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ABSTRACT

Dataset distillation aims to synthesize compact yet informative datasets from large
ones. A significant challenge in this field is achieving a trifecta of diversity, gen-
eralization, and representativeness in a single distilled dataset. Although recent
generative dataset distillation methods adopt powerful diffusion models as their
foundation models, the inherent representativeness prior in diffusion models is
overlooked. Consequently, these approaches often necessitate the integration of
external constraints to enhance data quality. To address this, we propose Dif-
fusion As Priors (DAP), which formalizes representativeness by quantifying the
similarity between synthetic and real data in feature space using a Mercer kernel.
We then introduce this prior as guidance to steer the reverse diffusion process,
enhancing the representativeness of distilled samples without any retraining. Ex-
tensive experiments on large-scale datasets, such as ImageNet-1K and its subsets,
demonstrate that DAP outperforms state-of-the-art methods in generating high-
fidelity datasets while achieving superior cross-architecture generalization. Our
work not only establishes a theoretical connection between diffusion priors and
the objectives of dataset distillation but also provides a practical, training-free
framework for improving the quality of the distilled dataset.

1 INTRODUCTION

Data undeniably functions as the “primordial fuel” that drives modern AI systems. This critical re-
source provides large models with foundational knowledge, spatiotemporal comprehension, visual
awareness, and pattern recognition capabilities (Brown et al., 2020; Qin et al., 2025). Despite this,
data faces depletion as exponentially scaling models rapidly consume finite human-generated data,
persisting as a bottleneck in advancing next-generation large models (Muennighoff et al., 2023; Vil-
lalobos et al., 2024). Current industry practices suffer dual burdens: insufficient data and expensive
human annotation costs. Fortunately, synthetic data emerges as a renewable alternative capable of
powering AI development at scale (Jordon et al., 2022; Liu et al., 2024). While large models can
generate samples in arbitrary categories and sizes, unfiltered synthetic data poses two critical risks:
1) Data Quality Limitations encompassing distribution drift and semantic mismatch (Alaa et al.,
2022; Yang et al., 2024). 2) Training Hazards, where flawed data patterns propagate through er-
ror amplification, triggering failures like model collapse (Shumailov et al., 2024; Dohmatob et al.,
2024). Therefore, generating high-quality synthetic data remains a challenging task.

Recent advances in dataset distillation (DD) offer a promising solution to the above challenges by
generating highly compact datasets while preserving critical features often obscured in real-world
data (Wang et al., 2018). In parallel, diffusion models (DMs) have emerged as state-of-the-art gen-
erative methods due to their ability to accurately model the entire dataset distribution through score
function estimation (Song et al., 2021). As a result, DMs have been adopted as foundation models
for DD, giving rise to generative DD (Gu et al., 2024; Su et al., 2024). Leveraging priors acquired
from well-trained DMs, distilled samples maintain diversity and fidelity, achieving competitive ac-
curacy with up to 10× ∼ 200× reduction in training size (Chen et al., 2025). Although encouraging,
a theoretical analysis remains underdeveloped, which raises the following questions about the diffu-
sion priors in generative DD methods.

Do the priors in vanilla DMs satisfy the requirements for DD? To answer this, we align the
desired properties of distilled datasets with the priors captured by DMs via the original score func-
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tion. From the perspective of log-likelihood estimation and evaluation metrics (e.g., FID, IS), we
observe that the inherent diversity and generalization priors in vanilla DMs can yield higher-quality
synthetic data. Naturally, the main challenge shifts to enhancing the representativeness of synthetic
data, which is still not embodied in vanilla sampling pipelines. Previous approaches attempt to
address this by imposing external representativeness constraints (Chan-Santiago et al., 2025; Chen
et al., 2025). However, we argue that such constraints are unnecessary and introduce additional
complexity. Thus, we raise the next question.

Are there unused priors in DMs that could benefit DD? Inspired by the diffusion classifiers (Chen
et al., 2024a;b), we posit that the feature extraction capability inherent in a well-trained diffusion
model itself constitutes a representativeness prior highly relevant to DD. We hypothesize that high
representativeness corresponds to high similarity between synthetic and original data in the repre-
sentation space. To formalize this, we employ the Mercer kernel, a specific type of kernel func-
tion (Zaanen, 1964), to quantify the similarity within feature spaces. The Mercer kernel provides
us with mathematical guarantees of convexity and tractability in optimization, ensuring that the
representativeness prior is computationally feasible. Empirically, we define the representativeness
score function as an energy function based on Mercer kernel, which allows us to inject the unused
representativeness prior into the distilled data through guided sampling.
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Figure 1: Our diffusion as priors (DAP)
method is beneficial for the DD task.
Diversity: 1+FIDmax−FID. Represen-
tativeness: 1

d(ϕ(x),ϕ(y)) . Performance:
classification results on ImageNet-1K.

We propose Diffusion As Priors (DAP) and apply
it to datasets of varying scales, including large-scale
ImageNet-1K (Deng et al., 2009) and its small subsets.
Both quantitative and qualitative results show that DAP
significantly enhances the quality of distilled datasets. It
validates the theoretical connections between diffusion
priors and DD task, while achieving competitive perfor-
mance compared to other methods (see fig. 1, each di-
mension is normalized independently for clear visualiza-
tion). We further show that by introducing the desired
priors, the distilled datasets have the same generalization
and transferability as the original ones. Our contributions
can be summarized as follows: 1. We prove the priors
in the well-trained DMs meet the diversity and general-
ization requirements of DD. 2. We derive the overlooked
representativeness prior from DMs and formalize it into
a kernel-induced distance, which guides the sampling dy-
namic and improves the quality of distilled datasets.

2 PRELIMINARIES

2.1 DATASET DISTILLATION

Given a labeled training dataset Ttrain = {x,y} ⊆ RN × Y where x ∈ RN i.i.d. drawn from
pdata, and y ∈ Y = {1, . . . , C} drawn from the label space. The objective of DD is to synthesize
a compact dataset Ssyn = {xsyn,y} ⊆ RM × Y (M ≪ N ) that encapsulates the knowledge
of the original data. Consequently, the model trained with small Ssyn can achieve considerable
generalization performance (measured by loss L) to the large training dataset Ttrain:

Ex,y,θ(0)

[
L
(
falg(Ttrain,θ(0))(x), y

)]
≃ Ex,y,θ(0)

[
L
(
falg(Ssyn,θ(0))(x), y

)]
. (1)

The algorithm alg(·, θ(0)) is determined by training set T or S and the initialized parameters θ(0).

2.2 DIFFUSION MODELS

Given a dataset x0 ∈ RN i.i.d. drawn from an unknown distribution q0(x0), a diffusion model
parameterized by θ tries to learn a distribution pθ(x0) that approximates q0(x0). Specifically, the
diffusion model places a reversible process that gradually adds Gaussian noise from x0 to xT at
time T > 0 and then maps them back. The forward diffusion process is defined by the Itô Stochastic
Differential Equation (SDE) Song et al. (2021):

dxt = f (xt, t) dt+ g(t)dwt, (2)
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where f (xt, t) = − 1
2βtxt is the drift term and g(t) =

√
βt denotes the diffusion coefficient that

controls the noise strength at each timestep. βt ∈ (0, 1) is a sequence of pre-defined time-dependent
noise scales. Meanwhile, wt is the Brownian motion. And the reverse diffusion process is given by
the time-reverse SDE:

dx =
[
f(xt, t)− g(t)2∇xt

log pt(xt)
]
dt+ g(t)dw̄, (3)

where w̄ represents the time-reversed Brownian motion. The only unknown term in eq. (3) is the
score function ∇xt

log pt(·) of distribution pt at each time t (we use p for simplicity). A neural
network ϵθ(xt, t) is trained to estimate the score function −∇xt log p(xt). Finally, we can sample
x0 by solving the reverse diffusion SDE (Lu et al., 2022).

