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Abstract

Estimating causal effects from observational data is a central problem in many2

domains. A general approach is to balance covariates with weights such that the3

distribution of the data mimics randomization. We present generalized balanc-4

ing weights, Neural Balancing Weights (NBW), to estimate the causal effects of5

an arbitrary mixture of discrete and continuous interventions. The weights were6

obtained through direct estimation of the density ratio between the source and bal-7

anced distributions by optimizing the variational representation of f -divergence.8

For this, we selected α-divergence as it presents efficient optimization because9

it has an estimator whose sample complexity is independent of its ground truth10

value and unbiased mini-batch gradients; moreover, it is advantageous for the11

vanishing-gradient problem. In addition, we provide the following two methods12

for estimating the balancing weights: improving the generalization performance13

of the balancing weights and checking the balance of the distribution changed by14

the weights. Finally, we discuss the sample size requirements for the weights as15

a general problem of a curse of dimensionality when balancing multidimensional16

data. Our study provides a basic approach for estimating the balancing weights of17

multidimensional data using variational f -divergences.18

1 Introduction19

Estimating causal effects from observational data is a central problem in many application domains,20

including public health, social sciences, clinical pharmacology, and clinical decision-making. One21

standard approach is balancing covariates with weights that are the same as the density ratios be-22

tween the source and balanced distributions, such that their distribution mimics randomization.23

Many methods have been developed to estimate the balancing weights, such as inverse propen-24

sity weighting (IPW) Rosenbaum and Rubin [24], augmented inverse propensity weighting (AIPW)25

[22], generalized propensity score (GPS) [10], covariate balancing propensity score (CBPS) [9],26

overlap weighting [13], and entropy balancing (EB) [8, 30]. However, these methods are limited to27

categorical or continuous interventions.28

In this study, we propose generalized balancing weights to estimate the causal effects of an arbitrary29

mixture of discrete and continuous interventions. To the best of our knowledge, no causal infer-30

ence method focusing on the balancing weights exists for this problem. We approach this problem31

by directly estimating the density ratio, more precisely, the Radon–Nikodým derivatives, between32

the source and balanced distributions using a neural network algorithm by optimizing a variational33

representation of a f -divergence. f -divergences, whose values are greater than or equal to zero and34

considered zero if the two distributions are equal, are the statistics used to measure the closeness35

of the two distributions. The optimal functions for the variational representations derived from f -36

divergences with the Legendre transform correspond to the density ratio between the distributions37
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[16]. An approach to estimate the density ratio by optimizing a variational representation of a f -38

divergence was developed in the domain adaptation region [29].39

However, optimizing the f -divergences, including estimating the density ratio, is challenging. This40

is due to the following reasons. First, for KL-divergence, the dominant f -divergence, the require-41

ments for sample size increase exponentially with the true amount of the divergence [14, 28]. Sec-42

ond, a naive gradient estimate over mini-batch samples leads to a biased estimate of the full gradient43

[4]. Third, gradients of neural networks often vanish when the estimated probability ratios are close44

to zero [2].45

To avoid the first problem, we focus on α-divergence, which is a subgroup of f -divergence. α-46

divergence has an estimator whose sample complexity is independent of its ground truth value and47

unbiased mini-batch gradients. In addition, by selecting α from a particular interval, we avoid48

vanishing gradients of neural networks when the neural networks reach extreme local minima.49

In addition, we provide two techniques for estimating the balancing weights. First, we propose50

a validation method using test data and an early stopping method to improve the generalization51

performance of balancing. The generalization performance of the weights worsens as the dimensions52

of the data increase, and the sample size requirements of the weights increase exponentially with the53

dimensions. Next, we present a method for measuring the performance of balancing weights by54

estimating the α-divergence information to check the balance of the distribution,55

This study is divided into seven parts. First, we introduce the background of the study. Second,56

we review related studies. Third, we define the terminology and concepts for causal inferences.57

Fourth, we present our novel method for estimating balancing weights. Fifth, we provide techniques58

for estimating the weights. Sixth, we discuss the sample requirements for the weights. Finally, we59

conclude this paper. All the numerical experiments and proofs are described in the appendix.60

