

DIFFUSION MODELS AS DATASET DISTILLATION PRIORS

Anonymous authors

Paper under double-blind review

ABSTRACT

Dataset distillation aims to synthesize compact yet informative datasets from large ones. A significant challenge in this field is achieving a trifecta of diversity, generalization, and representativeness in a single distilled dataset. Although recent generative dataset distillation methods adopt powerful diffusion models as their foundation models, the inherent representativeness prior in diffusion models is overlooked. Consequently, these approaches often necessitate the integration of external constraints to enhance data quality. To address this, we propose Diffusion As Priors (DAP), which formalizes representativeness by quantifying the similarity between synthetic and real data in feature space using a Mercer kernel. We then introduce this prior as guidance to steer the reverse diffusion process, enhancing the representativeness of distilled samples without any retraining. Extensive experiments on large-scale datasets, such as ImageNet-1K and its subsets, demonstrate that DAP outperforms state-of-the-art methods in generating high-fidelity datasets while achieving superior cross-architecture generalization. Our work not only establishes a theoretical connection between diffusion priors and the objectives of dataset distillation but also provides a practical, training-free framework for improving the quality of the distilled dataset.

1 INTRODUCTION

Data undeniably functions as the “primordial fuel” that drives modern AI systems. This critical resource provides large models with foundational knowledge, spatiotemporal comprehension, visual awareness, and pattern recognition capabilities (Brown et al., 2020; Qin et al., 2025). Despite this, data faces depletion as exponentially scaling models rapidly consume finite human-generated data, persisting as a bottleneck in advancing next-generation large models (Muennighoff et al., 2023; Vilalobos et al., 2024). Current industry practices suffer dual burdens: insufficient data and expensive human annotation costs. Fortunately, synthetic data emerges as a renewable alternative capable of powering AI development at scale (Jordon et al., 2022; Liu et al., 2024). While large models can generate samples in arbitrary categories and sizes, unfiltered synthetic data poses two critical risks: **1) Data Quality Limitations** encompassing distribution drift and semantic mismatch (Alaa et al., 2022; Yang et al., 2024). **2) Training Hazards**, where flawed data patterns propagate through error amplification, triggering failures like model collapse (Shumailov et al., 2024; Dohmatob et al., 2024). Therefore, generating high-quality synthetic data remains a challenging task.

Recent advances in dataset distillation (DD) offer a promising solution to the above challenges by generating highly compact datasets while preserving critical features often obscured in real-world data (Wang et al., 2018). In parallel, diffusion models (DMs) have emerged as state-of-the-art generative methods due to their ability to accurately model the entire dataset distribution through score function estimation (Song et al., 2021). As a result, DMs have been adopted as foundation models for DD, giving rise to generative DD (Gu et al., 2024; Su et al., 2024). Leveraging priors acquired from well-trained DMs, distilled samples maintain diversity and fidelity, achieving competitive accuracy with up to $10 \times \sim 200 \times$ reduction in training size (Chen et al., 2025). Although encouraging, a theoretical analysis remains underdeveloped, which raises the following questions about the diffusion priors in generative DD methods.

Do the priors in vanilla DMs satisfy the requirements for DD? To answer this, we align the desired properties of distilled datasets with the priors captured by DMs via the original score function.

tion. From the perspective of log-likelihood estimation and evaluation metrics (e.g., FID, IS), we observe that the inherent diversity and generalization priors in vanilla DMs can yield higher-quality synthetic data. Naturally, the main challenge shifts to enhancing the representativeness of synthetic data, which is still not embodied in vanilla sampling pipelines. Previous approaches attempt to address this by imposing external representativeness constraints (Chan-Santiago et al., 2025; Chen et al., 2025). However, we argue that such constraints are unnecessary and introduce additional complexity. Thus, we raise the next question.

Are there unused priors in DMs that could benefit DD? Inspired by the diffusion classifiers (Chen et al., 2024a;b), we posit that the feature extraction capability inherent in a well-trained diffusion model itself constitutes a representativeness prior highly relevant to DD. We hypothesize that high representativeness corresponds to high similarity between synthetic and original data in the representation space. To formalize this, we employ the Mercer kernel, a specific type of kernel function (Zaanen, 1964), to quantify the similarity within feature spaces. The Mercer kernel provides us with mathematical guarantees of convexity and tractability in optimization, ensuring that the representativeness prior is computationally feasible. Empirically, we define the representativeness score function as an energy function based on Mercer kernel, which allows us to inject the unused representativeness prior into the distilled data through guided sampling.

We propose **Diffusion As Priors (DAP)** and apply it to datasets of varying scales, including large-scale ImageNet-1K (Deng et al., 2009) and its small subsets. Both quantitative and qualitative results show that DAP significantly enhances the quality of distilled datasets. It validates the theoretical connections between diffusion priors and DD task, while achieving competitive performance compared to other methods (see fig. 1, each dimension is normalized independently for clear visualization). We further show that by introducing the desired priors, the distilled datasets have the same generalization and transferability as the original ones. Our contributions can be summarized as follows: 1. We prove the priors in the well-trained DMs meet the diversity and generalization requirements of DD. 2. We derive the overlooked representativeness prior from DMs and formalize it into a kernel-induced distance, which guides the sampling dynamic and improves the quality of distilled datasets.

2 PRELIMINARIES

2.1 DATASET DISTILLATION

Given a labeled training dataset $\mathcal{T}_{train} = \{\mathbf{x}, \mathbf{y}\} \subseteq \mathbb{R}^N \times \mathcal{Y}$ where $\mathbf{x} \in \mathbb{R}^N$ i.i.d. drawn from p_{data} , and $\mathbf{y} \in \mathcal{Y} = \{1, \dots, C\}$ drawn from the label space. The objective of DD is to synthesize a compact dataset $\mathcal{S}_{syn} = \{\mathbf{x}^{syn}, \mathbf{y}\} \subseteq \mathbb{R}^M \times \mathcal{Y}$ ($M \ll N$) that encapsulates the knowledge of the original data. Consequently, the model trained with small \mathcal{S}_{syn} can achieve considerable generalization performance (measured by loss \mathcal{L}) to the large training dataset \mathcal{T}_{train} :

$$\mathbb{E}_{\mathbf{x}, \mathbf{y}, \theta^{(0)}} [\mathcal{L}(f_{\text{alg}(\mathcal{T}_{\text{train}}, \theta^{(0)})}(\mathbf{x}), y)] \simeq \mathbb{E}_{\mathbf{x}, \mathbf{y}, \theta^{(0)}} [\mathcal{L}(f_{\text{alg}(\mathcal{S}_{\text{syn}}, \theta^{(0)})}(\mathbf{x}), y)]. \quad (1)$$

The algorithm $\text{alg}(\cdot, \theta^{(0)})$ is determined by training set \mathcal{T} or \mathcal{S} and the initialized parameters $\theta^{(0)}$.

2.2 DIFFUSION MODELS

Given a dataset $\mathbf{x}_0 \in \mathbb{R}^N$ i.i.d. drawn from an unknown distribution $q_0(\mathbf{x}_0)$, a diffusion model parameterized by θ tries to learn a distribution $p_\theta(\mathbf{x}_0)$ that approximates $q_0(\mathbf{x}_0)$. Specifically, the diffusion model places a reversible process that gradually adds Gaussian noise from \mathbf{x}_0 to \mathbf{x}_T at time $T > 0$ and then maps them back. The forward diffusion process is defined by the Itô Stochastic Differential Equation (SDE) Song et al. (2021):

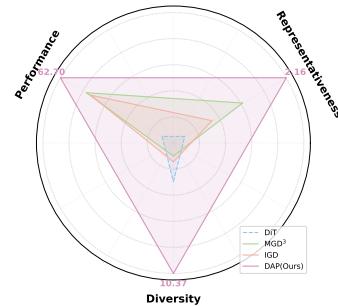


Figure 1: Our diffusion as priors (**DAP**) method is beneficial for the DD task. Diversity: $1 + \text{FID}_{\max} - \text{FID}$. Representativeness: $\frac{1}{d(\phi(x), \phi(y))}$. Performance: classification results on ImageNet-1K.

108 where $f(\mathbf{x}_t, t) = -\frac{1}{2}\beta_t \mathbf{x}_t$ is the drift term and $g(t) = \sqrt{\beta_t}$ denotes the diffusion coefficient that
 109 controls the noise strength at each timestep. $\beta_t \in (0, 1)$ is a sequence of pre-defined time-dependent
 110 noise scales. Meanwhile, \mathbf{w}_t is the Brownian motion. And the reverse diffusion process is given by
 111 the time-reverse SDE:

$$d\mathbf{x} = [f(\mathbf{x}_t, t) - g(t)^2 \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)] dt + g(t) d\bar{\mathbf{w}}, \quad (3)$$

112 where $\bar{\mathbf{w}}$ represents the time-reversed Brownian motion. The only unknown term in eq. (3) is the
 113 *score function* $\nabla_{\mathbf{x}_t} \log p_t(\cdot)$ of distribution p_t at each time t (we use p for simplicity). A neural
 114 network $\epsilon_\theta(\mathbf{x}_t, t)$ is trained to estimate the *score function* $-\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t)$. Finally, we can sample
 115 \mathbf{x}_0 by solving the reverse diffusion SDE (Lu et al., 2022).

118 2.3 INHERENT PRIORS IN DIFFUSION MODELS

119 A key question in evaluating generative models is whether they capture the full variability of the
 120 dataset (Alaa et al., 2022). DMs inherently encode diversity and generalization priors through
 121 estimating $\nabla_{\mathbf{x}} \log p(\mathbf{x})$, which compels the model to capture global manifold geometry rather than
 122 memorizing individual samples, thereby avoiding mode collapse (Thanh-Tung & Tran, 2020). More-
 123 over, the stochastic perturbations in the forward process act as implicit regularizers, enforcing Lips-
 124 chitz continuity and improving robustness to distributional shifts (Chen et al., 2024a;b).

125 In addition, let H denote entropy, and φ is an inception classifier. High Inception Score (IS) indicates
 126 uniform class coverage (high $H(p_\varphi(y))$) and discriminative sample quality (low $H(p_\varphi(y|\mathbf{x}))$).
 127 While low Fréchet Inception Distance (FID) certifies alignment between generated and real distri-
 128 butions ($p_{syn} \simeq p_{data}$). Empirical results (Dhariwal & Nichol, 2021) demonstrate that the structure-
 129 induced priors within DMs produce sufficient diversity and generalization.

132 3 DIFFUSION AS PRIORS

134 3.1 MOTIVATION

136 An ideal distilled dataset should satisfy (Gu et al., 2024; Su et al., 2024):

137 Distilled Dataset s.t. **Diversity** + **Generalization** + **Representativeness**.

138 These attributes enable the distilled dataset to be effectively applied across a variety of tasks, yielding
 139 competitive performance. **Diversity** ensures that synthetic data captures the full variability present in
 140 the original data, while **Generalization** prevents overfitting to the architecture of distillation models.
 141 Most importantly, **Representativeness** guarantees that the synthetic data retains the most critical
 142 information from the raw dataset. Consequently, we seek to study: *how to align the priors of DMs*
 143 *with these attributes and make the distilled dataset desirable?*

144 Formally, the objective of DMs that estimates the score function $\nabla_{\mathbf{x}} \log p(\mathbf{x})$ provides synthetic
 145 dataset with inherent diversity and generalization priors (discussed in section 3.2). In terms of
 146 the representativeness prior \mathcal{R} , we consider introducing it into the score function as a condition.
 147 According to Bayes' theorem, the conditional score function can be decomposed as:

$$\nabla_{\mathbf{x}} \log p(\mathbf{x}|\mathcal{R}) = \underbrace{\nabla_{\mathbf{x}} \log p(\mathbf{x})}_{\text{Diversity \& Generalization}} + \underbrace{\nabla_{\mathbf{x}} \log p(\mathcal{R}|\mathbf{x})}_{\text{Representativeness}}. \quad (4)$$

148 Given a well-trained diffusion model, the first term in eq. (4), same as the original score function,
 149 is already estimated by ϵ_θ . Thus, we focus on the second term to fulfill the representativeness
 150 requirement during sampling (discussed in section 3.3).