2.3 INHERENT PRIORS IN DIFFUSION MODELS

A key question in evaluating generative models is whether they capture the full variability of the
dataset (Alaa et al., 2022). DMs inherently encode diversity and generalization priors through es-
timating ∇x log p(x), which compels the model to capture global manifold geometry rather than
memorizing individual samples, thereby avoiding mode collapse (Thanh-Tung & Tran, 2020). More-
over, the stochastic perturbations in the forward process act as implicit regularizers, enforcing Lips-
chitz continuity and improving robustness to distributional shifts (Chen et al., 2024a;b).

In addition, let H denote entropy, and φ is an inception classifier. High Inception Score (IS) indi-
cates uniform class coverage (high H(pφ(y))) and discriminative sample quality (low H(pφ(y|x))).
While low Fréchet Inception Distance (FID) certifies alignment between generated and real distri-
butions (psyn ≃ pdata). Empirical results (Dhariwal & Nichol, 2021) demonstrate that the structure-
induced priors within DMs produce sufficient diversity and generalization.

3 DIFFUSION AS PRIORS

3.1 MOTIVATION

An ideal distilled dataset should satisfy (Gu et al., 2024; Su et al., 2024):

Distilled Dataset s.t. Diversity + Generalization + Representativeness.

These attributes enable the distilled dataset to be effectively applied across a variety of tasks, yielding
competitive performance. Diversity ensures that synthetic data captures the full variability present in
the original data, while Generalization prevents overfitting to the architecture of distillation models.
Most importantly, Representativeness guarantees that the synthetic data retains the most critical
information from the raw dataset. Consequently, we seek to study: how to align the priors of DMs
with these attributes and make the distilled dataset desirable?

Formally, the objective of DMs that estimates the score function ∇x log p(x) provides synthetic
dataset with inherent diversity and generalization priors (discussed in section 3.2). In terms of
the representativeness prior R, we consider introducing it into the score function as a condition.
According to Bayes’ theorem, the conditional score function can be decomposed as:

∇x log p(x|R) = ∇x log p(x)︸ ︷︷ ︸
Diversity & Generalization

+∇x log p(R|x)︸ ︷︷ ︸
Representativeness

. (4)

Given a well-trained diffusion model, the first term in eq. (4), same as the original score function,
is already estimated by ϵθ. Thus, we focus on the second term to fulfill the representativeness
requirement during sampling (discussed in section 3.3).

3.2 DIFFUSION AS DIVERSITY AND GENERALIZATION PRIORS

In the field of DD, diversity is characterized by the breadth of feature distribution and comprehen-
sive coverage of categorical information. Meanwhile, generalization refers to the ability to prevent
overfitting to the training data and enable datasets with cross-architecture adaptation. These proper-
ties enable the distilled dataset to reflect the information and knowledge of the original dataset like a
mirror. In this section, we argue that the pre-trained diffusion model provides inherent diversity and
generalization priors for dataset distillation.

3
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3.2.1 INHERENT DIVERSITY AND GENERALIZATION PRIORS

Table 1: NLLs ↓ on different datasets. The
results are computed by a vanilla diffusion
model (Ho et al., 2020) trained on ImageNet.

Dataset Training Set Test Set

ImageNette 2.4452±1.03 2.6327±1.08

ImageWoof 2.5856±0.88 3.0838±0.86

As mentioned in section 2.3, diffusion models pro-
vide a principled foundation for DD, since effec-
tive DD requires distilled data that both cover di-
verse modes (diversity) and faithfully approximate
the original dataset distribution (generalization).
We quantify these properties with likelihood-based
evaluations. The negative log-likelihood (NLL) is
defined as LNLL = −Ex∼pdata

[log pθ(x)]. Identi-
cal and low NLL values on training and testing sets indicate that pθ(x) converges to pdata instead
of overfitting (see table 1).

3.2.2 BEYOND PRIOR: CROSS-ARCHITECTURE GENERALIZATION

Unlike conventional DD methods that match training dynamics (e.g., Gradients, Parameters, and
features) of specific downstream classifiers, DMs distill datasets without pixel-level optimization.
The distilled dataset captures data-relevant rather than architecture-relevant knowledge, eliminating
dependence on predefined classifier architectures. This architecture-agnostic DD paradigm produces
distilled datasets with cross-architecture generalization, enhancing their versatility.

3.3 DIFFUSION AS REPRESENTATIVENESS PRIOR

Representative samples refer to a subset of data that accurately reflects the characteristics of the
larger population from which it is drawn (Gabbay et al., 2011). Generating a more representative
dataset leads to better dataset distillation performance. In this section, we argue that a well-trained
diffusion model itself can serve as a representativeness prior.

3.3.1 REPRESENTATIVENESS PRIOR IN DMS

To capture the representativeness prior hidden in the DMs backbone network, we require a similarity
measure that quantifies how closely a synthetic sample reflects the characteristics of the real sample.
Kernel function is a simple yet effective tool for defining similarity, allowing us to a) express rep-
resentativeness through an induced distance and b) inject this representativeness as a differentiable
energy term into the sampling process. Fomally, let kernel function K(x, y) : X × X → R be
the smooth and differentiable similarity measurement which characterizes the similarity between a
synthetic sample xsyn and a single training sample xtrain. We argue that the larger the similarity
between the synthetic samples and the entire training set Extrain [K(xsyn,xtrain)], the better repre-
sentativeness of xsyn to the raw dataset. Suppose that DK(x, y) is a distance measure induced by
the kernel function K. Typically, we expect DK to satisfy the fundamental properties of the distance
measures. The following theorem demonstrates that, as long as the kernel function K is positive
semi-definite (PSD), the induced distance DK is a well-defined distance measure.
Theorem 3.1. Let K : X × X → R be a PSD kernel. Then the K-induced distance measure

DK(x, y) =
[
K(x, x) +K(y, y)− 2K(x, y)

]1/2
(5)

satisfies:

1. Non-negativity: DK(x, y) ≥ 0, and DK(x, y) = 0 if and only if x = y.

2. Symmetry: DK(x, y) = DK(y, x).

3. Triangle inequality: For any x, y, z ∈ X , DK(x, z) +DK(z, y) ≥ DK(x, y).

Proof. (Sketch, details in section A.2.1) According to Mercer’s theorem (Mercer, 1909), the distance
metric induced by the PSD kernel can be expressed as the Hilbert norm in reproducing kernel Hilbert
space (RKHS), which satisfies the property of norms.

Therefore, DK is a valid distance metric. The Mercer kernel KM is a family of PSD kernels that
guarantees the existence of a spectral expansion under continuity and compact conditions. Thanks to
these desirable properties, we adopt Mercer kernel as the representativeness measure in our method.
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Theorem 3.2. Let K : X × X → R be a Mercer kernel, then the K-induced distance DK can be
factorized as DK(x, y) = d ◦ (ϕ×ϕ)(x, y), where ϕ is a feature mapping and d is a simple norm in
Hilbert space.

Proof. (Sketch, details in section A.2.2) According to the reproducing property of the kernel func-
tion, there exists a mapping Φ and a feature space H that allows the kernel K to be factorized into
K = ⟨Φ(·),Φ(·)⟩HK . The distance formalized by the linear combination of kernel functions can
then be factorized into a combination of the complex Φ and a simple norm ∥ · ∥HK .

