
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ACTIONREASONINGBENCH: REASONING ABOUT AC-
TIONS WITH AND WITHOUT RAMIFICATION CON-
STRAINTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reasoning about Actions and Change (RAC) has historically played a pivotal role
in solving foundational AI problems, such as the frame problem. It has driven
advancements in AI fields, such as non-monotonic and commonsense reasoning.
RAC remains crucial for AI systems that operate in dynamic environments, en-
gage in interactive scenarios, or rely on commonsense reasoning. Despite sub-
stantial advances made by Large Language Models (LLMs) in various AI do-
mains, their performance in RAC remains underexplored. To address this gap,
we introduce a new diagnostic benchmark, ACTIONREASONINGBENCH, which
encompasses 8 domains and includes questions for up to 19 action sequences.
This benchmark rigorously evaluates LLMs across six key RAC dimensions: Flu-
ent Tracking, State Tracking, Action Executability, Effects of Actions, Numerical
RAC, and Composite Questions. LLMs demonstrate average accuracy rates of
73.55%, 65.63%, 58.73%, and 62.38% on the former four dimensions, which are
frequently discussed in RAC literature. However, the performance on the lat-
ter two dimensions, which introduce complex and novel reasoning questions, the
average performance of LLMs is lowered to 33.16% and 51.19%, respectively,
reflecting a 17.9% performance decline. We also introduce new ramification con-
straints to capture the indirect effects of actions, providing deeper insights into
RAC challenges. Our evaluation of state-of-the-art LLMs, including both open-
source and commercial models, reveals challenges across all RAC dimensions,
particularly in handling ramifications, with GPT-4o failing to solve any question
and o1-preview achieving a score of only 18.4%.

1 INTRODUCTION

Reasoning about actions and change (RAC) is a fundamental problem in artificial intelligence, with
its roots tracing back to early work from the 1960s (McCarthy et al., 1963). Initially, research
focused on developing logical systems capable of effectively modeling and reasoning about actions
and their effects in a dynamic environment. One of the significant challenges in this domain has been
succinctly expressing how actions influence changeable properties of the world, known as fluents.
For example, consider the statement: “Moving an object from location X to location Y results in
the object being at location Y.” While it is relatively straightforward to describe the direct effects
on the affected fluents, such as the object’s location, it is much more complex to account for the
unaffected fluents, a challenge known as the frame problem. This challenge becomes exacerbated
when the descriptions involve relationships between fluents in a state, such as “an object can not
be at two different places at the same time”. While such constraints simplify action descriptions by
decoupling them from fluents, they introduce indirect effects, or ramifications. For example, the
statement “A block is said to be clear if there isn’t any block on top of it” describes a ramification
fluent, “clear” dependent on another fluent “on top of.”

It took multiple decades of research to create a comprehensive logical formalization that adequately
addressed these issues. It involved the laborious creation of numerous handcrafted rules and logic
detailing the effects and preconditions of actions (Reiter, 2001). However, these tools are limited
since they rely on manual effort to translate natural language descriptions of actions and their effects
into formal logic representations. To address this challenge, recent research in natural language

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

processing (NLP) has begun exploring the capabilities of LLMs in RAC tasks, as demonstrated by
works of He et al. (2023), Spiliopoulou et al. (2022), and Banerjee et al. (2020). However, these
studies have not systematically decomposed the complex RAC problem into multiple categories and
overlook the critical ramifications of actions seen in real-world scenarios. To address this gap, we
introduce ACTIONREASONINGBENCH, a diagnostic RAC benchmark that aims to pinpoint where
modern state-of-the-art LLMs struggle.

We decompose the RAC task into six distinct categories—Fluent Tracking, State Tracking, Action
Executability, Effects of Actions, Numerical RAC, and Composite Questions. The first four cate-
gories focus on assessing fundamental aspects of RAC, while the latter two introduce more complex
and novel question types. The questions in every category span action sequences ranging from 1 to
19 steps, allowing us to test the RAC capabilities at a series of action sequence ranges. Additionally,
we introduce ramification constraints to represent the indirect effect of actions. These constraints
simplify action descriptions and align more closely with real-world conditions but introduce ad-
ditional complexity, as highlighted by McIlraith (2000). Specifically, we expand the domains by
adding ramification fluents with dependencies up to four levels deep, where actions propagate their
effects through multiple layers.

Highlights of our benchmark, ACTIONREASONINGBENCH, along with the comparison to previous
benchmarks on RAC, are presented in Table 1. We evaluate four LLMs–two open-source models,
Llama-3.1-8B-Instruct and Llama-3.1-70B-Instruct (Dubey et al., 2024), as well as two leading
proprietary models, GPT-4o (Achiam et al., 2023) and o1-preview (OpenAI, 2024). These LLMs
were tested on ACTIONREASONINGBENCH across various RAC categories under different prompt
settings, including Zero-shot-CoT (Kojima et al., 2022) and Few-shot-3 (Brown, 2020), to assess
how performance varies based on these configurations.

PlanBench TRAC (Ours)
Number of domains 2 1 8
Number of queries 26k 15k 152k
Max Action Sequence length 48 3 19
Max number of objects 24 5 28
Binary Questions (T/F) × ✓ ✓
Free Answers ✓ × ✓

State Tracking ✓ ✓ ✓
Action Executability ✓ ✓ ✓

Fluent Tracking × × ✓
Effects of Actions × × ✓
Numerical Reasoning × × ✓
Composite Questions × × ✓
Ramifications Constraints × × ✓
Subcategories of Fluents × × ✓

Table 1: Differences between ACTIONREASONINGBENCH
(Ours) and previous benchmarks on RAC. PlanBench
(Valmeekam et al., 2024) ; TRAC (He et al., 2023)

Our findings indicate that LLMs face
substantial challenges, particularly
when addressing complex RAC ques-
tions. The average performance of all
LLMs on the complex categories de-
creases by 17.88% compared to the
first four basic categories. The best
performing LLM, GPT-4o, achieves
an average accuracy of 59.91% on
these categories. Notably, GPT-4o
failed to produce any correct an-
swers for questions involving ram-
ifications constraints, while the o1-
preview model achieved an accuracy
of only 18.42%. Performance was es-
pecially poor in categories like Ac-
tion Executability, Numerical RAC,
and Composite Questions, with fur-
ther declines observed as the length
of action sequences increased. Ad-
ditionally, LLMs struggled with rea-
soning in scenarios that combined both true and false fluents, experiencing an average performance
drop of 12.16% compared to tasks involving exclusively true or false fluents.

2 RELATED WORKS

Benchmarking reasoning capabilities of LLMs Evaluating the reasoning capabilities of LLMs
using synthetic datasets has become a key focus in NLP, with increasing efforts to create challenging
benchmarks. Notable areas of interest include the legal reasoning (Fei et al., 2023; Guha et al., 2023),
logical reasoning (Luo et al., 2024; Han et al., 2024; Patel et al., 2024; Parmar et al., 2024) arithmetic
reasoning (Cobbe et al., 2021; Miao et al., 2021), temporal reasoning (Uddin et al., 2024; Fatemi
et al., 2024), and commonsense reasoning (Onoe et al., 2021; Lin et al., 2021; Geva et al., 2021;
Lourie et al., 2021). Despite this progress, RAC remains significantly under-explored, even though

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

it plays a crucial role in several of these reasoning tasks, such as commonsense and legal reasoning.
To fill this gap, we create ACTIONREASONINGBENCH using synthetically generated data.