2 Related Work61

Balancing weight: Balancing weight: Many methods have been proposed to estimate the balanc-62

ing weights. The following methods are proposed for binary intervention: IPW [24], AIPW [22],63

CBPS [9], and overlap weighting [13]. The following methods have been proposed for continu-64

ous intervention: GPS [10] and EB [8, 30]. Statistical divergences and density ratio estimation:65

Despite the abundance of classic studies [15, 29], we focused on studies that directly estimate den-66

sity ratios or optimize statistical divergences using neural networks. In this review, these studies67

have beenclassified into four groups. First is the estimation of KL-divergence or mutual information68

[3, 18, 21]; the second is density ratio estimation [11]; the third is generative adversarial networks69

(GANs) [17, 31, 6, 32] (statistical divergences were used as discriminators for GANs); and the70

fourth is domain generation [27, 6, 35, 1]. In addition to these application studies, divergences were71

improved [5].72

3 Terminologies and Definitions73

Here, we briefly introduce the terminology and definitions used in this study.74

Notations and Terminologies. Random variables are denoted by capital letters; for example, A.75

Small letters are used for the values of random variables of the corresponding capital letters; a is76

the value of the random variable A. Bold letters A or a represent a set of variables or random77

variable values. In particular, V = {V1, . . . , Vn} are used for the observed random variables and78

U = {U1, . . . , Um} are used as unobserved random variables. For example, the domain of the79

variable A is denoted by XA, and XA1
× · · · × XAn is denoted by XA for A = A1 × · · · × An.80

V ∪ U are assumed to be semi-Markovian models and G = GVU denotes the causal graph for81

V ∪ U. Pa(A)G, Ch(A)G, An(A)G, and De(A)G represent parents, children, ancestors, and82

descendants of the observed variables in G, respectively, for A ⊂ V. In this study, Pa(A)G,83

Ch(A)G, An(A)G, and De(A)G do not include A. P and Q are used as the probability measures84

on (Rd,F ), where F denotes the σ-algebra of subsets of Rd. EP [·] and EP [·|·] denote expectation85

and conditional expectation under the distribution P , respectively. For example, EP [X] =
∫
XX

dP86

and EP [Y|X] =
∫
XY

dP (Y|X). ÊP [·] denotes the empirical expectation under P ; that is, the87
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sample mean of the finite observations drawn from P . P is called absolute continuous with respect88

to Q, P (A) = 0 whenever Q(A) = 0 for any A ∈ F , which is represented as P ≪ Q. dPdQ denotes89

the Radon–Nikodým derivative of P with respect to Q for P and Q with P ≪ Q. In this study,90

we refer to density ratios as the Radon–Nikodým derivatives. µ denotes a probability measure91

on Rd with P ≪ µ and Q ≪ µ. X(N) = {X1, . . . ,XN} denotes N i.i.d. random variables92

from µ. X
(N)
P = {X1

∼P , . . . ,X
N
∼P } and X

(N)
Q = {X1

∼Q, . . . ,X
N
∼Q} denote variables defined as93

P (Xi
∼P ≤ x) = µ(Xi ≤ x) and Q(Xi

∼Q ≤ x) = µ(Xi ≤ x), ∀x ∈ Rd, for 1 ≤ i ≤ N . We94

represent f . g when lim supn→∞ f(n)/g(n) <∞ holds. The notation f & g is defined similarly.95

3.1 Definitions96

In this study, we considered the causal effects of joint and multidimensional interventions. For97

clarity, we used different notations,“ do”and“ do,”for single-dimensional and multidimensional98

interventions, respectively. 1 For a single-dimensional intervention, a do symbol is used, which is99

the same as Pearl’s do-calculation.100

Definition 3.1 (do-calculation, Pearl(2009)). For the two given disjoint sets of X,Y ⊂ V, the101

causal effect on Y for intervention in X with values x, denoted by P (Y|do(X = x)), is defined as102

the probability distribution, such that103

P (Y|do(X = x)) =
∑

v′∈X
V′

pax∈XPa(X)G

P (Y,X = x, Pa(X)G = pax,V
′ = v′)

P (X = x|Pa(X)G = pax)
, (1)

where V′ = V \ (X∪Pa(X)G ∪Y). The causal effect of X on Y under the conditions Z denoted104

by P (Y = y|do(X = x),Z = z) is defined as the probability distribution, such that105

