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Abstract

Foundation models (FMs) have achieved major advances in language, vision, and1

speech. In parallel, time series foundation models (TSFMs) have been developed2

to address forecasting tasks. A key question is whether TSFMs truly generalize3

to unseen time series data, and whether they perform better than general purpose4

FMs from other domains in a zero shot setting. We compare four TSFMs such5

as Chronos, TimesFM, TimeGPT, and MOMENTs with cross domain FMs for6

text (GPT), audio (Whisper), and vision (ViT). For a systematic comparison, we7

use simple task-agnostic adapters to convert sequences into forecasts, without8

fine tuning or changing the backbone models. All models are evaluated on nine9

diverse datasets that were unseen during training. Our results show that TSFMs10

perform best on most datasets, highlighting the benefit of temporal pretraining11

and time-aware design. Overall, the strong zero shot performance of TSFMs12

suggests that they may represent a breakthrough comparable to BERT for time13

series forecasting. At the same time, large text based models such as GPT remain14

surprisingly competitive, in some cases even surpassing TSFMs, highlighting the15

ability of general purpose models to capture temporal patterns despite not being16

trained for this task. GitHub repository: https://github.com/anonymous4865/tsfms.17

1 Introduction18

Foundation models are large, general purpose neural networks trained on unlabeled data from diverse19

domains, and they represent a transformative shift in machine learning [1]. They have achieved major20

success in natural language processing and computer vision, showing strong zero shot and few-shot21

capabilities across tasks [2, 3]. These advances have reshaped the field by enabling a pretrained22

approach and have inspired time series research to move from narrow, task specific models toward23

foundation models that support zero shot learning and cross domain generalization [2, 4].24

The emergence of TSFMs develops from the limits of traditional time series forecasting, where25

each dataset required a separate model, preventing the use of large pre-trained models as in other26

domains [5, 4]. The defining characteristic of TSFMs is their ability to perform zero shot forecasting27

for new datasets from limited context, without retraining or fine-tuning [6, 7]. This capability has28

spurred the development of notable models including TimeGPT [8], the first time series foundation29

model; MOMENT [7], designed to solve multiple time series tasks in one framework; TimesFM30

[9], a decoder-only transformer with 200 million parameters that uses patched-decoder attention and31

large-scale pretraining to capture temporal patterns; and Chronos [10], an encoder-decoder model32

based on the T5 architecture that tokenizes time series values through scaling and quantization to33

build a fixed vocabulary. These transformer-based designs also use patching techniques to manage34

long sequences efficiently. Beyond the early models, newer designs such as Lag-Llama [1], Moments35

[7] and Moirai [5] extend the field further, combining transformer architectures with diverse training36

corpora to improve forecasting accuracy and flexibility. Together, these models highlight the future37

of time series analysis by giving researchers and practitioners stronger tools to handle complex38
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data. However, applying foundation models directly to time series remains challenging due to the39

heterogeneity among time series datasets, leading to the proposal of various specialized TSFM40

architectures.41

Recent benchmark studies shows the competitiveness of the TSFM compare to the traditional42

time series model. For example, GIFT-Eval [11] reports that TSFMs can deliver strong results on43

multivariate forecasting. Similarly, FoundTS [12] finds that lightweight supervised baselines remain44

competitive with state-of-the-art TSFMs. Despite rapid progress, the effectiveness of TSFMs relative45

to cross domain foundation models remains an open question. Large language models (LLMs) such46

as GPT, audio models such as Whisper, and vision transformers (ViTs) have demonstrated surprising47

cross-modal generalization. Although pretrained on text, speech, or images, they exhibit the ability48

to process sequential patterns when adapted to time series tasks. This raises a critical and timely49

question: do domain-specific TSFMs truly outperform general purpose FMs in zero shot time series50

forecasting, or can cross domain FMs match or exceed their performance?51

The main contribution of this paper is the first zero shot comparison of TSFMs and cross domain52

models for time series forecasting, achieved by benchmarking seven models, including four TSFMs53

and three cross domain models, on nine unseen datasets.54

2 Method55

In this work, we evaluate zero shot forecasting by applying time series–specific and cross domain56

foundation models through a standardized adapter interface, enabling a controlled comparison on57

unseen data.58

2.1 Datasets59

We evaluate model performance on nine publicly available univariate time series datasets spanning a60

