
Under review as a conference paper at ICLR 2023

WHEN IS OFFLINE POLICY SELECTION FEASIBLE FOR
REINFORCEMENT LEARNING?

Anonymous authors
Paper under double-blind review

ABSTRACT

Hyperparameter selection and algorithm selection are critical procedures before
deploying reinforcement learning algorithms in real-world applications. How-
ever, algorithm-hyperparameter selection prior to deployment requires selecting
policies offline without online execution, which is a significant challenge known
as offline policy selection. As yet, there is little understanding about the funda-
mental limitations of the offline policy selection problem. To contribute to our
understanding of this problem, in this paper, we investigate when sample efficient
offline policy selection is possible. As off-policy policy evaluation (OPE) is a
natural approach for policy selection, the sample complexity of offline policy se-
lection is therefore upper-bounded by the number of samples needed to perform
OPE. In addition, we prove that the sample complexity of offline policy selection
is also lower-bounded by the sample complexity of OPE. These results imply not
only that offline policy selection is effective when OPE is effective, but also that
sample efficient policy selection is not possible without additional assumptions
that make OPE effective. Moreover, we theoretically study the conditions under
which offline policy selection using Fitted Q evaluation (FQE) and the Bellman
error is sample efficient. We conclude with an empirical study comparing FQE
and Bellman errors for offline policy selection.

1 INTRODUCTION

Learning a policy from offline datasets, known as offline reinforcement learning (RL), has gained in
popularity due to its practicality. Offline RL is useful for many real-world applications, as learning
from online interaction may be expensive or dangerous (Levine et al., 2020). For example, training
a stock-trading RL agent online may incur large losses before learning to perform well, and training
self-driving cars in the real world may be too dangerous. Ideally we want to learn a good policy
offline, before deployment.

In practice, offline RL algorithms often have hyperparameters which require careful tuning, and
whether or not we can select effective hyperparameters is perhaps the most important consideration
when comparing algorithms (Wu et al., 2019; Kumar et al., 2022). Additionally, performance can
differ between algorithms, so algorithm selection is also important (Kumar et al., 2022). When a
specific algorithm is run with a specific hyperparameter configuration, it outputs a learned policy
and/or a value function. Thus, each algorithm-hyperparameter configuration produces a candidate
policy from which we create a set of candidate policies. The problem of finding the best-performing
policy from a set of candidate policies is called policy selection. While policy selection is typically
used for algorithm-hyperparameter selection, it is more general since each candidate policy can be
arbitrarily generated.

The typical way of finding the best-performing policy in RL is to perform several rollouts for each
candidate policy in the environment, compute the average return for each policy, and then select
the policy that produced the highest average return. This approach is often used in many industrial
problems where A/B testing is available. However, this approach assumes that these rollouts can be
performed, which necessarily requires access to the environment or simulator, a luxury not available
in the offline setting. As such, in offline RL, Monte Carlo rollouts cannot be performed to select
candidate policies, and mechanisms to select policies with offline data are needed.
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A common approach to policy selection in the offline setting, known as offline policy selection, is to
perform off-policy policy evaluation (OPE) to estimate the value of candidate policies from a fixed
dataset and then select the policy with the highest estimated value. Typical OPE algorithms include
direct methods such as fitted Q evaluation (FQE) estimator (Le et al., 2019), importance sampling
(IS) estimator (Sutton & Barto, 2018), doubly robust estimator (Jiang & Li, 2016), model-based
estimator (Mannor et al., 2007), and marginalized importance sampling estimator (Xie et al., 2019).
Empirically, Tang & Wiens (2021); Paine et al. (2020) provide experimental results on offline policy
selection using OPE. Similarly, Doroudi et al. (2017); Yang et al. (2022) use OPE estimators for
policy selection.

Offline policy selection has been mainly associated with OPE, since these two problem are closely
related. It is known that OPE is a hard problem that requires an exponential number of samples to
evaluate any given policy in the worst case (Wang et al., 2020), so OPE can be unreliable for policy
selection. As a result, a follow-up question is: do the hardness results from OPE also hold for offline
policy selection? If the answer is yes, then we would need to consider additional assumptions to
enable sample efficient offline policy selection.

Moreover, offline policy selection should be easier than OPE intuitively, since estimating each policy
accurately might not be necessary for policy selection. There is mixed evidence that alternatives to
OPE might be effective. Tang & Wiens (2021) show empirically that using TD errors perform poorly
because they provide overestimates; they conclude OPE is necessary. On the other hand, Zhang &
Jiang (2021) perform policy selection without OPE, by selecting the value function that is closest
to the optimal value function. However, their method relies on having the optimal value function in
the set of candidate value functions. It remains an open question about when, or even if, alternative
approaches can outperform OPE for offline policy selection.

Unfortunately, there is little understanding about the offline policy selection problem to answer
the aforementioned questions. Therefore, to provide a better understanding, we aim to investigate
the question: When can we perform offline policy selection efficiently (with a polynomial sample
complexity) for RL? To this end, our contributions are as follows:

• We show that the sample complexity of the offline policy selection problem is lower-bounded by
the samples need to perform OPE. This implies no policy selection approach can be more sample
efficient than OPE in the worst case. On the other hand, OPE can be used for offline policy
selection, so the sample complexity of policy selection is upper-bounded by the samples required
for OPE. In particular, we show that a selection algorithm that simply chooses the policy with the
highest IS estimate achieves a nearly minimax optimal sample complexity, which is exponential
in the horizon.

• To circumvent exponential sample complexity, we need to make additional assumptions. We iden-
tify when FQE, a commonly used OPE method, is efficient for offline policy selection. Specifically
we discuss that FQE is efficient for policy selection when the candidate policies are well covered
by the offline dataset. This theoretical result supports several empirical findings.

• We explore the use of Bellman errors for policy selection and provide a theoretical argument and
experimental evidence for the improved sample efficiency of using Bellman errors compared to
FQE, under stronger assumptions such as deterministic dynamics and good data coverage.

2 BACKGROUND

In reinforcement learning (RL), the agent-environment interaction can be formalized as a finite hori-
zon finite Markov decision process (MDP) M = (S,A, H, ν,Q). S is a set of states with size
S = |S|, and A is a set of actions with size A = |A|, H ∈ Z+ is the horizon, and ν ∈ ∆(S) is
the initial state distribution where ∆(S) is the set of probability distributions over S. Without loss
of generality, we assume that there is only one initial state s0. The reward R and next state S′ are
sampled from Q, that is, (R,S′) ∼ Q(·|s, a). We assume the reward is bounded in [0, rmax] almost
surely so the total return of each episode is bounded in [0, Vmax] almost surely. The stochastic kernel
Q induces a transition probability P : S × A → ∆(S), and a mean reward function r(s, a) which
gives the mean reward when taking action a in state s.

A non-stationary policy is a sequence of memoryless policies (π0, . . . , πH−1) where πh : S →
∆(A). We assume that the set of states reachable at time step h, Sh ⊂ S , are disjoint, without loss
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of generality, because we can always define a new state space S ′ = S ×{0, 1, 2, . . . ,H − 1}. Then,
it is sufficient to consider stationary policies π : S → ∆(A).