Evaluating RAC and Planning Benchmarking planning capabilities of LLMs is a well-studied
area, with recent works (Zheng et al., 2024; Xie et al., 2024) demonstrating the challenges LLMs
face. While planning is a non-polynomial problem that remains inherently difficult to solve, we
believe that RAC, which is a polynomial problem, is a prerequisite for effective planning. Without
comprehending the effects of actions, LLMs are unlikely to construct coherent plans. In this work,
we address this gap by proposing ACTIONREASONINGBENCH, a diagnostic benchmark for RAC.

Previous research, such as Banerjee et al. (2020), has investigated RAC capabilities in models
like RoBERTa, focusing primarily on binary questions or single-word answers. Extending this,
He et al. (2023) assessed LLMs on a broader range of question categories. However, only two
of these—Action Executability and State Tracking—pertain directly to RAC, with the remainder
addressing the broader domain of planning. Similarly, Valmeekam et al. (2024) introduced a bench-
mark evaluating both RAC and planning, with a detailed emphasis on planning tasks but maintaining
a limited focus on RAC categories, specifically State Tracking and Action Executability. A compar-
ative analysis of the benchmarks from He et al. (2023), Valmeekam et al. (2024), and our proposed
benchmark is summarized in Table 1.

In this work, we concentrate on RAC and develop a benchmark that encompasses a wider range of
categories, enabling more precise identification of areas where LLMs underperform. Furthermore,
our benchmark introduces novel constraints involving ramifications, incorporating the indirect ef-
fects of actions. To the best of our knowledge, ramification constraints have not been addressed in
any existing benchmark, marking a significant advancement in the evaluation of RAC capabilities.

3 ACTIONREASONINGBENCH

This section provides a detailed overview of our benchmark, including its categorization, creation
methodology, and validation process. A sample instance is presented in Appendix B, where we also
describe the objects, actions, and fluents within the domain.

3.1 QUESTION CATEGORIES

In our benchmark, the questions are organized into six distinct categories, each designed to assess a
specific dimension of RAC. Below, we provide a detailed description of each category.

1. Fluent Tracking - Given the initial state and the sequence of actions performed, this cate-
gory contains questions about the fluents, i.e. properties of the domain, of an object from
the changed state. For instance, in the Grippers domain, a fluent-tracking question might
be “List all valid properties associated with ball2.”

2. State Tracking - This category extends the concept of Fluent Tracking. It involves query-
ing about the complete set of fluents in the final state. For instance, in the Blocksworld
domain, a state-tracking question might be “What are all the valid properties in this state?”

3. Action Executability - This category encompasses two types of questions related to exe-
cutability of actions. The types of questions within this category are as follows:

(a) Given an initial state, and a sequence of actions, the question focuses on identifying
the first action in the sequence that is not executable.

(b) Given an initial state and a sequence of actions leading to a final state, the task is to
identify all actions that can be executed in the final state. For instance, in the Visitall
domain, an action-executability question might be “List all executable actions present
in the current state.”

4. Effects of Actions - This category contains questions that explore the outcomes of perform-
ing a specific action. For instance, in the Mystery domain, an Effects-of-action question can
be “From the current state, the vehicle v0 moves from location l1 to l0, and has fuel-level
f6 and f5, which properties of the state will be true now?”

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

5. Numerical RAC - Questions requiring a numerical response fall under this category. These
questions may derive from any of the four previously mentioned categories. For example,
in the Spanner domain, a Numerical-RAC question can be “What are the number of exe-
cutable actions in the current state?”

6. Composite Question - This category contains questions that integrate multiple above-
mentioned categories, combining up to three distinct categories. These questions require
multiple steps of reasoning to arrive at the correct solution. For example, in the Satellite
domain, a composite question may combine aspects of Fluent Tracking and Action Exe-
cutability. An example of such a question could be “List all the properties of the state for
satellite0 before the first infeasible action in the sequence?”

3.2 FLUENT CATEGORIES

We further divide the fluents of all 8 domains into three distinct categories, each representing a
different aspect of ramifications within RAC.

1. Static Properties - These properties remain unchanged regardless of any action performed.
For instance, the property “connected” in the Visitall domain represents whether two loca-
tions are connected, a relationship that remains constant irrespective of the robot’s action,
which may involve moving, picking up, or placing down objects. In this domain, the con-
nectivity between locations remains unchanged, irrespective of any action.

2. Base Fluents - These fluents can change as a direct result of an action and do not depend on
other fluents. For example, in the Grippers domain, the fluent “carry” indicates whether
an object is being carried by a robot’s gripper. This fluent can change if the action pick or
drop is performed.

3. Ramification Fluents - These fluents are influenced indirectly by other fluents, and action
descriptions do not explicitly dictate their changes. Instead, they are determined by the
dependencies and relationships within the system. Ramification fluents are further divided
into two sub-categories:

(a) Derived Fluents - These fluents rely on the state of other fluents, reflecting a level of
dependency. Changes to them occur as a consequence of changes in the fluents they
depend on rather than through direct action. For instance, the fluent “stable” in the
Blocksworld domain is considered a derived fluent as its state depends on the fluents
“clear” and “on table”. This relationship can be described as: “Blocks are stable
when clear and on the table”. Furthermore, fluent “clear” is itself a derived fluent,
dependent on the fluent “on”, which makes “stable” a second-level indirect effect.

(b) Self-Derived Fluents - These fluents rely on constraints related to themselves rather
than other fluents. For example, in the Depot domain, the fluent “at” represents the
location of a truck, which can only be at one location at any given time. If the truck
is at location l0, it cannot simultaneously be at location l1. Such constraints are ex-
plicitly included in the domain description, for example, “A truck can only be in one
location at a time”.

Classification of every fluent across all 8 domains can be found in Appendix I. Furthermore, for each
fluent type, we generate questions involving negative fluents, i.e. fluents that are false, which allows
us to evaluate LLM’s comprehension of negation within RAC contexts.

3.3 DATASET STRUCTURE AND VARIATIONS

Selected Domains ACTIONREASONINGBENCH requires domains that facilitate the evaluation of
LLMs on both short and long sequences of meaningful actions, where the effects and preconditions
of these actions are succinctly described. Additionally, these domains should reflect real-world
scenarios. To meet these criteria, we selected 8 domains Blocksworld, Depots, Driverlog, Grippers,
Mystery, Satellite, Spanner, and Visitall–sourced from the International Planning Competition (IPC),
covering the years 1998 to 2014. These domains are commonly used as benchmarks for evaluating
advanced planning systems and provide a robust foundation for research in automated planning.
Appendix G provides a detailed description of each domain. Notably, even state-of-the-art LLMs

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

like GPT-4o are not capable of generating diverse domains or action sequences that conform to the
precise constraints outlined in these domain descriptions, justifying the reliance on IPC domains.