Mercer kernel allows us to quantify representativeness in RKHS, and the associated kernel-induced
measure ensures the underlying optimization problem remains convex and tractable. Hence, the task
reduces to identifying a suitable feature extractor ϕ that maps inputs into feature space, where the
distance metric d (ϕ (x) , ϕ (y)) ∝ 1

K(x,y) . We posit that the diffusion model itself is a good feature
extractor, supported by two observations: its strong image-text alignment reflects a comprehensive
understanding of visual content (Yang & Wang, 2023), and its performance as a discriminative
classifier exhibits high accuracy, robustness, and certified robustness (Chen et al., 2024a;b).

We propose Diffusion As Priors (DAP), which utilizes the diversity, generalization, and represen-
tativeness priors contained in the well-trained diffusion models to distill datasets. Specifically, the
backbone networks (e.g., U-Net or Transformer) are viewed as a mapping function ϕ : X → Rn,
transforming an image x or latent code z into an n-dimensional feature vector. During the pre-
training phase, the backbones are endowed with the representativeness prior, which enables them to
capture meaningful and high-level features.

3.3.2 GUIDANCE OF REPRESENTATIVENESS PRIOR

We formalize the conditional probability of representativeness term in eq. (4) as a Boltzmann distri-
bution w.r.t. DK:

p(R|xsyn) ≜
{exp

[
− 1

N

∑
N DK

(
xsyn,xtrain

)]
}γ

Z
, (6)

where Z > 0 denotes the normalizing constant, and γ > 0 controls the scale of representativeness
prior. According to theorem 3.2, the conditional score function of representativeness term is:

∇xsyn log p(R|xsyn) = ∇xsyn log
{exp

[
− 1

N

∑
N DK

(
xsyn,xtrain

)]
}γ

Z

= ∇xsyn log
{exp

[
− 1

N

∑
N d

(
ϕ(xsyn), ϕ(xtrain)

)]
}γ

Z

∝ −γ
1

N

∑
N

∇xsynd
(
ϕ(xsyn), ϕ(xtrain)

)
,

(7)

which is referred to as energy-based guidance (Dhariwal & Nichol, 2021). Practically, we use the
classifier guidance method, which employs the pre-trained diffusion itself as a training-free time-
dependent classifier ϕ(xt) such that ϕ(xt, t) ≈ ϕ(x0) (Shen et al., 2024). Therefore, the reverse
diffusion process with guidance is defined as:

dx =
[
f(xsyn

t , t)− g(t)2(∇xsyn
t

log p(xsyn
t ) + γ∇xsyn

t
log p(R|xsyn

t ))
]
dt+ g(t)dw̄

∝
[
f(xsyn

t , t)− g(t)2
(
−ϵθ (x

syn
t , t) + γ∇xsyn

t
d
(
ϕ (xsyn

t ) , ϕ
(
xtrain
t

)))]
dt+ g(t)dw̄,

(8)

where ∇xsyn
t

log p(R|xsyn
t ) is treated as an auxiliary score derived from the representativeness

prior. xsyn
t and xtrain

t are the noised xsyn and xtrain at timestep t.

Empirically, we compare the salient features across samples using the linear kernel (Mercer kernel
K(x, y) = x⊤y) due to its tractability. As indicated by eq. (6), the representativeness of xsyn in-
creases as the energy DK decreases. Figure 2 visualizes the representativeness of class-wise samples
under different setups. The distillation performance improves on synthetic samples with higher rep-
resentativeness, as reflected by the area of the sector. It is worth noting that according to eq. (4), the
gradient field of diversity and generalization (∇x log p(x)) is determined and fixed by pre-trained
DMs. Therefore, the gradient field of representativeness cannot be increased indefinitely, otherwise
the other priors will lose their effectiveness (see section 4.4 and section A.4.1).
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Figure 2: Visualization of average representativeness (∝ 1
d(ϕ(x),ϕ(y)) ) of distilled samples (IPC10).

As γ increases, the representativeness (sector area) gets larger, yielding better DD performance.

Hereto, we successfully distilled the priors within DMs into the synthetic dataset. Specifically,
Diversity prior arises from the stochasticity of diffusion trajectories where different noise initializa-
tions lead to distinct denoising paths. Generalization prior stems from the original score function
∇x log p(x) estimated by vanilla DM. Representativeness prior is directly implemented by the guid-
ance term in eq. (8), which guides each denosing trajectory toward gradient regions that are well
represented by real data. We implement the guided sampling process using VP-SDE and summa-
rize the procedure in algorithm 1. The extensive experimental results in section 4 demonstrate the
validity of our “Diffusion As Priors (DAP)” method.

Algorithm 1 DAP Sampling (VP-SDE)

Require: Noisy data samples xtrain|c
t within class c, pre-trained diffusion model ϵθ, a layer output

ϕ from diffusion backbone network, a Mercer Kernel induced distance measurement d, energy-
based guidance scale γ, pre-defined noise scales βt.

1: xT ∼ N (0, I)
2: for t = T, · · · 1 do
3: ϵ ∼ N (0, I) if t > 1, else ϵ = 0
4: x̃t−1 = (2−

√
1− βt)xt + βtϵθ (xt, t) +

√
βtϵ

5: zt = ϕ(xt), z
train|c
t = ϕ(x

train|c
t ) # Diffusion as representativeness priors

6: gt = −∇xt
d(zt, z

train|c
t )

7: xt−1 = x̃t−1 + γgt # Guided sampling
8: end for

Output: x0 # The distilled sample of class c.

4 EXPERIMENTS

In this section, we conduct extensive experiments to validate the effectiveness of DAP. Our evalua-
tion aims to explore the following questions:

• Does DAP achieve state-of-the-art performance on large-scale DD benchmarks?
• How do the three priors: diversity, generalization, and representativeness contribute to the

effectiveness of DAP?
• Can DAP generalize across network architectures and datasets?

We evaluate DAP on ImageNet-1K and its widely used subsets (ImageNette, ImageWoof, and
ImageIDC), comparing against advanced DD methods, including Minimax, D4M, IGD, MGD3,
D3HR and VLCP. We employ two diffusion architectures, U-Net-based Stable Diffusion (SD) and
Transformer-based DiT, for distillation. We also use them as baselines to demonstrate the advantage
of the diffusion priors. All results are reported under either hard-label or soft-label evaluation pro-
tocols, as specified by the benchmarks. Further experimental details are provided in the section 4.1.
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4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS AND BENCHMARKS

We evaluate DAP on a range of benchmarks that vary in scale, resolution, and task difficulty. Our
primary evaluation is conducted on large-scale ImageNet-1K (224 × 224) (Deng et al., 2009). To
study the effect of inter-class similarity, we further consider two 10-class subsets of ImageNet-
1K: ImageNette (Howard, 2019a), which consists of visually distinct categories and represents a
relatively simple task, and ImageWoof (Howard, 2019b), which contains visually similar dog breeds
and thus poses a fine-grained classification challenge. Additionally, we incorporate ImageIDC (Kim
et al., 2022) to evaluate performance.

4.1.2 MODELS AND EVALUATION PROTOCOLS

For each dataset, we distill subsets of 10, 50, and 100 images per class (IPC) and assess their utility
on downstream classification tasks. Two evaluation protocols are adopted:

• Hard-label protocol: Following Chen et al. (2025), we directly train classifiers from scratch
using the distilled images with ground-truth labels (one-hot labels). We evaluate on three
commonly used architectures: ConvNet-6, ResNetAP-10, and ResNet-18.

• Soft-label protocol: Following Sun et al. (2024), we provide soft labels via pre-trained clas-
sifiers (e.g., ResNet-18). This protocol is crucial for challenging datasets such as ImageNet-
1K, where training from scratch on a few synthetic images is relatively difficult.

To demonstrate the compatibility of DAP, we conduct experiments on a) Stable Diffusion-V1.5 with
the U-Net backbone, and b) DiT-XL/2-256 with the transformer.

