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ABSTRACT

Leveraging multimodal inputs from multiple sensors offers intuitive benefits for
semantic segmentation but introduces practical challenges—most notably, uni-
modal bias, where models overfit to dominant modalities and perform poorly when
others are missing, a common issue in real-world scenarios. To address this, we
propose AnySeg, a unified framework for learning robust segmentors that generalize
to arbitrary combinations of input modalities. Our approach first trains a strong
multimodal teacher using parallel modality learning. We then distill both unimodal
and cross-modal knowledge to an anymodal student via multiscale feature-level
distillation, reducing modality dependence and improving generalization. To
further enhance semantic consistency, we introduce a prediction-level, modality-
agnostic distillation loss. Unlike prior work, our framework explicitly handles
missing modalities challenges by learning unimodal and cross-modal correspon-
dence among input modalities. Extensive experiments on synthetic and real-world
multi-sensor datasets demonstrate the effectiveness of AnySeg, achieving notable
improvements of +6.37% and +6.15% in mloU.

1 INTRODUCTION

The success of multimodal deep learning relies heavily on effectively leveraging information from
multiple modalities, particularly for complex tasks such as semantic segmentation in scene under-
standing (Zheng et al., 2024d; [Lyu et al.} 2024aj Zheng et al., [2024a; [Lyu et al.l 2024b). While
intuitively beneficial, training segmentation models, a.k.a., segmentors, with inputs from multiple sen-
sors presents significant practical challenges. A prominent issue in this context is unimodal bias — a
phenomenon where networks develop an over-reliance on a single, faster-to-learn modality, often
overlooking other sources of valuable information. This bias stems from the distinct characteristics
and varied learning dynamics of each sensor modality.

For example, the well-known CMX model (Zhang et al.} 2023a) in multimodal semantic segmentation
suffers significant performance drops when evaluated without the RGB modality. Meanwhile, the
state-of-the-art model Any2Seg (Zheng et al.l [2024b), which aims at learning modality-agnostic
representation for missing modality problems, demonstrates a significant performance decline when
evaluated in modality-incomplete scenarios. For instance, when depth data is missing, segmentation
performance drops markedly (RD: 68.21 — R: 39.02, a decrease of 29.19 mloU), illustrating how
unimodal bias can lead to substantial performance degradation in real-world applications where
certain modalities are often unavailable.

Despite advancements in multimodal learning, such as leveraging large multimodal language mod-
els (Zheng et al.| 2024b)) and prioritizing each modality (Zheng et al.l 2024c), progress in addressing
unimodal bias and fostering robust multimodal correlations remains limited. To address this gap, we
introduce the first framework for learning robust anymodal segmentors{ﬂ This framework is tailored
to handle real-world scenarios where modality completeness cannot be guaranteed, such as missing
modality (Liu et al.,[2024) or modality-agnostic segmentation (Zheng et al.| 2024b)).

Our approach begins with a novel Parallel Multimodal Learning (PML) strategy, which facilitates the
learning of a strong teacher model for both unimodal and multimodal distillation without adding extra
parameters. Inspired by recent methods (Zheng et al., 2024bjc), we process all multimodal inputs

'We define anymodal segmentors as models that ensure robust performance despite missing modalities.
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from different sensors in a single mini-batch, passing them through the segmentation backbone, i.e.,
SegFormer. Multimodal fusion is performed through simple averaging, and supervision is applied at
the final layer of the segmentation decoder. This straightforward yet effective PML strategy enables
segmentor to focus on capturing both unimodal and multimodal knowledge (See Tab. [5]and Tab. [6).

We then introduce a dual-level distillation process: Unimodal Distillation (UMD) and Cross-modal
Distillation (CMD), applied across multi-scale representations and prediction levels. To simulate real-
world scenarios, we apply an anymodal dropout strategy, where the multimodal inputs are randomly
masked, creating varied modality combinations within each batch. For distribution distillation within
the multi-scale representation space, the features from the anymodal segmentor are trained to align
with the corresponding features from the multimodal teacher, thereby replicating the unimodal
feature extraction capabilities. Furthermore, cross-modal correspondence is applied across all active
modalities to mitigate the effects of unimodal bias. Finally, at the prediction level, we employ
modality-agnostic semantic distillation to facilitate effective task-specific knowledge transfer between
teacher and student models, further enhancing the robustness in diverse real-world conditions.

Extensive experiments on real-world and synthetic benchmarks demonstrate the superior robustness
and performance of our method compared to existing state-of-the-art approaches, achieving mloU
improvements of +6.37% and +6.15%, respectively. Moreover, we analyze why fused multimodal
fusion distillation is unsuitable for ensuring robustness in multimodal segmentation and further
discuss the feature characteristics of multimodal data.

2 RELATED WORK

Multimodal Semantic Segmentation Semantic segmentation with multi-sensor inputs enhances
scene understanding by leveraging complementary information from diverse sensors, such as event
cameras (Zhou et al.| 2024; |Zheng & Wang| [2024)), LiDAR sensors (Li et al.,|2023)), and others (Liao
et al., 2025bfjal; Zheng et al., [2023}; |2024eid). Recent advances in multi-sensor systems have led
to the development of various approaches (Zheng et al., [2025}; [2024c:bj; Zhang et al., [2023a) and
datasets (Zhang et al., 2023b}; Brodermann et al., 2024) that extend from dual-modality fusion to
full multimodal fusion, with the aim of achieving robust perception across diverse lighting and
environmental conditions throughout the day (Zhao et al., [2025; Broedermann et al., 2023} [Wei
et al.l 2023} |[Zhang et al.| 2021} [Man et al., 2023; [Wang et al.| 2022} |Chen et al., 2021} |[Zhang
et al., [2023bja; |[Zhu et al.} [2024). For instance, MUSES (Brodermann et al.,|2024) dataset integrates
data from a frame camera, LiDAR, radar, event camera, and IMU/GNSS sensors to capture driving
scenes in adverse conditions with increased uncertainty. Recently, CMNeXt (Zhang et al.l 2023b))
introduced the task of fusing an arbitrary number of modalities, although this approach still relies
primarily on RGB input for optimal performance. In our work, we address the challenge of unimodal
bias in multimodal semantic segmentation by focusing on developing a robust anymodal segmentor
that can maintain performance across various input combinations, rather than solely optimizing for
multimodal segmentation accuracy.