Given a policy π, for any h ∈ [H], and (s, a) ∈ S ×A, we define the value function and the action-
value function as vπh(s) := Eπ[

∑H−1
t=h r(St, At)|Sh=s] and qπh(s, a) := Eπ[

∑H−1
t=h r(St, At)|Sh=

s,Ah=a], respectively. The expectation is with respect to Pπ , which is the probability measure on
the random element (S0, A0, R0, . . . , RH−1) induced by the policy π. The optimal value function
is defined by v∗h(s) := supπ v

π
h(s), and the Bellman operator is defined by

(T qh)(s, a) = r(s, a) +
∑
s′∈S

P (s, a, s′)max
a′∈A

qh(s
′, a′).

The Bellman evaluation operator is defined by

(T πqh)(s, a) = r(s, a) +
∑
s′∈S

P (s, a, s′)
∑
a′∈A

π(a′|s′)qh(s′, a′).

We use J(π) to denote the value of the policy π, that is, the expected return from the initial state
J(π) = vπ(s0). A policy π is optimal if J(π) = v∗(s0).

In the offline RL setting, we are given a fixed set of transitions D with samples drawn from a data
distribution µ. In this paper, we consider the setting where the data is collected by a behavior policy
πb since the data collection scheme is more practical (Xiao et al., 2022) and is used to collect data
for benchmark datasets (Fu et al., 2020). We use dπh to denote the data distribution at the horizon
h by following the policy π, that is, dπh(s, a) := Pπ(Sh = s,Ah = a), and µh(s, a) := Pπb(Sh =
s,Ah = a).

Notation. We use [H] to denote the set [H] := {0, 1, . . . ,H − 1}. Given a value function q and
a state-action distribution µ, the norm is defined as ∥q∥p,µ := (

∑
s,a µ(s, a)|q(s, a)|p)1/p and the

max norm is defined as ∥q∥∞ := maxs,a |q(s, a)|.

3 SAMPLE COMPLEXITY OF OFFLINE POLICY SELECTION

We consider the offline policy selection (OPS) problem and offline policy evaluation (OPE) prob-
lem. We follow a similar notation and formulation used in Xiao et al. (2022) to formally describe
these problem settings. The OPS problem for a fixed number of episodes n is given by the tuple
(S,A, H, ν, n, I). I is a set of instances of the form (M,db,Π) where M ∈ M(S,A, H, ν) speci-
fies an MDP, db is a distribution over a trajectory (S0, A0, R0, . . . , RH−1) by running the behavior
policy πb on M , and Π is a finite set of candidate policies. We consider the setting where Π has a
small size and does not depend on S, A or H .

An OPS algorithm takes as input a batch of data D, which contains n trajectories, and a set of
candidate policies Π, and outputs a policy π ∈ Π. We say an OPS algorithm L is (ε, δ)-sound on
instance (M,db,Π) if

PrD∼db
(JM (L(D,Π)) ≥ JM (π†)− ε) ≥ 1− δ

where π† is the best policy in Π. We say an OPS algorithm L is (ε, δ)-sound on the problem
(S,A, H, ν, n, I) if it is sound on any instance (M,db,Π) ∈ I.

Given a pair (ε, δ), the sample complexity of OPS is the smallest integer n such that there exists
a behavior policy πb and an OPS algorithm L such that L is (ε, δ)-sound on the OPS problem
(S,A, H, ν, n, I(πb)) where I(πb) denotes the set of instances with data distribution db. That is, if
the statistical complexity is lower-bounded by n, then, for any behavior policy πb, there exists an
MDP M and a set of candidate policies Π such that any (ε, δ)-sound OPS algorithm on (M,db,Π)
requires at least n samples.

Similarly, the OPE problem for a fixed number of episodes n is given by (S,A, H, ν, n, I). I is a
set of instances of the form (M,db, π) where M and db are defined as above, and π is a target policy.
An OPE algorithm takes as input a batch of data D and a target policy π, and outputs an estimate of
the policy value. We say an OPE algorithm L is (ε, δ)-sound on instance (M,db, π) if

PrD∼db
(|L(D,π)− JM (π)| ≤ ε) ≥ 1− δ.

We say an OPE algorithm L is (ε, δ)-sound on the problem (S,A, H, ν, n, I) if it is sound on any
instance (M,db, π) ∈ I. Note that ε should be less than Vmax/2 otherwise the bound is trivial.
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3.1 OPE ALGORITHM AS SUBROUTINE FOR OFFLINE POLICY SELECTION

It is obvious that a sound OPE algorithm can be used for OPS, so the sample complexity of OPS is
upper-bounded by the sample complexity of OPE up to a logarithmic factor. We state this formally
in the theorem below. The proof can be found in Appendix A.1.
Theorem 1. (Upper bound on sample complexity of OPS) Given an MDP M , a data distribu-
tion db, and a set of policies Π, suppose that, for any pair (ε, δ), there exists an (ε, δ)-sound
OPE algorithm L on any OPE instance I ∈ {(M,db, π) : π ∈ Π} with a sample size at most
O(NOPE(S,A,H, ε, 1/δ)). Then there exists an (ε, δ)-sound OPS algorithm for the OPS problem
instance (M,db,Π) which requires at most O(NOPE(S,A,H, ε, |Π|/δ)) episodes.

In terms of the sample complexity, we have an extra
√

log (|Π|)/n term for OPS due to the union
bound. For hyperparameter selection in practice, the size of the candidate set is often much smaller
than n, so this extra term is negligible. However, if the set is too large, complexity regularization
(Bartlett et al., 2002) may need to be considered.

3.2 OFFLINE POLICY SELECTION IS NOT EASIER THAN OPE

We have shown that OPS is sample efficient when OPE is sample efficient. However, it remains
unclear whether OPS can be sample efficient when OPE is not. In the following theorem, we lower
bound the sample complexity of OPS by the sample complexity of OPE. As a result, both OPS and
OPE suffer from the same hardness result, and we cannot expect OPS to be sample efficient under
conditions where OPE is not sample efficient.
Theorem 2 (Lower bound on sample complexity of OPS). Suppose for any data distribution db and
any pair (ε, δ) with ε ∈ (0, Vmax/2) and δ ∈ (0, 1), there exists an MDP M and a policy π such
that any (ε, δ)-sound OPE algorithm requires at least Ω(NOPE(S,A,H, ε, 1/δ)) episodes. Then
there exists an MDP M ′ with S′ = S + 2, H ′ = H + 1, and a set of candidate policies such that
for any pair (ε, δ) with ε ∈ (0, Vmax/3) and δ ∈ (0, 1/m) where m := ⌈log(Vmax/ε)⌉ ≥ 1, any
(ε, δ)-sound OPS algorithm also requires at least Ω(NOPE(S,A,H, ε, 1/(mδ)))) episodes.

The proof sketch is to construct an OPE algorithm that queries OPS as a subroutine. As a result,
the sample complexity of OPS is lower bounded by the sample complexity of OPE. We use the
reduction first mentioned in Wang et al. (2020), and present a proof in Appendix A.2.

There exist several hardness results for OPE in tabular settings and with linear function approxi-
mation (Yin & Wang, 2021; Wang et al., 2020). Theorem 2 implies that the same hardness results
hold for OPS. We should not expect to have a sound OPS algorithm without additional assumptions.
Theorem 2, however, does not imply that OPS and OPE are always equally hard. There are instances
where OPS is easy but OPE is not. For example, when all policies in the candidate set all have the
same value, any random policy selection is sound. However, OPE can still be difficult in such cases.