P (Y = y|do(X = x),Z) =
P (Y = y,Z|do(X = x))

P (Z|do(X = x))
. (2)

Notably, from Definition 3.1, a do-calculation for a set of variables coincides with the simultaneous106

interventions for each variable:107

P (Y|do(X)) = P (Y|do(X1), do(X2), . . . , do(Xn)), (3)

where X = {X1, X2, . . . , Xn}. Here, we refer to each intervention in (3) as a“ single-dimensional108

intervention”.109

Furthermore, we use the do symbol for multidimensional intervention. Intuitively, a do symbol110

represents the intervention of the variables that preserves the functional relationship within the vari-111

ables.112

Definition 3.2 (do symbol). do symbol defines the following probability distribution:113

P (Y|do(X1), do(X2), . . . , do(Xn)) = P (Y|do(X))× P (X1)× P (X2)× · · · × P (Xn), (4)

where X = X1 ∪X2 ∪ · · · ∪Xn.114

do symbols are useful, particularly when we consider interventions in a multivalued discrete variable115

expressed using one-hot encoding. In this case, we cannot express the causal effect effectively using116

do symbols. For example, let us consider the case of an intervention in the ternary variableX , XX =117

{x1, x2, x3} and let X be expressed by X′ = (X ′
1, X

′
2, X

′
3), such that X ′

i = 1 if X = xi otherwise118

X ′
i = 0 for i = 1, 2, 3. Then, P (·|do(X = x3)) is the same as P (·|do(X′ = (0, 0, 1))), which119

differs from P (·|do(X′ = (0, 0, 1))). We refer to this type of intervention as a“multidimensional120

intervention”.121

Next, we provide definitions of the f -divergence and f -divergence information.122

Definition 3.3 (f -divergence). The f -divergence Df between the two probability measures P and123

Q with Q ≪ P induced by a convex function f satisfying f(1) = 0 is defined by Df (Q||P ) =124

EP [f(dQ/dP )].125

1The values of the variables in the parentheses for both symbols can be dropped if not necessary in the

context. For example, we sometimes represent do(X = x) or do(X = x) as do(X) or do(X), respectively.
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Many divergences are specific cases obtained by selecting a suitable generator function f . For126

example, f(u) = u log u corresponds to the KL-divergence. In particular, we focus on α-divergence,127

which is expressed as follows:128

Dα(Q||P ) = EP

[
1

α(α− 1)

{(
dQ

dP

)1−α
− 1

}]
, (5)

where α ∈ R \ {0, 1}. From (5), Hellinger divergence is obtained as α = 1/2, and χ2 divergence129

by α = −1.130

From f -divergence, the f -divergence information is defined as the mutual information if we choose131

the KL-divergence as the f -divergence. Here, we present a definition of f -divergence information132

for multi-variables.133

Definition 3.4 (f -divergence information). For disjoint variables X = {X1,X2, . . . ,Xn} ⊂ V, let134

PX be the joint probability measure for X. For each i = 1, 2, . . . , n, PXi
=
∫
XX\Xi

dPX is a mea-135

sure of the marginal distribution of PX for Xi. The f -divergence information for X1,X2, . . . ,Xn136

under PX and a convex function f satisfying f(1) = 0 is defined as the f -divergence between PX137

and PX1
× PX2

× · · · × PXn
:138

If (X1,X2, . . . ,Xn;PX) = EPX

[
f

(
dPX1

× dPX2
× · · · × dPXn

dPX

)]
. (6)

4 Problem Set Up139

Before describing the details of the problem, we provide a notation for the probability distribution,140

which is the goal of balancing. Hereafter, P denotes the probability distribution of observational141

data. For the given disjoint sets X1,X2, . . . ,Xn,Y,Z ⊂ V, let P̃ be a probability distribution, as142

follows:143

P̃ = P (Y|do(X1), do(X2), . . . , do(Xn),Z)× P (Z)
= P (Y|do(X),Z)× P (X1)× P (X2)× · · · × P (Xn)× P (Z), (7)

where X = X1 ∪X2 ∪ · · · ∪Xn. P̃ is the probability distribution of the counterfactual data from144

simultaneous (multidimensional) interventions in X1,X2, . . . ,Xn under the condition Z.145