4.1.3 OTHER DETAILS

All experiments were implemented in PyTorch and conducted with NVIDIA A40 GPUs. For fair
comparison, we reproduce baseline methods under the same setup. The reported results follow
these conventions: a) For DAP and reproduced baselines, we report the mean±standard deviation over
three runs. b) For other methods, we report results from the original papers. c) In tables, the
best result is highlighted in bold, while the second best is underlined. Practically, DAP does not
require selecting any specific xtrain|c samples before sampling. For each class, all real training data
xtrain|c are passed through the VAE encoder to obtain their latent embeddings, which are provided
for representativeness guidance. Finally, the cost of DAP and the results for different accessible raw
data sizes are discussed in section A.3.7.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

4.2.1 RESULTS ON DIT

We begin with ImageNet-1K, the most widely adopted benchmark for generative dataset distillation.
Across both IPC (Images Per Class) settings, DAP consistently achieves the best results, demonstrat-
ing its superiority in large-scale DD tasks. As listed in table 2, DAP achieves 49.1% Top-1 accuracy
at IPC10, exceeding the strongest baseline IGD and MGD3 by 3.5%. With more distilled samples,
DAP further improves to 62.7%, establishing superior results on this challenging benchmark.

Table 2: Top-1 Accuracy on ImageNet-1K. The results are evaluated with soft-label protocol based
on ResNet-18.

Dataset IPC SRe2L G-VBSM RDED Minimax DiT IGD MGD3 D3HR VLCP DAP

ImageNet-1K 10 21.3±0.6 31.4±0.5 42.0±0.1 44.3±0.5 39.6±0.4 45.5±0.5 45.6±0.8 44.3±0.3 46.7±0.4 49.1±1.2

50 46.8±0.2 51.8±0.4 56.5±0.1 58.6±0.3 52.9±0.6 59.8±0.3 60.2±0.1 59.4±0.1 60.5±0.2 62.7±1.5

To examine robustness across different scales and architectures, we also evaluate on ImageNet sub-
sets, including ImageNette and ImageWoof (table 3). DAP again outperforms almost all competing
methods. An exception occurs with ResNet-18 at IPC10, IGD slightly surpasses DAP. This deviation
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is attributed to the fact that IGD explicitly incorporates ResNet-18 as the surrogate network for its
influence-guided sampling, thereby introducing an inductive bias favoring the specific architecture.
While this bias yields localized gains, it also risks overfitting (see table 5). In contrast, DAP does
not rely on architecture-specific heuristics and remains effective across multiple backbones.

Table 3: Top-1 Accuracy on ImageNette and ImageWoof. The results are evaluated with hard-
label protocol.

Dataset Model IPC Random DM DiT Minimax IGD MGD3 DAP Full

Nette

ConvNet-6
10 46.0±0.5 49.8±1.1 56.2±1.3 58.2±0.9 61.9±1.9 56.2±1.7 64.8±0.8

94.3±0.550 71.8±1.2 70.3±0.8 74.1±0.6 76.9±0.9 80.9±0.9 79.0±0.3 82.2±1.6

100 79.9±0.8 78.5±0.8 78.2±0.3 81.1±0.3 84.5±0.7 84.4±0.6 85.7±1.3

ResNetAP-10
10 54.2±1.2 60.2±0.7 62.8±0.8 63.2±1.0 66.5±1.1 66.4±2.4 67.8±1.2

94.6±0.550 77.3±1.0 76.7±1.0 76.9±0.5 78.2±0.7 81.0±1.2 79.5±1.3 82.3±0.7

100 81.1±0.6 80.9±0.7 80.1±1.1 81.3±0.9 85.2±0.5 85.0±0.4 86.0±2.1

ResNet-18
10 55.8±1.0 60.9±0.7 62.5±0.9 64.9±0.6 67.7±0.3 61.2±1.4 66.4±0.5

95.3±0.650 75.8±1.1 75.0±1.0 75.2±0.9 78.1±0.6 81.0±0.7 80.8±0.9 82.8±1.1

100 82.0±0.4 81.5±0.4 77.8±0.6 81.3±0.7 84.4±0.8 83.7±1.3 85.5±1.5

Woof

ConvNet-6
10 25.2±1.1 27.6±1.2 32.3±0.8 33.5±1.4 35.0±0.8 34.7±1.1 37.6±0.9

85.9±0.450 41.9±1.4 43.8±1.1 48.5±1.3 50.7±1.8 54.2±0.7 54.5±1.6 55.8±0.4

100 52.3±1.5 50.1±0.9 54.2±1.5 57.1±1.9 61.1±1.0 60.1±1.2 62.4±1.2

ResNetAP-10
10 31.6±0.8 29.8±1.0 39.0±0.9 39.6±1.2 41.0±0.8 40.4±1.9 41.8±0.7

87.2±0.650 50.1±1.6 47.8±1.2 55.8±1.1 59.8±0.8 62.7±1.2 56.5±1.9 63.3±0.5

100 59.2±0.9 59.8±1.3 62.5±0.9 66.8±1.2 69.7±0.9 66.5±1.0 70.8±1.4

ResNet-18
10 30.9±1.3 30.2±0.6 40.6±0.6 42.2±1.2 44.8±0.8 38.5±2.5 43.9±0.9

89.0±0.650 54.0±0.8 53.9±0.7 57.4±0.7 60.5±0.5 62.0±1.1 58.3±1.4 63.2±0.7

100 63.6±0.5 64.9±0.7 62.3±0.5 67.4±0.7 70.6±1.8 68.8±0.7 71.6±1.3

4.2.2 RESULTS ON STABLE DIFFUSION

We next apply DAP to Stable Diffusion (SD) as the generative backbone. As shown in fig. 3, DAP
consistently surpasses the baseline MGD3 and vanilla Stable Diffusion across all datasets and IPC
settings. For instance, DAP reaches 81.4% accuracy on ImageNette with IPC50, approaching the
accuracy of training on the full dataset while using only a fraction of the data size.

A surprising finding arises when comparing hard-label and soft-label protocols. Most previous meth-
ods achieve competitive results only under soft-label supervision, whereas DAP already matches or
surpasses them under the stricter hard-label supervision. This demonstrates that the representative-
ness prior substantially improves the quality of distilled datasets, even without auxiliary supervi-
sion. Moreover, DAP maintains robustness under domain shifts between the SD pre-training dataset
(LAION (Schuhmann et al., 2022)) and the distilled dataset (ImageNet), further highlighting its abil-
ity to leverage diffusion priors to bridge domain gaps, which is not observed in existing approaches.

IPC10 IPC50
20

30

40

50

60

70

To
p-

1 
Ac

cu
ra

cy
 (%

)

SL Protocol SL Protocol

27.9

55.2

38.8

56.2

42.2

58.5

47.4

60.9

40.7

55.0

D4M
SD
MGD3

DAP(Ours)
DAP(Ours)

(a) ImageNet-1K

IPC10 IPC20 IPC50
20

30

40

50

60

70

80

90

To
p-

1 
Ac

cu
ra

cy
 (%

)

SL Protocol SL Protocol SL Protocol

46.4

54.6

60.6
57.3

63.3

74.4
69.7

76.1
81.4

56.8

62.6

70.4

SD
MGD3

DAP(Ours)
DAP(Ours)

(b) ImageNette

IPC10 IPC20 IPC50
20

30

40

50

60

To
p-

1 
Ac

cu
ra

cy
 (%

)

SL Protocol SL Protocol SL Protocol

38.2

40.8

52.0

39.8

44.9

59.6

31.3

41.8

51.5

32.4

43.3

54.4

SD
DAP(Ours)
SD
DAP(Ours)