3.3 IMPORTANCE SAMPLING ACHIEVES NEARLY MINIMAX OPTIMAL SAMPLE COMPLEXITY

We present an exponential lower bound on the sample complexity of OPE in Theorem 5 in the
appendix, which uses the same construction from Xiao et al. (2022). By the lower bound on the
sample complexity of OPE and Theorem 2, we now have a lower bound for OPS.
Corollary 1 (Exponential lower bound on the sample complexity of OPS). For any positive integers
S,A,H with S > 2H and a pair (ε, δ) with 0 < ε ≤

√
1/8, δ ∈ (0, 1), any (ε, δ)-sound OPS

algorithm needs at least Ω̃(AH−1/ε2) episodes.

We can use a common OPE method, importance sampling (IS), with a random behavior policy for
policy selection. Recall the IS estimator (Rubinstein, 1981) is given by

Ĵ(π) =
1

n

n∑
i=1

H−1∏
h=0

π(A
(i)
h |S(i)

h )

πb(A
(i)
h |S(i)

h )︸ ︷︷ ︸
Wi

H−1∑
h=0

R
(i)
h︸ ︷︷ ︸

Gi

,

where n is the number of episodes in the dataset D. We now provide an upper bound on the sample
complexity of OPS using IS. The proof can be found in Appendix A.3.
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Theorem 3 (OPS using importance sampling). Suppose the data collection policy is uniformly
random, that is, πb(a|s) = 1/A for all (s, a) ∈ S × A, and |Gi| ≤ Vmax almost surely. Then
the selection algorithm L that selects the policy with the highest IS estimate is (ε, δ)-sound with
O(AHVmax ln (|Π|/δ)/ε2) episodes.

The theorem suggests that IS achieves a nearly minimax optimal sample complexity for OPS up to
a factor A and logarithmic factors. There are other improved variants of IS, including per-decision
IS and weighted IS (Precup et al., 2000; Sutton & Barto, 2018). However, none of these variants
can help reduce sample complexity in the worst case because the lower bound in Corollary 1 holds
for any OPS algorithm. The result suggests that we need to consider additional assumptions on the
environment, the data distribution, or the candidate set to obtain guarantees for OPS.

Note that Wang et al. (2017) have shown that IS estimator achievew the minimax mean squared error
for the OPE problem. Our result shows that IS also achieves a (nearly) minimax sample complexity
for the OPS problem.

There are other examples where OPS is efficient by using particular OPE methods. For example,
Liu et al. (2021) consider environments where the state contains exogenous variables; the agent has
limited impact on those exogenous variables; and the agent has the knowledge about the endoge-
nous dynamic. In such environments, they provide a sound OPE method to select hyperparameters.
Another example is when an accurate simulator of the environment is available. The simulation
lemma (Kearns & Singh, 2002) shows that we can evaluate any policy accurately and thus perform
sound OPS. All these specialized strategies indicate that we can perform OPS efficiently, under
much stronger assumptions.

4 CONDITIONS FOR SAMPLE EFFICIENT OFFLINE POLICY SELECTION

In the following sections, we discuss the conditions under which OPS using Fitted Q-iteration and
Bellman Error are efficient for offline policy selection. These results are based on existing theoretical
analysis of FQE and BE, for example, Chen & Jiang (2019); Le et al. (2019); Xie et al. (2021); Duan
et al. (2021).

4.1 OFFLINE POLICY SELECTION USING FITTED Q-EVALUATION

Fitted Q-evaluation (FQE) is a commonly-used OPE method that has been shown to be effective
for policy selection in benchmark datasets (Paine et al., 2020). FQE applies the empirical Bellman
evaluation operator on the value estimate iteratively: given a function class F , we initialize qH−1 =

0, and, for h = H − 2, . . . , 0, qh = argminf∈F l̂h(f, qh+1) where

l̂h(f, qh+1) :=
1

|Dh|
∑

(s,a,r,s′)∈Dh

(f(s, a)− r − qh+1(s
′, π(s′)))2

and Dh is the dataset at horizon h with distribution µh. The FQE estimate for J(π) is Ĵ(π) =
Ea∼π(·|s0)[q0(s0, a)].

Intuitively, we should be able to evaluate the value of all policies covered by the data distribution.
If the candidate policy set is a subset of the set of policies covered by data, then we can do policy
selection well. To define the notion of well-covered policies, we use the measure of distribution
shift introduced in Xie et al. (2021). Given a non-negative real value C, we define Π(C, µ,F)
be the set of policies covered by the data distribution µ, that is, for any policy π ∈ Π(C, µ,F),

maxf,f ′∈F
∥f−T πf ′∥dπ

h

∥f−T πf ′∥µh
≤ C holds for any h ∈ [H].

The theorem below provides a theoretical guarantee for OPS using FQE. The proof can be found in
Appendix A.4.

Theorem 4 (Offline policy selection for well-covered policies). Suppose we have a function class
F with Rademacher complexity Rµ

n(F), an approximation error εapx, and an optimization error
εopt (see Appendix A.4 for the definitions). If there exists a non-negative value C such that Π ⊂
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Π(C, µ,F), then the OPS algorithm L that selects the policy with the highest FQE estimate satisfies

Pr

(
J(L(D,Π)) ≥ J(π†)− 2H

√
C

√
εopt + εapx + c0HRµ

n(F) + c0H2

√
log (|Π|H/δ)

n

)
≥ 1− δ

for some constant c0.

If we have a good function class and an optimizer, then FQE only requires a polynomial number
of episodes for OPS under the assumption that all candidate policies are well-covered by the data.
However, in practice, we need to choose the function class and optimization hyperparameters. It is
easy to choose optimization hyperparameters such as the learning rate. We can do so by choosing the
optimizer with the lowest εopt. This can be done by selecting the optimization hyperparameters that
result in the smallest TD errors

∑
h l̂h(qh, qh+1) on a validation dataset. However, selecting a func-

tion class is nontrivial, because we need to balance the approximation error, the complexity measure
and how well the data covers the candidate policies. In our experiments, we fix the function class as
a neural network model with the same architecture and tune the optimization hyperparameters.

Theorem 4 presents a positive result that OPS can be sample efficient when selecting amongst well-
covered policies. However, if one of the candidate policies is not well-covered, then the FQE esti-
mate may overestimate the value of the uncovered policy and resulting in poor OPS. It is known that
FQE can even diverge (Sutton & Barto, 2018), due to the fact that it combines off-policy learning
with bootstrapping and function approximation, known as the deadly triad. One way to circumvent
the issue of uncovered policies is to find a way to assign low values for uncovered policies. One
heuristic way is to early stop when FQE diverges and assign lower value estimates to policies for
which FQE diverges since the policy is likely to be not covered by the data. Another heuristic is to
use a pessimistic version of FQE that penalizes policies whose data distribution is dissimilar from
the behavior distribution. This approach is similar to CQL, but it introduces an additional hyperpa-
rameter to control the level of pessimism, which again is not easy to tune in the offline setting.

Practical insight. Our result explains the empirical findings in Paine et al. (2020) that FQE is suf-
ficient for selecting hyperparameters for conservative algorithms and imitation learning algorithms.
A recent paper (Kumar et al., 2022) discusses when we should use pessimistic offline RL or behav-
ioral cloning under specific conditions. Our result shows that we can in fact run both algorithms
and choose the one with highest FQE estimate. With high probability, we can choose the best policy
among offline RL and behavioral cloning algorithms without considering specific conditions.