155 3.2 DIFFUSION AS DIVERSITY AND GENERALIZATION PRIORS

156 In the field of DD, diversity is characterized by the breadth of feature distribution and comprehen-
 157 sive coverage of categorical information. Meanwhile, generalization refers to the ability to prevent
 158 overfitting to the training data and enable datasets with cross-architecture adaptation. These proper-
 159 ties enable the distilled dataset to reflect the information and knowledge of the original dataset like a
 160 mirror. In this section, we argue that *the pre-trained diffusion model provides inherent diversity and*
 161 *generalization priors for dataset distillation.*

162
163

3.2.1 INHERENT DIVERSITY AND GENERALIZATION PRIORS

164 As mentioned in section 2.3, diffusion models pro-
 165 vide a principled foundation for DD, since effec-
 166 tive DD requires distilled data that both cover di-
 167 verse modes (diversity) and faithfully approximate
 168 the original dataset distribution (generalization).
 169 We quantify these properties with likelihood-based
 170 evaluations. The negative log-likelihood (NLL) is
 171 defined as $\mathcal{L}_{\text{NLL}} = -\mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log p_{\theta}(\mathbf{x})]$. Identical
 172 and low NLL values on training and testing sets indicate that $p_{\theta}(\mathbf{x})$ converges to p_{data} instead
 173 of overfitting (see table 1).

174

3.2.2 BEYOND PRIOR: CROSS-ARCHITECTURE GENERALIZATION

175

176 Unlike conventional DD methods that match training dynamics (e.g., Gradients, Parameters, and
 177 features) of specific downstream classifiers, DMs distill datasets without pixel-level optimization.
 178 The distilled dataset captures data-relevant rather than architecture-relevant knowledge, eliminating
 179 dependence on predefined classifier architectures. This architecture-agnostic DD paradigm produces
 180 distilled datasets with cross-architecture generalization, enhancing their versatility.

181

3.3 DIFFUSION AS REPRESENTATIVENESS PRIOR

182

183 Representative samples refer to a subset of data that accurately reflects the characteristics of the
 184 larger population from which it is drawn (Gabbay et al., 2011). Generating a more representative
 185 dataset leads to better dataset distillation performance. In this section, we argue that *a well-trained*
 186 *diffusion model itself can serve as a representativeness prior*.

187

3.3.1 REPRESENTATIVENESS PRIOR IN DMs

188

189 To capture the *representativeness* prior hidden in the DMs backbone network, we require a similarity
 190 measure that quantifies how closely a synthetic sample reflects the characteristics of the real sample.
 191 Kernel function is a simple yet effective tool for defining similarity, allowing us to a) express *rep-
 192 resentativeness* through an induced distance and b) inject this *representativeness* as a differentiable
 193 energy term into the sampling process. Formally, let kernel function $\mathcal{K}(\mathbf{x}, \mathbf{y}) : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be
 194 the smooth and differentiable similarity measurement which characterizes the similarity between a
 195 synthetic sample \mathbf{x}^{syn} and a single training sample \mathbf{x}^{train} . We argue that the larger the similarity
 196 between the synthetic samples and the entire training set $\mathbb{E}_{\mathbf{x}^{train}} [\mathcal{K}(\mathbf{x}^{syn}, \mathbf{x}^{train})]$, the better *rep-
 197 resentativeness* of \mathbf{x}^{syn} to the raw dataset. Suppose that $\mathcal{D}_{\mathcal{K}}(\mathbf{x}, \mathbf{y})$ is a distance measure induced by
 198 the kernel function \mathcal{K} . Typically, we expect $\mathcal{D}_{\mathcal{K}}$ to satisfy the fundamental properties of the distance
 199 measures. The following theorem demonstrates that, as long as the kernel function \mathcal{K} is positive
 200 semi-definite (PSD), the induced distance $\mathcal{D}_{\mathcal{K}}$ is a well-defined distance measure.

201

Theorem 3.1. *Let $\mathcal{K} : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a PSD kernel. Then the \mathcal{K} -induced distance measure*

$$\mathcal{D}_{\mathcal{K}}(\mathbf{x}, \mathbf{y}) = [\mathcal{K}(\mathbf{x}, \mathbf{x}) + \mathcal{K}(\mathbf{y}, \mathbf{y}) - 2\mathcal{K}(\mathbf{x}, \mathbf{y})]^{1/2} \quad (5)$$

202

satisfies:

203

1. **Non-negativity:** $\mathcal{D}_{\mathcal{K}}(\mathbf{x}, \mathbf{y}) \geq 0$, and $\mathcal{D}_{\mathcal{K}}(\mathbf{x}, \mathbf{y}) = 0$ if and only if $\mathbf{x} = \mathbf{y}$.
2. **Symmetry:** $\mathcal{D}_{\mathcal{K}}(\mathbf{x}, \mathbf{y}) = \mathcal{D}_{\mathcal{K}}(\mathbf{y}, \mathbf{x})$.
3. **Triangle inequality:** For any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{X}$, $\mathcal{D}_{\mathcal{K}}(\mathbf{x}, \mathbf{z}) + \mathcal{D}_{\mathcal{K}}(\mathbf{z}, \mathbf{y}) \geq \mathcal{D}_{\mathcal{K}}(\mathbf{x}, \mathbf{y})$.

204

205

210 *Proof.* (Sketch, details in section A.2.1) According to Mercer’s theorem (Mercer, 1909), the distance
 211 metric induced by the PSD kernel can be expressed as the Hilbert norm in reproducing kernel Hilbert
 212 space (RKHS), which satisfies the property of norms. \square

213

214

215 Therefore, $\mathcal{D}_{\mathcal{K}}$ is a valid distance metric. The Mercer kernel $\mathcal{K}_{\mathcal{M}}$ is a family of PSD kernels that
 guarantees the existence of a spectral expansion under continuity and compact conditions. Thanks to
 these desirable properties, we adopt Mercer kernel as the representativeness measure in our method.

Table 1: NLLs \downarrow on different datasets. The results are computed by a vanilla diffusion model (Ho et al., 2020) trained on ImageNet.

Dataset	Training Set	Test Set
ImageNette	2.4452 ± 1.03	2.6327 ± 1.08
ImageWoof	2.5856 ± 0.88	3.0838 ± 0.86

216 **Theorem 3.2.** Let $\mathcal{K} : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a Mercer kernel, then the \mathcal{K} -induced distance $\mathcal{D}_{\mathcal{K}}$ can be
 217 factorized as $\mathcal{D}_{\mathcal{K}}(x, y) = d \circ (\phi \times \phi)(x, y)$, where ϕ is a feature mapping and d is a simple norm in
 218 Hilbert space.

220 *Proof.* (Sketch, details in section A.2.2) According to the reproducing property of the kernel function,
 221 there exists a mapping Φ and a feature space \mathcal{H} that allows the kernel \mathcal{K} to be factorized into
 222 $\mathcal{K} = \langle \Phi(\cdot), \Phi(\cdot) \rangle_{\mathcal{H}_{\mathcal{K}}}$. The distance formalized by the linear combination of kernel functions can
 223 then be factorized into a combination of the complex Φ and a simple norm $\|\cdot\|_{\mathcal{H}_{\mathcal{K}}}$. \square

225 Mercer kernel allows us to quantify representativeness in RKHS, and the associated kernel-induced
 226 measure ensures the underlying optimization problem remains convex and tractable. Hence, the task
 227 reduces to identifying a suitable feature extractor ϕ that maps inputs into feature space, where the
 228 distance metric $d(\phi(x), \phi(y)) \propto \frac{1}{\mathcal{K}(x, y)}$. We posit that the diffusion model itself is a good feature
 229 extractor, supported by two observations: its strong image-text alignment reflects a comprehensive
 230 understanding of visual content (Yang & Wang, 2023), and its performance as a discriminative
 231 classifier exhibits high accuracy, robustness, and certified robustness (Chen et al., 2024a;b).

232 We propose **Diffusion As Priors** (DAP), which utilizes the diversity, generalization, and representativeness
 233 priors contained in the well-trained diffusion models to distill datasets. Specifically, the
 234 backbone networks (e.g., U-Net or Transformer) are viewed as a mapping function $\phi : \mathcal{X} \rightarrow \mathbb{R}^n$,
 235 transforming an image x or latent code z into an n -dimensional feature vector. During the pre-
 236 training phase, the backbones are endowed with the *representativeness* prior, which enables them to
 237 capture meaningful and high-level features.

238 3.3.2 GUIDANCE OF REPRESENTATIVENESS PRIOR

240 We formalize the conditional probability of representativeness term in eq. (4) as a Boltzmann distribution
 241 w.r.t. $\mathcal{D}_{\mathcal{K}}$:

$$242 p(\mathcal{R}|\mathbf{x}^{syn}) \triangleq \frac{\{\exp[-\frac{1}{N} \sum_N \mathcal{D}_{\mathcal{K}}(\mathbf{x}^{syn}, \mathbf{x}^{train})]\}^{\gamma}}{Z}, \quad (6)$$

244 where $Z > 0$ denotes the normalizing constant, and $\gamma > 0$ controls the scale of representativeness
 245 prior. According to theorem 3.2, the conditional score function of representativeness term is:

$$247 \nabla_{\mathbf{x}^{syn}} \log p(\mathcal{R}|\mathbf{x}^{syn}) = \nabla_{\mathbf{x}^{syn}} \log \frac{\{\exp[-\frac{1}{N} \sum_N \mathcal{D}_{\mathcal{K}}(\mathbf{x}^{syn}, \mathbf{x}^{train})]\}^{\gamma}}{Z} \\ 248 = \nabla_{\mathbf{x}^{syn}} \log \frac{\{\exp[-\frac{1}{N} \sum_N d(\phi(\mathbf{x}^{syn}), \phi(\mathbf{x}^{train}))]\}^{\gamma}}{Z} \quad (7) \\ 249 \propto -\gamma \frac{1}{N} \sum_N \nabla_{\mathbf{x}^{syn}} d(\phi(\mathbf{x}^{syn}), \phi(\mathbf{x}^{train})),$$

253 which is referred to as energy-based guidance (Dhariwal & Nichol, 2021). Practically, we use the
 254 classifier guidance method, which employs the pre-trained diffusion itself as a training-free time-
 255 dependent classifier $\phi(x_t)$ such that $\phi(x_t, t) \approx \phi(x_0)$ (Shen et al., 2024). Therefore, the reverse
 256 diffusion process with guidance is defined as:

$$258 d\mathbf{x} = [f(\mathbf{x}_t^{syn}, t) - g(t)^2 (\nabla_{\mathbf{x}_t^{syn}} \log p(\mathbf{x}_t^{syn}) + \gamma \nabla_{\mathbf{x}_t^{syn}} \log p(\mathcal{R}|\mathbf{x}_t^{syn}))] dt + g(t) d\bar{\mathbf{w}} \quad (8) \\ 259 \propto [f(\mathbf{x}_t^{syn}, t) - g(t)^2 (-\epsilon_{\theta}(\mathbf{x}_t^{syn}, t) + \gamma \nabla_{\mathbf{x}_t^{syn}} d(\phi(\mathbf{x}_t^{syn}), \phi(\mathbf{x}_t^{train})))] dt + g(t) d\bar{\mathbf{w}},$$

261 where $\nabla_{\mathbf{x}_t^{syn}} \log p(\mathcal{R}|\mathbf{x}_t^{syn})$ is treated as an auxiliary score derived from the *representativeness*
 262 prior. \mathbf{x}_t^{syn} and \mathbf{x}_t^{train} are the noised \mathbf{x}^{syn} and \mathbf{x}^{train} at timestep t .