(c) ImageWoof

IPC10 IPC20 IPC50
20

30

40

50

60

70

80

To
p-

1 
Ac

cu
ra

cy
 (%

)

SL Protocol SL Protocol SL Protocol

40.5
43.9

52.1

48.5
51.6

60.2
57.3

63.3

69.4

49.2
52.6

62.4

SD
MGD3

DAP(Ours)
DAP(Ours)

(d) ImageNet-IDC

Figure 3: The comparison results on Stable Diffusion. The results are evaluated with both hard-
label (HL) and soft-label (SL) protocols based on ResNet-18. The results of SL protocol are
marked with a light blue background, while those without background color are from HL protocol.
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4.3 ANALYSIS OF DIFFUSION PRIORS

4.3.1 GENERALIZATION PRIOR

Many existing methods overfit to the distillation settings and suffer performance degradation when
the dataset scale is reduced or the evaluation architecture is changed. As listed in table 4, we obtain
IPC50 and IPC10 datasets by subsampling them from IPC100 datasets rather than generating them
specially. IGD and MGD3 suffer degradation under this reduction, whereas DAP preserves accuracy
across scales without noticeable performance loss. This generalization indicates that DAP captures
sufficient transferable knowledge rather than memorizing samples at a fixed scale.

Table 4: A study on dataset scale reduction. The results are Top-1 Accuracy evaluated with hard-
label protocol. The failure cases (degradation > 5% compared to table 3) are marked in blue.

Model IPC ImageNette ImageWoof

IGD MGD3 DAP Full IGD MGD3 DAP Full

ConvNet-6
10 59.8±2.3 54.2±1.9 64.5±0.7

94.3±0.4

32.6±1.5 27.0±1.2 36.5±1.8

85.9±0.450 79.8±1.8 77.0±1.3 80.1±1.2 53.4±0.7 51.4±0.8 53.1±0.9
100 82.8±0.6 83.7±0.8 85.7±1.3 60.2±0.4 58.8±0.8 62.4±1.2

ResNetAP-10
10 63.2±1.7 59.2±1.6 66.1±0.4

94.6±0.5

35.6±1.7 31.8±1.4 37.9±0.8

87.2±0.650 73.4±1.3 79.0±1.1 79.8±1.5 60.4±0.7 58.6±1.3 62.6±0.6

100 82.5±1.2 83.0±0.5 86.0±2.1 66.8±0.9 64.9±0.4 70.8±1.4

ResNet-18
10 62.6±2.1 56.0±1.8 63.7±0.8

95.3±0.6

35.2±1.4 29.8±2.3 39.4±1.3

89.0±0.650 78.4±1.4 78.8±1.6 80.4±2.3 59.3±0.5 59.4±1.7 59.7±1.2

100 83.6±1.1 84.2±0.8 85.5±1.5 68.8±0.8 67.8±1.1 71.6±0.9

We further evaluate cross-architecture generalization in table 5. The distilled datasets are trained
with soft-labels provided by ResNet-18 and tested on other architectures, including ResNet-101,
MobileNet-V2, EfficientNet-B0, and Swin Transformer. While baselines show performance drops
due to inductive bias on the architectures, DAP consistently achieves the highest accuracy across all
cases. These findings confirm that representativeness prior enables architecture-agnostic DD.

Table 5: A study on cross-architecture generalization. The results are Top-1 Accuracy on ImageNet-
1K evaluated with soft-label protocol.

Method ResNet-101 MobileNet-V2 EfficientNet-B0 Swin Transformer

IPC10 IPC50 IPC10 IPC50 IPC10 IPC50 IPC10 IPC50

RDED 48.3±1.0 61.2±0.4 40.4±0.1 53.3±0.2 31.0±0.1 58.5±0.4 42.3±0.6 53.2±0.8

IGD 52.6±1.2 66.2±0.2 39.2±0.2 57.8±0.2 47.7±0.1 62.0±0.1 44.1±0.6 58.6±0.5
DAP 54.9±0.9 68.1±0.4 43.1±0.3 61.4±0.2 49.7±0.3 65.2±0.4 48.3±0.6 61.7±0.4

4.3.2 DIVERSITY AND REPRESENTATIVENESS PRIORS

To investigate whether DAP enforces diversity and representativeness priors in the distilled datasets,
we visualize the data distribution using t-SNE alongside both the training and test sets. Figure 4
reveals that the synthetic data aligns well with the training set while generalizing to the test set,
demonstrating that the DAP can accurately match the underlying data manifold. Moreover, the em-
beddings show intra-class diversity and inter-class separability, indicating that the distilled datasets
capture meaningful variability without sacrificing discriminability.

Across all benchmarks and analyses, DAP achieves competitive performance and surpasses existing
DD methods. The improvements arise from the combined effect of diffusion priors: diversity and
generalization priors contribute to broad coverage and cross-architecture transfer. Meanwhile, the
representativeness prior enforces information alignment with the real dataset. Moreover, DAP in-
troduces no extra training cost, which makes the approach both efficient and scalable in scenarios
where deployment architectures are agnostic. We also discuss the sampling costs in section A.3.7.
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Figure 4: Visualization results of t-SNE. We compare the feature distribution of real (training and
test set) versus synthetic data under IPC50. Dark/Light points: Synthetic/Real samples.

4.4 ABLATION EXPERIMENTS

We conduct ablation studies to investigate the influence of feature layer selection and guidance
scale γ in representativeness guidance. We observe from fig. 5a that the “Mid” layer of the U-Net
yields the strongest results. For DiT, the most effective features originate from the early transformer
blocks (e.g., the 4th-12th layers shown in fig. 5b), which outperform those in later layers. Despite
this difference, both cases consistently reveal that the final output layers are suboptimal for repre-
sentativeness guidance, as they prioritize distribution alignment over representativeness. Regarding
γ, we find that increasing its value generally enhances representativeness, as reflected by improved
downstream accuracy in figs. 5c and 5d and the sector areas in fig. 2, but excessive scales distort
the gradient field of the sampling process and bias the generation trajectory, thereby diminishing the
contributions of diversity and generalization priors and leading to performance degradation.
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Figure 5: Ablation studies under ResNet-18. (a-b) Top-1 Accuracy under different backbone layer
selection. (c-d) Top-1 Accuracy under varied guidance scale γ.

5 CONCLUSION

This paper introduces Diffusion as Priors, a framework for dataset distillation that leverages the in-
herent priors of diffusion models. We identify diversity, generalization, and representativeness priors
in diffusion models, and demonstrate how they can be integrated to guide the generation process.
Representativeness prior is further formulated through kernel–based energy guidance, enabling the
sampling process to align more information with real data. Extensive experiments on ImageNet-
1K and its subsets demonstrated that DAP achieves state-of-the-art results, preserves generalization
under scale reduction, transfers effectively across architectures, and remains robust under domain
shifts, making the approach both efficient and scalable. Future work may fall in extending diffu-
sion priors to other powerful models (e.g., FLUX, Stable Diffusion 3.5) and exploring applications
beyond vision, including language, video, and multimodal datasets.