4.2 OFFLINE POLICY SELECTION USING THE BELLMAN ERROR

In this section, we investigate whether OPS using the estimated Bellman error has any advantage
over FQE. Most value-based methods output value functions and we often perform policy selection
over value functions by considering the greedy policies with respect to these value functions. Sup-
pose we are given a candidate set of value functions {qi}Ki=1, a natural criterion is to select the value
function that is closest to the optimal value function, that is, ∥qi − q∗∥∞ is the smallest. A justifi-
cation of choosing the smallest ∥qi − q∗∥∞ is that the value error gives us a lower bound on J(πi)
where πi is the greedy policy with respect to qi. That is, J(πi) ≥ J(π∗)− 2H∥qi − q∗∥∞ (Singh &
Yee, 1994). Therefore, choosing the smallest ∥qi − q∗∥∞ is equivalent to choosing the largest lower
bound on the policy value. While we do not know q∗, it might still be possible to derive a similar
lower bound on the policy value, possibly by estimating the Bellman error (BE).

A potential use case of the BE is that if the data distribution covers the entire state-action space
well, then the BE is a good surrogate for the policy value. More formally, the concentration coef-
ficient C is defined as the smallest value such that maxs,a,h

dπ
h(s,a)

µh(s,a)
≤ C for all policies π. By the

performance difference lemma (Kakade, 2003), we can show that

J(π) ≥ J(π∗)− CH

H−1∑
h=0

∥qh − T qh+1∥2,µh
.

That is, the Bellman error evaluated on the dataset can be a useful indicator of the quality of the
greedy policy, if C is small. Note that a small concentration coefficient is a stronger assumption
compared to the assumption of FQE. To be more specific, the condition maxs,a,h

dπ
h(s,a)

µh(s,a)
≤ C for
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all policies π ∈ Π implies maxf,f ′∈F
∥f−T πf ′∥dπ

h

∥f−T πf ′∥µh
≤ C for all policies π ∈ Π. That is, we only

need coverage for all policies in the candidate set for sample efficient OPS with FQE. However, for
BE, the measure of distribution shift needs to be bounded for all policies.

Finding the value function with the lowest Bellman error in deterministic environments is sample
efficient. To see why this is the case, let k be the output index of the selection algorithm that selects
the index of the value function with the smallest empirical Bellman error, then with probability at
least 1− δ, for some constant c0,

∥qk − T qk∥22,µ ≤ min
i=1,...,|Π|

∥qi − T qi∥22,µ + c0Vmax

√
log (|Π|H/δ)

n

where we denote ∥qi−T qi∥22,µ = 1
H

∑
h ∥qi,h−T qi,h+1∥22,µh

for simplicity. Therefore, the sample
size n only needs to scale with V 2

max. In contrast, the sample size of FQE depends on the complexity
of the function class Rµ

n(F). If we use a function class with high complexity to perform FQE, then
we expect to see that BE is a more sample efficient method for selection compared to FQE when the
data covers the state-action space well, that is, when C is small.

If the concentration coefficient is large or infinite, then the Bellman error can be a poor indicator
of the greedy policy’s performance. For example, Fujimoto et al. (2022) provide several examples
where BE is poor surrogate for value error even when the environment is deterministic. Moreover,
several empirical works have shown that OPS using the Bellman error or value estimate from of-
fline RL algorithms underperform using OPE estimates (Tang & Wiens, 2021). Our result provides
theoretical reasoning for these experimental observations. Since, in most practical scenarios the
concentration coefficient can be very large or infinite, OPS using the BE can be poor.

Estimating Bellman error in stochastic environments. Estimating Bellman error in stochastic
environments potentially requires more samples. This is because doing so often involves fitting a
function (Antos et al., 2008; Farahmand & Szepesvári, 2011), and resultingly the sample complexity
of estimating the BE accurately depends on the complexity of the function class. We hypothesize
that it makes the sample complexity similar to FQE. If the sample complexity is similar to FQE and
policy selection using BE requires stronger assumptions, then it is natural to use FQE in stochastic
environments even if the data coverage is good. We leave the exact analysis of the sample complexity
of OPS using estimated Bellman Error in stochastic environments for future work.

5 EMPIRICAL COMPARISON BETWEEN FQE AND BE

In this section, we aim to validate our results experimentally by answering the following questions:
(1) How do FQE and BE perform when (a) all candidate policies are well-covered, (b) the data
contains diverse trajectories or (c) the data neither covers all candidate policies nor provides diverse
trajectories? (2) Can BE be more sample efficient than FQE for OPS?

We conduct experiments on two standard RL environments: Acrobot and Cartpole. We first generate
a set of candidate policy-value pairs {πi, qi}Ki=1 by running CQL (Kumar et al., 2020) with different
hyperparameters on a batch of data collected by an optimal policy with random actions taken 40% of
the time. We then use either FQE or BE to rank the candidate policies, and select the top-k policies.
The OPS problem we described in this paper is a special case with k = 1. We also included a random
selection baseline where the we randomly choose k policies from the candidate set. To evaluate the
performance of top-k policy selection, we consider the top-k regret which is used in the existing
literature (Zhang & Jiang, 2021; Paine et al., 2020). Top-k regret is the gap between the best policy
within the top-k policies, and the best among all candidate policies. More experimental details can
be found in Appendix B.

In the first set of experiments, we generate three different datasets: (a) well-covered data is generated
such that all candidate policies are well-covered, (b) diverse data includes more diverse trajectories
to obtain a lower concentration coefficient, and (c) expert data is collected by a deterministic and
optimal policy. Figure 1 shows the top-k regret with 900 episodes of data. FQE performs very
well with a small regret on well-covered and diverse data. BE does not perform well with well-
covered data. However, with diverse data, BE performs much better. Surprisingly, for expert data,
BE performs better than FQE even though the data distribution has an extremely large concentration
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Figure 1: Top-k regret with varying k and 900 episodes on Acrobot and Cartpole. The results are
averaged over 5 runs with one standard error.
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Figure 2: Top-k regret with varying sample size on Acrobot and Cartpole with diverse data.

coefficient. In Acrobot, BE tends to perform better with a larger k even with good data coverage,
while FQE can have a small top-1 regret as long as the data covers the candidate policy.

In the second set of experiments, we use diverse data. Figure 2 shows the results with varying
numbers of episodes for top-k regret with k ∈ {1, 5, 10}. BE performs better than FQE when
the sample size is small (less than 100 episodes) in most cases. The random selection baseline is
expected to perform independent of the data used for OPS. We expect to see a larger gap when the
environment has a high-dimensional state spacee so a function class with large complexity is needed
for FQE.

In summary, these experimental results validate our theoretical results. We show (1) FQE performs
very well when the candidate policies are well-covered; (2) BE performs well under a diverse data
coverage assumption; and (3) neither perform well without their corresponding data coverage con-
ditions. Moreover, BE can be more sample efficient than FQE under good data coverage.
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6 RELATED WORK

In this section we provide a more comprehensive survey of prior work on model selection for re-
inforcement learning. In the online setting, model selection has been studied extensively across
contextual bandits (Foster et al., 2019) to reinforcement learning (Lee et al., 2021). In the online
setting, the goal is to select model classes while balancing exploration and exploitation to achieve
low regret, which is very different from the offline setting where no exploration is performed.

