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Zero Shot Time Series Forecasting: Do Time Series
FMs Outperform Cross Modal FMs?
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Abstract

Foundation models (FMs) have achieved major advances in language, vision, and
speech. In parallel, time series foundation models (TSFMs) have been developed
to address forecasting tasks. A key question is whether TSFMs truly generalize
to unseen time series data, and whether they perform better than general purpose
FMs from other domains in a zero shot setting. We compare four TSFMs such
as Chronos, TimesFM, TimeGPT, and MOMENTSs with cross domain FMs for
text (GPT), audio (Whisper), and vision (ViT). For a systematic comparison, we
use simple task-agnostic adapters to convert sequences into forecasts, without
fine tuning or changing the backbone models. All models are evaluated on nine
diverse datasets that were unseen during training. Our results show that TSFMs
perform best on most datasets, highlighting the benefit of temporal pretraining
and time-aware design. Overall, the strong zero shot performance of TSFMs
suggests that they may represent a breakthrough comparable to BERT for time
series forecasting. At the same time, large text based models such as GPT remain
surprisingly competitive, in some cases even surpassing TSFMs, highlighting the
ability of general purpose models to capture temporal patterns despite not being
trained for this task. GitHub repository: https://github.com/anonymous4865/tsfms.

1 Introduction

Foundation models are large, general purpose neural networks trained on unlabeled data from diverse
domains, and they represent a transformative shift in machine learning [[1]]. They have achieved major
success in natural language processing and computer vision, showing strong zero shot and few-shot
capabilities across tasks [2, [3]. These advances have reshaped the field by enabling a pretrained
approach and have inspired time series research to move from narrow, task specific models toward
foundation models that support zero shot learning and cross domain generalization [2, 4].

The emergence of TSFMs develops from the limits of traditional time series forecasting, where
each dataset required a separate model, preventing the use of large pre-trained models as in other
domains [5, 4]. The defining characteristic of TSFEMs is their ability to perform zero shot forecasting
for new datasets from limited context, without retraining or fine-tuning [6, [7]]. This capability has
spurred the development of notable models including TimeGPT [8]], the first time series foundation
model; MOMENT [7], designed to solve multiple time series tasks in one framework; TimesFM
[9]], a decoder-only transformer with 200 million parameters that uses patched-decoder attention and
large-scale pretraining to capture temporal patterns; and Chronos [[10], an encoder-decoder model
based on the TS architecture that tokenizes time series values through scaling and quantization to
build a fixed vocabulary. These transformer-based designs also use patching techniques to manage
long sequences efficiently. Beyond the early models, newer designs such as Lag-Llama [1]], Moments
[7]] and Moirai [5] extend the field further, combining transformer architectures with diverse training
corpora to improve forecasting accuracy and flexibility. Together, these models highlight the future
of time series analysis by giving researchers and practitioners stronger tools to handle complex
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data. However, applying foundation models directly to time series remains challenging due to the
heterogeneity among time series datasets, leading to the proposal of various specialized TSFM
architectures.

Recent benchmark studies shows the competitiveness of the TSFM compare to the traditional
time series model. For example, GIFT-Eval [[L1] reports that TSFMs can deliver strong results on
multivariate forecasting. Similarly, FoundTS [12] finds that lightweight supervised baselines remain
competitive with state-of-the-art TSFMs. Despite rapid progress, the effectiveness of TSFMs relative
to cross domain foundation models remains an open question. Large language models (LLMs) such
as GPT, audio models such as Whisper, and vision transformers (ViTs) have demonstrated surprising
cross-modal generalization. Although pretrained on text, speech, or images, they exhibit the ability
to process sequential patterns when adapted to time series tasks. This raises a critical and timely
question: do domain-specific TSFMs truly outperform general purpose FMs in zero shot time series
forecasting, or can cross domain FMs match or exceed their performance?

The main contribution of this paper is the first zero shot comparison of TSFMs and cross domain
models for time series forecasting, achieved by benchmarking seven models, including four TSFMs
and three cross domain models, on nine unseen datasets.

2 Method

In this work, we evaluate zero shot forecasting by applying time series—specific and cross domain
foundation models through a standardized adapter interface, enabling a controlled comparison on
unseen data.