Missing Modality Robustness In the multimodal learning community, several studies have sought
to understand unimodal bias from both empirical (Kleinman et al.| 2023} [Peng et al., [2022)) and
theoretical perspectives (Huang et al.,|2022). As shown by Huang et. al (Huang et al., [2022; Zhang
et al.| 2024)), while multimodal learning has the potential to surpass unimodal performance, it often
falls short due to modality competition: only the subset of modalities more closely aligned with
the encoder’s initial parameters tends to dominate learning within the multimodal network. This
phenomenon also occurs in multimodal semantic segmentation, as MAGIC (Zheng et al., 2024c)
and Any2Seg (Zheng et al., [2024b) struggle when depth data is missing during inference. In this
work, we focus on addressing practical challenges in multi-sensor systems that are widely applicable
across industrial domains, including autonomous driving and intelligent systems. We define the
unimodal bias problems in multimodal semantic segmentation and propose the anymodal semantic
segmentation framework.

Robust Multimodal Segmentors. In practice, sensor failures often result in incomplete multimodal
data, challenging segmentation frameworks typically trained on complete modality pairs (Liu et al.,
2024)). Recent studies aim to build models that, while trained with full modalities, remain effective
when some inputs are missing (Liu et al.| 2024; |Wang et al.,2023bj; Maheshwari et al.| 2024} Reza
et al.l 2023} |Chen et al.l 2023 [Zhao et al., [2023). Wang et. al (Wang et al., |2023a)) proposed
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Figure 1: (a) Overall of AnySeg with a two-stage training strategy: the multimodal teacher is first
trained using PML, then frozen for student distillation. (b) Unimodal feature distillation transfers
intra-modality knowledge. (c) Cross-modal feature distillation enables modality interaction transfer.

adaptive modality selection and knowledge distillation for cross-modal compensation. Liu et. al (Liu
et al.| 2024) extended this to modality-incomplete scene segmentation, addressing both system- and
sensor-level failures. More recent methods like MAGIC (Zheng et al.,|2024c)) and Any2Seg (Zheng
et al., [2024b) aim for modality-agnostic segmentation by extracting shared representations. However,
unimodal bias remains unresolved. For instance, Any2Seg’s performance drops sharply without
depth input (RD: 68.21 — R: 39.02), illustrating the challenge. To address this, we propose the
first framework for learning robust anymodal segmentors capable of handling missing modalities
by distilling both unimodal and cross-modal knowledge. We also introduce a parallel multimodal
learning strategy to build a strong teacher model, further advancing robust segmentation under
incomplete inputs.

3 METHODOLOGY

The overall framework is depicted in Fig. m It consists of two segmentors, i.e., the multimodal teacher
segmentor J,,; and anymodal student segmentor F,, as well as two key modules, including the
unimodal and cross-modal distillation and the modality-agnostic semantic distillation modules. The
teacher F,, s is first pre-trained with our proposed parallel multimodal learning strategy to learn a
strong teacher with expertise in multimodal scenarios, its parameter is frozen during training the
student F,s. Inputs: Our framework processes multi-modal visual data from four modalities, all

within the same scene. We consider RGB images R € R"*%*3, depth maps D € D"*w*C” LiDAR

data L € Lh*®*C” and event stack images E € E"***C” o illustrate our method, as depicted in
Fig.[T] Here, we follow the data processing as (Zhang et all 2023b), where the channel dimensions
CP = CF = CF = 3, and we also integrates the corresponding ground truth Y across K categories.
For each training iteration, a mini-batch {r, d, e, [} contains samples from all the input modalities.

3.1 PARALLEL MULTIMODAL LEARNING (PML) STRATEGY

Recent studies have shown that treating all input modalities equally can enhance both multimodal
and unimodal performance (Zheng et al.l 2024bjc)). Building on insights from MAGIC (Zheng et al.|
2024c), we adopt a uniform approach for handling all multimodal inputs and introduce a parallel
multimodal learning strategy to train a robust teacher model for knowledge distillation. As illustrated
in Fig. 2] we compute the mean across multimodal features at each block of the segmentation
backbone (Xie et al.,[2021). This averaged output serves as the input for the segmentation head,
leading to improved multimodal performance, particularly on real-world benchmarks, achieving
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51.37 mIoU on MUSES. The supervised loss Lp’re for training is:

Lpre = ZZyzklog Pik); (1)

=1 k=1
where N = h x w is the total number of pixels, ; , is the ground truth label for class k at pixel
i, and p; j, is the predicted probability for class £ at pixel 7. £,,. encourages accurate predictions
across all modalities and contributes to the robustness of the teacher model.

3.2 UNIMODAL AND CROSS-MODAL DISTILLATION
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Figure 2: PML for learning a strong multimodal segmentor ;.

as teacher model.

{gr7gd}z 1 = Fas({r.d}). )
This process ensures that the anymodal segmentor is trained on diverse input combinations, improving
its robustness and adaptability to incomplete data.

Unimodal Distillation. After extracting the multi-scale features { f¢, fi, f2, fi}1_, and {g¢, g%}
from the multimodal segmentor (teacher model) and the anymodal segmentor (student model), respec-
tively, we proceed with the distillation process. For the remaining multi-scale features {g’, g }1_;
from the anymodal segmentor F,,,, we align them with the corresponding features { fi, f4, fi, fi}t_,
obtained from the multimodal segmentor.