In the offline setting, besides using OPE for model selection, Farahmand & Szepesvári (2011) and
Zhang & Jiang (2021) consider selecting a value function that has the smallest Bellman error or is
the closest to the optimal value function. Farahmand & Szepesvári (2011) consider selecting a value
function among a set of candidate value functions in stochastic environments such that with high
probability, ∥qk−T qk∥22,µ ≤ mini ∥qi−T qi∥22,µ+ε where k is the output of a selection algorithm.
To estimate the Bellman error, they propose to fit a regression model q̃i to predict T qi and bound
the Bellman error by ∥qi − q̃i∥2,µ + bi where bi is an upper bound on the estimation error of the
regression. However, as we show in this paper, even in a deterministic environment where selecting
the smallest Bellman error is easy, it does not imply effective OPS unless the data coverage is good.

Zhang & Jiang (2021) consider the projected Bellman error with a piecewise constant function
class. They show that if q∗ is in the candidate set and a stronger data assumption is satisfied, then
they can choose the optimal value function by selecting the value function with the smallest Batch
Value-Function Tournament loss (BVFT). Xie & Jiang (2021) consider BVFT with approximation
error. In practice, their method is computationally expensive since it scales with O(|Π|2) instead of
O(|Π|), making the method impractical when the candidate set is not small.

Other work on model selection in RL is in other settings: selecting models and selecting amongst
OPE estimators. Hallak et al. (2013) consider model selection for model-based RL algorithms with
batch data. They focus on selecting the most suitable model that generates the observed data, based
on the maximum likelihood framework. Su et al. (2020) consider estimator selection for OPE when
the estimators can be ordered with monotonically increasing biases and decreasing confidence inter-
vals. They also show that their method achieves an oracle inequality for estimator selection.

To the best of our knowledge, there is no previous work on understanding the fundamental limits for
the OPS problem in RL. There is one related work in the batch contextual bandit setting, studying
the selection of a linear model (Lee et al., 2022). They provide a hardness result suggesting it is
impossible to achieve an oracle inequality that balances the approximation error, the complexity of
the function class, and data coverage. However, their results are restricted only to the contextual
bandit setting. In this paper, we consider the more general problem, selecting a policy from a set of
policies, in the RL setting.

7 CONCLUSION & DISCUSSION

In this paper, we have made progress towards understanding when OPS is feasible for RL. Our main
result that the sample complexity of OPS is lower-bounded by the sample complexity of OPE, is
perhaps expected. However, to our knowledge, this has never been formally shown. This result
implies that without conditions to make OPE feasible, we cannot do policy selection efficiently.
We provided theoretical statements with experimental evidence demonstrating that FQE is sample
efficient when all candidate policies are well-covered and that BE can be more sample efficient under
stronger data coverage.

A natural next step from this work is to consider the structure or properties of the candidate policy
set. For example, Kumar et al. (2021) use the trend in the TD error to select the number of training
steps for CQL. The early stopping criterion could be selected based on errors on the dataset, and
it is possible that such an approach could be proved to be sound in certain settings. As another
example, if we know that performance is smooth in a hyperparameter for an algorithm, such as a
regularization parameter, then it might be feasible to exploit curve fitting to get better estimates of
performance. Our work does not yet answer these questions, but it does provide some insights into
OPS that could lead to the development of sound hyperparameter selection procedures for real-world
RL applications.
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Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. In Inter-
national Conference on Machine Learning, 2019.

Jonathan Lee, Aldo Pacchiano, Vidya Muthukumar, Weihao Kong, and Emma Brunskill. Online
model selection for reinforcement learning with function approximation. In International Con-
ference on Artificial Intelligence and Statistics, 2021.

Jonathan Lee, George Tucker, Ofir Nachum, and Bo Dai. Model selection in batch policy optimiza-
tion. In International Conference on Machine Learning, 2022.

10



Under review as a conference paper at ICLR 2023

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Vincent Liu, James R Wright, and Martha White. Exploiting action impact regularity and exogenous
state variables for offline reinforcement learning. arXiv preprint arXiv:2111.08066, 2021.

Shie Mannor, Duncan Simester, Peng Sun, and John N Tsitsiklis. Bias and variance approximation
in value function estimates. Management Science, 2007.

Tom Le Paine, Cosmin Paduraru, Andrea Michi, Caglar Gulcehre, Konrad Zolna, Alexander
Novikov, Ziyu Wang, and Nando de Freitas. Hyperparameter selection for offline reinforcement
learning. arXiv preprint arXiv:2007.09055, 2020.

Doina Precup, Richard S Sutton, and Satinder P Singh. Eligibility traces for off-policy policy eval-
uation. In International Conference on Machine Learning, 2000.

Reuven Y Rubinstein. Simulation and the Monte Carlo method. John Wiley & Sons, 1981.

Satinder P Singh and Richard C Yee. An upper bound on the loss from approximate optimal-value
functions. Machine Learning, 1994.

Yi Su, Pavithra Srinath, and Akshay Krishnamurthy. Adaptive estimator selection for off-policy
evaluation. In International Conference on Machine Learning, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Shengpu Tang and Jenna Wiens. Model selection for offline reinforcement learning: Practical con-
siderations for healthcare settings. In Machine Learning for Healthcare Conference, 2021.

Ruosong Wang, Dean P Foster, and Sham M Kakade. What are the statistical limits of offline rl with
linear function approximation? arXiv preprint arXiv:2010.11895, 2020.

Yu-Xiang Wang, Alekh Agarwal, and Miroslav Dudık. Optimal and adaptive off-policy evaluation
in contextual bandits. In International Conference on Machine Learning, 2017.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Chenjun Xiao, Ilbin Lee, Bo Dai, Dale Schuurmans, and Csaba Szepesvari. The curse of passive data
collection in batch reinforcement learning. In International Conference on Artificial Intelligence
and Statistics, 2022.

Tengyang Xie and Nan Jiang. Batch value-function approximation with only realizability. In Inter-
national Conference on Machine Learning, 2021.

Tengyang Xie, Yifei Ma, and Yu-Xiang Wang. Towards optimal off-policy evaluation for rein-
forcement learning with marginalized importance sampling. Advances in Neural Information
Processing Systems, 2019.

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent
pessimism for offline reinforcement learning. Advances in Neural Information Processing Sys-
tems, 2021.

Mengjiao Yang, Bo Dai, Ofir Nachum, George Tucker, and Dale Schuurmans. Offline policy se-
lection under uncertainty. In International Conference on Artificial Intelligence and Statistics,
2022.

Ming Yin and Yu-Xiang Wang. Optimal uniform ope and model-based offline reinforcement learn-
ing in time-homogeneous, reward-free and task-agnostic settings. Advances in Neural Information
Processing Systems, 2021.

Siyuan Zhang and Nan Jiang. Towards hyperparameter-free policy selection for offline reinforce-
ment learning. Advances in Neural Information Processing Systems, 2021.

11



Under review as a conference paper at ICLR 2023

A TECHNICAL DETAILS

A.1 PROOF OF THEOREM 1

Theorem 1. (Upper bound on sample complexity of OPS) Given an MDP M , a data distribu-
tion db, and a set of policies Π, suppose that, for any pair (ε, δ), there exists an (ε, δ)-sound
OPE algorithm L on any OPE instance I ∈ {(M,db, π) : π ∈ Π} with a sample size at most
O(NOPE(S,A,H, ε, 1/δ)). Then there exists an (ε, δ)-sound OPS algorithm for the OPS problem
instance (M,db,Π) which requires at most O(NOPE(S,A,H, ε, |Π|/δ)) episodes.