Objective. The objective of this study is to obtain the balancing weights that transform146

P (Y,X,Z) into P̃ (Y,X,Z). More precisely, given the i.i.d. observational data {(xi, zi)|i =147

1, 2, . . . , N}, we aim to estimate the weights BW (X,Z), such that148

EP̃ [f(X,Z)] = EP [f(X,Z) · BW (X,Z)] (8)

holds for any measurable function f on Rd. If we obtain the weights, we estimate the conditional av-149

erage causal effect (CACE) for P (Y|do(X1), do(X2), . . . , do(Xn),Z), that is EP̃ [Y|X,Z], using150

state-of-the-art supervised machine learning algorithms, with the weights assigned as the individual151

weights for each sample.152

Assumptions. We assumed the following to achieve our objective:153

• Assumption 1. The causal effect P (Y|do(X)) is identifiable, or equivalently, P̃ from (7)154

can be identified. 2 3
155

• Assumption 2. Let P = P (X1,X2, . . . ,Xn,Z) and let Q = P (X1) × P (X2) × · · · ×156

P (Xn)× P (Z). Subsequently, we assume that Q≪ P.157

Assumption 2 is the same as the overlap assumption if we consider this a single-dimensional inter-158

vention. Here, we propose overlapped assumptions for joint and multidimensional interventions.159

2The simplest case that satisfies Assumption 1 is that no confounding exists among the data ([20], P78,
Theorem 3.2.5).

3If certain unobserved data are assumed to exist, the identifiability of the causal effect is determined by the
structure of the causal diagram for P . One criterion for the identifiability of a causal effect is expressed by [26].
The discussion of the identifiability of the causal effect is beyond the scope of this study.
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5 Estimation of Balancing Weights160

In this section, we present the way to effectively estimate the probability density ratios by optimizing161

f -divergence.162

Density Ratios as Balancing Weights. We first note that the density ratios, which are referred to163

as the Radon–Nikodým derivative in this paper, are equal to the balancing weight of the target. For164

a density ratio of P to P̃ , that is dP̃
dP , it holds that165

EP̃ [f ] =

∫
f · dP̃

dP
· dP = EP

[
f · dP̃

dP

]
, (9)

for any measurable function f in Rd. Then, (8) and (9) are equivalent. As an example of the166

aforementioned density ratio, let X be a binary variable with XX = {1, 0} and let Z be covariates.167

Using propensity score e(z) = P (X = 1|Z = z), we observe that dP̃
dP (X = 1, z) = P (X =168

1)/e(z) and dP̃
dP (X = 0, z) = P (X = 0)/(1−e(z)). That is, dP̃dP is the stabilized inverse probability169

of the treatment weighting [23].170

5.1 Our Approach171

Our approach involves obtaining the density ratios as an optimal function for a variational represen-172

tation of an f -divergence. This approach is based on the fact that the optimal function is connected173

to density ratios [15].174

Variational representation. Using the Legendre transform of the convex conjugate of a twice dif-175

ferentiable convex function f , f∗(ψ) = supr∈R{ψ ·r−f(r)}, we obtain a variational representation176

of f -divergence:177

Df (Q||P ) = sup
φ≥0
{EQ[f ′(φ)]− EP [f∗(f ′(φ))]}, (10)

where supremum is considered over all measurable functions with EQ[f
′(φ)] < ∞ and178

EP [f
∗(f ′(φ))] <∞. The maximum value is achieved at φ = dQ/dP .179

We obtained the optimal function for (10) by replacing φ in the equation with a neural network180

model φθ and training it through back-propagation with a loss function, such that181

L(θ) = −
{
ÊQ[f

′(φθ)]− ÊP [f∗(f ′(φθ))]
}
. (11)

Selecting α-divergence for Optimization. We select α-divergence for the following reasons.182

First, the sample size requirements for α-divergence is independent of its ground truth value: second,183

it has unbiased mini-batch gradients; third, it can avoid a vanishing gradient problem.184

The variational representation of α-divergence is as follows (Lemma C.1 in Appendix C):185