Domain Descriptions and Ramifications The domains provided by the IPC are described using
the Planning Domain Definition Language (PDDL), a formal language designed to model deter-
ministic actions and state transitions for planning problems. Further information on PDDL can be
found in Appendix H.1. In this study, we initially translated the PDDL-based domains into nat-
ural language. Subsequently, ramification constraints were introduced into these natural language
descriptions. The process underwent validation by two experts in the RAC domain to ensure correct-
ness. Given that the category Action Executability focuses on determining whether the action can be
performed rather than analyzing its effect, we concentrated on the categories Fluent Tracking, State
Tracking, and Effects of Actions when introducing ramifications.

Action-Sequence Lengths In order to fine-tune LLMs, we generate a comprehensive set of ques-
tions that span various action-sequence lengths, specifically 1, 5, 10, 15, and 19. This range is
chosen to capture increasing complexities in RAC. We curate a distinct subset of questions with
action-sequence lengths of 1, 10, and 19 for evaluation. This subset is selected to assess the model’s
performance across the action sequences range.

Answer Types We formulate two distinct types of questions based on the expected answer format.
The first type consists of binary questions, where the response is either True or False. The second
type involves subjective answers, which encompass a range of multiple objects, actions, or fluents.

3.4 DATA CREATION & VALIDATION

IPC Domain
(PDDL)

PDDL Instances &
Plans

Initial
State

Action-State
Space for every

Action (from 1 to 19)

ASP Code
Templated Question

Generator

Templated
Questions

Len 1

Templated Script

Stage 1

Templated
Script

Instance
Solver

Plan
Validator

Final
State

Stage 2 Stage 3 Stage 4

ASP Instances &
Plans

IPC Domain
(ASP) +

Templated
Questions

Len 19

Llama-3.1-
70B-Instruct

NL
Questions

Len 1

NL
Questions

Len 19

Generating Instances Converting to ASP Generating State Space Generating Questions

Figure 1: Overview of the question generation pipeline for ACTIONREASONINGBENCH. Blue
blocks represent “Generated Data”, and green blocks represent “Code used in the pipeline”. Stage
1 involves generating states and plans using Helmert (2006) and validating them with Howey et al.
(2004). In Stage 2, PDDL instances and plans are converted to ASP. Stage 3 computes the action-
state space through ASP. Stage 4 generates questions using templates, which are then rephrased to
natural language via Llama-3.1-70B-Instruct.

The question generation process follows a four-stage pipeline, as illustrated in Figure 1. The se-
lected domains from the IPC are represented in PDDL (see Appendix G for examples). First, these
PDDL representations are used to generate 10 pairs of initial and goal conditions. A PDDL solver
(Helmert, 2006) and validator (Howey et al., 2004) are then employed to obtain and validate the
action sequences necessary to transition from the initial to the goal state. In the second stage, the
PDDL domains, instances, and action sequences are converted into Answer Set Programming (ASP)
descriptions using Python-based templates.

In the third stage, ASP solvers are used to generate the action-state space and extract fluents for
each state, along with identifying all executable and inexecutable actions. Further details on these

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

formal languages are provided in Appendix H. Finally, the fourth stage involves converting the
action-state data into questions using a Python template. Up to three natural language variations
are created for every object, action, and fluent. These templated sequences are then paraphrased to
Llama-3.1-70B-Instruct to ensure they sound natural and avoid repetition in long action sequences.
Three independent annotators review both the templated and the paraphrased versions to assess their
naturalness, as detailed in Appendix D. Additionally, all eight domain descriptions were manually
translated from PDDL to natural language.

3.5 DATA SPLITS
Test Set Train Set

Fluent Tracking 438 57,906
State Tracking 382 12,636
Action Executability 450 9,562
Effects of Actions 417 8,939
Numerical Reasoning 414 31,506
Composite Questions 1,397 28,688

Static Properties 237 12,458
Base Fluents 231 10,461
Derived Fluents 366 15,946
Self-Derived Fluents 390 23,436
Mixed Fluents 2,274 86,936

Total Unique Questions 3,498 149,237

Table 2: Overview of the test and train sets across
Question and Fluent Categories. The “Mixed Flu-
ents” category represents questions that involve
more than one type of fluent.

The benchmark was divided into two parts: one
for training and the other for testing the LLMs,
ensuring a balanced representation of question
categories across the 8 domains. The Com-
posite Questions category is slightly larger in
the test set, as it combines multiple categories,
leading to increased questions. Table 2 pro-
vides an overview of the distribution of ques-
tions and their corresponding categories across
both the training and testing sets. The test set
contains 3,498 questions, including 2,195 bi-
nary and 1,303 free-answer questions. Finally,
we designed both zero-shot-CoT and few-shot-
3 prompts for all the questions in the test set.

4 EXPERIMENTS AND EVALUATION

Models To evaluate our benchmark, we tested four LLMs and employed two prompting tech-
niques. The LLMs include two proprietary models–GPT-4o (Achiam et al., 2023) and o1-preview
(OpenAI, 2024)–alongside two open-source models, Llama-3.1-8B-Instruct and Llama-3.1-70B-
Instruct (Dubey et al., 2024). Each LLM was evaluated using both few-shot prompting with three
examples (few-shot-3) Brown (2020) and zero-shot-CoT Kojima et al. (2022) prompting.

While the entire dataset requires reasoning abilities, the ramification subset involves the most com-
plex and challenging reasoning tasks. Given that o1-preview is specifically optimized for reasoning
tasks and incurs significantly higher costs compared to GPT-4o1, we restricted its use to the ramifi-
cation subset, where its superior reasoning capabilities are expected to provide the greatest benefit.
Utilizing o1-preview across the entire dataset would not be cost-effective, as its advantages would
be less pronounced for simpler reasoning tasks.

To ensure a fair evaluation of the standalone reasoning capabilities of LLMs, we deliberately avoided
incorporating external tools or systems. Although integrating formal solvers (e.g., PDDL-based
planners) with LLMs could potentially improve performance, our primary focus is on assessing the
intrinsic reasoning abilities of these models.

Evaluation & Metrics ACTIONREASONINGBENCH includes two types of answer formats, as
outlined in Section 3.3: binary (true/false) and free-form responses. The evaluation process was per-
formed separately for each answer type. For binary questions, we extracted “true” and “false” key-
words from the model’s response and compared them to the ground truth. Since free-form answers
can’t be evaluated using exact string matching, we employed human evaluation for the ramification
questions. While human evaluation is highly accurate, it is not scalable, so we used Llama-3.1-70B-
Instruct to assess all free-form responses. The specific prompt used to evaluate the LLMs and the
correlation between Llama-3.1-70B-Instruct and human evaluations are detailed in Appendix F . For
all experiments, we report the accuracy along with the standard error of the mean (SEM), calculated
as SEM = σ√

n
, where σ represents the standard deviation, and n is the sample size.