Proof. The OPS algorithm L(D,Π) for a given (ε, δ) works as follows: we query an (ε′, δ′)-sound
OPE algorithm for each policy in Π and select the policy with the highest estimated value. That is,
L(D,Π) outputs the policy π̄ := argmax

π∈Π
Ĵ(π), where Ĵ(π) is the value estimate for policy π by the

(ε′, δ′)-sound OPE algorithm with data D.

By definition of an (ε′, δ′)-sound OPE algorithm we have

PrD∼db
(|Ĵ(π)− J(π)| ≤ ε′) ≥ 1− δ′,∀π ∈ Π.

Applying the union bound, we have

PrD∼db
(∀π ∈ Π, |Ĵ(π)− J(π)| ≤ ε′) ≥ 1− δ′|Π|. (1)

Let π† denote the best policy in the candidate set Π, that is, π† := argmax
π∈Π

J(π). With probability

1− δ′|Π|, we have

J(π̄) ≥ Ĵ(π̄)− ϵ′ ≥ Ĵ(π†)− ε′ ≥ J(π†)− 2ε′

The first and third inequalities follow from equation 1, and the second inequality follows from the
definition of π̄.

Finally, by setting δ′ = δ/|Π| and ε′ = ε/2, we get

PrD∼db
(J(π̄) ≥ J(π†)− ε) ≥ 1− δ.

That is, L is an (ε, δ)-sound OPS algorithm. This requires at most O(NOPE(S,A,H, ε/2, |Π|/δ))
samples.

A.2 PROOF OF THEOREM 2

Theorem 2 (Lower bound on sample complexity of OPS). Suppose for any data distribution db and
any pair (ε, δ) with ε ∈ (0, Vmax/2) and δ ∈ (0, 1), there exists an MDP M and a policy π such
that any (ε, δ)-sound OPE algorithm requires at least Ω(NOPE(S,A,H, ε, 1/δ)) episodes. Then
there exists an MDP M ′ with S′ = S + 2, H ′ = H + 1, and a set of candidate policies such that
for any pair (ε, δ) with ε ∈ (0, Vmax/3) and δ ∈ (0, 1/m) where m := ⌈log(Vmax/ε)⌉ ≥ 1, any
(ε, δ)-sound OPS algorithm also requires at least Ω(NOPE(S,A,H, ε, 1/(mδ)))) episodes.

Proof. Our goal is to construct an (ε, δ)-sound OPE algorithm with δ ∈ (0, 1) and ε ∈ [0, Vmax/2].
To evaluate any policy π in M with dataset D sampled from db, we first construct a new MDP Mr

with two additional states: an initial state s0 and a terminal state s1. Taking a1 at s0 transitions to
s1 with reward r. Taking a2 at s0 transitions to the initial state in the original MDP M .

Let Π = {π1, π2} be the candidate set in Mr where π1(s0) = a1 and π2(s0) = a2 and π2(a|s) =
π(a|s) for all (s, a) ∈ S ×A. Since π1 always transitions to s1, it never transitions to states in MDP
M . Therefore, π1 can be arbitrary for all (s, a) ∈ S × A. We can add any number of transitions
(s0, a1, r, s) and (s0, a2, 0, s) in D to construct the dataset Dr with distribution db,r arbitrarily.

Suppose we have an (ε′, δ′)-sound OPS algorithm, where we set ε′ = 2ε/3, δ′ = δ/m and m :=
⌈log(Vmax/ε

′)⌉. Note that if this assumption does not hold, then it directly implies that the sample
complexity of OPS is larger than Ω(NOPE(S,A,H, ε, 1/δ)). Our strategy will be to iteratively set
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the reward r of MDP Mr and run our sound OPS algorithm on Π and using bisection search to
estimate a precise interval for J(π).

The process is as follows. By construction, our OPS algorithm will output either π1, which has value
JMr (π1) = r, or output π2, which has value JMr (π2) = JM (π). That is, it has the same value as
π in the original MDP. Let us consider the following two cases. Let π† be the best policy in Π for
MDP Mr.

Case 1: the OPS algorithm selects π1. We know, by definition of a sound OPS algorithm, that

Pr(JMr
(π1) ≥ JMr

(π†)− ε′) ≥ 1− δ′

=⇒ Pr(r ≥ max(r, JMr (π2))− ε′) ≥ 1− δ′

=⇒ Pr(JMr
(π2) ≤ r + ε′) ≥ 1− δ′.

Case 2: the OPS algorithm selects π2.
Pr(JMr

(π2) ≥ JMr
(π†)− ε′) ≥ 1− δ′

=⇒ Pr(JMr (π2) ≥ max(r, JMr (π2))− ε′) ≥ 1− δ′

=⇒ Pr(JMr
(π2) ≥ r − ε′) ≥ 1− δ′.

Given this information, we describe the iterative process by which we produce the estimate Ĵ(π).
We first set U = Vmax, L = 0 and r = U+L

2 and run the sound OPS algorithm with input Dr of
sample size nr and the candidate set Π. Then if the selected policy is π1, then we conclude the
desired event J(π) ≤ r + ε′ occurs with probability at least 1 − δ′, and set U equal to r. If the
selected policy is π2, then we know the desired event J(π) ≥ r− ε′ occurs with probability at least
1− δ′, and set L equal to r. We can continue the bisection search until the accuracy is less than ε′,
that is, U − L ≤ ε′, and the output value estimate is Ĵ(π) = U+L

2 .

If all desired events at each call occur, then we conclude that L − ε′ ≤ J(π) ≤ U + ε′ and thus
|J(π) − Ĵ(π)| ≤ ε. The total number of OPS calls is at most m. Setting δ′ = δ/m and applying a
union bound, we can conclude that with probability at least 1− δ, |J(π)− Ĵ(π)| ≤ ε.

Finally, since any (ε, δ)-sound OPE algorithm on the instance (M,db, π) needs at
least Ω(NOPE(S,A,H, ε, 1/δ)) samples, the (ε′, δ′)-sound OPS algorithm needs at least
Ω(NOPE(S,A,H, ε, 1/δ)), or Ω(NOPE(S,A,H, 3ε/2, 1/mδ′)) samples for at least one of the in-
stances (Mr, db,r,Π).

A.3 PROOF OF THEOREM 3

Theorem 3 (OPS using importance sampling). Suppose the data collection policy is uniformly
random, that is, πb(a|s) = 1/A for all (s, a) ∈ S × A, and |Gi| ≤ Vmax almost surely. Then
the selection algorithm L that selects the policy with the highest IS estimate is (ε, δ)-sound with
O(AHVmax ln (|Π|/δ)/ε2) episodes.

Proof. Since the policy is uniform random, we know |WiGi| < AHVmax almost surely. Moreover,
the importance sampling estimator is unbiased, that is, E[WiGi] = J(π). Using the Bernstein’s
inequality, we can show that the IS estimator satisfies

Pr

(
|Ĵ(πk)− J(πk)| ≤

2AHVmax ln (2/δ)

3n
+

√
2Var(WiGi) ln (2/δ)

n

)
≥ 1− δ

for one candidate policy πk. Using the union bound, we have

Pr

(
|Ĵ(πk)− J(πk)| ≤

2AHVmax ln (2|Π|/δ)
3n

+

√
2V(WiGi) ln (2|Π|/δ)

n
,∀k

)
≥ 1− δ

That is,

Pr

(
J(L(D,Π)) ≥ J(π†)− 4AHVmax ln (2|Π|/δ)

3n
+

√
8V(WiGi) ln (2|Π|/δ)

n

)
≥ 1− δ.
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Figure 3: Lower bound construction.