Dα(Q||P ) = sup
φ≥0

{
1

α(1− α) −
1

α
EQ

[
φ−α

]
− 1

1− αEP
[
φ1−α

]}
. (12)

Sample size requirements for α-divergence. The α-divergence has an estimator with sample186

complexity O(1) (Corollary 1 in Birrell et al., 2022, P19; Corollary C.10 in Appendix C). Con-187

versely, the sample complexity of KL-divergence is O(eKL(Q||P )) [14, 28]:188

lim
N→∞

N ·Var
[
K̂LN (Q||P )

]

KL(Q||P )2 ≥ eKL(Q||P ) − 1

KL(Q||P )2 , (13)

where K̂LN (Q||P ) is the KL-divergence estimator for sample size N using a variational represen-189

tation of the divergence, and KL(Q||P ) is the ground truth value.190
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Unbiasedness for mini-batch gradients. φ in (12) can be expressed in a Gibbs density form191

(Proposition C.2 in Appendix C). Then, we observe that192

Dα(Q||P ) = sup
T

{
1

α(1− α) −
1

α
EQ

[
eα·T

]
− 1

1− αEP
[
e(α−1)·T

]}
, (14)

where supremum is considered over all measurable functions T : Rd → R with EP [e
(α−1)·T ] <∞193

and EQ[e
α·T ] <∞.194

From this equation, we obtain our loss function, which has unbiasedness for mini-batch gradients195

(Proposition C.8 in Appendix C), as follows :196

Lα(θ) =
1

α
ÊQ

[
eα·Tθ

]
+

1

1− αÊP
[
e(α−1)·Tθ

]
. (15)

Advantage in vanishing gradients problem. By setting α within (0, 1), we can avoid vanishing197

gradients of neural networks when they reach the extreme local minima. The vanishing-gradient198

problem for optimizing divergence is known in GANs [2]. Now, we consider the case where the199

probability ratio eTθ(x) in (15) is nearly zero or large for some point x, corresponding to cases in200

which the probabilities for P or Q at some points are much smaller than those for the other.201

To show the relation between eTθ(x) and the learning of the neural networks, we obtain gradient of202

(15):203

∇θLα(θ) = ÊQ

[
∇θTθ · eα·Tθ

]
− ÊP

[
∇θTθ · e(α−1)·Tθ

]
. (16)

The behavior of∇θLα(θ) when EQ[e
Tθ ]→ 0 or EQ[e

Tθ ]→∞, under some regular conditions for204

Tθ and an assumption that P ≪ Q, can be summarized as follows: Let E[ · ] denote EP [EQ[ · ]],205

then206

α > 1: E[∇θLα(θ)]→ ~0 (as EQ[e
Tθ ]→ 0), and E[∇θLα(θ)]→ ~∞− ~∞ (as EQ[e

Tθ ]→∞).207

α < 0: E[∇θLα(θ)]→ ~0 (as EQ[e
Tθ ]→∞), and E[∇θLα(θ)]→ ~∞− ~∞ (as EQ[e

Tθ ]→ 0).208

0 < α < 1: E[∇θLα(θ)]→ − ~∞ (as EQ[e
Tθ ]→ 0), and E[∇θLα(θ)]→ ~∞ (as EQ[e

Tθ ]→∞).209

Notably, EQ[e
Tθ ] → 0 ⇔ EP [e

Tθ ] → 0 EQ[e
Tθ ] → ∞ ⇔ EP [e

Tθ ] → ∞, because Q ≪ P and210

P ≪ Q.211

For α > 1 and α < 0, cases exist where E[∇θLα(θ)] → ~0. This implies the possibility that the212

neural networks reach extreme local minima such that their estimations for density ratios are 0 or∞.213

However, this problem can be avoided by selecting α from interval (0, 1). We note that the selecting214

of α does not cause instability in numerical calculations for cases where E[∇θLα(θ)] → ~∞− ~∞.215

In Appendix D.1, we present numerical experimental results for different values of α.216

6 Method217

In this section, we first present the main theorem that summarizes the new balancing weight method218

proposed herein. Next, we present the balancing weight method.219

6.1 Main Theorem220

Here, we present the main theorem that summarizes the new balancing weight method proposed221

herein.222

Theorem 6.1. Given disjoint sets of X = {X1,X2, . . . ,Xn},Y,Z ⊂ V satisfying223

X = {X1,X2, . . . ,Xn} ⊂ An(Y)G and Z ∩De(Y)G = φ. (17)