1As of Oct 2024, o1-preview is six times more expensive than GPT-4o https://openai.com/api/
pricing/

6

https://openai.com/api/pricing/
https://openai.com/api/pricing/

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Fine-tuning We fine-tuned the Llama-3.1-8B model using the training data split outlined in Sec-
tion 3.5. Due to the limited computing power, we excluded any data samples that exceeded a context
length of 4096 tokens. The fine-tuning process was performed separately for free-response and bi-
nary questions. Detailed information on the fine-tuning procedure is provided in Appendix E. All
experiments were executed using 8×H100 GPUs.

5 RESULTS AND DISCUSSION

This section presents the results and analysis using ACTIONREASONINGBENCH. The Zero-shot-
CoT results for each LLM on both the binary and free-response subsets of the test set are provided
in Tables 5 and 3 respectively. Similarly, the Few-shot-3 results for each LLM evaluated on these
same subsets are displayed in Tables 6 and 7. The detailed analysis of the effects when ramification
constraints are incorporated into the descriptions is discussed in Section 5.1.

Action Seq. Ques Categories GPT-4o Llama-8B-Inst Llama-70B-Inst Finetuned Llama-8B

1

Fluent Tracking 88.464.43 30.776.40 71.156.28 76.925.84
State Tracking 73.336.59 28.896.76 64.447.14 75.566.41

Action Executability 27.086.41 08.333.99 33.336.80 31.256.69
Effects of Actions 82.506.01 20.006.32 67.507.41 60.537.93
Numerical RAC 11.114.68 06.673.72 04.443.07 08.894.24

Composite Questions 64.533.36 24.633.02 43.353.48 72.413.14

Average 60.282.35 21.711.98 45.962.39 61.022.35

10

Fluent Tracking 82.005.43 36.006.79 62.006.86 80.005.66
State Tracking 74.426.65 18.605.93 60.477.46 66.677.27

Action Executability 34.097.15 11.364.78 40.917.41 47.737.53
Effects of Actions 76.096.29 19.575.85 65.227.02 62.227.23
Numerical RAC 10.204.32 02.042.02 06.123.42 10.204.32

Composite Questions 59.113.45 16.262.59 45.323.49 58.623.46

Average 57.012.37 17.011.80 45.982.39 55.662.39

19

Fluent Tracking 67.447.15 27.916.84 67.447.15 67.447.15
State Tracking 75.516.14 16.335.28 51.027.14 65.316.80

Action Executability 41.677.12 08.333.99 29.796.67 37.506.99
Effects of Actions 76.606.18 14.895.19 46.817.28 61.707.09
Numerical RAC 10.204.32 06.123.42 08.163.91 06.123.42

Composite Questions 60.303.47 08.541.98 38.193.44 49.253.54

Average 56.782.38 11.721.54 39.172.34 48.052.40

Table 3: Performance comparison of GPT-4o, Llama-3.1-8B-Instruct, Llama-3.1-70B-Instruct, and
fine-tuned Llama-3.1-8B on the free-answer subset of the benchmark, evaluated without the ramifi-
cations constraints using the zero-shot-CoT. The results are categorized up by the action-sequence
lengths and question categories.

Performance across Domains In our evaluation, GPT-4o demonstrated the highest performance
on the Grippers domain and the lowest on the Satellite domain, with a performance gap of 15.53%.
For both Llama-3.1-8B-Instruct and Llama-3.1-70B-Instruct, the best performance is also on the
Grippers domain, but their worst performance occurs on the Mystery domain, with differences of
19.24% and 24.04%, respectively. Interestingly, the second lowest performing domain for GPT-4o is
Mystery, while for the Llama models, it is Satellite. A detailed breakdown by domains is presented
in Appendix C.3. This suggests that despite potential differences in pre-training data, these models
exhibit a similar relative understanding of the domains.

Furthermore, when correlating these results with the State Space Complexity metric (described in
App. G), traditionally used to gauge complexity for classical AI systems, we observe an inconsistent
trend. This discrepancy implies that LLMs may employ different heuristics from those of traditional
AI systems when tackling RAC problems, an observation that opens avenues for future exploration.

Performance across Question Categories LLMs perform well in Fluent Tracking, State Track-
ing, and Effects of Actions, demonstrating their strength in keeping track of changes. However, they

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1 10 19
Action-Sequence Length

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

(a) GPT-4o

1 10 19
Action-Sequence Length
(b) Llama-3.1-70B-Inst

1 10 19
Action-Sequence Length
(c) Llama-3.1-8B-Instruct

Base Fluents Derived Fluents Self-Derived Fluents Static Properties

Figure 2: Performance for every Fluent Category for both binary and free-answer questions for
every Action-Sequence length for GPT-4o, Llama-3.1-70B-Instruct, and Llama-3.1-8B-Instruct for
Zero-shot-CoT prompt. Note: Bars represent SEM.

struggle with Action Executability, Composite Questions, and Numerical RAC. The performance of
all LLMs on free-response complex questions highlights significant challenges, especially in the Nu-
merical RAC category. This category reformulates existing question types into numerical formats,
a domain where all tested LLMs exhibit notable difficulty. Specifically, performance on numerical
questions related to Action Executability is 8.65% lower than on questions in the Fluent Tracking
category. Previous research, such as (Ahn et al., 2024; McCoy et al., 2023), indicates that LLMs
struggle with arithmetic reasoning and counting, which, when mixed with the RAC questions, likely
contributes to the poor performance in the Numerical RAC category.

For Composite Questions, the combination of Fluent Tracking and Action Executability proves easier
to answer than the combination of State Tracking and Action Executability, with a 16.32% perfor-
mance difference. This can be attributed to the fact that the State Tracking category is a superset of
the Fluent Tracking category, thereby explaining the observed difference in difficulty.

Performance across Fluent Categories As evident from Figure 2 and Table 9, across all LLMs
examined in the study, a consistent trend emerges in which performance on Static Properties de-
creases as the length of action-sequence increases. While these static properties remain unchanged
throughout the actions, they might get overlooked in longer sequences, likely due to their absence
in the effect of any action. This phenomenon resembles the “needle in a haystack” challenge in
long-context scenarios, where LLMs struggle to recall specific information embedded within a long
context (Zhang et al., 2024). Conversely, Base Fluents maintain stable performance across all action
sequences, indicating that the LLMs consistently capture the direct effects of actions. Ramification
fluents exhibit a steady decline in performance as the sequence lengthens, particularly affecting the
subcategory of Derived Fluents, which suggests that LLMs have more difficulty handling indirect
effects. Finally, Mixed Fluents, which involve more than one fluent type, show a consistent decline
in performance as the length of action sequences increases.

Performance across Action-Sequence Lengths Figure 3 illustrates the performance of the three
models–GPT-4o, Llama-3.1-70B-Instruct, and Llama-3.1-8B-Instruct–across varying action se-
quence lengths in a zero-shot-CoT setting. The results combine both binary and free-response
formats, with detailed data available in Tables 5 and 3. Generally, model accuracy declines as
the action-sequence length increases, a pattern that holds for most categories. However, GPT-4o
deviates from this trend in the State Tracking category, where performance first decreases and then
improves. Since this trend is not observed with the other two models, and the results lie within the
margin of error, we believe this is an outlier. In contrast, the Effects of Actions category consistently
deviates from this trend, likely due to the nature of the task, which focuses on changes resulting
from the last action, making it less dependent on the sequence of actions.