diverse range of domains, including weather, transportation, retail, and healthcare. Table 1 lists the61

nine publicly available univariate time series datasets used in this study, along with their domains and62

forecast horizons. Each dataset consists of sequences of scalar observations {xt}Tt=1, where T varies63

across datasets and represents the length of the time series. By focusing on univariate data, we aim to64

assess the models’ ability to capture temporal patterns and forecast future values without relying on65

additional contextual information. This setup provides a clear view of each model’s inherent capacity66

to learn and generalize temporal dependencies purely from the sequence itself.67

Table 1: Publicly available univariate time series datasets, their domains, and forecast horizons.

Dataset Domain Prediction Horizon (H)
Air Passengers Transportation 24
Sunspots Astronomy 120
Temp Weather 240
Temperature Weather 24
Humidity Weather 24
Relative Humidity Weather 24
Birth Healthcare 24
Store Retail 24
Hospitality Service 24

2.2 Dedicated time series foundation models68

We selected TimesFM, Chronos, MOMENT, and TimeGPT because they represent open-source69

state-of-the-art models for zero shot and multi-horizon forecasting. These models were chosen for70

their strong generalization capabilities across diverse time series, their ability to leverage large-scale71

pretraining or tokenization strategies, and their suitability for evaluating cross domain forecasting72

performance. Their availability as open-source implementations ensures reproducibility and facilitates73

direct comparison under consistent experimental settings.74

2.3 Modality-adapted foundation models:75

GPT-OSS (text), Whisper (audio), and ViT (images) were originally trained on sequences or structured76

data from their respective modalities. To adapt them for numeric time series, we modify only the77

2



Figure 1: Adaptation of cross domain foundation models for time series forecasting. Numbers are
mapped into alternative modalities: (left) audio sequences through Whisper, (middle) text sequences
through GPT-OSS, and (right) images through Vision Transformers (ViT). Each pipeline illustrates
the preprocessing, model encoding, and prediction steps used to generate forecasts.

input embedding layers to accept scalar sequences, while keeping all pretrained weights and attention78

mechanisms intact. Figure 1 illustrates this adaptation, showing how numeric values are mapped into79

alternative modalities and processed through each model’s encoding pipeline to generate forecasts.80

3 Result81

Table 2 summarizes the zero shot forecasting performance of all models across the nine univariate82

datasets, measured using MAE, RMSE, and MAPE. We observe several noteworthy patterns.

Figure 2: Comparison of different models forecasting monthly air passenger counts (H=24).
83

Among the modality-adapted models, GPT-OSS consistently demonstrates strong performance.84

Across most datasets, it outperforms MOMENT and performs competitively with TimeGPT, a85

dedicated time series foundation model. GPT-OSS outperforms specialized models like TimesFM86

and Chronos in several cases. On the Birth dataset, it achieves an RMSE of 6.46, compared to 6.5987

for TimesFM and 7.03 for Chronos. On the Passengers dataset, it achieves lower errors than Chronos88

across all metrics: MAE 55.58 vs. 71.21, RMSE 60.91 vs. 77.25, and MAPE 12.00 vs. 15.49. For89

Sunspots, GPT-OSS also surpasses Chronos consistently with MAE 39.16 vs. 42.89, RMSE 47.6090
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Table 2: zero shot Forecasting Performance of Modality-Adapted and Dedicated Time Series Founda-
tion Models Across Nine Univariate Datasets

Metric Model Air
Passengers Sunspots Temp Temperature Humidity Relative

Humidity Birth Store Hospitality Avg. Rank

MAE

TimesFM 28.98 21.59 1.89 1.88 1.96 10.29 5.45 12.22 47.02 2.00
Chronos 71.21 42.89 3.39 1.48 1.61 5.42 5.72 9.06 16.35 2.00
TimeGPT 58.10 6.24 4.61 2.48 1.80 11.58 5.97 19.47 17.36 3.11
MOMENT 206.34 83.48 3.51 5.98 4.16 16.48 5.83 13.62 550.21 5.11
GPT-OSS 55.58 39.16 5.09 3.73 2.55 28.43 5.75 15.21 19.56 3.89
ViT 59.38 255.05 9.98 8.84 4.02 16.55 15.22 47.93 183.02 5.78
Whisper 165.74 423.16 12.12 4.55 4.06 16.91 8.21 25.08 265.14 6.11