For the variance term,

V(WiGi) = E[W 2
i G

2
i ]− E[WiGi]

2 ≤ E[W 2
i G

2
i ] ≤

√
E[W 2

i ]E[G2
i ] ≤ AHVmax

The second inequality follows from the Cauchy-Schwarz inequality. Therefore, if n >
32AHVmax ln (2|Π|/δ)/ε2, L is (ε, δ)-sound.

Theorem 5 (Exponential lower bound on the sample complexity of OPE). For any positive integers
S,A,H with S > 2H and a pair (ε, δ) with 0 < ε ≤

√
1/8, δ ∈ (0, 1), any (ε, δ)-sound OPE

algorithm needs at least Ω(AH ln (1/δ)/ε2) episodes.

Proof. We provide a proof which uses the construction from Xiao et al. (2022). They provide
the result for the offline RL problem with Gaussian rewards. Here we provide the result for OPE
problem with Bernoulli rewards since we assume rewards are bounded to match Theorem 3.

We can construct an MDP with S states, A actions and 2H states in Figure 3. Given any behavior
policy πb, let ah = argmina πb(a|sh) be the action that leads to the next state sh+1 from state sh,
and all other actions lead to an absorbing state soh. Once we reach an absorbing state, the agent gets
zero reward for all actions for the remainder of the episode. The only nonzero reward is in the last
state sH−1. Consider a target policy that chooses ah for state sh for all h = 0, . . . ,H − 1, and
two MDPs where the only difference between them is the reward distribution in sH−1. MDP 1 has
Bernoulli distribution with mean 1/2 and MDP 2 has Bernoulli distribution with mean 1/2 − 2ε.
Let P1 denote the probability measure with respect to MDP 1 and P2 denote the probability measure
with respect to MDP 2.

Let r̂ denote the OPE estimate by an algorithm L. Define an event E = {r̂ < 1
2 − ε}. Then L is not

(ε, δ)-sound if

P1(E) + P2(E
c)

2
≥ δ.

This is because L is not (ε, δ)-sound if either P1(r̂ < 1
2 − ε) ≥ δ or P2(r̂ > 1

2 − ε) ≥ δ.

Using the Bretagnolle–Huber inequality (See Theorem 14.2 of Lattimore & Szepesvári (2020)), we
know

P1(E) + P2(E
c)

2
≥ 1

4
exp (−DKL(P1,P2)).

By the chain rule for KL-divergence and the fact that P1 and P2 only differ in the reward for
(sH−1, aH−1), we have

DKL(P1,P2) = E1

[
n∑

i=1

I{S(i)
H−1 = sH−1, A

(i)
H−1 = aH−1}

(
1

2
log (

1/2

1/2− ε
) +

1

2
log (

1/2

1/2 + ε
)

)]

=

n∑
i=1

P1(S
(i)
H−1 = sH−1, A

(i)
H−1 = aH−1)

(
−1

2
log (1− 4ε2)

)
≤ n8ε2

AH

The last inequality follows from − log (1− 4ε2) ≤ 8ε2 if 4ε2 ≤ 1/2 (Krishnamurthy et al., 2016)
and P1(S

(i)
H−1 = sH−1, A

(i)
H−1 = aH−1) < 1/AH from the construction of the MDPs.
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Finally,
P1(E) + P2(E

c)

2
≥ 1

4
exp (−n8ε2

AH
)

which is larger than δ if n ≤ AH ln(1/4δ)/8ε2. As a result, we need at least Ω(AH ln (1/δ)/ε2)
episodes.

A.4 PROOF OF THEOREM 4

Assumption 1 (Approximation error). For any policy π ∈ Π and h ∈ [H], we assume the approxi-
mation error is bounded by εapx, that is,

sup
g∈F

inf
f∈F

∥f − T πg∥22,µh
≤ εapx.

Assumption 2 (Optimization error). Given a target value function g, we want to find the empirical
risk minimizer

f̃ = argmin
f∈F

l̂(f, g).

We assume we have an optimization oracel that can return a value function f̂ such that the optimiza-
tion error is bounded, that is,

l̂(f̂ , g) ≤ l̂(f̃ , g) + εopt.

Definition 1 (Rademacher complexity). Given a function class F , let X = {x1, . . . , xn} denotes n
fixed data points at horizon h following the distribution µh, the empirical Rademacher complexity
is defined as

RX(F) = E

[
sup
f∈F

1

n

n∑
i=1

σif(xi) | X

]
where the expectation is with respect to the Rademacher random variables σi. The Rademacher
complexity is defined as Rµh

n (F) = E[RX(F)] where the expectation is with respect to the n data
points. Finally, to simply the notation, we define Rµ

n(F) = maxh∈[H] R
µh
n (F) as the maximum

Rademacher complexity over all horizons.
Lemma 1 (Excess risk bound, modification from Theorem 5.2 of Duan et al. (2021)). Let q =
(q0, . . . , qH−1) be the output of FQE with n sample drawn from the data distribution µh at each
horizon h. Then we have, with probability 1− δ, the following holds for all h = 0, . . . ,H − 1

∥qh − T πqh+1∥22,µh
≤ εopt + εapx + c0HRµh

n (F) + c0H
2

√
log (H/δ)

n
for some constant co > 0.

Proof. For each horizon h ∈ [H], let qh be the output value function such that l̂(qh, qh+1) ≤
l̂(q̂h, qh+1) + εopt where q̂h is the empirical minimizer, that is, q̂h = argminf∈F lh(f, qh+1).
It follows l̂(qh, f̂h+1) ≤ l̂(q†h, qh+1) + εopt where q†h is the population minimizer, that is, q†h =
argminf∈F ∥f − T qh+1∥2,µh

. Then follow the proof of Theorem 5.2 in Duan et al. (2021) by
takeing fh = qh, we have

∥qh − T πqh+1∥22,µh
≤ εopt + εapx + cHRµh

n (F) + cH2

√
log (H/δ)

n

holds for all h = 0, . . . ,H − 1 with probability at least 1− δ.

Theorem 4 (Offline policy selection for well-covered policies). Suppose we have a function class
F with Rademacher complexity Rµ

n(F), an approximation error εapx, and an optimization error
εopt (see Appendix A.4 for the definitions). If there exists a non-negative value C such that Π ⊂
Π(C, µ,F), then the OPS algorithm L that selects the policy with the highest FQE estimate satisfies

Pr

(
J(L(D,Π)) ≥ J(π†)− 2H

√
C

√
εopt + εapx + c0HRµ

n(F) + c0H2

√
log (|Π|H/δ)

n

)
≥ 1− δ

for some constant c0.
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Proof. First fix a policy π ∈ Π. Let q = (q0, . . . , qH−1) be the output of FQE with n sample
drawn from the data distribution µh at each horizon h, then ∥qh − T πqh+1∥2db

≤ εopt + εapx +

c0HRµh
n (F) + c0H

2
√

log (H/δ)
n from Lemma 1 for some constant c0.

By the definition of Π(C, µ,F), we know ∥qh−T πqh+1∥dπ
h
≤ C∥qh−T πqh+1∥µh

for any f ∈ F .