Model Parameters and Fine-tuning As demonstrated in Tables 5 and 3, the Llama-3.1-70B-
Instruct model consistently outperforms the smaller Llama-3.1-8B-Instruct model, with an average
performance improvement of 20.84%. This improvement is likely due to the larger model’s supe-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 10 19
Action-Sequence Length

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

(a) GPT-4o

1 10 19
Action-Sequence Length
(b) Llama-3.1-70B-Inst

1 10 19
Action-Sequence Length
(c) Llama-3.1-8B-Instruct

Fluent Trk. State Trk. Action Exec. Effects of Ac. Num. Reas. Composite

Figure 3: Performance for every QUestion Category for both binary and free-answer questions for
every Action-Sequence length for GPT-4o, Llama-3.1-70B-Instruct, and Llama-3.1-8B-Instruct for
Zero-shot-CoT prompt. Note: Bars represent SEM.

rior reasoning capabilities stemming from its increased number of parameters. A similar trend is
observed when comparing GPT-4o to Llama-3.1-70B-Instruct, where GPT-4o exhibits an average
performance increase of 8.64%. Although the specific size of GPT-4o remains undisclosed, it is
widely speculated to be in the trillions of parameters2. Notably, fine-tuning the Llama-3.1-8B model
on the training set resulted in substantial gains in both binary and free-answer tasks, with an average
performance increase of 33.68% across the test set, even outperforming GPT-4o by 4.2%.

Impact of Few-Shot Examples on Model Performance As shown in Tables 5 and 6, the inclusion
of few-shot examples for binary answer categories does not significantly enhance model accuracy.
This limitation is especially pronounced in models such as GPT-4o and Llama-3.1-70B-Instruct,
which exhibit a relative performance decline of approximately 3.5% compared to zero-shot-CoT
conditions. We hypothesize that this decrease may be attributed to the few-shot examples inadver-
tently leading the model toward detecting spurious correlations. In contrast, the model relies more
heavily on its internal reasoning capabilities in a zero-shot-CoT setting, potentially mitigating bi-
ases introduced by example-driven patterns. However, as seen from Tables 3 and 7, the few-shot
approach shows effectiveness in free-answer questions only open-source LLMs.

LLMs Struggle with Negative Fluents Our study reveals a consistent pattern across all the LLMs
examined as demonstrated in Table 10, wherein their performance declines when tasked with ques-
tions involving negative fluents compared to those focused on fluents that are true. Specifically, we
observed a 12.16% decrease in accuracy on these negative fluent tasks. Furthermore, when questions
required reasoning about both true and false fluents simultaneously, LLMs exhibited competence in
identifying the true fluents but demonstrated difficulty in correctly recalling the false ones.

5.1 RAMIFICATIONS RESULTS

As discussed in Section 4, the performance on ramification fluents is evaluated for two LLMs:
GPT-4o, the highest-performing LLM, and o1-preview, the most recent state-of-the-art LLM. Table
4 presents the performance of both models when ramification constraints are introduced. Further
examples of the model responses to ramification-related questions can be found in the Appendix J.

GPT-4o Performance GPT-4o did not answer any ramification-related questions correctly, as de-
picted in Table 4. Upon manual inspection of its outputs, it became evident that GPT-4o frequently
failed to mention ramification fluents, even when these were explicitly detailed in the domain de-
scription. In instances where it did address ramification fluents, the responses were incorrect or
incomplete, with some fluents being omitted. We hypothesize that GPT-4o may have encountered
the domain data during pre-training and relied on memorized effects of actions, as the experimen-
tal domains were derived from publicly available IPC datasets. Since the ramification fluents were

2GPT-4o and Gemini 1.5 Pro: How the New AI Models Compare - CNET

9

https://www.cnet.com/tech/services-and-software/gpt-4o-and-gemini-1-5-pro-how-the-new-ai-models-compare/

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Action Sequence Question Categories Free Answer Binary Questions

GPT-4o o1-preview GPT-4o o1-preview

1
Fluent Tracking 00.0000.00 00.0000.00 71.4317.10 100.0000.00
State Tracking 00.0000.00 20.0017.89 100.0000.00 100.0000.00

Effects of Actions 00.0000.00 40.0021.91 71.4317.10 57.1418.70

Average 00.0000.00 25.0012.49 80.9508.57 85.7107.60

10
Fluent Tracking 00.0000.00 00.0000.00 57.1418.70 57.1418.70
State Tracking 00.0000.00 33.3319.24 42.8618.70 -

Effects of Actions 00.0000.00 14.2813.22 71.4317.10 100.0000.00

Average 00.0000.00 23.0711.68 57.1410.80 78.5710.90

19
Fluent Tracking 00.0000.00 33.3327.21 42.8618.70 57.1418.70
State Tracking 00.0000.00 00.0000.00 57.1418.70 -

Effects of Actions 00.0000.00 00.0000.00 71.4317.10 85.7113.20

Average 00.0000.00 07.6907.38 57.1410.80 71.4312.10

Table 4: Performance comparison of GPT-4o and o1-preview on both the free-answer and binary
question subset of the benchmark, evaluated with the ramifications constraints using the zero-shot-
CoT. The results are categorized up by the action-sequence lengths and question categories with a
“-” indicating no response.

manually created and integrated for this study, this evaluation assesses the model’s reasoning abili-
ties without leveraging pre-existing knowledge. This likely explains why GPT-4o failed to generate
ramification fluents, as its pre-training included only the original fluents from the domains.

o1-preview Performance o1-preview, a recently developed LLM optimized for reasoning tasks
and incorporating a novel run-time inference mechanism OpenAI (2024), demonstrated significantly
better performance on ramification-related questions compared to GPT-4o, as presented in Table 4.
A detailed review of its outputs showed that o1-preview can correctly identify most ramification
fluents. However, the model struggles with fluents involving negation, which consistently poses
a challenge. It often omitted certain fluents in its final answers and, in some cases, incorrectly
evaluated the ramification fluents.

6 CONCLUSION

In this work, we introduced a new diagnostic benchmark, ACTIONREASONINGBENCH, designed
to comprehensively evaluate the performance of large language models (LLMs) on reasoning about
actions and change (RAC). By assessing various LLMs across eight domains and six key dimensions
of RAC, our findings indicate that while LLMs demonstrate moderate proficiency on traditional
RAC tasks, such as Fluent Tracking, State Tracking, Action Executability, and Effects of Actions,
they exhibit significant challenges when addressing more complex and novel questions, particularly
in areas like Numerical RAC and Composite Questions, with an average performance drop of 17.9%.
This highlights a substantial gap in the current ability of LLMs to handle complex reasoning tasks.