The unimodal knowledge distillation loss function based on KL divergence is defined as:

£umd:Z Zg”log( >+Z ’]10g<~w> ; “4)

=1 \j=1
where C; denotes the number of channels in the i-th level features. To ensure valid probability
distributions for KL divergence computation, we apply softmax to the teacher features g and log-
softmax to the student features f, yielding normalized representations g and f. This guarantees
non-negativity and unit sum, thus satisfying the theoretical prerequisites of KL divergence. The
loss term L4 promotes intra-modality knowledge transfer, enhancing the anymodal segmentor’s
ability to generalize from unimodal inputs. This is demonstrated in Tab. [5] where we show the
performance improvements achieved by applying unimodal distillation in the anymodal segmentation
task. However, while unimodal knowledge transfer enhances single-modality performance, especially

2For example, we illustrate the case where the event and LiDAR modalities are dropped.
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Figure 3: Qualitative comparison on MUSES.

for the RGB images, it simultaneously hinders multimodal performance when different modality
combinations are encountered, as also illustrated in Tab.[3]

Cross-modal Correspondence Distillation.

While unimodal knowledge distillation significantly improves segmentation performance on RGB
images, as shown in Tab. [} it also introduces unimodal bias that reduces performance on other
modalities. This bias causes the model to over-rely on the RGB modality, which is easier for the
model to learn, thereby limiting its generalization capacity across diverse input types. Consequently,
unimodal knowledge transfer, while beneficial for single-modality performance, negatively impacts
multimodal performance in mixed-modality scenarios. This is evident in Tab. [5] where performance
decreases for modalities such as Event (-3.74% J) and LiDAR (-2.91% /).

i)

To address this, we leverage cross-modal correspondences between “easy-to-learn” and “hard-to-learn
modalities to achieve a more balanced performance. By distilling these cross-modal relationships
from the teacher to the student model—referred to as the “anymodal” segmentor—we effectively
mitigate unimodal bias across all modalities.

The distillation of cross-modal knowledge between student features {g¢, g, }7_; and teacher features
{fi, fi, fL, fiyE | is achieved through:

180 S (947,987
Lemd = ;;S (927379173) log W , 5)

where S(z,y) denotes the cosine similarity between feature vectors = and y, and

Ty
5 [EIF
S(z,y) = % is its normalized form within [0, 1] to ensure numerical stability for the logarith-
mic operation. To further mitigate potential instability caused by negative cosine values—especially
when the similarities of teacher and student features differ in sign—we average the similarity scores
across batch samples with the same feature shape. Empirically, this averaging leads to non-negative
values when modalities are semantically aligned. Nonetheless, we adopt the normalized similarity S
to guarantee theoretical robustness. This formulation aligns cross-modal representations by mini-
mizing the discrepancy between teacher and student similarities across modalities. After applying
cross-modal correspondence distillation, the inherent unimodal bias in this task—as well as the bias
introduced by unimodal knowledge distillation—are largely mitigated, as shown in Tab. [5]

3.3 MODALITY-AGNOSTIC DISTILLATION

After addressing the unimodal bias problem in the representation spaces, we also focus on transferring
task-related semantic information at the prediction level for further utilization of the pre-trained
knowledge in the teacher model. Specifically, the segmentation maps predicted by the multimodal
teacher P,,,, are used as supervision signals for the predictions of the anymodal student segmentor
P, The modality-agnostic distillation loss is formulated as:

> . (6

Loinad = Z Z PZ *log <

zlkrl

i,k
am
mm
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Table 1: Results of anymodal semantic segmentation validation with three modalities (F: frame
camera, E: event cameras, L: LIDAR sensor) on real-world MUSES with SegFormer-BO.

Anymodal Evaluation

Method ‘ Pub. ‘ Training

‘ Mean

\ \ \ F E L FE FL EL FEL \
CMX (Zhang et al./[2023a) \ T-ITS 2023 \ \ 2.52 2.35 3.01 41.15 4125 2.56 42.27 \ 19.30
CMNeXt (Zhang et al.|[2023b) \ CVPR 2023 \ \ 3.50 2.77 2.64 6.63 10.28 3.14 46.66 \ 10.80
MAGIC (Zheng et al.|[2024c) \ ECCV 2024 \ FEL \ 43.22 2.68 2295 4351 49.05 22.98 49.02 \ 33.34
Any2Seg (Zheng et al.|[2024b) \ ECCV 2024 \ \ 44.40 3.17 2233 4451  49.96 22.63 50.00 \ 33.86
Ours \ - \ \ 46.01 19.57 3213  46.29 51.25 35.21 51.14 \ 40.23
w.r.t SOTA \ - \ - \ +1.61 +16.40 +9.80 +1.78 +1.29 +12.58 +1.14 \ +6.37

Table 2: Results of anymodal semantic segmentation validation with four modalities (R: RGB, D:
Depth, E: Event, L: LiDAR) on DELIVER using SegFormer-B0 as backbone.

Method | Anymodal Evaluation M
‘ R D E L RD RE RL DE DL EL RDE RDL REL DEL RDEL‘
CMNeXt (Zhang et al.| 2023b:i‘ 0.86 0.49 0.66 0.37 47.06 997 13.75 2.63 1.73 2.85 59.0359.18 14.73 59.18 39.07‘20.77
MAGIC (Zheng et al.|2024c) | 32.60 55.06 0.52 0.39 6332 33.02 33.12 55.1655.17 0.26 63.3763.36 33.32 55.26 63.40|40.49
Any2Seg (Zheng et al.|[2024b)| 39.02 60.11 2.07 031 68.21 39.11 39.04 60.9260.15 1.99 68.2468.22 39.06 60.95 68.25|45.04
Ours ‘47.11 52.17 17.33 19.01 60.37 47.49 48.13 52.8252.29 21.47 60.16 60.60 47.98 52.44 60.26‘46.64

w.r.t SOTA |+14.51 -2.89 +16.81 +18.62 -2.95 +14.47 +15.01 -2.34 -2.88 +21.21 -3.21 -2.76 +14.66 -2.82 -3.14 |+6.15

ean

Table 3: Ablation study of different loss combinations on MUSES dataset (Brodermann et al.|, [2024)).