ETHICS STATEMENT

This work uses only publicly available datasets, including ImageNet-1K and its subsets (ImageNette,
ImageWoof, and ImageIDC). No human subjects, private data, or sensitive information are involved.
Our method focuses on dataset distillation using pre-trained diffusion models, and it does not intro-
duce additional risks related to privacy, security, fairness, or legal compliance.
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REPRODUCIBILITY STATEMENT

We have taken several measures to ensure reproducibility. All theoretical results are presented with
complete proofs in section A.2. Details of datasets, backbone architectures, hyper-parameters, and
evaluation protocols are provided in section 4.1, while algorithms 1 and 2 specify the guided sam-
pling procedure. Additional visualizations and ablation results are included in section A.4 to further
support empirical findings. Moreover, we submit the full implementation, including training and
evaluation scripts, as anonymous source code in the supplementary material. These resources en-
sure that all theoretical and experimental results can be independently verified.
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A APPENDIX

Appendix organization:

Section A.1: Background

A.1.1: Dataset distillation
A.1.2: Generative dataset distillation

Section A.2: Proofs

A.2.1: Validity of kernel-induced distance
A.2.2: Distance factorization

Section A.3: Discussions

A.3.1: Compatibility of DAP
A.3.2: Guidance on noisy latent
A.3.3: Kernel selection
A.3.4: Comparison with recent methods
A.3.5: Cross-datasets generalization
A.3.6: Early Stop strategy
A.3.7: Sampling-time scaling

Section A.4: Visualizations

A.4.1: Representativeness guidance scale
A.4.2: Representativeness comparison

Section A.5: Disclosure of the use of Large Language Models

A.1 BACKGROUND

A.1.1 DATASET DISTILLATION

Systematic analysis of research in dataset distillation reveals two paradigms: a) traditional matching-
based approaches focused on pixel-level optimization, and b) modern generative frameworks em-
phasizing distribution learning (Yu et al., 2023; Lei & Tao, 2023; Liu & Du, 2025). Traditional
methods adopt an ”imitation” philosophy, involving continuous pixel optimization to align model
behavior, such as gradients, feature distributions, or checkpoints between synthetic and original
data (Zhao & Bilen, 2021; Wang et al., 2022; Zhao et al., 2023; Deng et al., 2024). In contrast,
generative frameworks prioritize improving dataset quality through fidelity and diversity metrics.
These approaches extract key informational patterns from source data, enhancing the realism and
generalization of distilled datasets. We will examine the related work in the following subsection.

A.1.2 GENERATIVE DATASET DISTILLATION

Generative dataset distillation utilizes models such as Generative Adversarial Networks (GANs) and
Diffusion models (DMs) to synthesize compact and informative datasets. Unlike pixel optimization
methods, which are limited to small-scale, low-resolution data due to computational costs, genera-
tive techniques support large-scale, high-resolution applications. This flexibility promotes sample
diversity and better generalization across model architectures. This section reviews the two primary
categories of generative dataset distillation methods: GAN-based and Diffusion-based approaches.

GAN-based approaches. GANs serve as foundation models for dataset distillation In early re-
search. DiM (Wang et al., 2023) condenses dataset information into a conditional GAN, enabling
sample synthesis from random noise during deployment. GLaD (Cazenavette et al., 2023) enhances
cross-architecture generalization by distilling data into the latent space of pre-trained models like
StyleGAN (Karras et al., 2019). H-PD (Zhong et al., 2024) introduces hierarchical parameterization
distillation, optimizing across latent spaces in GANs to capture hierarchical features from the initial
latent space to the pixel space.
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Diffusion-based approaches. Diffusion-based methods leverage diffusion models to improve
dataset distillation. For example, Minimax diffusion (Gu et al., 2024) fine-tunes a diffusion model
with minimax criteria to boost representativeness and diversity. VLCP (Zou et al., 2025) constructs
text prototypes to enrich the labels with semantic information and then fine-tunes the DMs with
image-text pairs. D4M (Su et al., 2024) disentangles feature extraction and generation via Training-
Time Matching (TTM) with category prototypes. IGD (Chen et al., 2025) guides the sampling pro-
cess of pre-trained diffusion models using a function combining trajectory influence and diversity
constraints, generating synthetic data without retraining. Additionally, MGD3 (Chan-Santiago et al.,
2025) enhances diversity by identifying latent space modes and directing data toward them during
sampling. In order to enhance the objective and conditional consistency of the distillation process,
CaO2 (Wang et al., 2025) employs target-guided sample selection to optimize the latent condition-
ally. D3HR (Zhao et al., 2025) utilizes DDIM inversion to map the image latents to the Gaussian
domain, then aligns the representative latents with the high-normality Gaussian distribution with
their proposed sampling scheme.

A.2 PROOFS

A.2.1 VALIDITY OF KERNEL-INDUCED DISTANCE

Theorem A.1. Let K : X × X → R be a PSD kernel. Then the induced distance measure

DK(x, y) =
[
K(x, x) +K(y, y)− 2K(x, y)

]1/2
(9)

satisfies:

1. Non-negativity: DK(x, y) ≥ 0, and DK(x, y) = 0 if and only if x = y.

2. Symmetry: DK(x, y) = DK(y, x).

3. Triangle inequality: For any x, y, z ∈ X , DK(x, z) +DK(z, y) ≥ DK(x, y).

Proof. Since K is positive semi-definite, by Mercer’s theorem (Mercer, 1909) there exists a repro-
ducing kernel Hilbert space H and a feature map ϕ : X → H such that

K(x, y) = ⟨ϕ(x), ϕ(y)⟩H. (10)

Therefore,

DK(x, y)
2 = K(x, x) +K(y, y)− 2K(x, y) (11)
= ⟨ϕ(x), ϕ(x)⟩H + ⟨ϕ(y), ϕ(y)⟩H − 2⟨ϕ(x), ϕ(y)⟩H (12)

= ∥ϕ(x)− ϕ(y)∥2H. (13)

Thus,
DK(x, y) = ∥ϕ(x)− ϕ(y)∥H. (14)

Since the norm in Hilbert space ∥ · ∥H is a valid metric, it satisfies:

• Non-negativity and identity of indiscernibles: ∥ϕ(x)−ϕ(y)∥ ≥ 0, and ∥ϕ(x)−ϕ(y)∥ = 0
iff ϕ(x) = ϕ(y), which implies x = y.

• Symmetry: ∥ϕ(x)− ϕ(y)∥ = ∥ϕ(y)− ϕ(x)∥.

• Triangle inequality: ∥ϕ(x)− ϕ(y)∥ ≤ ∥ϕ(x)− ϕ(z)∥+ ∥ϕ(z)− ϕ(y)∥ for any z.

Therefore, DK is a valid metric induced by the kernel K.

A.2.2 DISTANCE FACTORIZATION

Theorem A.2. Let K : X ×X → R be a Mercer kernel, then the induced chordal distance DK can
be factorized as DK(x, y) = d ◦ (ϕ×ϕ)(x, y), where ϕ is a feature mapping and d is a simple norm
in Hilbert space.
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Proof. By the reproducing property of the reproducing kernel Hilbert space HK, we have

K(x, y) = ⟨Φ(x),Φ(y)⟩HK . (15)

Therefore,

DK(x, y)
2 = K(x, x) +K(y, y)− 2K(x, y) (16)
= ⟨Φ(x),Φ(x)⟩HK + ⟨Φ(y),Φ(y)⟩HK − 2⟨Φ(x),Φ(y)⟩HK (17)

= ∥Φ(x)− Φ(y)∥2HK
. (18)

Taking square roots yields
DK(x, y) = ∥Φ(x)− Φ(y)∥HK . (19)

If we set f = Φ and d(u, v) = ∥u− v∥HK , then clearly

DK(x, y) = d(f(x), f(y)) = d ◦ (f × f)(x, y). (20)

A.3 DISCUSSIONS

A.3.1 COMPATIBILITY OF DAP

Compatibility with codebase. DAP is fully implemented using the native components of the dif-
fusion model itself, without relying on any additional modules or external dependencies. This care-
fully designed approach not only preserves complete compatibility with existing diffusion architec-
tures but also ensures that the method can be readily adopted across diverse codebases. As a result,
DAP can be seamlessly incorporated into widely used diffusion libraries, such as the Diffusers
library in Hugging Face, thereby promoting both reproducibility and broad applicability in contem-
porary research and practical deployment scenarios.