Additionally, we explored the indirect effects of actions, known as ramifications, where even state-
of-the-art models show considerable limitations. For example, GPT-4o could not solve any questions
involving ramifications, and the o1-preview model achieved a low score of 18.4%. These results un-
derscore the pressing need for further research and advancements in RAC reasoning, especially in
addressing indirect effects and more advanced reasoning tasks. Improving LLMs’ capabilities in
these areas is crucial for enhancing their performance in dynamic and interactive environments. Our
findings reinforce the challenges LLMs face in RAC tasks, which, despite their polynomial com-
plexity in cases without ramifications, serve as prerequisites for more advanced planning problems
that are often NP-complete or beyond. Improving LLM performance in RAC is a pivotal step toward
overcoming broader planning challenges.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. arXiv preprint arXiv:2402.00157, 2024.

Pratyay Banerjee, Chitta Baral, Man Luo, Arindam Mitra, Kuntal Pal, Tran C Son, and Neeraj
Varshney. Can transformers reason about effects of actions? arXiv preprint arXiv:2012.09938,
2020.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems, 2021. URL https://arxiv. org/abs/2110.14168, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Bahare Fatemi, Mehran Kazemi, Anton Tsitsulin, Karishma Malkan, Jinyeong Yim, John Palowitch,
Sungyong Seo, Jonathan Halcrow, and Bryan Perozzi. Test of time: A benchmark for evaluating
llms on temporal reasoning. arXiv preprint arXiv:2406.09170, 2024.

Zhiwei Fei, Xiaoyu Shen, Dawei Zhu, Fengzhe Zhou, Zhuo Han, Songyang Zhang, Kai Chen,
Zongwen Shen, and Jidong Ge. LawBench: Benchmarking Legal Knowledge of Large Language
Models, September 2023.

Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application of theorem proving
to problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did Aristotle
Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies, January
2021.

Neel Guha, Julian Nyarko, Daniel Ho, Christopher Ré, Adam Chilton, Aditya K, Alex Chohlas-
Wood, Austin Peters, Brandon Waldon, Daniel Rockmore, Diego Zambrano, Dmitry Talisman,
Enam Hoque, Faiz Surani, Frank Fagan, Galit Sarfaty, Gregory Dickinson, Haggai Porat, Jason
Hegland, Jessica Wu, Joe Nudell, Joel Niklaus, John Nay, Jonathan Choi, Kevin Tobia, Margaret
Hagan, Megan Ma, Michael Livermore, Nikon Rasumov-Rahe, Nils Holzenberger, Noam Kolt,
Peter Henderson, Sean Rehaag, Sharad Goel, Shang Gao, Spencer Williams, Sunny Gandhi, Tom
Zur, Varun Iyer, and Zehua Li. LegalBench: A Collaboratively Built Benchmark for Measur-
ing Legal Reasoning in Large Language Models. Advances in Neural Information Processing
Systems, 36:44123–44279, December 2023.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
Coady, David Peng, Yujie Qiao, Luke Benson, Lucy Sun, Alex Wardle-Solano, Hannah Szabo,
Ekaterina Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu, Brian Wong, Malcolm Sailor, An-
song Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Alexander R. Fabbri, Wojciech Kryscin-
ski, Semih Yavuz, Ye Liu, Xi Victoria Lin, Shafiq Joty, Yingbo Zhou, Caiming Xiong, Rex Ying,
Arman Cohan, and Dragomir Radev. FOLIO: Natural Language Reasoning with First-Order
Logic, May 2024.

Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, Christian Muise, Ronald Brachman, Francesca
Rossi, and Peter Stone. An introduction to the planning domain definition language, volume 13.
Springer, 2019.

Weinan He, Canming Huang, Zhanhao Xiao, and Yongmei Liu. Exploring the capacity of pretrained
language models for reasoning about actions and change. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 4629–
4643, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence Research, 26:
191–246, 2006.

Richard Howey, Derek Long, and Maria Fox. Val: Automatic plan validation, continuous effects
and mixed initiative planning using pddl. In 16th IEEE International Conference on Tools with
Artificial Intelligence, pp. 294–301. IEEE, 2004.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Bill Yuchen Lin, Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Xiang Ren, and William W. Cohen.
Differentiable Open-Ended Commonsense Reasoning, June 2021.

Do Xuan Long, Hai Nguyen Ngoc, Tiviatis Sim, Hieu Dao, Shafiq Joty, Kenji Kawaguchi, Nancy F
Chen, and Min-Yen Kan. Llms are biased towards output formats! systematically evaluating and
mitigating output format bias of llms. arXiv preprint arXiv:2408.08656, 2024.

Nicholas Lourie, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. UNICORN on RAINBOW:
A Universal Commonsense Reasoning Model on a New Multitask Benchmark, March 2021.

Man Luo, Shrinidhi Kumbhar, Ming shen, Mihir Parmar, Neeraj Varshney, Pratyay Banerjee, Somak
Aditya, and Chitta Baral. Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing
Logical Reasoning Capabilities of Language Models, March 2024.

John McCarthy et al. Situations, actions, and causal laws. Comtex Scientific, 1963.

R Thomas McCoy, Shunyu Yao, Dan Friedman, Matthew Hardy, and Thomas L Griffiths. Embers
of autoregression: Understanding large language models through the problem they are trained to
solve. arXiv preprint arXiv:2309.13638, 2023.

Sheila A McIlraith. Integrating actions and state constraints: A closed-form solution to the ramifi-
cation problem (sometimes). Artificial Intelligence, 116(1-2):87–121, 2000.

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su. A Diverse Corpus for Evaluating and Devel-
oping English Math Word Problem Solvers, June 2021.

Yasumasa Onoe, Michael JQ Zhang, Eunsol Choi, and Greg Durrett. Creak: A dataset for common-
sense reasoning over entity knowledge. arXiv preprint arXiv:2109.01653, 2021.

OpenAI. Openai o1 system card, 2024. URL https://cdn.openai.com/
o1-system-card-20240917.pdf. Accessed: 2024-09-30.

Mihir Parmar, Nisarg Patel, Neeraj Varshney, Mutsumi Nakamura, Man Luo, Santosh Mashetty,
Arindam Mitra, and Chitta Baral. Towards Systematic Evaluation of Logical Reasoning Ability
of Large Language Models, April 2024.

Nisarg Patel, Mohith Kulkarni, Mihir Parmar, Aashna Budhiraja, Mutsumi Nakamura, Neeraj Varsh-
ney, and Chitta Baral. Multi-logieval: Towards evaluating multi-step logical reasoning ability of
large language models. arXiv preprint arXiv:2406.17169, 2024.

Raymond Reiter. Knowledge in action: logical foundations for specifying and implementing dy-
namical systems. 2001.

Evangelia Spiliopoulou, Artidoro Pagnoni, Yonatan Bisk, and Eduard Hovy. Events realm: Event
reasoning of entity states via language models. In Proceedings of the 2022 Conference on Empir-
ical Methods in Natural Language Processing, pp. 1982–1997, 2022.

Zhi Rui Tam, Cheng-Kuang Wu, Yi-Lin Tsai, Chieh-Yen Lin, Hung-yi Lee, and Yun-Nung Chen.
Let me speak freely? a study on the impact of format restrictions on performance of large language
models. arXiv preprint arXiv:2408.02442, 2024.