263 Empirically, we compare the salient features across samples using the linear kernel (Mercer kernel
 264 $\mathcal{K}(x, y) = x^\top y$) due to its tractability. As indicated by eq. (6), the representativeness of \mathbf{x}^{syn} in-
 265 creases as the energy $\mathcal{D}_{\mathcal{K}}$ decreases. Figure 2 visualizes the representativeness of class-wise samples
 266 under different setups. The distillation performance improves on synthetic samples with higher rep-
 267 resentativeness, as reflected by the area of the sector. It is worth noting that according to eq. (4), the
 268 gradient field of diversity and generalization ($\nabla_{\mathbf{x}} \log p(\mathbf{x})$) is determined and fixed by pre-trained
 269 DMs. Therefore, the gradient field of representativeness cannot be increased indefinitely, otherwise
 the other priors will lose their effectiveness (see section 4.4 and section A.4.1).

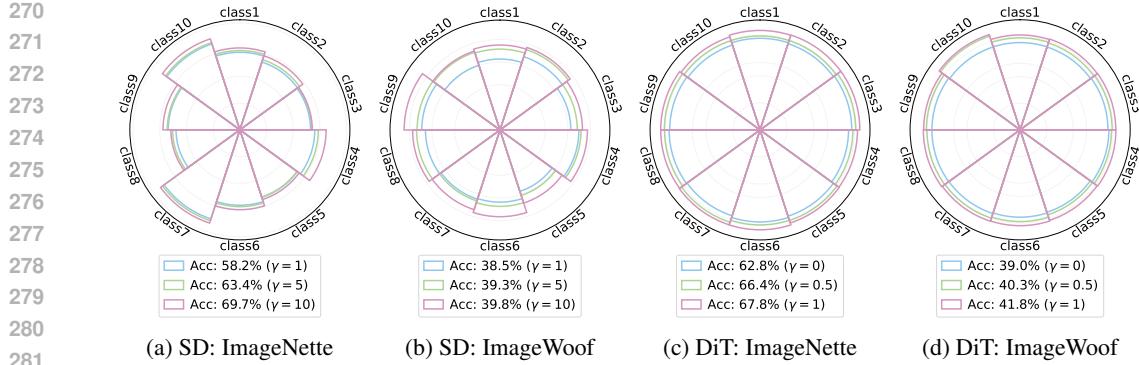


Figure 2: Visualization of average *representativeness* ($\propto \frac{1}{d(\phi(x), \phi(y))}$) of distilled samples (IPC10). As γ increases, the representativeness (sector area) gets larger, yielding better DD performance.

Hereto, we successfully distilled the priors within DMs into the synthetic dataset. Specifically, Diversity prior arises from the stochasticity of diffusion trajectories where different noise initializations lead to distinct denoising paths. Generalization prior stems from the original score function $\nabla_x \log p(x)$ estimated by vanilla DM. Representativeness prior is directly implemented by the guidance term in eq. (8), which guides each denoising trajectory toward gradient regions that are well represented by real data. We implement the guided sampling process using VP-SDE and summarize the procedure in algorithm 1. The extensive experimental results in section 4 demonstrate the validity of our “Diffusion As Priors (DAP)” method.

Algorithm 1 DAP Sampling (VP-SDE)

Require: Noisy data samples $\mathbf{x}_t^{train|c}$ within class c , pre-trained diffusion model ϵ_θ , a layer output ϕ from diffusion backbone network, a Mercer Kernel induced distance measurement d , energy-based guidance scale γ , pre-defined noise scales β_t .

```

1:  $\mathbf{x}_T \sim \mathcal{N}(0, I)$ 
2: for  $t = T, \dots, 1$  do
3:    $\epsilon \sim \mathcal{N}(0, I)$  if  $t > 1$ , else  $\epsilon = \mathbf{0}$ 
4:    $\tilde{\mathbf{x}}_{t-1} = (2 - \sqrt{1 - \beta_t})\mathbf{x}_t + \beta_t \epsilon_\theta(\mathbf{x}_t, t) + \sqrt{\beta_t}\epsilon$ 
5:    $\mathbf{z}_t = \phi(\mathbf{x}_t)$ ,  $\mathbf{z}_t^{train|c} = \phi(\mathbf{x}_t^{train|c})$  # Diffusion as representativeness priors
6:    $\mathbf{g}_t = -\nabla_{\mathbf{x}_t} d(\mathbf{z}_t, \mathbf{z}_t^{train|c})$ 
7:    $\mathbf{x}_{t-1} = \tilde{\mathbf{x}}_{t-1} + \gamma \mathbf{g}_t$  # Guided sampling
8: end for
Output:  $\mathbf{x}_0$  # The distilled sample of class  $c$ .

```

4 EXPERIMENTS

In this section, we conduct extensive experiments to validate the effectiveness of DAP. Our evaluation aims to explore the following questions:

- Does DAP achieve state-of-the-art performance on large-scale DD benchmarks?
- How do the three priors: diversity, generalization, and representativeness contribute to the effectiveness of DAP?
- Can DAP generalize across network architectures and datasets?

We evaluate DAP on ImageNet-1K and its widely used subsets (ImageNette, ImageWoof, and ImageIDC), comparing against advanced DD methods, including Minimax, D⁴M, IGD, MGD³, D³HR and VLCP. We employ two diffusion architectures, U-Net-based Stable Diffusion (SD) and Transformer-based DiT, for distillation. We also use them as baselines to demonstrate the advantage of the diffusion priors. All results are reported under either hard-label or soft-label evaluation protocols, as specified by the benchmarks. Further experimental details are provided in the section 4.1.

324 4.1 EXPERIMENTAL SETUP
325326 4.1.1 DATASETS AND BENCHMARKS
327

328 We evaluate DAP on a range of benchmarks that vary in scale, resolution, and task difficulty. Our
329 primary evaluation is conducted on large-scale ImageNet-1K (224×224) (Deng et al., 2009). To
330 study the effect of inter-class similarity, we further consider two 10-class subsets of ImageNet-
331 1K: ImageNette (Howard, 2019a), which consists of visually distinct categories and represents a
332 relatively simple task, and ImageWoof (Howard, 2019b), which contains visually similar dog breeds
333 and thus poses a fine-grained classification challenge. Additionally, we incorporate ImageIDC (Kim
334 et al., 2022) to evaluate performance.

335 4.1.2 MODELS AND EVALUATION PROTOCOLS
336

337 For each dataset, we distill subsets of 10, 50, and 100 images per class (IPC) and assess their utility
338 on downstream classification tasks. Two evaluation protocols are adopted:

- 339 • Hard-label protocol: Following Chen et al. (2025), we directly train classifiers from scratch
340 using the distilled images with ground-truth labels (one-hot labels). We evaluate on three
341 commonly used architectures: ConvNet-6, ResNetAP-10, and ResNet-18.
- 342 • Soft-label protocol: Following Sun et al. (2024), we provide soft labels via pre-trained clas-
343 sifiers (e.g., ResNet-18). This protocol is crucial for challenging datasets such as ImageNet-
344 1K, where training from scratch on a few synthetic images is relatively difficult.

346 To demonstrate the compatibility of DAP, we conduct experiments on a) Stable Diffusion-V1.5 with
347 the U-Net backbone, and b) DiT-XL/2-256 with the transformer.

348 4.1.3 OTHER DETAILS
349

350 All experiments were implemented in PyTorch and conducted with NVIDIA A40 GPUs. For fair
351 comparison, we reproduce baseline methods under the same setup. The reported results follow
352 these conventions: a) For DAP and reproduced baselines, we report the mean \pm standard deviation over
353 three runs. b) For other methods, we report results from the original papers. c) In tables, the
354 **best** result is highlighted in bold, while the second best is underlined. **Practically, DAP does not**
355 **require selecting any specific $x^{train|c}$ samples before sampling. For each class, all real training data**
356 **$x^{train|c}$ are passed through the VAE encoder to obtain their latent embeddings, which are provided**
357 **for representativeness guidance. Finally, the cost of DAP and the results for different accessible raw**
358 **data sizes are discussed in section A.3.7.**

360 4.2 COMPARISON WITH STATE-OF-THE-ART METHODS
361362 4.2.1 RESULTS ON DiT
363

364 We begin with ImageNet-1K, the most widely adopted benchmark for generative dataset distillation.
365 Across both IPC (Images Per Class) settings, DAP consistently achieves the best results, demon-
366 strating its superiority in large-scale DD tasks. As listed in table 2, DAP achieves 49.1% Top-1 accuracy
367 at IPC10, exceeding the strongest baseline IGD and MGD³ by 3.5%. With more distilled samples,
368 DAP further improves to 62.7%, establishing superior results on this challenging benchmark.

369 Table 2: Top-1 Accuracy on **ImageNet-1K**. The results are evaluated with **soft-label protocol** based
370 on ResNet-18.

Dataset	IPC	SRe ² L	G-VBSM	RDED	Minimax	DiT	IGD	MGD ³	D ³ HR	VLCP	DAP
ImageNet-1K	10	21.3 ± 0.6	31.4 ± 0.5	42.0 ± 0.1	44.3 ± 0.5	39.6 ± 0.4	45.5 ± 0.5	45.6 ± 0.8	44.3 ± 0.3	46.7 ± 0.4	49.1 ± 1.2
	50	46.8 ± 0.2	51.8 ± 0.4	56.5 ± 0.1	58.6 ± 0.3	52.9 ± 0.6	59.8 ± 0.3	60.2 ± 0.1	59.4 ± 0.1	60.5 ± 0.2	62.7 ± 1.5

375 To examine robustness across different scales and architectures, we also evaluate on ImageNet sub-
376 sets, including ImageNette and ImageWoof (table 3). DAP again outperforms almost all competing
377 methods. An exception occurs with ResNet-18 at IPC10, IGD slightly surpasses DAP. This deviation

378 is attributed to the fact that IGD explicitly incorporates ResNet-18 as the surrogate network for its
379 influence-guided sampling, thereby introducing an inductive bias favoring the specific architecture.
380 While this bias yields localized gains, it also risks overfitting (see table 5). In contrast, DAP does
381 not rely on architecture-specific heuristics and remains effective across multiple backbones.
382

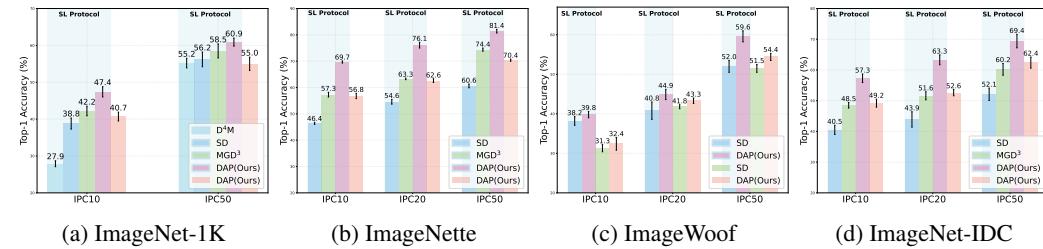
383 **Table 3: Top-1 Accuracy on ImageNette and ImageWoof.** The results are evaluated with **hard-label protocol**.
384
385