Therefore, we have ∥qh − T πqh+1∥2dπ
h
≤ C(εopt + εapx + c0HRµh

n (F) + c0H
2
√

log (H/δ)
n ).

We know
∥qπ0 − q0∥1,dπ

0
=
∑
a

π(a|s0)|qπ0 (s0, a)− q0(s0, a)|

=
∑
a

π(a|s0)|(T πqπ1 )(s0, a)− (T πq1)(s0, a) + (T πq1)(s0, a)− q0(s0, a)|

≤
∑

a,s′,a′

π(a|s0)p(s′|s, a)π(a′|s′)|qπ1 (s, a)− q1(s, a)|+
∑
a

π(a|s0)|(T πq1)(s0, a)− q0(s0, a)|

= ∥qπ1 − q1∥1,dπ
1
+ ∥T πq1 − q0∥1,dπ

0

Apply the same inequality recursively, we have

∥qπ0 − q0∥1,dπ
0
≤

H−1∑
h=0

∥T πqh+1 − qh∥1,dπ
h
≤

H−1∑
h=0

∥T πqh+1 − qh∥2,dπ
h

The last inequality follows from the Jensen’s inequality. Therefore, we have

|vπ(s0)−
∑
a

π(a|s0)q0(s0, a)| ≤ H

√
C(εopt + εapx + c0HRµ

n(F) + c0H2

√
log (H/δ)

n
)

with probability 1− δ.

The bound on FQE estimate holds for one policy in the candidate set. Using the union
bound, the bound can hold for all policies. Therefore, the OPS algorithm has error up to

2H

√
C(εopt + εapx + c0HRµ

n(F) + c0H2

√
log (|Π|H/δ)

n ) with probability at least 1− δ.

A.5 DETAILS OF SECTION 4.2

By the performance difference lemma,

J(π∗)− J(π) = Eπ∗

[
H−1∑
h=0

q∗h(Sh, Ah)− q∗h(Sh, πh(Sh))

]

≤ Eπ∗

[
H−1∑
h=0

q∗h(Sh, Ah)− qh(Sh, Ah) + qh(Sh, πh(Sh))− q∗(Sh, πh(Sh))

]

≤ Eπ∗

[
H−1∑
h=0

|q∗h(Sh, Ah)− qh(Sh, Ah)|+ |qh(Sh, πh(Sh))− q∗(Sh, πh(Sh))|

]

≤
H−1∑
h=0

∥q∗h − qh∥1,dπ∗
h π∗ + ∥q∗h − qh∥1,dπ∗

h πh

≤
H−1∑
h=0

∥q∗h − qh∥2,dπ∗
h π∗ + ∥q∗h − qh∥2,dπ∗

h πh

where dπh is the state-action distribution at horizon h induced by policy π. The first inequality follows
because πh is greedy with respect to qh. We consider a state-action distribution β0 that is induced
by some policy, then

∥q∗0 − q0∥2,β0 ≤ ∥T q∗1 − T q1 + T q1 − q0∥2,β0

≤ ∥T q∗1 − T q1∥2,β0
+ ∥T q1 − q0∥2,β0

≤ ∥q∗1 − q1∥2,β1
+ C∥T q1 − q0∥2,µ0
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where β1(s
′, a′) =

∑
s,a β0(s, a)P (s, a, s′)I{a′ = argmaxa′′∈A(q∗(s′, a′′)− q1(s

′, a′′))2} is also
induced by some policy. The first inequality follows by the fact that q∗ is the fixed point of the
operator T . We can recursively apply the same process for ∥q∗h − qh∥2,βh

, h > 0, and we can get

∥q∗h − qh∥2,βh
≤ C

H−1∑
h

∥T qh+1 − qh∥2,µh
.

Therefore,

∥q∗ − q0∥2,β0
≤ CH

H−1∑
h

∥T q1 − q0∥2,µ0
.

Now we show that

∥qk − T qk∥22,µ ≤ min
i=1,...,|Π|

∥qi − T qi∥22,µ + c0Vmax

√
log (|Π|H/δ)

n

holds with probability at least 1− δ for some constant c0.

Proof. Using Hoeffding’s inequality and the union bound, with probability at least 1− δ∣∣∣∣∣∣ 1n
∑

(s,a,r,s′)∈Dh

|qi,h(s, a)− r −max
a′

qi,h(s
′, a′)|2 − ∥qi,h − T qi,h+1∥22,µh

∣∣∣∣∣∣ ≤ c1B

√
log (H|Π|/δ)

n

for all candidate value function qi = (qi,1, . . . , qi,H−1), i = 1, . . . , |Π| and h ∈ [H].

Let k be the index with the lowest empirical Bellman error, that is,

k = argmin
i=1,...,|Π|

1

nH

H−1∑
h=0

∑
(s,a,r,s′)∈Dh

|qi(s, a)− r −max
a′

qi(s
′, a′)|2.

Then

∥qk − T qk∥22,µ ≤ min
i=1,...,|Π|

∥qi − T qi∥22,µ + c0Vmax

√
log (|Π|H/δ)

n
.

B EXPERIMENTAL DETAILS

We provide the experimental details in this section.

Generating candidate policies. To generate a set of candidate policies, we run CQL with different
hyperparameter configurations on a batch of data with 300 episodes collected with an ε-greedy
policy with respect to the optimal policy where ε = 0.4. The hyperparameter configuration includes:

• Learning rate ∈ {0.001, 0.0003, 0.0001}
• Network hidden layer size ∈ {128, 256, 512}
• Regularization coefficient ∈ {1.0, 0.1, 0.01, 0.001, 0.0}
• Iterations of CQL ∈ {100, 200}

That is, we have 90 candidate policies for Acrobot.

For Cartpole, CQL with many hyperparameter configurations can generate an optimal policy (reach-
ing a return of 200) so the selection is sufficiently easy that OPS algorithms using both FQE and BE
achieve zero regret. In order to make the result more meaningful, we remove all the policies that are
optimal from the candidate set. That results in 67 candidate policies for Cartpole.
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Generating offline data for OPS. To generate data for offline policy selection, we use three dif-
ferent data distributions: (a) a data distribution collected by running the mixture of all candidate
policies. As a result, the data distribution covers all candidate policies well; (b) a data distribution
collected by running the mixture of all candidate policies and an ε-greedy optimal policy that pro-
vides more diverse trajectories than (a); (c) a data distribution collected by a deterministic optimal
policy.

To perform experiment with multiple runs. To perform experiments with multiple runs, we fix
the offline data and the candidate policies and only resample the offline data for OPS. This better
reflects the theoretical result that the randomness is from resampling the data for an OPS algorithm.
In our experiments, we use 5 runs and report the average regret with one standard error. Since the
variability across runs is not large, we find using 5 runs is enough.

Random selection baseline We include a random selection baseline that randomly chooses k
policies given k. Since the random selection algorithm has very high variance within one run, we
first compute the expected regret of random selection by performing 2000 times random selection
within each run, and report the average regret over runs.

Practical considerations for FQE implementation. As mentioned in the paper, we fix the
function class as a two layer neural network model with hidden size 256 and tune the opti-
mization hyperparameters. We use the Adam optimizer with learning rate selected from the set
{0.001, 0.0003, 0.0001, 0.00003} for 200 epochs. We selected the hyperparameter configuration
that resulted in a value function with the smallest RMSTD error evaluated on a separate validation
dataset. To avoid selecting an uncovered policy, we assign a low estimate to policies when FQE
diverges to a large value.
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