2.1 Datasets

We evaluate model performance on nine publicly available univariate time series datasets spanning a
diverse range of domains, including weather, transportation, retail, and healthcare. Table E] lists the
nine publicly available univariate time series datasets used in this study, along with their domains and
forecast horizons. Each dataset consists of sequences of scalar observations {z;}7_;, where T varies
across datasets and represents the length of the time series. By focusing on univariate data, we aim to
assess the models’ ability to capture temporal patterns and forecast future values without relying on
additional contextual information. This setup provides a clear view of each model’s inherent capacity
to learn and generalize temporal dependencies purely from the sequence itself.

Table 1: Publicly available univariate time series datasets, their domains, and forecast horizons.

Dataset Domain Prediction Horizon (H)
Air Passengers Transportation 24
Sunspots Astronomy 120
Temp ‘Weather 240
Temperature ‘Weather 24
Humidity Weather 24
Relative Humidity =~ Weather 24
Birth Healthcare 24
Store Retail 24
Hospitality Service 24

2.2 Dedicated time series foundation models

We selected TimesFM, Chronos, MOMENT, and TimeGPT because they represent open-source
state-of-the-art models for zero shot and multi-horizon forecasting. These models were chosen for
their strong generalization capabilities across diverse time series, their ability to leverage large-scale
pretraining or tokenization strategies, and their suitability for evaluating cross domain forecasting
performance. Their availability as open-source implementations ensures reproducibility and facilitates
direct comparison under consistent experimental settings.

2.3 Modality-adapted foundation models:

GPT-OSS (text), Whisper (audio), and ViT (images) were originally trained on sequences or structured
data from their respective modalities. To adapt them for numeric time series, we modify only the
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Figure 1: Adaptation of cross domain foundation models for time series forecasting. Numbers are
mapped into alternative modalities: (left) audio sequences through Whisper, (middle) text sequences
through GPT-OSS, and (right) images through Vision Transformers (ViT). Each pipeline illustrates
the preprocessing, model encoding, and prediction steps used to generate forecasts.

input embedding layers to accept scalar sequences, while keeping all pretrained weights and attention
mechanisms intact. FigureI]illustrates this adaptation, showing how numeric values are mapped into
alternative modalities and processed through each model’s encoding pipeline to generate forecasts.

3 Result

Table 2] summarizes the zero shot forecasting performance of all models across the nine univariate
datasets, measured using MAE, RMSE, and MAPE. We observe several noteworthy patterns.
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Figure 2: Comparison of different models forecasting monthly air passenger counts (H=24).

Among the modality-adapted models, GPT-OSS consistently demonstrates strong performance.
Across most datasets, it outperforms MOMENT and performs competitively with TimeGPT, a
dedicated time series foundation model. GPT-OSS outperforms specialized models like TimesFM
and Chronos in several cases. On the Birth dataset, it achieves an RMSE of 6.46, compared to 6.59
for TimesFM and 7.03 for Chronos. On the Passengers dataset, it achieves lower errors than Chronos
across all metrics: MAE 55.58 vs. 71.21, RMSE 60.91 vs. 77.25, and MAPE 12.00 vs. 15.49. For
Sunspots, GPT-OSS also surpasses Chronos consistently with MAE 39.16 vs. 42.89, RMSE 47.60
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Table 2: zero shot Forecasting Performance of Modality-Adapted and Dedicated Time Series Founda-
tion Models Across Nine Univariate Datasets

