04 0.03 0.02 -
£ DINO 0.08 0.09 0.08 0.09 0.10 0.07 0.12 0.09 0.08 -
< CLP 0.07 0.11  0.09 0.11 0.11 0.08 0.15 0.12 0.09 -
=z Supervised 0.67 0.35 0.17 0.37 —-0.02 —0.47 0.25 —0.21 —-0.16 —0.32
6 MoCo-v3 0.17 0.12 0.03 0.42 0.07 —-0.51 0.42 -0.17 —-0.17  —-0.42
»n MAE —-0.24 -0.24 -0.17 —0.14 —-0.14 —0.30 -0.18 —-0.14 —-0.22 —0.16
g DINO 0.28 0.14 0.06 0.50 0.01 —-047 0.55 —0.18 —-0.04 —0.38
T CLIP 0.16 0.21 0.02 0.56 —-0.01 —0.40 0.66 0.09 —0.02 —0.41
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the classes in SVHN, where house-numbers can be written in different formats, colours, etc., and
thus the encoded images can be appropriately grouped together, even if the semantic meaning of the
clusters does not correspond to the identity of the digit in the center of the image.

Between the clusterers, K-Means and AC typically achieve the highest Silhouette scores. For HDB-
SCAN, the Silhouette scores were often significantly negative. This is because HDBSCAN builds
clusters based on transitions in density, and the non-convex clusters that result from this can score
poor Silhouette scores (a known caveat to this evaluation metric). For Affinity Propagation, we ob-
serve Silhouette scores near 0, indicating the clusters it discovered have high overlap with each other
and are of low quality, corresponding to its poor AMI performance.
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