Let P = P (X1,X2, . . . ,Xn,Z) and Q = P (X1) × P (X2) × · · · × P (Xn) × P (Z), and P̃ =224

P (Y|do(X),Z)×P (X1)×P (X2)×· · ·×P (Xn)×P (Z). We assume that P satisfies Assumptions 1225

and 2 in the aforementioned setting, and it holds that EP

[
(dQ/dP)

1−α
]
<∞ for some 0 < α < 1,226

then, for the optimal function T ∗, such that227

T ∗(X1,X2, . . . ,Xn,Z) = arg inf
T∈T α

{
1

α
EQ

[
eα·T

]
+

1

1− αEP

[
e(α−1)·T

]}
, (18)
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Algorithm 1 Training a Neural Balancing Weight model

Input: Train Data (x1, {(xi1, . . . ,xin, zi)}Ni=1
Output: A Neural Balancing Weight Model
TθK
σx
1 ← SHUFFLE({1 : N})

...
σx
n ← SHUFFLE({1 : N})
σz ← SHUFFLE({1 : N})

for t = 1 to K do
ÊP ← 1

NΣNi=1e
(α−1)·Tθt (x

i
1,...,x

i
n,z

i)

ÊQ ← 1
NΣNi=1e

α·Tθt (x
σx1 (i)

1 ,...,x
σxn(i)
n ,zσ

z(i))

Lα(θt)← ÊQ/α+ ÊP/(1− α)
θt+1 ← θt −∇θtLα(θt)

end for

it holds that228

dP̃

dP
= e−T

∗(X1,X2,...,Xn,Z). (19)

Here, T α denotes the set of all non-constant functions T (x) : Rd → R with EP[e
(α−1)·T (X)] <∞.229

Proof. See Appendix C.230

Here, we mention that the assumption (17) is necessary for the (19) to hold, which is derived from231

our Theorem C.15 in Appendix C.232

6.2 Balancing Weight Method233

We present the implementation of training a neural balancing weights (NBW) model in Algorithm234

1. It is important to consider the stopping time K for neural network model TθK in Algorithm 1,235

which is discussed in the next section. To obtain the sample mean under Q, that is, the estimator236

for EQ

[
eα·Tθ

]
in (18), a shuffling operation can be used for the samples. Now, we define neural237

balancing weights (NBW). 4 5
238

Definition 6.2 (Neural Balancing Weights). Let TθK be a neural networks obtained from Algorithm239

1. Then, the NBW of TθK , expressed as BW (X1,X2, . . . ,Xn,Z;TθK ), are defined as240

BW (X1,X2, . . . ,Xn,Z;TθK ) =
1

Z
e−TθK (X1,X2,...,Xn,Z), (20)

where Z = ÊP

[
e−TθK (X1,X2,...,Xn,Z)

]
.241

We estimate EP̃ [Y|X,Z], that is the CACE for P (Y|do(X1), do(X2), . . . , do(Xn),Z), using242

BW (X1,X2, . . . ,Xn,Z;TθK ) as the sample weights of the supervised algorithm:243

ÊP̃ [Y|X,Z] = ÊP [Y · BW θK |X,Z] . (21)

Here, ÊP corresponds to the model of a supervised machine learning algorithm. As an example,244

we demonstrate a back-propagation algorithm using balancing weights for the mean squared error245

(MSE) loss in Algorithm 3 in Appendix E.246

7 Techniques for NBW247

We propose two techniques for estimating balancing weights: (i) improves generalization perfor-248

mance of the balancing weights. (ii) measures the performance of the balancing weights by estimat-249

ing the α-divergence information.250

4We distinguish the notation of BW (·) by the expression of the variables in the parentheses. For example,
for disjoint variables X1, X2, X3 ⊂ V, let X = {X1, X2}. Then, BW (X, X3;Tθ) is used to indicate the
balancing weights for dP (X1, X2)× dP (X3)/dP (X1, X2, X3). Conversely, BW (X1, X2, X3;Tθ) denotes
the balancing weights for dP (X1)× dP (X2)× dP (X3)/dP (X1, X2, X3).