386 Dataset	387 Model	388 IPC	389 Random	390 DM	391 DiT	392 Minimax	393 IGD	394 MGD ³	395 DAP	396 Full
397 Nette	ConvNet-6	10	46.0 \pm 0.5	49.8 \pm 1.1	56.2 \pm 1.3	58.2 \pm 0.9	61.9 \pm 1.9	56.2 \pm 1.7	64.8 \pm 0.8	
		50	71.8 \pm 1.2	70.3 \pm 0.8	74.1 \pm 0.6	76.9 \pm 0.9	80.9 \pm 0.9	79.0 \pm 0.3	82.2 \pm 1.6	94.3 \pm 0.5
		100	79.9 \pm 0.8	78.5 \pm 0.8	78.2 \pm 0.3	81.1 \pm 0.3	84.5 \pm 0.7	84.4 \pm 0.6	85.7 \pm 1.3	
398 Woof	ResNetAP-10	10	54.2 \pm 1.2	60.2 \pm 0.7	62.8 \pm 0.8	63.2 \pm 1.0	66.5 \pm 1.1	66.4 \pm 2.4	67.8 \pm 1.2	
		50	77.3 \pm 1.0	76.7 \pm 1.0	76.9 \pm 0.5	78.2 \pm 0.7	81.0 \pm 1.2	79.5 \pm 1.3	82.3 \pm 0.7	94.6 \pm 0.5
		100	81.1 \pm 0.6	80.9 \pm 0.7	80.1 \pm 1.1	81.3 \pm 0.9	85.2 \pm 0.5	85.0 \pm 0.4	86.0 \pm 2.1	
399	ResNet-18	10	55.8 \pm 1.0	60.9 \pm 0.7	62.5 \pm 0.9	64.9 \pm 0.6	67.7 \pm 0.3	61.2 \pm 1.4	66.4 \pm 0.5	
		50	75.8 \pm 1.1	75.0 \pm 1.0	75.2 \pm 0.9	78.1 \pm 0.6	81.0 \pm 0.7	80.8 \pm 0.9	82.8 \pm 1.1	95.3 \pm 0.6
		100	82.0 \pm 0.4	81.5 \pm 0.4	77.8 \pm 0.6	81.3 \pm 0.7	84.4 \pm 0.8	83.7 \pm 1.3	85.5 \pm 1.5	
400	ConvNet-6	10	25.2 \pm 1.1	27.6 \pm 1.2	32.3 \pm 0.8	33.5 \pm 1.4	35.0 \pm 0.8	34.7 \pm 1.1	37.6 \pm 0.9	
		50	41.9 \pm 1.4	43.8 \pm 1.1	48.5 \pm 1.3	50.7 \pm 1.8	54.2 \pm 0.7	54.5 \pm 1.6	55.8 \pm 0.4	85.9 \pm 0.4
		100	52.3 \pm 1.5	50.1 \pm 0.9	54.2 \pm 1.5	57.1 \pm 1.9	61.1 \pm 1.0	60.1 \pm 1.2	62.4 \pm 1.2	
401	ResNetAP-10	10	31.6 \pm 0.8	29.8 \pm 1.0	39.0 \pm 0.9	39.6 \pm 1.2	41.0 \pm 0.8	40.4 \pm 1.9	41.8 \pm 0.7	
		50	50.1 \pm 1.6	47.8 \pm 1.2	55.8 \pm 1.1	59.8 \pm 0.8	62.7 \pm 1.2	56.5 \pm 1.9	63.3 \pm 0.5	87.2 \pm 0.6
		100	59.2 \pm 0.9	59.8 \pm 1.3	62.5 \pm 0.9	66.8 \pm 1.2	69.7 \pm 0.9	66.5 \pm 1.0	70.8 \pm 1.4	
402	ResNet-18	10	30.9 \pm 1.3	30.2 \pm 0.6	40.6 \pm 0.6	42.2 \pm 1.2	44.8 \pm 0.8	38.5 \pm 2.5	43.9 \pm 0.9	
		50	54.0 \pm 0.8	53.9 \pm 0.7	57.4 \pm 0.7	60.5 \pm 0.5	62.0 \pm 1.1	58.3 \pm 1.4	63.2 \pm 0.7	89.0 \pm 0.6
		100	63.6 \pm 0.5	64.9 \pm 0.7	62.3 \pm 0.5	67.4 \pm 0.7	70.6 \pm 1.8	68.8 \pm 0.7	71.6 \pm 1.3	

4.2.2 RESULTS ON STABLE DIFFUSION

403
404
405 We next apply DAP to Stable Diffusion (SD) as the generative backbone. As shown in fig. 3, DAP
406 consistently surpasses the baseline MGD³ and vanilla Stable Diffusion across all datasets and IPC
407 settings. For instance, DAP reaches 81.4% accuracy on ImageNette with IPC50, approaching the
408 accuracy of training on the full dataset while using only a fraction of the data size.
409

410 A surprising finding arises when comparing hard-label and soft-label protocols. Most previous methods
411 achieve competitive results only under soft-label supervision, whereas DAP already matches or
412 surpasses them under the stricter hard-label supervision. This demonstrates that the representativeness
413 prior substantially improves the quality of distilled datasets, even without auxiliary supervision.
414 Moreover, DAP maintains robustness under domain shifts between the SD pre-training dataset
415 (LAION (Schuhmann et al., 2022)) and the distilled dataset (ImageNet), further highlighting its ability
416 to leverage diffusion priors to bridge domain gaps, which is not observed in existing approaches.
417



420 Figure 3: The comparison results on **Stable Diffusion**. The results are evaluated with both **hard-label**
421 and **soft-label** (**SL**) **protocols** based on ResNet-18. The results of SL protocol are
422 marked with a light blue background, while those without background color are from HL protocol.
423

432 4.3 ANALYSIS OF DIFFUSION PRIORS
433434 4.3.1 GENERALIZATION PRIOR
435

436 Many existing methods overfit to the distillation settings and suffer performance degradation when
437 the dataset scale is reduced or the evaluation architecture is changed. As listed in table 4, we obtain
438 IPC50 and IPC10 datasets by subsampling them from IPC100 datasets rather than generating them
439 specially. IGD and MGD³ suffer degradation under this reduction, whereas DAP preserves accuracy
440 across scales without noticeable performance loss. This generalization indicates that DAP captures
441 sufficient transferable knowledge rather than memorizing samples at a fixed scale.

442 Table 4: A study on dataset scale reduction. The results are Top-1 Accuracy evaluated with **hard-**
443 **label protocol**. The failure cases (degradation > 5% compared to table 3) are marked in blue.
444

445 Model	446 IPC	447 ImageNette				448 ImageWoof			
		449 IGD	450 MGD ³	451 DAP	452 Full	453 IGD	454 MGD ³	455 DAP	456 Full
448 ConvNet-6	10	59.8 _{±2.3}	54.2 _{±1.9}	64.5 _{±0.7}	94.3 _{±0.4}	32.6 _{±1.5}	27.0 _{±1.2}	36.5 _{±1.8}	85.9 _{±0.4}
	50	79.8 _{±1.8}	77.0 _{±1.3}	80.1 _{±1.2}		53.4 _{±0.7}	51.4 _{±0.8}	53.1 _{±0.9}	
	100	82.8 _{±0.6}	83.7 _{±0.8}	85.7 _{±1.3}		60.2 _{±0.4}	58.8 _{±0.8}	62.4 _{±1.2}	
450 ResNetAP-10	10	63.2 _{±1.7}	59.2 _{±1.6}	66.1 _{±0.4}	94.6 _{±0.5}	35.6 _{±1.7}	31.8 _{±1.4}	37.9 _{±0.8}	87.2 _{±0.6}
	50	73.4 _{±1.3}	79.0 _{±1.1}	79.8 _{±1.5}		60.4 _{±0.7}	58.6 _{±1.3}	62.6 _{±0.6}	
	100	82.5 _{±1.2}	83.0 _{±0.5}	86.0 _{±2.1}		66.8 _{±0.9}	64.9 _{±0.4}	70.8 _{±1.4}	
453 ResNet-18	10	62.6 _{±2.1}	56.0 _{±1.8}	63.7 _{±0.8}	95.3 _{±0.6}	35.2 _{±1.4}	29.8 _{±2.3}	39.4 _{±1.3}	89.0 _{±0.6}
	50	78.4 _{±1.4}	78.8 _{±1.6}	80.4 _{±2.3}		59.3 _{±0.5}	59.4 _{±1.7}	59.7 _{±1.2}	
	100	83.6 _{±1.1}	84.2 _{±0.8}	85.5 _{±1.5}		68.8 _{±0.8}	67.8 _{±1.1}	71.6 _{±0.9}	

457 We further evaluate cross-architecture generalization in table 5. The distilled datasets are trained
458 with soft-labels provided by ResNet-18 and tested on other architectures, including ResNet-101,
459 MobileNet-V2, EfficientNet-B0, and Swin Transformer. While baselines show performance drops
460 due to inductive bias on the architectures, DAP consistently achieves the highest accuracy across all
461 cases. These findings confirm that representativeness prior enables architecture-agnostic DD.

462 Table 5: A study on cross-architecture generalization. The results are Top-1 Accuracy on **ImageNet-1K**
463 evaluated with **soft-label protocol**.
464

466 Method	467 ResNet-101		468 MobileNet-V2		469 EfficientNet-B0		470 Swin Transformer	
	471 IPC10	472 IPC50	473 IPC10	474 IPC50	475 IPC10	476 IPC50	477 IPC10	478 IPC50
RDED	48.3 _{±1.0}	61.2 _{±0.4}	40.4 _{±0.1}	53.3 _{±0.2}	31.0 _{±0.1}	58.5 _{±0.4}	42.3 _{±0.6}	53.2 _{±0.8}
IGD	52.6 _{±1.2}	66.2 _{±0.2}	39.2 _{±0.2}	57.8 _{±0.2}	47.7 _{±0.1}	62.0 _{±0.1}	44.1 _{±0.6}	58.6 _{±0.5}
DAP	54.9 _{±0.9}	68.1 _{±0.4}	43.1 _{±0.3}	61.4 _{±0.2}	49.7 _{±0.3}	65.2 _{±0.4}	48.3 _{±0.6}	61.7 _{±0.4}

473 4.3.2 DIVERSITY AND REPRESENTATIVENESS PRIORS
474

475 To investigate whether DAP enforces diversity and representativeness priors in the distilled datasets,
476 we visualize the data distribution using t-SNE alongside both the training and test sets. Figure 4
477 reveals that the synthetic data aligns well with the training set while generalizing to the test set,
478 demonstrating that the DAP can accurately match the underlying data manifold. Moreover, the em-
479 beddings show intra-class diversity and inter-class separability, indicating that the distilled datasets
480 capture meaningful variability without sacrificing discriminability.

481 Across all benchmarks and analyses, DAP achieves competitive performance and surpasses existing
482 DD methods. The improvements arise from the combined effect of diffusion priors: diversity and
483 generalization priors contribute to broad coverage and cross-architecture transfer. Meanwhile, the
484 representativeness prior enforces information alignment with the real dataset. Moreover, DAP in-
485 troduces no extra training cost, which makes the approach both efficient and scalable in scenarios
486 where deployment architectures are agnostic. We also discuss the sampling costs in section A.3.7.

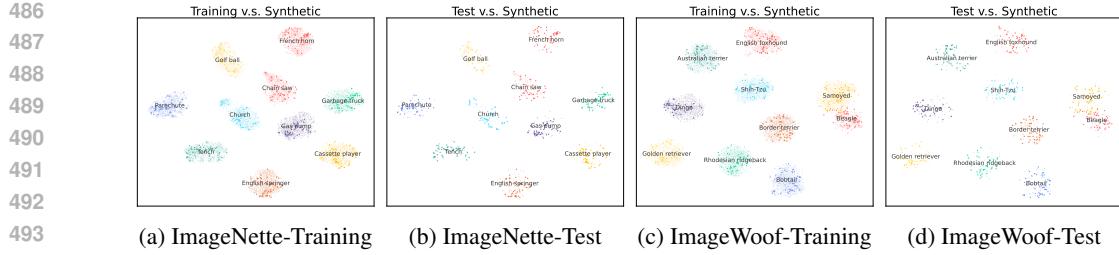


Figure 4: Visualization results of t-SNE. We compare the feature distribution of real (training and test set) versus synthetic data under IPC50. Dark/Light points: Synthetic/Real samples.

4.4 ABLATION EXPERIMENTS

We conduct ablation studies to investigate the influence of feature layer selection and guidance scale γ in representativeness guidance. We observe from fig. 5a that the “Mid” layer of the U-Net yields the strongest results. For DiT, the most effective features originate from the early transformer blocks (e.g., the 4th-12th layers shown in fig. 5b), which outperform those in later layers. Despite this difference, both cases consistently reveal that the final output layers are suboptimal for representativeness guidance, as they prioritize distribution alignment over representativeness. Regarding γ , we find that increasing its value generally enhances representativeness, as reflected by improved downstream accuracy in figs. 5c and 5d and the sector areas in fig. 2, but excessive scales distort the gradient field of the sampling process and bias the generation trajectory, thereby diminishing the contributions of diversity and generalization priors and leading to performance degradation.