Loss Combination | F A+ E At L At FE At FL At EL A1 FEL A1 Mean A1
Lsup [43.69 - 2235 - 3214 - 4458 - 4853 - 3540 - 4835 - 3929 -

Lsup + AMinad [43.71 +0.02 23.00 +0.65 34.70 +2.56 44.18 -0.40 49.13 +0.60 37.23 +1.83 48.79 +0.44 40.11 +0.82
Lsup + AMlmad + @Loyma |45.82+2.1319.26 -3.09 31.79 -0.35 45.88 +1.30 51.11 +2.58 33.56 -1.84 50.60 +0.43 39.72 +0.43

Lsup + AMmad + @Lymd + BLeal46.01 +2.3219.57 -2.78 32.13 -0.01 46.29 +1.71 51.25+2.7235.21 -0.21 51.14 +2.79 40.23 +0.94

Table 4: Ablation study on the effect of different parameters b L,, .4 in our framework on MUSES
dataset (Brodermann et al.,|2024)). More results can be found in Table

A F At E At L At FE At FL At EL At FEL A1 Mean A?
1 4397 - 2233 - 3190 - 4482 - 4861 - 3514 - 4833 - 3930 -

20 44.08 +0.11 2276 +0.43 3235 +0.45 4437 -045 4933 +0.72 3473 -0.41 48.79 +0.46 39.49 +0.19
50 4371 -0.26 23.00 +0.67 3470 +2.80 44.18 -0.64 49.13 +0.52 37.23 +2.09 48.79 +0.46 40.11 +0.81
80 43.84 -0.13 22.86 +0.53 33.78 +1.88 4425 -0.57 49.43 +0.82 36.57 +1.43 4872 +0.39 39.92 +0.62

Additionally, there is also a supervised loss imposed between the P,,, and the GT:
| MK
_ i ik
Loup = N E_l ]; y1, log (Pam) . @)

The total loss for training the anymodal student segmentor combines the supervised objective with
multiple distillation terms, formulated as:

Liotal = [fsup + AmadLmad + Lumd + BLemads )

where Ama4, @, and 3 are weighting coefficients for the modality-adaptive, unimodal, and cross-modal
distillation losses, respectively. The supervised loss Ly,,,, serves as the primary training signal and is
left unweighted for clarity, with all distillation losses scaled relative to it.

4 EXPERIMENTS

Experimental Setup. We evaluate our method on synthetic and real-world multi-sensor datasets.
The MUSES dataset (Brodermann et al., |2024)), recorded in Switzerland, includes driving sequences
designed to address challenges from adverse visual conditions. It features multi-sensor data from a
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Table 5: Ablation on different parameters for L, on MUSES dataset (Brodermann et al., 2024).

o« F At E At L At FE At FL At EL At FEL A1 Men A7
wlo 4371 - 2300 - 3470 - 4418 - 4913 - 3723 - 4879 - 4011 -

3 4538 +1.67 2064 -236 3137 -333 4543 +125 5053 +140 33.65 -358 4993 +1.14 3956 -0.55
5 4582 +2.11 1926 -374 31.79 -291 4588 +1.70 5111 +1.98 33.56 -3.67 50.60 +1.81 39.72 -0.39
7 4609 +238 17.84 -516 31.81 -2.89 46.18 +2.00 51.36 +223 3343 -380 51.01 +222 39.67 -0.44
10 46.17 +246 1574 -726 3195 -275 4637 +2.19 51.17 +2.04 3326 -397 51.08 +229 3939 -0.72

Table 6: Ablation on different parameters for add L.,,,q with L,,,,,s on MUSES (Brodermann et al.,
2024). w/o means the framework is only trained with L,,,4q + Lymq. More results in Table. @

3 F At E At L At FE A+ FL A+ EL Af FEL A1 Mean A7
wio 4582 - 1926 - 3179 - 458 - 5111 - 3356 - 5060 - 3972

1 4593 +0.11 1876 -0.50 31.84 +0.05 4596 +0.08 51.22 +0.11 33.49 -0.07 50.82 +0.22 39.72 0.00
3 4604 +022 17.74 -152 3142 -037 4608 +0.20 5127 +0.16 3346 -0.10 50.99 +0.39 39.57 -0.15
5 46.19 +0.37 17.27 -1.99 31.03 -0.76 4627 +0.39 51.34 +0.33 3340 -0.16 51.05 +0.45 3951 -0.21
7 4621 +039 17.40 -1.86 31.06 -0.73 4637 +0.49 5129 +0.18 33.79 +0.23 51.12 -0.12 39.60 -0.12
10 4601 +0.19 19.57 +0.31 32.13 +0.34 4629 +0.41 5125 +0.14 3521 +1.65 51.14 +0.54 4023 +0.51
13 4657 +075 1824 -1.02 30.88 -091 46.74 +0.86 51.09 -0.02 33.88 +0.32 50.76 +0.16 39.74 +0.02
15 46.03 +021 14.10 -8.90 31.12 -3.58 4599 +1.81 50.97 +1.84 3142 -581 5049 -0.11 3859 -1.13
20 4595 +0.13 15.19 -7.81 30.61 -4.09 4580 +1.62 51.19 +2.06 30.55 -6.68 5041 +1.62 38.53 -1.58

high-resolution frame camera, an event camera, and MEMS LiDAR, enhancing annotation quality
and supporting robust multimodal semantic segmentation. Each sequence is annotated with 2D
panoptic labels for accurate ground truth. The DELIVER dataset (Zhang et al.l |2023b) includes
RGB, depth, LiDAR, and event data across 25 semantic categories, covering various environmental
conditions and sensor failures for thorough evaluations. We follow the official data processing and
split protocols. More implementation details can be found in Sec.[A.2]