5However, we drop the variables in the parentheses and write BW (X1,X2, . . . ,Xn,Z;Tθ) as BW θ if not
necessary in the context.
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7.1 Improving the Generalization Performance of the Balancing Weights251

In this section, we first present an overfitting problem for balancing distributions. We then present252

two methods for improving the generalization performance of the weights: a validation method using253

test data and an early stopping method. Herein, let Tθt denote an NBW model at step t in Algorithm254

1. Let X̂
(N)
Q (t) = e−Tθt ·X(N)

P , that is, the data balanced by the weights of e−Tθt . Subsequently,255

let Q̂
(N)
t and Q̂(N) denote the probability distributions of X̂

(N)
Q (t) and X̂

(N)
Q , respectively, which256

correspond to the estimated and true distributions for balancing.257

An overfitting problem for balancing distributions. From Corollary C.12 in Appendix C, we258

observe X̂
(N)
Q (t)

d−−→ X
(N)
Q as t→∞. Then, Theorem 1 in [33] shows that259

lim
t→∞

W1(Q, Q̂
(N)
t ) =W1(Q, Q̂

(N)) & N−1/(d−δ) ( ∀δ > 0 ), (22)

where W1 is the Wasserstein distance of order 1 and d is the lower Wasserstein dimension defined260

in [33]. (22) implies that, for balancing finite data, the destination of the balanced distribution is261

an empirical distribution, and the generalization performance of balancing worsens exponentially262

when the dimension of the data is larger. In view of optimizations of GANs, [34] referred to this263

phenomenon the“momorization”and proposed an early stopping method.264

Validation method using test data. We can use a validation method using test data. Because Q̂(N)
265

and P̂ (N) are empirical probability distributions, we observe that dQ̂(N)/dP̂ (N)(x) = dQ/dP (x)266

if x ∈ X(N), otherwise dQ̂(N)/dP̂ (N)(x) = 0 (Proposition C.17 in Appendix C). Then, the optimal267

function of (15) for both distributions, that is T
(N)
∗ = −log(dQ̂(N)/dP̂ (N)), is infinite except for268

the observations, and the loss of the T
(N)
∗ is infinite for data independent of the observations. This269

implies that the loss of T
(N)
t for the test data turns to increase from the middle of the training period,270

and we can determine the training step at which the generalization performance of the weights begins271

to worsen. In Section D.2 in Appendix D, we provide numerical experimental results to confirm the272

relationship between dimensions of data (d) and steps in training (K).273

Early stopping method. In addition, we present an early stopping method for estimating the bal-274

ancing weights as follows, which is inspired by the method developed in [34] (Corollary C.24 in275

Appendix C): for some δ > 0, let276

K0 = C ·N2/(d+δ), (23)

where C > 0 is constant. Then, we have W1(Q, Q̂
(N)
K0

) . N−1/(d+δ). Unfortunately, the curse of277

dimensionality remains in the proposed method. This will be discussed in the next section.278

7.2 Measuring the Performance of the Balancing Weights279

Let us assume that we obtain an NBW model Tθ0 and let BW θ0 = BW (X1,X2, . . . ,Xn,Z;Tθ0)280

be the balancing weights of Tθ0 . If BW θ0 successfully estimates dQdP , then the α-divergence between281

Q and P0 will be nearly zero. Conversely, if BW θ0 fails to estimate dQ
dP , the α-divergence between282

Q and P0 is significantly different from zero. This implies that we can measure the performance of283

the balancing weights using the α-divergence information for P0.284

Next, we present the definition of an α-divergence information estimator using neural networks.285

Definition 7.1 (Neural α-divergence Information Estimator). For disjoint variables X1,X2, . . . ,286

Xn ⊂ V, the neural α-divergence information estimator for P is defined as287

Îα(X1,X2, . . . ,Xn;Tθ∗) =
1

α(1− α) − inf
θ∈Θ

{
1

α
ÊQ

[
eα·Tθ

]
+

1

1− αÊP
[
e(α−1)·Tθ

]}
. (24)