Md Nayem Uddin, Amir Saeidi, Divij Handa, Agastya Seth, Tran Cao Son, Eduardo Blanco,
Steven R Corman, and Chitta Baral. Unseentimeqa: Time-sensitive question-answering beyond
llms’ memorization. arXiv preprint arXiv:2407.03525, 2024.

12

https://cdn.openai.com/o1-system-card-20240917.pdf
https://cdn.openai.com/o1-system-card-20240917.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
hampati. Planbench: An extensible benchmark for evaluating large language models on planning
and reasoning about change. Advances in Neural Information Processing Systems, 36, 2024.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents. arXiv preprint
arXiv:2402.01622, 2024.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluat-
ing text generation with bert. arXiv preprint arXiv:1904.09675, 2019.

Zhenyu Zhang, Runjin Chen, Shiwei Liu, Zhewei Yao, Olatunji Ruwase, Beidi Chen, Xiaoxia Wu,
and Zhangyang Wang. Found in the middle: How language models use long contexts better via
plug-and-play positional encoding. arXiv preprint arXiv:2403.04797, 2024.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova,
Le Hou, Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. Natural plan: Benchmarking llms on
natural language planning. arXiv preprint arXiv:2406.04520, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A LIMITATIONS & FUTURE WORK

While ACTIONREASONINGBENCH provides a diagnostic assessment of LLMs on RAC, it repre-
sents an early step in this area and has several limitations, including but not limited to the following:

1. Although RAC is not inherently dependent on the English language, the current version of
ACTIONREASONINGBENCH is limited to questions formulated in English.

2. Although there are more complex types of RAC, including incorporating more reasoning
types, exploring those remains beyond the scope of this work and is left as a direction for
future research.

3. While the IPC domains in our work cover many scenarios, they may introduce a bias to-
wards planning-specific domains. Expanding the dataset to include more domains could
help mitigate this bias.

4. Despite our efforts to evaluate a variety of LLMs, including open and proprietary LLMs,
our assessment did not cover models with different architectures or training approaches due
to resource limitations.

5. Recent studies by Long et al. (2024) and Tam et al. (2024) indicate that LLM performance
can fluctuate depending on the prompt format. This variation may lead to a marginal im-
provement in the performance of LLMs on ACTIONREASONINGBENCH.

6. Our free-answer evaluation, which relies on prompting Llama-3.1-70B-Instruct, isn’t per-
fect and reflects an ongoing challenge of evaluating the free-answers within the NLP com-
munity.

B DESCRIBING AN INSTANCE FROM ACTIONREASONINGBENCH

Blocksworld domain with Ramifications for a single sequence of action for Fluent Tracking

[DOMAIN DESCRIPTION]
A block can only be picked up if it is clear, on the table, and the hand is empty, resulting in
the block being held. A held block can be put down, placing it back on the table. Blocks can
be stacked if the first block is held and the second block is clear, causing the first block to
rest on top of the second. Unstacking occurs when the hand is empty, the first block is clear,
and on top of the second, resulting in the first block being held again. A block can’t be at
two locations at the same time and is considered clear if nothing is on top of it and it’s not
held, and the hand is empty if it’s not holding anything. Blocks are stable when clear and on
the table, and they can be painted if stable and the hand is empty. A block is considered on
display if it can be painted and has no other block on top of it.

[INITIAL CONDITIONS]
Block b1 is situated on the table, block b2 is not stacked with any other block, block b2 is
also on the table, block b3 is not stacked with any other block, block b3 is positioned on top
of block b7, block b4 is stacked on top of block b1, block b5 is not stacked with any other
block, block b5 is placed on top of block b4, block b6 is on the table, block b7 is stacked on
top of block b6, and the hand is empty.

[QUESTION]
Starting from the initial condition, the following actions are taken: block b3 is unstacked
from the top of block b7 to achieve the current state. In this state, what are the valid proper-
ties (including both affirmative and negated properties) for b7? If there are no valid proper-
ties, write None.

In the domain description, actions and their corresponding effects on the state are outlined, including
the necessary conditions for performing these actions. The initial conditions describe the starting
configuration of objects within the domain. A typical scenario involves executing a sequence of
actions that alter the configuration of the state, followed by a query. In the example provided, the

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

question falls under the category of fluent tracking, which asks about a specific set of properties
associated with the object ”block b7” after one action has been performed.

The objects involved in this example are as follows:

• block b1
• block b2
• block b3
• block b4
• block b5
• block b6
• block b7
• hand

The properties of the “block” object include:

• Block X on top of block Y
• Block X is on the table
• Block X is clear
• Block X is stable
• Block X can be painted
• Block X can be displayed
• Block X is held

The properties of the “hand” object are:

• The hand is empty
• The hand is holding block x

Several ramification constraints (i.e., properties that depend on other properties) are present in
“Blocksworld”:

• Clear: depends on the properties ”on top of” and ”held”
• Stable: depends on the properties ”clear” and ”on the table”
• Paint: depends on the properties ”stable” and ”hand is empty”
• Display: depends on the properties ”painted” and ”on top”
• On top of: depends on itself, since a block can’t be at two locations at the same time
• Hand is holding a block: depends on itself, since the hand cannot hold two blocks at the

same time

The valid actions that can be performed within this domain include:

• Picking up a block
• Putting down a block
• Stacking a block on top of another block
• Unstacking a block from top of another block

C ADDITIONAL RESULTS

C.1 ZERO-SHOT-COT BINARY RESULT

Table 5 shows the results on GPT-4o, Llama-3.1-8B-Instruct, and Llama-3.1-70B-Instruct on zero-
shot-CoT prompting.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Action Seq. Ques Categories GPT-4o Llama-8B-Inst Llama-70B-Inst Fine-tuned Llama-8B

1

Fluent Tracking 94.442.70 80.004.78 90.123.31 89.063.90
State Tracking 85.944.35 80.008.00 79.416.93 98.551.44

Action Executability 93.142.50 79.124.26 94.122.33 94.743.62
Effects of Actions 78.494.26 70.895.11 77.174.38 96.552.40
Numerical RAC 62.825.47 42.118.01 57.386.33 49.375.62

Composite Questions 74.564.08 50.434.62 67.393.99 94.421.57

Average 81.261.71 66.432.30 77.761.85 87.761.43

10

Fluent Tracking 91.433.35 68.426.16 84.934.19 89.863.63
State Tracking 75.865.62 76.199.29 86.216.40 96.432.48

Action Executability 70.874.48 65.675.80 74.494.40 81.828.22
Effects of Actions 61.224.92 63.865.27 60.824.96 96.672.32
Numerical RAC 55.215.08 65.528.83 54.396.60 51.145.33

Composite Questions 82.963.24 71.004.54 68.923.80 88.792.07

Average 72.501.89 67.792.47 70.122.04 84.061.59

19

Fluent Tracking 91.533.63 67.356.70 77.275.16 85.714.68
State Tracking 85.944.35 83.338.78 81.825.81 96.362.52

Action Executability 66.674.60 53.667.79 66.994.63 77.276.32
Effects of Actions 70.004.83 54.696.22 69.324.92 97.102.02
Numerical RAC 50.005.21 42.428.60 47.546.39 66.295.01

Composite Questions 78.423.49 53.095.54 68.973.84 86.182.20

Average 72.311.91 56.642.93 68.242.07 84.621.53

Table 5: Performance comparison of GPT-4o, Llama-3.1-8B-Instruct, Llama-3.1-70B-Instruct, and
fine-tuned Llama-3.1-8B on the binary subset (True/False) of the benchmark, evaluated without
the ramifications constraints using the zero-shot-CoT. The results are categorized up by the action-
sequence lengths and question categories.