Table 6: The source of representative-
ness knowledge from different genera-
tive DD methods.

Method Representativeness

Minimax Training Loss
D4M Clustering
MGD3 Clustering
IGD Pre-trained Classifier
CaO2 Pre-trained Classifier
D3HR Statistic Metric
DAP Diffusion Prior

Compatibility with other methods. Since the DAP
pipeline works orthogonally with the existing approaches,
it exhibits strong compatibility, allowing it to complement
them without interference. Before empirical results, we
analyze the sources of representativeness priors employed
by different methods in table 6: Minimax introduces rep-
resentativeness via fine-tuning under the supervision of
the proposed training loss, D4M and MGD3 capture rep-
resentativeness through clustering algorithms, IGD and
CaO2 uses pre-trained classifier, D3HR calculates the key
statistics including mean, standard deviation and skew-
ness, while DAP exploits the representativeness priors
embedded in diffusion models. To validate the compati-
bility of DAP, we incorporate it into Minimax for instance
(see table 7). The addition of DAP consistently enhances the performance of distilled samples.
These results indicate that DAP can serve as a versatile and modular enhancement, improving the
performance of DD approaches while preserving its intrinsic advantages.

Table 7: Top-1 Accuracy on ImageNette and ImageWoof. Evaluated with hard-label protocol.

Model IPC ImageNette ImageWoof

Minimax Minimax-IGD Minimax-DAP Minimax Minimax-IGD Minimax-DAP

ConvNet-6 10 58.2±0.9 58.8±1.0 64.2±1.4 33.5±1.4 36.2±1.6 38.2±0.8

50 76.9±0.9 82.3±0.8 83.5±0.6 50.7±1.8 55.7±0.8 55.9±1.2

ResNetAP-10 10 63.2±1.0 63.5±1.1 66.1±1.7 39.6±1.2 43.3±0.3 43.5±0.6

50 78.2±0.7 82.3±1.1 83.7±1.3 59.8±0.8 65.0±0.8 66.4±2.5

ResNet-18 10 64.9±0.6 66.2±1.2 66.9±0.9 42.2±1.2 47.2±1.6 45.4±1.0
50 78.1±0.6 82.0±0.3 82.5±0.7 60.5±0.5 65.4±1.8 65.8±1.3
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A.3.2 GUIDANCE ON NOISY LATENT

We adopt the VP-SDE combined with the DDIM sampling algorithm, which enables a deterministic
and efficient approximation of the reverse diffusion trajectory. A detail in this setting is the choice
of the feature representation for prior guidance. Under DDIM dynamics, the conditional estimate of
ẑ0|t can be expressed as an affine transformation of the current noisy state: ẑ0|t = αtzt−βtϵθ(zt, t),
where αt, βt are deterministic coefficients and ϵθ is the score predictor (Song et al., 2021). From the
perspective of reverse dynamics, this relation holds as a first-order approximation under lineariza-
tion, implying that the gradient fields induced by guiding zt and guiding ẑ0|t are approximately
equivalent (see fig. 6). Hence, instead of explicitly computing the denoised estimation ẑ0|t, we di-
rectly apply guidance on the noisy latent zt, while avoiding the computational overhead of explicit
decoding process at each timestep.

Initial Noise

Original Sampling Trajectory

Data Distribution

Guided Sampling Trajectory

Noise Distribution
Original Denoising Trajectory

Guided Denoising Trajectory

Output Sample

Denoising Output

zT

z0

z0|T

Figure 6: A sketch map of the relationship between ẑ0|t and zt.

A.3.3 KERNEL SELECTION

Besides the linear kernel, we also install our DAP with other Mercer kernels, such as the Radial
Basis Function kernel (RBF, also known as the Gaussian kernel):

K(x, y) = exp
(
− ∥x− y∥2

2σ2

)
. (21)

The bandwidth σ controls the sensitivity: small σ emphasizes fine-grained local features, whereas
large σ approaches the behavior of the linear kernel. Based on eq. (21), the induced distance becomes

∥ϕ(x)− ϕ(y)∥2H = K(x, x) +K(y, y)− 2K(x, y) = 2− 2 exp
(
− ∥x− y∥2

2σ2

)
, (22)

which is a non-linear function of the Euclidean distance.

As drawn in fig. 7, the RBF-induced distance grows quickly for small differences and saturates for
large differences, effectively compressing large deviations while being sensitive to local differences.
Table 8 reveals that the distillation performance of RBF kernel is comparable to that of linear kernel.
To avoid introducing additional hyperparameters, we recommend using the linear kernel due to its
simplicity and tractability.

A.3.4 COMPARISON WITH RECENT METHODS

Table 9 presents the distillation results for ImageNet subsets on DiT. CaO2 surpasses DAP in several
cases, but this advantage arises from differences in evaluation protocols. The CaO2 paper reports the
best accuracy across soft-label and hard-label protocols, selecting the protocol that yields a higher
performance. In contrast, D3HR, VLCP, and DAP consistently adopt the hard-label protocol in this
experiment. Since the soft-label protocol typically leads to higher accuracy, the results of CaO2

likely benefit from this more permissive approach. Under a consistent hard-label evaluation setting,
DAP remains competitive and performs better in most cases compared to these recent methods.
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Figure 7: Curves of different Mer-
cer kernel-induced distances.

Table 8: Top-1 Accuracy with different Mercer kernels. The
results are evaluated on ResNet-18 with hard-label protocol.

Kernel ImageNette ImageWoof

IPC10 IPC50 IPC10 IPC50

Linear 66.4±0.5 82.8±1.1 43.9±0.9 63.2±0.7
RBF(σ = 0.5) 65.7±0.2 82.5±0.3 44.6±0.9 63.8±1.6

RBF(σ = 1) 64.1±1.7 83.1±0.8 44.1±1.3 60.9±0.5

RBF(σ = 2) 66.0±1.3 82.2±1.0 43.7±1.1 62.6±2.2

Table 9: Top-1 Accuracy on ImageNette and ImageWoof. †: The results are evaluated with hard-
label protocol except for CaO2.

Dataset Model IPC Random DM DiT CaO†
2 D3HR VLCP DAP Full

Nette

ConvNet-6
10 46.0±0.5 49.8±1.1 56.2±1.3 - - - 64.8±0.8

94.3±0.550 71.8±1.2 70.3±0.8 74.1±0.6 - - - 82.2±1.6

100 79.9±0.8 78.5±0.8 78.2±0.3 - - - 85.7±1.3

ResNetAP-10
10 54.2±1.2 60.2±0.7 62.8±0.8 - - 64.8±3.6 67.8±1.2

94.6±0.550 77.3±1.0 76.7±1.0 76.9±0.5 - - 81.2±0.8 82.3±0.7

100 81.1±0.6 80.9±0.7 80.1±1.1 - - - 86.0±2.1

ResNet-18
10 55.8±1.0 60.9±0.7 62.5±0.9 65.0±0.7 - - 66.4±0.5

95.3±0.650 75.8±1.1 75.0±1.0 75.2±0.9 84.5±0.6 - - 82.8±1.1

100 82.0±0.4 81.5±0.4 77.8±0.6 - - - 85.5±1.5

Woof

ConvNet-6
10 25.2±1.1 27.6±1.2 32.3±0.8 - - 34.8±2.4 37.6±0.9

85.9±0.450 41.9±1.4 43.8±1.1 48.5±1.3 - - 54.5±0.6 55.8±0.4

100 52.3±1.5 50.1±0.9 54.2±1.5 - - 62.7±1.4 62.4±1.2

ResNetAP-10
10 31.6±0.8 29.8±1.0 39.0±0.9 - 40.7±1.0 39.5±1.5 41.8±0.7

87.2±0.650 50.1±1.6 47.8±1.2 55.8±1.1 - 59.3±0.4 57.3±0.5 63.3±0.5

100 59.2±0.9 59.8±1.3 62.5±0.9 - 64.7±0.3 65.7±0.5 70.8±1.4

ResNet-18
10 30.9±1.3 30.2±0.6 40.6±0.6 45.6±1.4 39.6±1.0 39.9±2.6 43.9±0.9

89.0±0.650 54.0±0.8 53.9±0.7 57.4±0.7 68.9±1.1 57.6±0.4 58.9±1.5 63.2±0.7

100 63.6±0.5 64.9±0.7 62.3±0.5 - 66.8±0.6 68.3±0.4 71.6±1.3

A.3.5 CROSS-DATASET GENERALIZATION

Table 10: Top-1 Accuracy on Tiny ImageNet (IPC50).
The results are evaluated with soft-label protocol.