RMSE

TimesFM 34.08 27.64 2.54 2.15 2.37 12.43 6.59 14.38 55.15 2.11
Chronos 77.25 49.63 4.37 1.82 1.99 7.61 7.03 11.61 20.27 2.22
TimeGPT 63.56 8.36 4.96 3.18 2.21 13.43 7.48 22.28 21.44 3.11
MOMENT 219.43 85.18 4.16 6.92 4.79 18.38 6.85 16.36 553.32 4.78
GPT-OSS 60.91 47.60 5.67 4.52 2.97 33.30 6.46 17.78 24.21 3.67
ViT 77.90 257.88 10.46 10.97 4.86 20.52 16.80 49.21 185.74 6.22
Whisper 173.81 477.02 15.07 5.79 4.54 19.54 11.32 29.43 275.20 5.89

MAPE

TimesFM 6.08 454.31 23.36 15.02 14.32 15.58 12.13 1.46 2.37 1.89
Chronos 15.49 1229.25 32.78 11.65 12.46 8.08 12.76 1.09 0.83 2.00
TimeGPT 12.57 753.09 35.92 22.46 12.54 16.57 12.86 2.32 0.89 3.11
MOMENT 44.25 9224.93 47.31 53.80 32.97 26.85 13.15 1.63 27.91 5.44
GPT-OSS 12.00 708.45 40.22 28.77 18.70 42.09 13.76 1.82 0.99 4.0
ViT 12.39 7204.23 125.43 97.50 37.30 31.12 37.91 5.79 9.27 5.89
Whisper 36.25 14441.09 126.02 24.50 26.08 23.14 17.30 3.01 13.48 5.67

vs. 49.63, and MAPE 708.45 vs. 1229.25. Figure 2 further illustrates the comparative forecasting91

behavior of all models on the Air Passengers dataset, showing that GPT-OSS provides forecasts92

closely aligned with the observed future and competitive with specialized time series models. These93

results demonstrate GPT-OSS’s ability to generalize from a pretrained text sequence model to numeric94

time series forecasting. By contrast, Whisper and ViT, while able to generate forecasts, show higher95

error rates overall, particularly on datasets with longer horizons or high variability such as Sunspots96

and Temp. This suggests that the sequence modeling capabilities of audio and image foundation97

models can transfer to numeric time series to some extent, but not as effectively as a text-based98

pretrained model in this zero shot setting. As expected, models designed specifically for time series99

forecasting generally achieve strong results across most datasets. TimesFM and Chronos maintain the100

lowest average ranks across MAE, RMSE, and MAPE, demonstrating robust performance. TimeGPT101

shows competitive results and is often closely matched by GPT-OSS, highlighting impressive cross102

domain adaptability. MOMENT, while effective on certain datasets, exhibits higher errors on datasets103

with smaller horizons or sharp fluctuations, indicating sensitivity to dataset characteristics. Overall,104

GPT-OSS achieves an average rank of 3.89 in MAE and 3.67 in RMSE, placing it above dedicated105

time series models such as MOMENT and close to TimeGPT. Its stronger performance on datasets106

like Birth, Passengers, and Sunspots illustrates the potential of modality-adapted models for zero shot107

forecasting and suggests that pretrained sequence modeling can generalize effectively to numeric108

time series under certain conditions. Whisper and ViT demonstrate moderate performance, and their109

higher errors on some datasets indicate that modality alignment plays a critical role in transferability.110

These results suggest that while adaptation is feasible, the type of pretrained knowledge and sequence111

characteristics significantly influence forecasting accuracy.112

4 Conclusion113

This work presented the first systematic comparison of time series foundation models and modality114

adapted cross domain foundation models in a zero shot forecasting setting. Specialized models such115

as Chronos and TimesFM generally achieve strong performance, while cross domain models such116

as GPT OSS also demonstrate surprising competitiveness. These results highlight both the benefits117

of temporal pretraining and the transferability of general purpose sequence models to time series118

tasks. As future work, we will extend this evaluation to multivariate forecasting, broaden the scope to119

classification and anomaly detection, and incorporate additional datasets and baselines to establish a120

more rigorous and comprehensive benchmarking framework.121
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