Results As shown in Tab. |1} our method achieves the highest mloU of 40.23, surpassing all state-of-
the-art (SoTA) baselines. CMX (Zhang et al., 2023a) and CMNeXt (Zhang et al., |2023b)) perform
poorly (mIoU: 19.30% and 10.80%) due to over-reliance on RGB. Similarly, MAGIC (Zheng et al.|
2024c) and Any2Seg (Zheng et al.,[2024b)) heavily depend on depth, leading to significant performance
drops in its absence—highlighting their unimodal bias. In contrast, our method shows balanced
performance across all modalities: RGB (46.01%), Event (19.57%), and LiDAR (32.13%), as well as
paired combinations: FE (46.29%), FL (51.25%), EL (35.21%), and FEL (51.14%), demonstrating
robust cross-modal learning. Significant gains in Event (+16.40%) and FL (+12.58%) further
emphasize our method’s ability to handle sparse or challenging modalities. Fig. 3| provides qualitative
comparisons. Tab. 2] reports results on the synthetic DELIVER benchmark using SegFormer-B0.
Our method achieves a top mIoU of 46.64%, outperforming MAGIC (Zheng et al., 2024c) by
+6.15% . For individual modalities, it achieves 47.11% (R), 52.17% (D), and 19.01% (L), with gains
of +14.51% (R) and +18.62% (L) over MAGIC. Event and LiDAR improvements confirm robustness
to unimodal bias. For paired modalities, RD, RE, and RL achieve mloUs of 60.37%, 47.49%, and
48.13%, with notable gains over MAGIC (+14.47% RE, +15.01% RL). These results demonstrate
our model’s ability to capture cross-modal dependencies while remaining resilient to missing inputs.
Overall, the results confirm the effectiveness of our method in both unimodal and multimodal settings,
offering strong generalization across diverse sensor combinations.

5 ABLATION STUDY

Effectiveness of Loss Functions Tab. [3|reports results of different loss combinations on the MUSES
dataset (Brodermann et al.| [2024). Using only supervised loss (L) yields a mean mloU of 39.29%.
Adding AL, .4 improves performance across paired and combined modalities. Further including
aLmq brings notable gains, especially in F (+2.13%), FE (+1.30%), and FL (+2.58%), confirming
the benefit of unimodal knowledge distillation. The full combination with 3L.,,,4 achieves the best
performance (mean mloU 40.23%), with broad improvements, particularly in FL (+2.72%) and
FEL (4+2.79%). Even E improves slightly (+0.43%), showing robustness across modalities. In sum,



Under review as a conference paper at ICLR 2026

Table 8: Discussion study on the effect of performing KD with fused features on MUSES dataset (Bro4
dermann et al., [2024). w/o means the framework is only trained with L,;,4q + Lymd + Lemd-

A F A+ E At L At FE At FL A1 EL A1 FEL A1 Mean A1t
wlo (ours) 46.01 - 1957 - 3213 - 4629 - 5125 - 3521 - 5114 - 4023

1 46.32 +0.31 17.99 -1.58 31.38 -0.75 46.80 +0.51 51.01 -0.24 33.92 -1.29 50.95 -0.19 39.77 -0.46

3 46.34 +0.33 17.27 -2.30 31.36 -0.77 46.81 +0.52 51.20 -0.05 33.87 -1.34 51.13 -0.01 39.71 -0.52

each loss contributes to better segmentation, and the full loss design is most effective for capturing
complex multimodal interactions.

Ablation on Teacher Model and Fusion Strategy We compare our PML with fusion-based
teacher models MAGIC and CMNeXt to evaluate their impact on student performance. Un-
like CMNeXt’s fixed fusion architecture, PML supports both unimodal and cross-modal distil-
lation via parallel modality learning, offering more diverse and semantically aligned supervision.
Results in Tab. [/| show that distilling

from fused features, as in MAGIC and Table 7: Ablation on teacher model selection.
CMNeXt, degrades performance. CM-

NeXt yleldS the lal‘gest drOp (—434% Teacher F E L FE FL EL FEL
mloU), indicating that rigid fusion G e 35771357 30.00 43.91 4841 33.68 47.75 37.39 (-2.84)
limits generalization. In contrast, CMNeXt 43.80 10.79 23.15 48.34 43.97 33.52 47.64 35.89 (-4.34)
PML achieves the best performance by  pyL (Ours) 46.01 19.57 32.13 46.29 5125 3521 51,14 40.23
preserving both modality-specific and
shared representations. These results confirm PML’s flexibility and effectiveness as a general-purpose
teacher for anymodal segmentation.

Mean

Ablation on Hyper-Parameter Selection We study the effect of hyper-parameters A, «, and 5 for
Limads Lumd, and Ly, q, respectively (Tab. BH6). Increasing A improves performance up to a point,
particularly benefiting underrepresented modalities, before plateauing due to diminishing returns.
Varying « reveals that moderate values enhance unimodal contributions, while overly large values
lead to degradation. Adding L.,,q with an appropriate 8 further improves results, but excessive
weighting can suppress unimodal learning.

Rationality of Unimodal Distillation The effectiveness of L, is demonstrated in Tab. |5} Adding
Luma with a = 1 improves single-modality performance, particularly for RGB (F' : +0.83%) and
paired modalities such as FL (4+0.42%). The best performance for single-modality tasks is observed
at o = 10, where the mean mIoU for RGB increases to 46.17 (+2.46%), and FL achieves 51.17 %
(4+2.19%). Obviously, Lmq effectively improves single-modality segmentation performance by
facilitating knowledge transfer within each modality. However, the results also highlight a trade-off:
while unimodal distillation enhances performance for individual modalities, it may compromise the
model’s ability to handle complex multimodal combinations. Careful tuning of « is therefore critical
to achieving a balance between single-modality and multimodal segmentation performance.