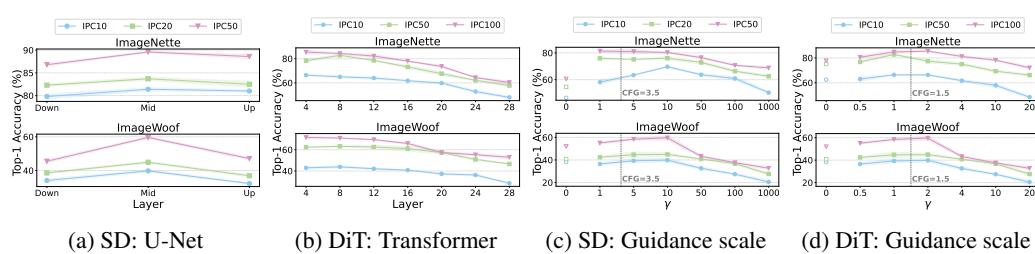


Figure 5: Ablation studies under **ResNet-18**. (a-b) Top-1 Accuracy under different backbone layer selection. (c-d) Top-1 Accuracy under varied guidance scale γ .

5 CONCLUSION

This paper introduces Diffusion as Priors, a framework for dataset distillation that leverages the inherent priors of diffusion models. We identify diversity, generalization, and representativeness priors in diffusion models, and demonstrate how they can be integrated to guide the generation process. Representativeness prior is further formulated through kernel-based energy guidance, enabling the sampling process to align more information with real data. Extensive experiments on ImageNet-1K and its subsets demonstrated that DAP achieves state-of-the-art results, preserves generalization under scale reduction, transfers effectively across architectures, and remains robust under domain shifts, making the approach both efficient and scalable. Future work may fall in extending diffusion priors to other powerful models (e.g., FLUX, Stable Diffusion 3.5) and exploring applications beyond vision, including language, video, and multimodal datasets.

ETHICS STATEMENT

This work uses only publicly available datasets, including ImageNet-1K and its subsets (ImageNette, ImageWoof, and ImageIDC). No human subjects, private data, or sensitive information are involved. Our method focuses on dataset distillation using pre-trained diffusion models, and it does not introduce additional risks related to privacy, security, fairness, or legal compliance.

540 REPRODUCIBILITY STATEMENT
541

542 We have taken several measures to ensure reproducibility. All theoretical results are presented with
543 complete proofs in section A.2. Details of datasets, backbone architectures, hyper-parameters, and
544 evaluation protocols are provided in section 4.1, while algorithms 1 and 2 specify the guided sam-
545 pling procedure. Additional visualizations and ablation results are included in section A.4 to further
546 support empirical findings. Moreover, we submit the full implementation, including training and
547 evaluation scripts, as anonymous source code in the supplementary material. These resources en-
548 sure that all theoretical and experimental results can be independently verified.

549
550 REFERENCES
551

552 Ahmed Alaa, Boris Van Breugel, Evgeny S Saveliev, and Mihaela Van Der Schaar. How faithful
553 is your synthetic data? sample-level metrics for evaluating and auditing generative models. In
554 *International conference on machine learning*, pp. 290–306. PMLR, 2022.

555 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
556 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
557 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

558 George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Gener-
559 alizing dataset distillation via deep generative prior. In *Proceedings of the IEEE/CVF Conference*
560 *on Computer Vision and Pattern Recognition*, pp. 3739–3748, 2023.

561 Jeffrey A Chan-Santiago, Praveen Tirupattur, Gaurav Kumar Nayak, Gaowen Liu, and Mubarak
562 Shah. Mgd'3: Mode-guided dataset distillation using diffusion models. *arXiv preprint*
563 *arXiv:2505.18963*, 2025.

564 Huanran Chen, Yinpeng Dong, Shitong Shao, Hao Zhongkai, Xiao Yang, Hang Su, and Jun Zhu.
565 Diffusion models are certifiably robust classifiers. *Advances in Neural Information Processing*
566 *Systems*, 37:50062–50097, 2024a.

567 Huanran Chen, Yinpeng Dong, Zhengyi Wang, Xiao Yang, Chengqi Duan, Hang Su, and Jun Zhu.
568 Robust classification via a single diffusion model. In *Proceedings of the 41st International Con-
569 ference on Machine Learning*, pp. 6643–6665, 2024b.

570 Mingyang Chen, Jiawei Du, Bo Huang, Yi Wang, Xiaobo Zhang, and Wei Wang. Influence-guided
571 diffusion for dataset distillation. In *The Thirteenth International Conference on Learning Repre-
572 sentations*, 2025.

573 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
574 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
575 pp. 248–255. Ieee, 2009.

576 Wenxiao Deng, Wenbin Li, Tianyu Ding, Lei Wang, Hongguang Zhang, Kuihua Huang, Jing Huo,
577 and Yang Gao. Exploiting inter-sample and inter-feature relations in dataset distillation. In *Pro-
578 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
579 17057–17066, 2024.

580 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances*
581 *in neural information processing systems*, 34:8780–8794, 2021.

582 Elvis Dohmatob, Yunzhen Feng, and Julia Kempe. Model collapse demystified: The case of re-
583 gression. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*,
584 2024.

585 Dov M Gabbay, Paul Thagard, John Woods, Prasanta S Bandyopadhyay, and Malcolm R Forster.
586 *Philosophy of Statistics*, volume 7. Elsevier, 2011.

587 Jianyang Gu, Saeed Vahidian, Vyacheslav Kungurtsev, Haonan Wang, Wei Jiang, Yang You, and
588 Yiran Chen. Efficient dataset distillation via minimax diffusion. In *Proceedings of the IEEE/CVF*
589 *Conference on Computer Vision and Pattern Recognition*, pp. 15793–15803, 2024.

594 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 595 *neural information processing systems*, 33:6840–6851, 2020.

596

597 Jeremy Howard. Imagenette: A smaller subset of 10 easily classified classes from imagenet, March
 598 2019a. URL <https://github.com/fastai/imagenette>.

599 Jeremy Howard. Imagewoof: a subset of 10 classes from imagenet that aren’t so easy to classify,
 600 March 2019b. URL <https://github.com/fastai/imagenette#imagewoof>.

601

602 James Jordon, Lukasz Szpruch, Florimond Houssiau, Mirko Bottarelli, Giovanni Cherubin, Carsten
 603 Maple, Samuel N Cohen, and Adrian Weller. Synthetic data—what, why and how? *arXiv preprint*
 604 *arXiv:2205.03257*, 2022.

605

606 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 607 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 608 *recognition*, pp. 4401–4410, 2019.

609

610 Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong, Jung-
 611 Woo Ha, and Hyun Oh Song. Dataset condensation via efficient synthetic-data parameterization.
 612 In *International Conference on Machine Learning*, pp. 11102–11118. PMLR, 2022.

613

614 Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. *CS 231N*, 7(7):3, 2015.

615

616 Shiye Lei and Dacheng Tao. A comprehensive survey of dataset distillation. *IEEE Transactions on*
 617 *Pattern Analysis and Machine Intelligence*, 46(1):17–32, 2023.

618

619 Ping Liu and Jiawei Du. The evolution of dataset distillation: Toward scalable and generalizable
 620 solutions. *arXiv preprint arXiv:2502.05673*, 2025.

621

622 Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe Zhang, Jinmeng Rao, Steven Zheng, Daiy-
 623 Peng, Diyi Yang, Denny Zhou, et al. Best practices and lessons learned on synthetic data. In *First*
 624 *Conference on Language Modeling*, 2024.

625

626 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
 627 ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in Neural*
 628 *Information Processing Systems*, 35:5775–5787, 2022.

629

630 James Mercer. Xvi. functions of positive and negative type, and their connection the theory of
 631 integral equations. *Philosophical transactions of the royal society of London. Series A, containing*
 632 *papers of a mathematical or physical character*, 209(441-458):415–446, 1909.

633

634 Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
 635 Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
 636 models. *Advances in Neural Information Processing Systems*, 36:50358–50376, 2023.

637

638 Zeyu Qin, Qingxiu Dong, Xingxing Zhang, Li Dong, Xiaolong Huang, Ziyi Yang, Mahmoud
 639 Khademi, Dongdong Zhang, Hany Hassan Awadalla, Yi R Fung, et al. Scaling laws of synthetic
 640 data for language models. *arXiv preprint arXiv:2503.19551*, 2025.

641

642 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 643 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 644 open large-scale dataset for training next generation image-text models. *Advances in neural in-*
 645 *formation processing systems*, 35:25278–25294, 2022.

646

647 Yifei Shen, Xinyang Jiang, Yifan Yang, Yezhen Wang, Dongqi Han, and Dongsheng Li. Under-
 648 standing and improving training-free loss-based diffusion guidance. *Advances in Neural Information*
 649 *Processing Systems*, 37:108974–109002, 2024.

650

651 Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal.
 652 Ai models collapse when trained on recursively generated data. *Nature*, 631(8022):755–759,
 653 2024.

654

655 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 656 Poole. Score-based generative modeling through stochastic differential equations. In *Inter-
 657 national Conference on Learning Representations*, 2021.

648 Duo Su, Junjie Hou, Weizhi Gao, Yingjie Tian, and Bowen Tang. D⁴m: Dataset distillation via
 649 disentangled diffusion model. In *IEEE/CVF Conference on Computer Vision and Pattern Recog-*
 650 *nition*, pp. 5809–5818. IEEE, 2024.

651

652 Peng Sun, Bei Shi, Daiwei Yu, and Tao Lin. On the diversity and realism of distilled dataset: An
 653 efficient dataset distillation paradigm. In *Proceedings of the IEEE/CVF Conference on Computer*
 654 *Vision and Pattern Recognition*, pp. 9390–9399, 2024.

655 Hoang Thanh-Tung and Truyen Tran. Catastrophic forgetting and mode collapse in gans. In *2020*
 656 *international joint conference on neural networks (ijcnn)*, pp. 1–10. IEEE, 2020.

657

658 Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius Hobbahn.
 659 Will we run out of data? limits of llm scaling based on human-generated data. In *Proceedings of*
 660 *the 41st International Conference on Machine Learning*, 2024.

661 Haoxuan Wang, Zhenghao Zhao, Junyi Wu, Yuzhang Shang, Gaowen Liu, and Yan Yan.
 662 Cao _2: Rectifying inconsistencies in diffusion-based dataset distillation. *arXiv preprint*
 663 *arXiv:2506.22637*, 2025.

664 Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan
 665 Bilen, Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features.
 666 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 667 12196–12205, 2022.

668

669 Kai Wang, Jianyang Gu, Daquan Zhou, Zheng Zhu, Wei Jiang, and Yang You. Dim: Distilling
 670 dataset into generative model. *arXiv preprint arXiv:2303.04707*, 2023.

671 Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. *arXiv*
 672 *preprint arXiv:1811.10959*, 2018.

673

674 William Yang, Ye Zhu, Zhiwei Deng, and Olga Russakovsky. What is dataset distillation learning?
 675 In *Forty-First International Conference on Machine Learning*, 2024.

676 Xingyi Yang and Xinchao Wang. Diffusion model as representation learner. In *Proceedings of the*
 677 *IEEE/CVF International Conference on Computer Vision*, pp. 18938–18949, 2023.

678

679 Ruonan Yu, Songhua Liu, and Xinchao Wang. Dataset distillation: A comprehensive review. *IEEE*
 680 *transactions on pattern analysis and machine intelligence*, 46(1):150–170, 2023.