To measure the performance of balancing the weights from the NBW model, we estimate the α-288

divergence information for balanced distribution from the weights. That is, we use the sample mean289

under a balanced distribution, despite the sample mean under P for (24). For example, we assume290
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Algorithm 2 Algorithm for checking the balance

Input: Train Data {(xi1, . . . ,xin, zi)}Ni=1, Test

Data {(x̃i1, . . . , x̃in, z̃i)}Ni=1, A Neural Balanc-
ing Weight Model Tθ

Output: The estimated α-divergence informa-

tion Îα for the balanced distribution with the
balancing weights from Tθ

σx
1 ← SHUFFLE({1 : N})

...
σx
n ← SHUFFLE({1 : N})
σz ← SHUFFLE({1 : N})
{bwi}Ni ← e−Tθ(x

i
1,x

i
2,...,x

i
n,z

i)

∑
{e−Tθ(xi1,xi2,...,xin,zi)}

Îα ← {}

for t = 1 to K do
ÊP0
← 1

NΣNi=1e
(α−1)·Tψ(xi1,...,xin,zi) · bwi

ÊQ ← 1
NΣNi=1e

α·Tψ(x
σx1 (i)

1 ,...,x
σxn(i)
n ,zσ

z(i))

Lα(ψ)← ÊQ/α+ ÊP0
/(1− α)

ψ ← ψ −∇ψLα(ψ)
ÊteP0
← 1

NΣNi=1e
(α−1)·Tψ(x̃i1,...,x̃in,z̃i) · bwi

ÊteQ ← 1
NΣNi=1e

α·Tψ(x̃
σx1 (i)

1 ,...,x̃
σxn(i)
n ,z̃σ

z(i))

Îtα ← 1/{α · (1− α)}
− ÊteQ /α − ÊteP0

/(1− α)
Îα ← Îα ∪ {Îtα}

end for
Îα ← maxt Îα

that we have certain weights BW ′ = {bwi : i = 1, 2, ..., N}, where bwi denotes the weight of291

sample i of N . The balanced distribution from the weights is292

dP ′ = BW
′ · dP. (25)

The α-divergence information for P ′ is estimated by replacing P with P ′ for (24) in the following293

manner: despite the sample mean ÊP [e
(α−1)·Tθ ] for these equations, we use the weighted sample294

mean, such that295

ÊP ′ [e(α−1)·Tθ ] =
1

N
ΣNi=1bw

i · e(α−1)·Tθ(xi1,xi2,...,xin,zi). (26)

Details on the implementation for measuring the performance of balancing weights from an NBW296

model are provided in Algorithm 2, which includes the validation method for the overfitting problem297

in Section 7.1.298

8 Limitations: Sample Size Requirements.299

In Section 7.1, we noted that our method has a curse of dimensionality. The sample size require-300

ment of the proposed method is N >
(
1
ε

)d+δ
for W1(Q, Q̂

(N)
K0

) < ε (Corollary C.25 in Appendix301

C). However, the curse of dimensionality is an essential problem when balancing multivariate data302

owing to the following factors. Because the optimal balancing weights defined as (8) for (finite)303

observational data are the density ratios of the empirical distributions, the distribution of the data304

balanced by them is the empirical distribution. Subsequently, owing to the balancing of the weights,305

the curse of dimensionality of the empirical distribution occurs, which is the same as that described306

in Section 7.1. Therefore, to achieve high generalization performance, we need to obtain weights307

that differ from the ideal density ratio between the source and target of the empirical distribution.308

Further research is required to address this problem. In Appendix D.3, we present the numerical309

examination results in which the causal effects of joint and multidimensional interventions were310

estimated with different sample sizes.311

9 Conclusion312

We propose generalized balancing weights to estimate the causal effects of an arbitrary mixture of313

discrete and continuous interventions. Three methods for training the weights were provided: an314

optimization method to learn the weights, a method to improve the generalization performance of315

the balancing weights, and a method to measure the performance of the weights. We showed the316

sample size requirements for the weights and then discussed the curse of dimensionality that occurs317

as a general problem when balancing multidimensional data. Although the curse of dimensionality318

remains in our method, we believe that this study provides a basic approach for estimating the319

balancing weights of multidimensional data using variational f -divergence.320
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