Rationality of Cross-modal Distillation. Unimodal knowledge distillation improves segmentation
performance on RGB images but introduces unimodal bias, reducing performance on other modalities.
This bias arises as the model over-relies on RGB, which is easier to learn, limiting its generalization
across diverse inputs. As shown in Tab. [5} performance on Event (-3.74%) and LiDAR (-2.91%)
modalities declines significantly. While unimodal knowledge transfer enhances single-modality
performance, it negatively impacts multimodal performance in mixed-modality scenarios. Cross-
modal correspondence distillation mitigates this bias by aligning representations across modalities,
improving segmentation performance on diverse inputs. It balances the trade-off between single-
modality and multimodal performance, emphasizing the need to carefully tune 3 for optimal results.
However, larger 3 values (8 > 13) degrade performance, particularly on Event (-8.90%) and LiDAR (-
3.58%), suggesting that overemphasizing cross-modal distillation can overshadow individual modality
learning, leading to performance trade-offs.

Why not doing KD between Fused Features? To explore transferring knowledge from teacher to
student models via fused features, we conduct experiments on the MUSES dataset, using the fusion
method described in (Zheng et al.| 2024c)). The results, summarized in Tab. B} show that applying
knowledge distillation (KD) directly on fused features leads to a significant performance drop across
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Table 9: Performance under different conditions in the DELIVER with RGB-D modalities.

Metric All Cloud Fog Night Rain Sun M.B. O.E. U.E. L.J. E.L.
mloU (%) 55.99 57.94 55.02 54.64 56.24 56.82 54.73 53.71 53.15 54.66 54.18
mF1 (%) 66.97 68.80 65.33 66.16 67.43 67.46 64.88 64.59 64.10 64.51 65.04

mAcc (%) 64.58 65.83 64.51 63.62 64.91 64.41 63.82 61.88 62.06 62.46 62.65

RGB Depth Event LiDAR AnySeg-RDEL

Figure 4: TSNE visualization of multi-modal features (RGB-R, Depth-D, Event-E, and LiDAR-L)
and the learned features of our AnySeg framework.

most metrics. For example, compared to the baseline (without KD on fused features), which achieves
a mean mloU of 40.23%, all KD settings show reduced performance. At A = 1, the mean mloU
drops to 39.77% (-0.46%), and higher A values worsen the decline, with A = 10 yielding a mean
mloU of 39.37% (-0.86%). Examining individual modalities shows a consistent trend: for Event
(E) and LiDAR (L), performance degrades as A increases, with Event mIoU dropping by -3.96% at
A = 10. Paired and fused modalities show minimal or negative improvement, such as FEL, which
gains +0.03% at A = 5 but regresses at A = 10. These results suggest that distilling knowledge
directly from fused features introduces noise and misalignment, limiting their effectiveness. This
highlights the need for specialized distillation mechanisms targeting individual or structured features,
rather than indiscriminately fused representations.

t-SNE Visualization Fig. 4| presents t-SNE visualizations of multimodal features, including RGB,
Depth, Event, LiDAR, and the features under our AnySeg framework. Individual modality plots
reveal distinct clusters, reflecting semantic separability. RGB and Depth exhibit relatively compact
clusters, indicating strong discriminative power, whereas Event and LiDAR show more dispersed
and overlapping clusters, highlighting weaker performance when used independently. The learned
feature spaces, particularly AnySeg-RDL and AnySeg-RDEL, show notable improvements in clus-
ter compactness and separability. AnySeg-RDEL, integrating RGB, Depth, Event, and LiDAR,
achieves the most coherent and well-separated clusters, demonstrating the framework’s robustness
in leveraging complementary information across modalities. These results underscore AnySeg’s
effectiveness in addressing the limitations of individual modalities, achieving robust multi-modal
feature representation, and enhancing segmentation performance through cross-modal fusion.

Cross-Sensor Generalization under Scene Degradations. We test AnySeg’s performance on
the DELIVER using RGB-D under various challenging conditions. As shown in Tab.[0] AnySeg
maintains consistent performance across diverse sensor and environmental degradations. The model
handles cloud, rain, and sun conditions well, with only minor drops under more severe challenges
like motion blur, extreme exposure, and sensor noise (e.g., lidar jitter, event resolution). Despite these
disruptions, the model achieves over 53% mloU in all cases, demonstrating strong generalization.

6 CONCLUSION

In this paper, we addressed the challenge of unimodal bias in multimodal semantic segmentation,
where reliance on specific modalities leads to performance drops when modalities are missing. We
proposed the first framework for anymodal segmentation using unimodal and cross-modal distillation.
A PML strategy ensures a strong teacher model, while multiscale distillation transfers feature-level
knowledge. By distilling unimodal distributions with cross-modal correspondences, we reduce
modality dependency. Additionally, modality-agnostic semantic distillation enables robust prediction-
level knowledge transfer. Experiments on synthetic and real multi-sensor benchmarks validate the
superior performance of our framework. Furthermore, our discussion on fused feature distillation
highlights the need for specialized mechanisms targeting individual or structured features rather than
indiscriminate fusion.
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A APPENDIX

A.1 LIMITATIONS & BROADER IMPACT

A key limitation of AnySeg is the additional computational cost introduced by the teacher-student
framework for improving missing modality robustness and performance during training. This work
advances multi-modal machine learning, particularly in visual pattern recognition, by addressing
unimodal bias in multimodal segmentors. These models often struggle when certain modalities are
missing, a common challenge in real-world applications. While our approach has potential societal
impacts, we do not identify any specific concerns at this time.

A.2 IMPLEMENTATION DETAILS.