681 A.C. Zaanen. *Linear Analysis*. Bibliotheca Mathematica. North-Holland Publishing Company,
 682 1964.

683

684 Bo Zhao and Hakan Bilen. Dataset condensation with gradient matching. In *Proceedings of the*
 685 *International Conference on Learning Representations (ICLR)*, 2021.

686 Ganlong Zhao, Guanbin Li, Yipeng Qin, and Yizhou Yu. Improved distribution matching for dataset
 687 condensation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 688 *Recognition (CVPR)*, pp. 7856–7865, 2023.

689

690 Lin Zhao, Yushu Wu, Xinru Jiang, Jianyang Gu, Yanzhi Wang, Xiaolin Xu, Pu Zhao, and Xue
 691 Lin. Taming diffusion for dataset distillation with high representativeness. *arXiv preprint*
 692 *arXiv:2505.18399*, 2025.

693 Xinhao Zhong, Hao Fang, Bin Chen, Xulin Gu, Tao Dai, Meikang Qiu, and Shu-Tao Xia. Hierar-
 694 chical features matter: A deep exploration of gan priors for improved dataset distillation. *arXiv*
 695 *preprint arXiv:2406.05704*, 2024.

696

697 Yawen Zou, Guang Li, Duo Su, Zi Wang, Jun Yu, and Chao Zhang. Dataset distillation via vision-
 698 language category prototype. *arXiv preprint arXiv:2506.23580*, 2025.

699

700

701

702
703 A APPENDIX704
705 Appendix organization:706
707 Section A.1: Background708
709 A.1.1: Dataset distillation710
711 A.1.2: Generative dataset distillation712
713 Section A.2: Proofs714
715 A.2.1: Validity of kernel-induced distance716
717 A.2.2: Distance factorization718
719 Section A.3: Discussions720
721 A.3.1: Compatibility of DAP722
723 A.3.2: Guidance on noisy latent724
725 A.3.3: Kernel selection726
727 A.3.4: Comparison with recent methods728
729 A.3.5: Cross-datasets generalization730
731 A.3.6: Early Stop strategy732
733 A.3.7: Sampling-time scaling734
735 Section A.4: Visualizations736
737 A.4.1: Representativeness guidance scale738
739 A.4.2: Representativeness comparison740
741 Section A.5: Disclosure of the use of Large Language Models742
743 A.1 BACKGROUND744
745 A.1.1 DATASET DISTILLATION746
747
748 Systematic analysis of research in dataset distillation reveals two paradigms: a) traditional matching-based approaches focused on pixel-level optimization, and b) modern generative frameworks emphasizing distribution learning (Yu et al., 2023; Lei & Tao, 2023; Liu & Du, 2025). Traditional methods adopt an "imitation" philosophy, involving continuous pixel optimization to align model behavior, such as gradients, feature distributions, or checkpoints between synthetic and original data (Zhao & Bilen, 2021; Wang et al., 2022; Zhao et al., 2023; Deng et al., 2024). In contrast, generative frameworks prioritize improving dataset quality through fidelity and diversity metrics. These approaches extract key informational patterns from source data, enhancing the realism and generalization of distilled datasets. We will examine the related work in the following subsection.749
750 A.1.2 GENERATIVE DATASET DISTILLATION751
752
753 Generative dataset distillation utilizes models such as Generative Adversarial Networks (GANs) and Diffusion models (DMs) to synthesize compact and informative datasets. Unlike pixel optimization methods, which are limited to small-scale, low-resolution data due to computational costs, generative techniques support large-scale, high-resolution applications. This flexibility promotes sample diversity and better generalization across model architectures. This section reviews the two primary categories of generative dataset distillation methods: GAN-based and Diffusion-based approaches.754
755 **GAN-based approaches.** GANs serve as foundation models for dataset distillation. In early research, DiM (Wang et al., 2023) condenses dataset information into a conditional GAN, enabling sample synthesis from random noise during deployment. GLaD (Cazenavette et al., 2023) enhances cross-architecture generalization by distilling data into the latent space of pre-trained models like StyleGAN (Karras et al., 2019). H-PD (Zhong et al., 2024) introduces hierarchical parameterization distillation, optimizing across latent spaces in GANs to capture hierarchical features from the initial latent space to the pixel space.

756 **Diffusion-based approaches.** Diffusion-based methods leverage diffusion models to improve
 757 dataset distillation. For example, Minimax diffusion (Gu et al., 2024) fine-tunes a diffusion model
 758 with minimax criteria to boost representativeness and diversity. **VLCP** (Zou et al., 2025) constructs
 759 **text prototypes to enrich the labels with semantic information and then fine-tunes the DMs with**
 760 **image-text pairs.** **D⁴M** (Su et al., 2024) disentangles feature extraction and generation via Training-
 761 Time Matching (TTM) with category prototypes. **IGD** (Chen et al., 2025) guides the sampling pro-
 762 cess of pre-trained diffusion models using a function combining trajectory influence and diversity
 763 constraints, generating synthetic data without retraining. Additionally, **MGD³** (Chan-Santiago et al.,
 764 2025) enhances diversity by identifying latent space modes and directing data toward them during
 765 sampling. In order to enhance the objective and conditional consistency of the distillation process,
 766 **CaO₂** (Wang et al., 2025) employs target-guided sample selection to optimize the latent condition-
 767 ally. **D³HR** (Zhao et al., 2025) utilizes DDIM inversion to map the image latents to the Gaussian
 768 domain, then aligns the representative latents with the high-normality Gaussian distribution with
 769 their proposed sampling scheme.

770 **A.2 PROOFS**

772 **A.2.1 VALIDITY OF KERNEL-INDUCED DISTANCE**

774 **Theorem A.1.** *Let $\mathcal{K} : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a PSD kernel. Then the induced distance measure*

$$775 \quad \mathcal{D}_{\mathcal{K}}(x, y) = [\mathcal{K}(x, x) + \mathcal{K}(y, y) - 2\mathcal{K}(x, y)]^{1/2} \quad (9)$$

777 *satisfies:*

- 778 1. **Non-negativity:** $\mathcal{D}_{\mathcal{K}}(x, y) \geq 0$, and $\mathcal{D}_{\mathcal{K}}(x, y) = 0$ if and only if $x = y$.
- 779 2. **Symmetry:** $\mathcal{D}_{\mathcal{K}}(x, y) = \mathcal{D}_{\mathcal{K}}(y, x)$.
- 780 3. **Triangle inequality:** For any $x, y, z \in \mathcal{X}$, $\mathcal{D}_{\mathcal{K}}(x, z) + \mathcal{D}_{\mathcal{K}}(z, y) \geq \mathcal{D}_{\mathcal{K}}(x, y)$.

784 *Proof.* Since \mathcal{K} is positive semi-definite, by Mercer's theorem (Mercer, 1909) there exists a repro-
 785 ducing kernel Hilbert space \mathcal{H} and a feature map $\phi : \mathcal{X} \rightarrow \mathcal{H}$ such that

$$786 \quad \mathcal{K}(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}. \quad (10)$$

788 Therefore,

$$789 \quad \mathcal{D}_{\mathcal{K}}(x, y)^2 = \mathcal{K}(x, x) + \mathcal{K}(y, y) - 2\mathcal{K}(x, y) \quad (11)$$

$$790 \quad = \langle \phi(x), \phi(x) \rangle_{\mathcal{H}} + \langle \phi(y), \phi(y) \rangle_{\mathcal{H}} - 2\langle \phi(x), \phi(y) \rangle_{\mathcal{H}} \quad (12)$$

$$791 \quad = \|\phi(x) - \phi(y)\|_{\mathcal{H}}^2. \quad (13)$$

793 Thus,

$$794 \quad \mathcal{D}_{\mathcal{K}}(x, y) = \|\phi(x) - \phi(y)\|_{\mathcal{H}}. \quad (14)$$

796 Since the norm in Hilbert space $\|\cdot\|_{\mathcal{H}}$ is a valid metric, it satisfies:

- 798 • Non-negativity and identity of indiscernibles: $\|\phi(x) - \phi(y)\| \geq 0$, and $\|\phi(x) - \phi(y)\| = 0$
 799 iff $\phi(x) = \phi(y)$, which implies $x = y$.
- 800 • Symmetry: $\|\phi(x) - \phi(y)\| = \|\phi(y) - \phi(x)\|$.
- 802 • Triangle inequality: $\|\phi(x) - \phi(y)\| \leq \|\phi(x) - \phi(z)\| + \|\phi(z) - \phi(y)\|$ for any z .

804 Therefore, $\mathcal{D}_{\mathcal{K}}$ is a valid metric induced by the kernel \mathcal{K} . □

806 **A.2.2 DISTANCE FACTORIZATION**

808 **Theorem A.2.** *Let $\mathcal{K} : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a Mercer kernel, then the induced chordal distance $\mathcal{D}_{\mathcal{K}}$ can
 809 be factorized as $\mathcal{D}_{\mathcal{K}}(x, y) = d \circ (\phi \times \phi)(x, y)$, where ϕ is a feature mapping and d is a simple norm
 in Hilbert space.*

810 *Proof.* By the reproducing property of the reproducing kernel Hilbert space \mathcal{H}_K , we have
 811

$$812 \quad \mathcal{K}(x, y) = \langle \Phi(x), \Phi(y) \rangle_{\mathcal{H}_K}. \quad (15)$$

813 Therefore,

$$815 \quad \mathcal{D}_K(x, y)^2 = \mathcal{K}(x, x) + \mathcal{K}(y, y) - 2\mathcal{K}(x, y) \quad (16)$$

$$816 \quad = \langle \Phi(x), \Phi(x) \rangle_{\mathcal{H}_K} + \langle \Phi(y), \Phi(y) \rangle_{\mathcal{H}_K} - 2\langle \Phi(x), \Phi(y) \rangle_{\mathcal{H}_K} \quad (17)$$

$$817 \quad = \|\Phi(x) - \Phi(y)\|_{\mathcal{H}_K}^2. \quad (18)$$

818 Taking square roots yields

$$819 \quad \mathcal{D}_K(x, y) = \|\Phi(x) - \Phi(y)\|_{\mathcal{H}_K}. \quad (19)$$

820 If we set $f = \Phi$ and $d(u, v) = \|u - v\|_{\mathcal{H}_K}$, then clearly

$$821 \quad \mathcal{D}_K(x, y) = d(f(x), f(y)) = d \circ (f \times f)(x, y). \quad (20)$$

822 \square

823 A.3 DISCUSSIONS

824 A.3.1 COMPATIBILITY OF DAP

825 **Compatibility with codebase.** DAP is fully implemented using the native components of the diffusion
 826 model itself, without relying on any additional modules or external dependencies. This carefully
 827 designed approach not only preserves complete compatibility with existing diffusion architectures
 828 but also ensures that the method can be readily adopted across diverse codebases. As a result,
 829 DAP can be seamlessly incorporated into widely used diffusion libraries, such as the `Diffusers`
 830 library in Hugging Face, thereby promoting both reproducibility and broad applicability in contemporary
 831 research and practical deployment scenarios.

832 **Compatibility with other methods.** Since the DAP
 833 pipeline works orthogonally with the existing approaches,
 834 it exhibits strong compatibility, allowing it to complement
 835 them without interference. Before empirical results, we
 836 analyze the sources of representativeness priors employed
 837 by different methods in table 6: Minimax introduces rep-
 838 resentativeness via fine-tuning under the supervision of
 839 the proposed training loss, D⁴M and MGD³ capture rep-
 840 resentativeness through clustering algorithms, IGD and
 841 CaO₂ uses pre-trained classifier, D³HR calculates the key
 842 statistics including mean, standard deviation and skew-
 843 ness, while DAP exploits the representativeness priors
 844 embedded in diffusion models. To validate the compati-
 845 bility of DAP, we incorporate it into Minimax for instance
 846 (see table 7). The addition of DAP consistently enhances
 847 the performance of distilled samples. These results indicate
 848 that DAP can serve as a versatile and modular enhancement,
 849 improving the performance of DD approaches while preserv-
 850 ing its intrinsic advantages.