Metric Model Pass/::gers Sunspots ~ Temp  Temperature Humidity }}Izlilr"liilcll\i/fy Birth Store Hospitality =~ Avg. Rank
TimesFM 28.98 21.59 1.89 1.88 1.96 10.29 545 1222 47.02 2.00
Chronos 71.21 42.89 3.39 1.48 1.61 5.42 572 9.06 16.35 2.00
TimeGPT 58.10 6.24 4.61 2.48 1.80 11.58 597 1947 17.36 3.11
MAE  MOMENT 206.34 83.48 351 5.98 4.16 16.48 5.83  13.62 550.21 5.11
GPT-OSS 55.58 39.16 5.09 3.73 2.55 28.43 575 1521 19.56 3.89
ViT 59.38 255.05 9.98 8.84 4.02 16.55 1522 47.93 183.02 5.78
Whisper 165.74 423.16 12.12 4.55 4.06 16.91 821 25.08 265.14 6.11
TimesFM 34.08 27.64 2.54 2.15 2.37 12.43 6.59 1438 55.15 2.11
Chronos 77.25 49.63 437 1.82 1.99 7.61 7.03 11.61 20.27 2.22
TimeGPT 63.56 8.36 4.96 3.18 2.21 13.43 748 2228 21.44 3.11
RMSE MOMENT 219.43 85.18 4.16 6.92 4.79 18.38 6.85 16.36 553.32 4.78
GPT-OSS 60.91 47.60 5.67 4.52 2.97 33.30 6.46 17.78 24.21 3.67
ViT 77.90 257.88 10.46 10.97 4.86 20.52 16.80 49.21 185.74 6.22
Whisper 173.81 477.02 15.07 5.79 4.54 19.54 1132 29.43 275.20 5.89
TimesFM 6.08 454.31 23.36 15.02 14.32 15.58 12.13 146 2.37 1.89
Chronos 15.49 1229.25  32.78 11.65 12.46 8.08 12.76  1.09 0.83 2.00
TimeGPT 12.57 753.09 35.92 22.46 12.54 16.57 12.86 232 0.89 3.11
MAPE MOMENT 44.25 922493 4731 53.80 3297 26.85 13.15  1.63 2791 5.44
GPT-0SS 12.00 708.45 40.22 28.77 18.70 42.09 1376 1.82 0.99 4.0
ViT 12.39 720423 12543 97.50 37.30 31.12 3791 579 9.27 5.89
Whisper 36.25 14441.09  126.02 24.50 26.08 23.14 17.30  3.01 13.48 5.67

vs. 49.63, and MAPE 708.45 vs. 1229.25. Figure 2] further illustrates the comparative forecasting
behavior of all models on the Air Passengers dataset, showing that GPT-OSS provides forecasts
closely aligned with the observed future and competitive with specialized time series models. These
results demonstrate GPT-OSS’s ability to generalize from a pretrained text sequence model to numeric
time series forecasting. By contrast, Whisper and ViT, while able to generate forecasts, show higher
error rates overall, particularly on datasets with longer horizons or high variability such as Sunspots
and Temp. This suggests that the sequence modeling capabilities of audio and image foundation
models can transfer to numeric time series to some extent, but not as effectively as a text-based
pretrained model in this zero shot setting. As expected, models designed specifically for time series
forecasting generally achieve strong results across most datasets. TimesFM and Chronos maintain the
lowest average ranks across MAE, RMSE, and MAPE, demonstrating robust performance. TimeGPT
shows competitive results and is often closely matched by GPT-OSS, highlighting impressive cross
domain adaptability. MOMENT, while effective on certain datasets, exhibits higher errors on datasets
with smaller horizons or sharp fluctuations, indicating sensitivity to dataset characteristics. Overall,
GPT-OSS achieves an average rank of 3.89 in MAE and 3.67 in RMSE, placing it above dedicated
time series models such as MOMENT and close to TimeGPT. Its stronger performance on datasets
like Birth, Passengers, and Sunspots illustrates the potential of modality-adapted models for zero shot
forecasting and suggests that pretrained sequence modeling can generalize effectively to numeric
time series under certain conditions. Whisper and ViT demonstrate moderate performance, and their
higher errors on some datasets indicate that modality alignment plays a critical role in transferability.
These results suggest that while adaptation is feasible, the type of pretrained knowledge and sequence
characteristics significantly influence forecasting accuracy.

4 Conclusion

This work presented the first systematic comparison of time series foundation models and modality
adapted cross domain foundation models in a zero shot forecasting setting. Specialized models such
as Chronos and TimesFM generally achieve strong performance, while cross domain models such
as GPT OSS also demonstrate surprising competitiveness. These results highlight both the benefits
of temporal pretraining and the transferability of general purpose sequence models to time series
tasks. As future work, we will extend this evaluation to multivariate forecasting, broaden the scope to
classification and anomaly detection, and incorporate additional datasets and baselines to establish a
more rigorous and comprehensive benchmarking framework.
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