All experiments on MUSES were conducted on 8 NVIDIA 3090 GPUs, while experiments on
DELIVER utilized 4 NVIDIA A100 GPUs. The initial learning rate was set to 6 x 10~° and adjusted
using a polynomial decay strategy with a power of 0.9 over 200 epochs. Additionally, a 10-epoch
warm-up phase was applied at 10% of the initial learning rate to stabilize training. The AdamW
optimizer was employed, and the batch size was set to 16. Input modality data was cropped to
1024 x 1024 resolution for consistency across benchmarks.

A.3 QUALITATIVE FEATURE VISUALIZATION

We provide additional qualitative comparisons that highlight our method’s robustness under diverse
dropout conditions in Figure 5]

Qualitative results are illustrated in Fig.[d] which presents the 3D t-SNE visualizations of multimodal
feature spaces. The figure includes the individual feature spaces of RGB, Depth, Event, and LiDAR,
as well as the fused features obtained through our AnySeg framework. These visualizations provide
several key insights:

(I) Distinct Clusters in Individual Modalities: The 3D t-SNE plots of individual modalities reveal
distinct clusters corresponding to semantic classes. However, modalities like Event and LiDAR exhibit
greater feature dispersion, reflecting their limited discriminative power when used independently.
While RGB and Depth features display relatively better cluster separability, overlaps between certain
semantic classes persist, underscoring the challenges of relying solely on individual modalities.

(II) Improved Separability in Paired Modalities: Feature spaces derived from modality combina-
tions, such as RGB+Depth or RGB+Depth+Event, show marked improvements in cluster separability
and compactness when processed through the AnySeg framework. This highlights the benefit
of leveraging complementary information across modalities. For instance, integrating RGB and
Depth reduces the ambiguities present in individual modalities, yielding more cohesive and distinct
clustering.

(IIT) Robust Fused Feature Space: The fused feature space of RGB+Depth+Event+LiDAR, as
modeled by the AnySeg framework, demonstrates the most compact and well-separated clusters
among all configurations. This indicates the framework’s effectiveness in integrating multimodal
information and enhancing the semantic distinctions between classes. Compared to individual or
paired modalities, the fused features provide a more robust representation of the underlying data.

(IV) Mitigation of Ambiguities in Challenging Modalities: The AnySeg framework effectively
addresses the limitations of challenging modalities like Event and LiDAR. Through robust cross-
modal fusion mechanisms, it compensates for the weaknesses of these modalities, resulting in
consistent and accurate segmentation across diverse scenarios. The framework’s ability to integrate
complementary strengths across modalities ensures superior performance in handling complex data
distributions.

These qualitative results corroborate the quantitative findings reported in Tab. [I|and Tab. 2] The
clear clustering of semantic classes and improved separability in the fused feature space highlight the
superiority of the proposed framework in learning robust, multimodal feature representations. Overall,
Fig.[]visually demonstrates the capability of the AnySeg framework to effectively harness multimodal
information for achieving robust semantic segmentation in both individual and multimodal settings.

13



Under review as a conference paper at ICLR 2026

Snow
Night time
Snow
Day time

Rain
Night time

. ’|'H

] 4

Rain
Day time
Fog
Night time

el

Fog
Day time

Clear

. .

e La
EEPArIISE

Clear
Day time

Frame Camera CMNeXt MAGIC Ours Ground Truth
Training with FEL and evaluation with EL

Figure 5: Additional qualitative comparisons that highlight our method’s robustness under diverse
dropout conditions.

A.4 MORE EXPERIMENTAL RESULTS

The experimental results in Table [10| validate the superiority of our proposed method in modality-
agnostic validation on the DELIVER dataset, utilizing three modalities. Across individual modalities,
our method achieves the highest performance in RGB (47.44%) and Event (17.33%), significantly
outperforming MAGIC by margins of +14.48% and +15.18%, respectively, while also maintaining
competitive results in Depth (52.48%). For paired modalities, our approach shows strong cross-modal
fusion capabilities, achieving substantial improvements in RGB+Event (RE, 47.65%, +14.40%)
and Depth+Event (DE, 52.61%, +3.39%) over MAGIC. Although MAGIC achieves the highest
performance in RGB+Depth (RD, 62.52%) and combined modalities (RDE, 62.49%), our method
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AnySeg-RDE

AnySeg-RD AnySeg-RDE AnySeg-RDL AnySeg-RDEL

Figure 6: t-SNE visualization of multi-modal features (RGB, Depth, Event, and LiDAR) extracted by
the SegFormer backbone and the features of our AnySeg framework.

Table 10: Results of modality-agnostic validation with three modalities (R: RGB, D: Depth, E: Event)
on DELIVER.

Anymodal Evaluation

Method | Training | Mean

| | R D E RD RE DE RDE
CMNeXt (Zhang et al.|[2023b} | | 2.69 0.21 0.78 48.04 6.92 2.19 59.84 17.24
MAGIC Zheng etal|p024c) | RPE | 3206 5590 215 6252 3325 5600 6249 4361
Ours | | 4744 52.48 17.33 61.04 47.65 5261 60.62 4845
w.r.t SOTA | | +1448 342 +1518  -148  +1440 339 187 +4.84

performs competitively in these settings with RDE achieving 60.62. Importantly, our method
achieves the highest mean mloU of 48.45%, surpassing MAGIC by +4.84% and CMNeXt by
+31.21%, demonstrating superior generalization across diverse modality configurations. These results
underscore the robustness of our framework in addressing modality-agnostic challenges, effectively
leveraging complementary information across modalities and maintaining balanced performance
even in the presence of weaker modalities like Event.

A.5 TRAINING EFFICIENCY ANALYSIS

To further address concerns regarding computational cost, we provide a detailed comparison of
training time, GPU memory usage, and inference memory usage across representative baseline
methods. All experiments were conducted using the SegFormer-B0 backbone on 8 NVIDIA 3090
GPUs with a batch size of 2 per GPU.
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Table 11: Ablation study on the effect of different parameters for L,,,4 in our framework on MUSES
dataset (Brodermann et al., [2024).