Method ResNet-18 ResNet-50 ResNet-101

Full 61.9 62.0 62.3
SRe2L 44.0 47.7 49.1
D4M 46.2 51.8 51.0

D4M-G 46.8 51.9 53.2
DAP-G 50.3±1.8 53.6±1.0 54.7±1.6

We posit that the cross-datasets evalua-
tion is essential to measure the general-
ization and versatility of a DD method,
which is overlooked by most DD meth-
ods. According to Su et al. (2024), we ex-
tract 200 categories, which are predefined
in Le & Yang (2015), from the ImageNet-
1K dataset distilled by DAP as the distilled
Tiny-ImageNet dataset. Table 10 shows
that the extracted subsets (end with “-G”)
maintain strong validation performance on
the target set, thereby confirming that our distilled data not only preserves the utility of the original
dataset but also supports effective reuse across datasets. The results highlight the advantage of DAP:
the distilled dataset is not tied to a single dataset domain but can be flexibly transferred and reused.

A.3.6 EARLY STOP STRATEGY

In the guided sampling process, we employ the early stop guidance mechanism, which enhances
sampling quality by only guiding earlier diffusion timesteps than the entire timesteps, thereby pro-
viding a better trade-off between sample diversity and fidelity (Chen et al., 2025; Chan-Santiago
et al., 2025). Besides, applying representativeness prior guidance in the early stage of the sam-
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pling trajectory also reduces the sampling cost (refer to section A.3.7). We summarize the sampling
process with an early stop strategy in algorithm 2. To evaluate its effectiveness, we conducted exper-
iments with different stopping parameters tstop. The mechanism deactivates guidance for timesteps
t < tstop in the reverse process, tstop = 0 means complete guidance, while tstop = 50 represents
no guidance. The qualitative and quantitative results, as illustrated in fig. 8, indicate that tstop = 25
yields the best performance.

Algorithm 2 DAP Sampling with Early Stop(VP-SDE)

Require: Noisy data samples xtrain|c
t within class c, pre-trained diffusion model ϵθ, a layer output

ϕ from diffusion backbone network, a Mercer Kernel induced distance measurement d, energy-
based guidance scale γ, pre-defined noise scales βt, early stop parameter tstop.

1: xT ∼ N (0, I)
2: for t = T, · · · 1 do
3: ϵ ∼ N (0, I) if t > 1, else ϵ = 0
4: x̃t−1 = (2−

√
1− βt)xt + βtϵθ (xt, t) +

√
βtϵ

5: if t ≤ tstop then
6: xt−1 = x̃t−1 # Stop Guidance
7: else
8: zt = ϕ(xt), z

train|c
t = ϕ(x

train|c
t ) # Diffusion as representativeness priors

9: gt = −∇xt
d(zt, z

train|c
t )

10: xt−1 = x̃t−1 + γgt # Guided sampling
11: end if
12: end for
Output: x0 # The distilled sample of class c.
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(a) Top-1 Accuracy on ImageNette
under different tstop. The results are
evaluated on ResNet-18 with hard-
label protocol.

tstop = 0 tstop = 25 tstop = 50

(b) Visualizations of the distilled samples with different tstop.

Figure 8: Ablation study on tstop selection.

A.3.7 SAMPLING-TIME SCALING

DAP does not introduce additional training costs, since no external pre-training or fine-tuning is
required. The representativeness prior is directly derived from the pre-trained diffusion backbone.
However, to inject this prior during sampling and improve data quality, we must extract features from
the noisy training data xtrain

t using the backbone network ϕ. This step inevitably brings additional
sampling time overhead, which must be acknowledged.

To quantify this overhead, we report the GPU memory and the sampling speed for different data
sizes in table 11. While sampling-time scaling introduces overhead, the cost remains manageable
and predictable on single GPU card.
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Table 11: The overhead of sampling-time scaling (tstop = 25). The Top-1 Accuracy is evaluated on
ImageNet-1K with hard-label protocol (IPC10). The memory and speed are reported on 1× A40.

Data Size Stable Diffusion DiT

GPU Mem.(GB) Speed(s/iter) Acc(%) GPU Mem.(GB) Speed(s/iter) Acc(%)

500
23.1

35.9 32.1±0.5

10.6
15.3 44.6±2.4

1000 39.9 39.9±1.3 24.0 48.8±1.7

1500 47.1 40.7±1.5 32.3 49.1±1.2

A.4 VISUALIZATIONS

A.4.1 REPRESENTATIVENESS GUIDANCE SCALE

As suggested by our ablation results (see figs. 5c and 5d in section 4.4), increasing γ within a moder-
ate scale effectively boosts representativeness prior, leading to improved downstream performance.
However, excessive γ introduces adverse effects. Over-amplifying the representativeness prior dis-
torts the sampling trajectory, resulting in over-constrained generations that sacrifice diversity and
generalization. Since the gradients of the other two priors are fixed, an imbalanced emphasis on
representativeness suppresses their contribution, yielding biased and less informative images. This
trade-off is clearly visualized in fig. 9.

DiT

guidance scale γ=20

SD

guidance scale γ=1000

guidance scale γ=1.5 guidance scale γ=1

(a) ImageWoof: Rhodesian ridgeback (n02087394)

guidance scale γ=20 guidance scale γ=1000

guidance scale γ=1.5 guidance scale γ=1

(b) ImageWoof: English foxhound (n02089973)

Figure 9: Samples distilled by DiT (left three columns) and SD (right three columns). The excessive
representativeness guidance scale γ will generate representativeness bias in the sampling trajectory,
affecting the diversity and fidelity of the synthetic images.
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A.4.2 REPRESENTATIVENESS COMPARISON

To provide an intuitive comparison, we visualize the distilled datasets obtained from different meth-
ods, as shown in fig. 10. For each group, we compute the distance measure defined in eq. (5) and
report its representativeness (∝ 1

d(ϕ(x),ϕ(y)) ). The results demonstrate that while all methods can
preserve semantic information thanks to the powerful DMs, the images distilled by DAP consis-
tently achieve the highest representativeness. This highlights the advantage of DAP in generating
distilled datasets that are not only semantically valid but also representative.
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(a) ImageNette: Gas pump (n03425413)
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(b) ImageNette: Chain saw (n03000684)
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(c) ImageWoof: Rhodesian ridgeback (n02087394)
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(d) ImageWoof: Samoyed (n02111889)

Figure 10: Visualization results of different DD methods. At the bottom of each group, we use the
pre-trained DiT to calculate the average representativeness values (×10−2).

A.5 DISCLOSURE OF THE USE OF LARGE LANGUAGE MODELS

Given that the use of large language models (LLMs) is allowed as a general-purpose assist tool, this
work utilizes LLMs to polish the sentences of the article. There is no significant role in research
ideation and writing to the extent that they cannot be regarded as contributors.
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