851 Table 6: The source of representativeness
 852 knowledge from different generative DD methods.

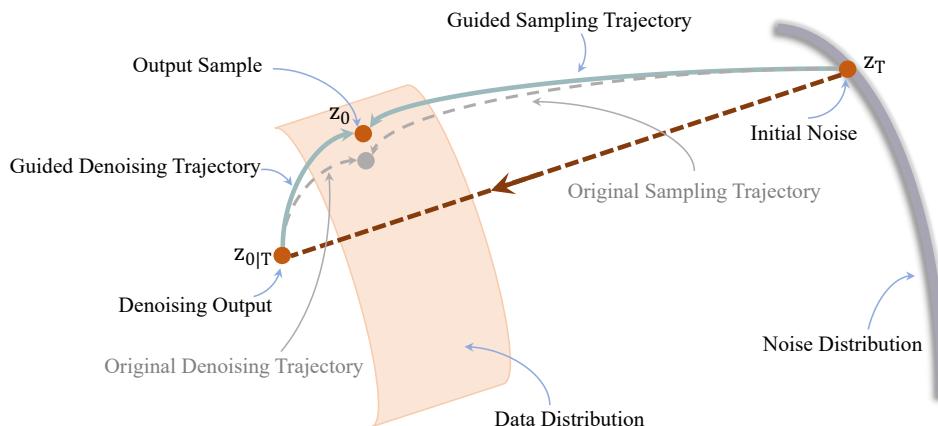
Method	Representativeness
Minimax	Training Loss
D ⁴ M	Clustering
MGD ³	Clustering
IGD	Pre-trained Classifier
CaO ₂	Pre-trained Classifier
D ³ HR	Statistic Metric
DAP	Diffusion Prior

853 Table 7: Top-1 Accuracy on **ImageNette** and **ImageWoof**. Evaluated with **hard-label protocol**.

Model	IPC	ImageNette			ImageWoof		
		Minimax	Minimax-IGD	Minimax-DAP	Minimax	Minimax-IGD	Minimax-DAP
ConvNet-6	10	58.2 _{±0.9}	58.8 _{±1.0}	64.2 _{±1.4}	33.5 _{±1.4}	36.2 _{±1.6}	38.2 _{±0.8}
	50	76.9 _{±0.9}	82.3 _{±0.8}	83.5 _{±0.6}	50.7 _{±1.8}	55.7 _{±0.8}	55.9 _{±1.2}
ResNetAP-10	10	63.2 _{±1.0}	63.5 _{±1.1}	66.1 _{±1.7}	39.6 _{±1.2}	43.3 _{±0.3}	43.5 _{±0.6}
	50	78.2 _{±0.7}	82.3 _{±1.1}	83.7 _{±1.3}	59.8 _{±0.8}	65.0 _{±0.8}	66.4 _{±2.5}
ResNet-18	10	64.9 _{±0.6}	66.2 _{±1.2}	66.9 _{±0.9}	42.2 _{±1.2}	47.2 _{±1.6}	45.4 _{±1.0}
	50	78.1 _{±0.6}	82.0 _{±0.3}	82.5 _{±0.7}	60.5 _{±0.5}	65.4 _{±1.8}	65.8 _{±1.3}

864 A.3.2 GUIDANCE ON NOISY LATENT
865

866 We adopt the VP-SDE combined with the DDIM sampling algorithm, which enables a deterministic
867 and efficient approximation of the reverse diffusion trajectory. A detail in this setting is the choice
868 of the feature representation for prior guidance. Under DDIM dynamics, the conditional estimate of
869 $\hat{z}_{0|t}$ can be expressed as an affine transformation of the current noisy state: $\hat{z}_{0|t} = \alpha_t z_t - \beta_t \epsilon_\theta(z_t, t)$,
870 where α_t, β_t are deterministic coefficients and ϵ_θ is the score predictor (Song et al., 2021). From the
871 perspective of reverse dynamics, this relation holds as a first-order approximation under linearization-
872 implying that the gradient fields induced by guiding z_t and guiding $\hat{z}_{0|t}$ are approximately
873 equivalent (see fig. 6). Hence, instead of explicitly computing the denoised estimation $\hat{z}_{0|t}$, we di-
874 rectly apply guidance on the noisy latent z_t , while avoiding the computational overhead of explicit
875 decoding process at each timestep.

890 Figure 6: A sketch map of the relationship between $\hat{z}_{0|t}$ and z_t .
891
892893 A.3.3 KERNEL SELECTION
894

895 Besides the linear kernel, we also install our DAP with other Mercer kernels, such as the Radial
896 Basis Function kernel (RBF, also known as the Gaussian kernel):

$$897 \quad \mathcal{K}(x, y) = \exp\left(-\frac{\|x - y\|^2}{2\sigma^2}\right). \quad (21)$$

898 The bandwidth σ controls the sensitivity: small σ emphasizes fine-grained local features, whereas
899 large σ approaches the behavior of the linear kernel. Based on eq. (21), the induced distance becomes
900

$$901 \quad \|\phi(x) - \phi(y)\|_{\mathcal{H}}^2 = \mathcal{K}(x, x) + \mathcal{K}(y, y) - 2\mathcal{K}(x, y) = 2 - 2\exp\left(-\frac{\|x - y\|^2}{2\sigma^2}\right), \quad (22)$$

902 which is a non-linear function of the Euclidean distance.

903 As drawn in fig. 7, the RBF-induced distance grows quickly for small differences and saturates for
904 large differences, effectively compressing large deviations while being sensitive to local differences.
905 Table 8 reveals that the distillation performance of RBF kernel is comparable to that of linear kernel.
906 To avoid introducing additional hyperparameters, we recommend using the linear kernel due to its
907 simplicity and tractability.

908 A.3.4 COMPARISON WITH RECENT METHODS
909

910 Table 9 presents the distillation results for ImageNet subsets on DiT. CaO₂ surpasses DAP in several
911 cases, but this advantage arises from differences in evaluation protocols. The CaO₂ paper reports the
912 best accuracy across soft-label and hard-label protocols, selecting the protocol that yields a higher
913 performance. In contrast, D³HR, VLCP, and DAP consistently adopt the hard-label protocol in this
914 experiment. Since the soft-label protocol typically leads to higher accuracy, the results of CaO₂
915 likely benefit from this more permissive approach. Under a consistent hard-label evaluation setting,
916 DAP remains competitive and performs better in most cases compared to these recent methods.

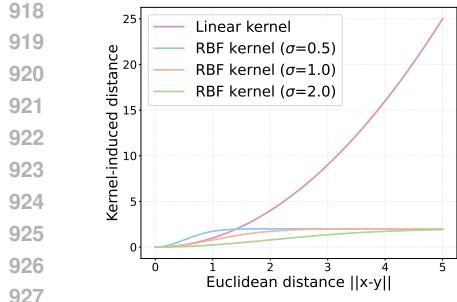


Figure 7: Curves of different Mercer kernel-induced distances.

Table 8: Top-1 Accuracy with different Mercer kernels. The results are evaluated on **ResNet-18** with **hard-label protocol**.

Kernel	ImageNette		ImageWoof	
	IPC10	IPC50	IPC10	IPC50
Linear	66.4 \pm 0.5	82.8 \pm 1.1	43.9 \pm 0.9	63.2 \pm 0.7
RBF($\sigma = 0.5$)	65.7 \pm 0.2	82.5 \pm 0.3	44.6 \pm 0.9	63.8 \pm 1.6
RBF($\sigma = 1$)	64.1 \pm 1.7	83.1 \pm 0.8	44.1 \pm 1.3	60.9 \pm 0.5
RBF($\sigma = 2$)	66.0 \pm 1.3	82.2 \pm 1.0	43.7 \pm 1.1	62.6 \pm 2.2

Table 9: Top-1 Accuracy on **ImageNette** and **ImageWoof**. \dagger : The results are evaluated with **hard-label protocol** except for CaO_2 .

Dataset	Model	IPC	Random	DM	DiT	CaO_2^\dagger	D ³ HR	VLCP	DAP	Full
Nette	ConvNet-6	10	46.0 \pm 0.5	49.8 \pm 1.1	56.2 \pm 1.3	-	-	-	64.8 \pm 0.8	
		50	71.8 \pm 1.2	70.3 \pm 0.8	74.1 \pm 0.6	-	-	-	82.2 \pm 1.6	94.3 \pm 0.5
		100	79.9 \pm 0.8	78.5 \pm 0.8	78.2 \pm 0.3	-	-	-	85.7 \pm 1.3	
	ResNetAP-10	10	54.2 \pm 1.2	60.2 \pm 0.7	62.8 \pm 0.8	-	-	64.8 \pm 3.6	67.8 \pm 1.2	
		50	77.3 \pm 1.0	76.7 \pm 1.0	76.9 \pm 0.5	-	-	81.2 \pm 0.8	82.3 \pm 0.7	94.6 \pm 0.5
		100	81.1 \pm 0.6	80.9 \pm 0.7	80.1 \pm 1.1	-	-	-	86.0 \pm 2.1	
	ResNet-18	10	55.8 \pm 1.0	60.9 \pm 0.7	62.5 \pm 0.9	65.0 \pm 0.7	-	-	66.4 \pm 0.5	
		50	75.8 \pm 1.1	75.0 \pm 1.0	75.2 \pm 0.9	84.5 \pm 0.6	-	-	82.8 \pm 1.1	95.3 \pm 0.6
		100	82.0 \pm 0.4	81.5 \pm 0.4	77.8 \pm 0.6	-	-	-	85.5 \pm 1.5	
Woof	ConvNet-6	10	25.2 \pm 1.1	27.6 \pm 1.2	32.3 \pm 0.8	-	-	34.8 \pm 2.4	37.6 \pm 0.9	
		50	41.9 \pm 1.4	43.8 \pm 1.1	48.5 \pm 1.3	-	-	54.5 \pm 0.6	55.8 \pm 0.4	85.9 \pm 0.4
		100	52.3 \pm 1.5	50.1 \pm 0.9	54.2 \pm 1.5	-	-	62.7 \pm 1.4	62.4 \pm 1.2	
	ResNetAP-10	10	31.6 \pm 0.8	29.8 \pm 1.0	39.0 \pm 0.9	-	40.7 \pm 1.0	39.5 \pm 1.5	41.8 \pm 0.7	
		50	50.1 \pm 1.6	47.8 \pm 1.2	55.8 \pm 1.1	-	59.3 \pm 0.4	57.3 \pm 0.5	63.3 \pm 0.5	87.2 \pm 0.6
		100	59.2 \pm 0.9	59.8 \pm 1.3	62.5 \pm 0.9	-	64.7 \pm 0.3	65.7 \pm 0.5	70.8 \pm 1.4	
	ResNet-18	10	30.9 \pm 1.3	30.2 \pm 0.6	40.6 \pm 0.6	45.6 \pm 1.4	39.6 \pm 1.0	39.9 \pm 2.6	43.9 \pm 0.9	
		50	54.0 \pm 0.8	53.9 \pm 0.7	57.4 \pm 0.7	68.9 \pm 1.1	57.6 \pm 0.4	58.9 \pm 1.5	63.2 \pm 0.7	89.0 \pm 0.6
		100	63.6 \pm 0.5	64.9 \pm 0.7	62.3 \pm 0.5	-	66.8 \pm 0.6	68.3 \pm 0.4	71.6 \pm 1.3	

A.3.5 CROSS-DATASET GENERALIZATION

Table 10: Top-1 Accuracy on **Tiny ImageNet** (IPC50). The results are evaluated with **soft-label protocol**.