A F At E At L At FE A1 FL At EL At FEL A1 Mean Af
1 4397 - 2233 - 31.90 - 44.82 - 48.61 - 35.14 - 48.33 - 39.30 -

10 4384 013 2321 +0.88 3271 +081 4408 -0.74 49.16 +0.55 3497 -0.17 4808 -025 3944 +0.14
20 4408 4011 2276 +043 3235 +045 4437 045 4933 4072 3473 -041 4879 +046 3949 +0.19

50 43.71 -026  23.00 +0.67 3470 +2.80 44.18 -0.64 49.13 +0.52 37.23 +2.09 4879 +0.46 40.11 +0.81
60 44.02 4005 2274 +0.41 3382 +1.92 4429 -053 4936 +0.75 36.69 +1.55 4854 4021 3992 +0.62
80 4384 -0.13 2286 +0.53 33.78 +1.88 4425 -057 4943 +0.82 3657 +143 4872 4039 3992 +0.62
100 4375 -022 2287 +0.54 3400 +2.10 4417 -0.65 4936 +0.75 36.60 +1.46 48.64 4031 3991 +0.61

Table 13: Ablation study on the effect of different parameters for add L,,q with L,,,4 on MUSES
dataset (Brodermann et al.| [2024). w/o means the framework is only trained with L,,,qq + Lyma-

8 F At E At L At FE At FL At EL At FEL A{ Mean A7
wlo 458 - 1926 - 3179 - 4588 - 5111 - 3356 - 5060 - 3972 -

1 4593 +0.11 1876 -0.50 31.84 +0.05 4596 +0.08 5122 +0.11 3349 -0.07 50.82 +022 39.72 0.00
3 4604 +022 1774 -152 3142 -037 4608 +020 5127 +0.16 3346 -0.10 5099 +039 3957 -0.15
5 4619 +037 1727 -199 31.03 -0.76 4627 +039 5134 +033 3340 -0.16 5105 +045 3951 -021
7 4621 +039 1740 -1.86 31.06 -0.73 4637 +049 5129 +0.18 3379 +023 5112 -0.12 39.60 -0.12
10 4601 +0.19 19.57 +031 3213 +034 4629 +041 5125 +0.14 3521 +1.65 51.14 +0.54 4023 +0.51
13 4657 +0.75 1824 -1.02 30.88 -091 4674 +0.86 51.09 -0.02 3388 +032 5076 +0.16 39.74 +0.02
15 4603 +021 1410 -890 31.12 -358 4599 +1.81 5097 +1.84 3142 -581 5049 -0.11 3859 -1.13
20 4595 +0.13 1519 -7.81 30.61 -409 4580 +1.62 51.19 +2.06 3055 -6.68 5041 +1.62 3853 -1.58

A.6 MORE RESULTS IN ABLATION STUDIES

As shown in Table [12}
our proposed AnySeg Table 12: Comparison of training and inference efficiency across meth-

achieves ~ competitive  ods using SegFormer-B0.
efficiency: training time
and memory usage are Method Training Time (hrs) Training Mem. (GB) Inference Mem. (GB)
comparable to CMNeXt,
. Any2Seg 18.54 239 7.1
while inference memory  \;{5]c 997 3.6 74
usage is  significantly  cMNext 13.76 9.8 8.9
lower. Although the train-  AnySeg (Ours) 15.17 14.5 6.8

ing cost is moderately
higher than MAGIC, this
trade-off is justified by the substantial improvements in segmentation accuracy and robustness under
missing-modality conditions, as demonstrated in our experimental results.

A.7 COMPUTATIONAL COMPLEXITY ANALYSIS

We compare the parameter count and GFLOPs (at a
1024x1024 resolution) for our method and key base- Taple 14: Computational Complexity Com-

lines. As shown in Table [I4} our method, AnySeg, parison (at 1024x1024 resolution)
achieves high segmentation performance with a signif-

icantly more efficient inference model. While training Method Parameters (M)  GFLOPs
involves a more complex teacher, the overhead is im-  —yex: 1030 473
ited to the training phase, with the final deployed model MAGIC 24.74 44435
being the lightweight student, ensuring practical feasi- ~ Any2Seg 24.73 23644
bility. AnySeg (Ours) 3.72 33.82

A.8 SEGMENTATION PERFORMANCE OF THE
TEACHER NETWORK

We present the segmentation results for both the multimodal teacher and student networks, using
SegFormer-B0 as the backbone. The performance is evaluated on the DELIVER dataset across
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multiple modality subsets: RGB (R), Depth (D), Event (E), and LiDAR (L), and their combinations.As
shown in Table[I3] the teacher network (Seg-B2) achieves strong performance across all modality
combinations, with particularly high results on full-modality inputs. However, the student network
(Seg-B0), despite having a smaller backbone, closely approximates or even surpasses the teacher
on several modality subsets, demonstrating its ability to perform well in more resource-efficient
settings. Importantly, the teacher’s performance relies on the full-modality input and is not optimized
for inference in missing-modality scenarios, making the student network essential for anymodal
deployment.

Table 15: Anymodal Segmentation Performance on DELIVER Dataset (Modalities: R =RGB, D =
Depth, E = Event, L = LiDAR)

Method R D E L RD RE RL DE DL EL RDE RDL REL DEL RDEL Mean

Teacher (Seg-B2) 39.02 60.11 2.07 0.31 67.21 39.11 39.04 60.92 60.15 1.99 67.64 67.82 39.06 60.95 67.95 44.89
Student (Seg-B0) 47.11 52.17 17.33 19.01 60.37 47.49 48.13 52.82 52.29 21.47 60.16 60.60 47.98 52.44 60.26 46.64

B THE USE OF LARGE LANGUAGE MODELS (LLM)

We used OpenAl’s GPT-4o to assist with the refinement and proofreading of certain sentences in
this paper. The LLM was used exclusively to enhance the clarity and coherence of our writing. All
content contributions are made by the authors.
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