Method	ResNet-18	ResNet-50	ResNet-101
Full	61.9	62.0	62.3
SRe ² L	44.0	47.7	49.1
D ⁴ M	46.2	51.8	51.0
D ⁴ M-G	46.8	51.9	53.2
DAP-G	50.3 \pm 1.8	53.6 \pm 1.0	54.7 \pm 1.6

We posit that the cross-datasets evaluation is essential to measure the generalization and versatility of a DD method, which is overlooked by most DD methods. According to Su et al. (2024), we extract 200 categories, which are predefined in Le & Yang (2015), from the ImageNet-1K dataset distilled by DAP as the distilled Tiny-ImageNet dataset. Table 10 shows that the extracted subsets (end with “-G”) maintain strong validation performance on the target set, thereby confirming that our distilled data not only preserves the utility of the original dataset but also supports effective reuse across datasets. The results highlight the advantage of DAP: the distilled dataset is not tied to a single dataset domain but can be flexibly transferred and reused.

A.3.6 EARLY STOP STRATEGY

In the guided sampling process, we employ the early stop guidance mechanism, which enhances sampling quality by only guiding earlier diffusion timesteps than the entire timesteps, thereby providing a better trade-off between sample diversity and fidelity (Chen et al., 2025; Chan-Santiago et al., 2025). Besides, applying representativeness prior guidance in the early stage of the sam-

pling trajectory also reduces the sampling cost (refer to section A.3.7). We summarize the sampling process with an early stop strategy in algorithm 2. To evaluate its effectiveness, we conducted experiments with different stopping parameters t_{stop} . The mechanism deactivates guidance for timesteps $t < t_{stop}$ in the reverse process, $t_{stop} = 0$ means complete guidance, while $t_{stop} = 50$ represents no guidance. The qualitative and quantitative results, as illustrated in fig. 8, indicate that $t_{stop} = 25$ yields the best performance.

Algorithm 2 DAP Sampling with Early Stop(VP-SDE)

Require: Noisy data samples $\mathbf{x}_t^{train|c}$ within class c , pre-trained diffusion model ϵ_θ , a layer output ϕ from diffusion backbone network, a Mercer Kernel induced distance measurement d , energy-based guidance scale γ , pre-defined noise scales β_t , early stop parameter t_{stop} .

1: $\mathbf{x}_T \sim \mathcal{N}(0, I)$
2: **for** $t = T, \dots, 1$ **do**
3: $\epsilon \sim \mathcal{N}(0, I)$ **if** $t > 1$, **else** $\epsilon = 0$
4: $\tilde{\mathbf{x}}_{t-1} = (2 - \sqrt{1 - \beta_t})\mathbf{x}_t + \beta_t \epsilon_\theta(\mathbf{x}_t, t) + \sqrt{\beta_t} \epsilon$
5: **if** $t \leq t_{stop}$ **then**
6: $\mathbf{x}_{t-1} = \tilde{\mathbf{x}}_{t-1}$ # Stop Guidance
7: **else**
8: $\mathbf{z}_t = \phi(\mathbf{x}_t)$, $\mathbf{z}_t^{train|c} = \phi(\mathbf{x}_t^{train|c})$ # Diffusion as representativeness priors
9: $\mathbf{g}_t = -\nabla_{\mathbf{x}_t} d(\mathbf{z}_t, \mathbf{z}_t^{train|c})$
10: $\mathbf{x}_{t-1} = \tilde{\mathbf{x}}_{t-1} + \gamma \mathbf{g}_t$ # Guided sampling
11: **end if**
12: **end for**
Output: \mathbf{x}_0 # The distilled sample of class c .

(a) Top-1 Accuracy on **ImageNette** under different t_{stop} . The results are evaluated on **ResNet-18** with **hard-label protocol**.

(b) Visualizations of the distilled samples with different t_{stop} .

Figure 8: Ablation study on t_{stop} selection.

A.3.7 SAMPLING-TIME SCALING

DAP does not introduce additional training costs, since no external pre-training or fine-tuning is required. The representativeness prior is directly derived from the pre-trained diffusion backbone. However, to inject this prior during sampling and improve data quality, we must extract features from the noisy training data \mathbf{x}_t^{train} using the backbone network ϕ . This step inevitably brings additional sampling time overhead, which must be acknowledged.

To quantify this overhead, we report the GPU memory and the sampling speed for different data sizes in table 11. While sampling-time scaling introduces overhead, the cost remains manageable and predictable on single GPU card.

1026
1027 Table 11: The overhead of sampling-time scaling ($t_{stop} = 25$). The Top-1 Accuracy is evaluated on
1028 **ImageNet-1K with hard-label protocol** (IPC10). The memory and speed are reported on $1 \times A40$.
1029
1030
1031
1032
1033
1034

Data Size	Stable Diffusion			DiT		
	GPU Mem.(GB)	Speed(s/iter)	Acc(%)	GPU Mem.(GB)	Speed(s/iter)	Acc(%)
500		35.9	32.1 ± 0.5		15.3	44.6 ± 2.4
1000	23.1	39.9	39.9 ± 1.3	10.6	24.0	48.8 ± 1.7
1500		47.1	40.7 ± 1.5		32.3	49.1 ± 1.2

1035
1036 **A.4 VISUALIZATIONS**
1037
1038

1039 **A.4.1 REPRESENTATIVENESS GUIDANCE SCALE**
1040
1041
1042
1043
1044
1045

As suggested by our ablation results (see figs. 5c and 5d in section 4.4), increasing γ within a moderate scale effectively boosts representativeness prior, leading to improved downstream performance. However, excessive γ introduces adverse effects. Over-amplifying the representativeness prior distorts the sampling trajectory, resulting in over-constrained generations that sacrifice diversity and generalization. Since the gradients of the other two priors are fixed, an imbalanced emphasis on representativeness suppresses their contribution, yielding biased and less informative images. This trade-off is clearly visualized in fig. 9.

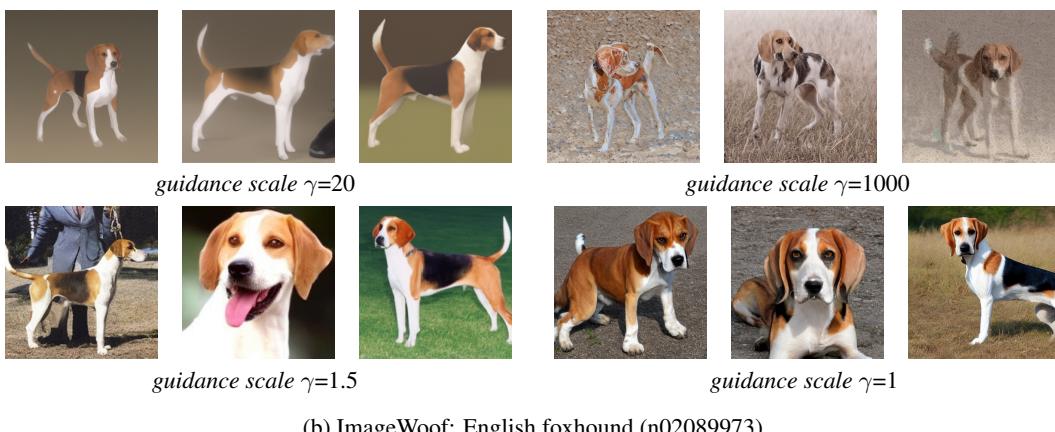
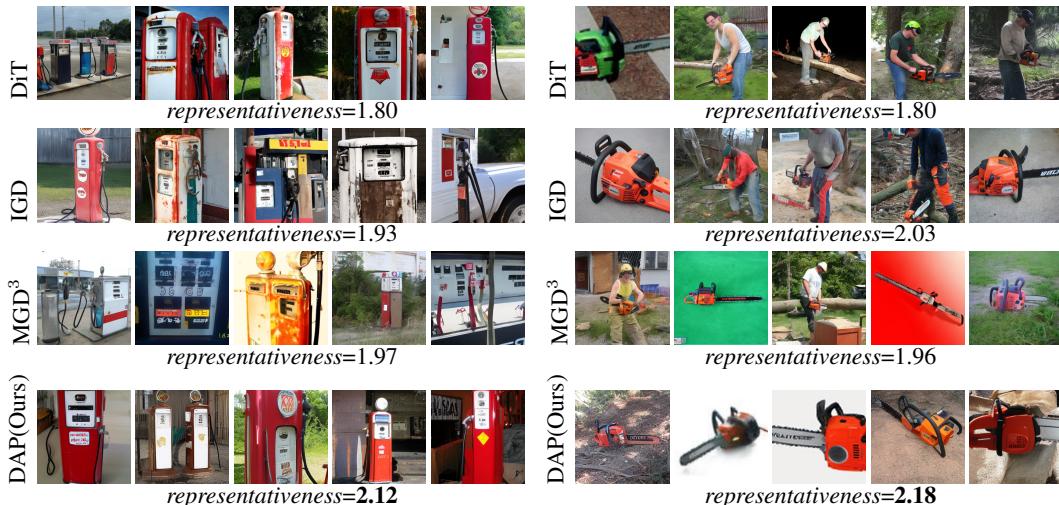


Figure 9: Samples distilled by DiT (left three columns) and SD (right three columns). The excessive representativeness guidance scale γ will generate representativeness bias in the sampling trajectory, affecting the diversity and fidelity of the synthetic images.

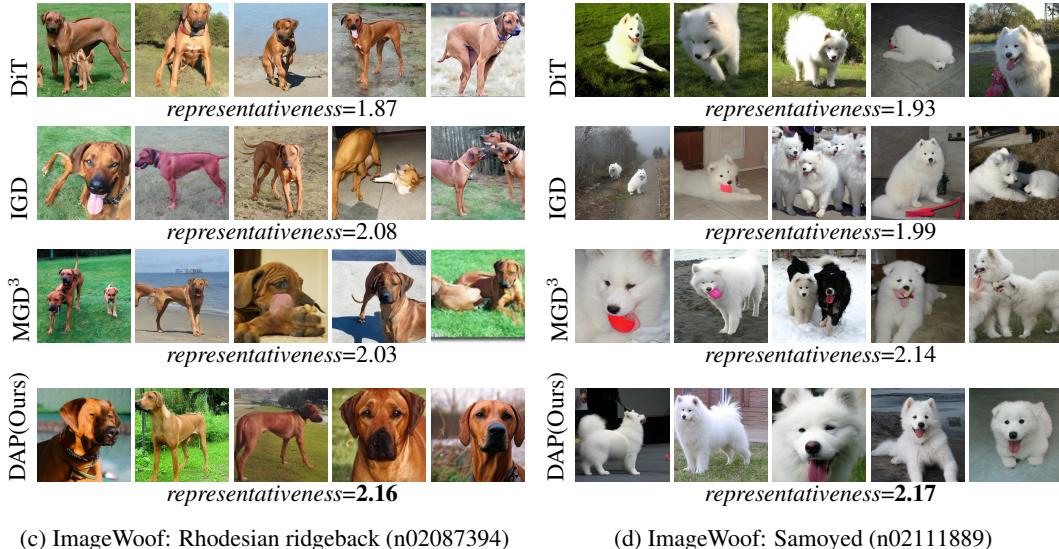
1080 A.4.2 REPRESENTATIVENESS COMPARISON
1081

1082 To provide an intuitive comparison, we visualize the distilled datasets obtained from different meth-
1083 ods, as shown in fig. 10. For each group, we compute the distance measure defined in eq. (5) and
1084 report its representativeness ($\propto \frac{1}{d(\phi(x), \phi(y))}$). The results demonstrate that while all methods can
1085 preserve semantic information thanks to the powerful DMs, the images distilled by DAP consistently
1086 achieve the highest representativeness. This highlights the advantage of DAP in generating
1087 distilled datasets that are not only semantically valid but also representative.



(a) ImageNette: Gas pump (n03425413)

(b) ImageNette: Chain saw (n03000684)



1105 (c) ImageWoof: Rhodesian ridgeback (n02087394) (d) ImageWoof: Samoyed (n02111889)
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

A.5 DISCLOSURE OF THE USE OF LARGE LANGUAGE MODELS

Given that the use of large language models (LLMs) is allowed as a general-purpose assist tool, this work utilizes LLMs to polish the sentences of the article. There is **no** significant role in research ideation and writing to the extent that they cannot be regarded as contributors.