C.2 FEW-SHOT-3 RESULTS

Table 6 and 7 presents the results using the Few-shot-3 setting. These tables support the results
showed in Section 5.

C.3 RESULTS BY DOMAINS

Table 8 shows the results of the binary questions across every domain in our benchmark.

C.4 RESULTS BY FLUENTS

Tables 9, 10 show the results of the binary questions across fluent types in our benchmark.

D DATA VERIFICATION

To ensure the soundness of our benchmark, we employed three independent annotators who had no
prior involvement with the project. Their task was to evaluate the naturalness of the sentences by
assigning a score from 1 to 5, where 1 indicates the least natural and 5 most natural. To make sure
that rephrasing the templated questions using Llama-3.1-70B-Instruct helps, we sample from each
domain in the dataset was represented by 5 randomly sampled instances, resulting in a total of 65
samples across all domains for both templated questions and rephrased questions, resulting in a total
of 130 samples. The annotators were provided with both the sampled instances and the following
instructions:

Instruction to the Annotators

Rate the Prompts from 1 to 5, based on how natural they appear in English.

Table 11 summarizes the naturalness scores assigned by annotators across all domains in ACTION-
REASONINGBENCH. The templated dataset received an average naturalness score of 4.2 out of

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Action Seq. Ques Categories GPT-4o Llama-8B-Inst Llama-70B-Inst

1

Fluent Tracking 85.003.57 68.424.77 82.653.82
State Tracking 91.573.05 71.954.96 89.293.37

Action Executability 95.102.14 84.313.60 93.142.50
Effects of Actions 74.194.54 73.914.58 69.894.76
Numerical RAC 58.545.44 56.765.76 56.105.48

Composite Questions 82.662.40 58.373.23 74.302.77

Average 81.921.45 67.261.80 77.261.58

10

Fluent Tracking 84.543.67 69.664.87 82.473.86
State Tracking 91.553.30 64.185.86 86.114.08

Action Executability 73.794.33 63.004.83 74.764.28
Effects of Actions 59.184.96 53.685.12 65.314.81
Numerical RAC 41.675.03 42.255.86 46.885.09

Composite Questions 82.963.24 71.004.54 68.923.80

Average 68.961.71 59.511.92 67.351.74

19

Fluent Tracking 73.264.77 63.385.72 71.084.98
State Tracking 91.013.03 63.645.13 84.273.86

Action Executability 62.864.72 54.555.00 62.864.72
Effects of Actions 69.574.80 56.635.44 66.674.89
Numerical RAC 56.995.13 49.156.51 48.395.18

Composite Questions 65.572.88 57.313.11 62.042.93

Average 68.561.71 57.581.93 64.721.76

Table 6: Performance comparison of GPT-4o, Llama-3.1-8B-Instruct, and Llama-3.1-70B-Instruct,
on the binary subset (True/False) of the benchmark, evaluated without the ramifications constraints
using the Few-shot-3 setting. The results are categorized up by the action-sequence lengths and
question categories.

5, while the paraphrased version scored 4.5, indicating the high effectiveness of Llama-3.1-70B-
Instruct in enhancing the fluency of the data. We would like to point out that the annotators partici-
pated on a voluntary basis and were informed beforehand that no financial compensation would be
provided for their contribution.

E FINE-TUNING DETAILS

In this section, we describe the fine-tuning performed on the training split of ACTIONREASONING-
BENCH described in section 3.5. We fine-tuned Llama-3.1-8B separately for binary (true/false) and
free answer questions, using 6 epochs for the former and 18 epochs for the latter. The AdamW
optimizer was used, with a batch size of 4 and gradient accumulation steps set to 8 for both of the
training setups. Due to the available compute resources, we were limited to a maximum context
length of 4096 tokens. This leaves us roughly with 27k samples for binary answers and 14.4k sam-
ples for free answer. Tables 12, 13 and 14 show the statistics of the training set that we used to train
the models.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Action Seq. Ques Categories GPT-4o Llama-8B-Inst Llama-70B-Inst

1

Fluent Tracking 76.925.84 50.006.93 75.006.00
State Tracking 73.336.59 44.447.41 73.687.14

Action Executability 56.257.16 14.585.09 38.307.09
Effects of Actions 80.006.32 35.007.54 63.648.37
Numerical RAC 08.894.24 04.443.07 13.335.07

Composite Questions 49.263.51 41.383.46 55.613.63

Average 54.502.39 35.332.30 53.732.49

10

Fluent Tracking 74.006.20 24.006.04 64.006.79
State Tracking 81.405.93 34.887.27 65.718.02

Action Executability 50.007.54 09.094.33 34.097.15
Effects of Actions 65.227.02 41.307.26 62.868.17
Numerical RAC 14.295.00 10.204.32 12.244.68

Composite Questions 43.843.48 37.933.41 48.133.65

Average 50.572.40 30.342.20 47.002.50

19

Fluent Tracking 74.426.65 44.197.57 65.127.27
State Tracking 61.226.96 28.576.45 54.557.51

Action Executability 47.927.21 10.424.41 25.006.25
Effects of Actions 73.916.47 27.666.52 60.987.62
Numerical RAC 06.123.42 06.123.42 00.000.00

Composite Questions 38.193.44 26.133.11 46.23.68

Average 45.622.39 24.372.06 42.542.44

Table 7: Performance comparison of GPT-4o, Llama-3.1-8B-Instruct, and Llama-3.1-70B-Instruct,
on the free answer subset of the benchmark, evaluated without the ramifications constraints using
the Few-shot-3 setting. The results are categorized up by the action-sequence lengths and question
categories.

Act. Seq. Ques Categories Blocksworld Depots Driverlog Grippers Mystery Satellite Spanner Visitall

1

Fluent Tracking 100.00.0 92.317.69 69.2313.32 95.244.76 100.00.0 88.248.05 88.897.62 100.00.0
State Tracking 83.339.04 93.336.67 66.6716.67 93.756.25 85.719.71 61.5414.04 62.512.5 100.00.0

Action Executability 71.4310.1 76.4710.6 76.4710.6 78.959.61 66.6711.43 76.199.52 80.09.18 47.0612.48
Effects of Act. 82.618.08 66.6712.6 85.719.71 77.279.14 100.00.0 60.013.09 80.010.69 87.58.54

Numerical RAC 64.7111.95 53.8514.39 46.6713.33 50.013.87 35.7113.29 44.4417.57 31.5810.96 31.8210.16
Composite 78.576.41 67.57.5 68.427.64 70.737.19 66.677.65 53.858.09 60.987.71 78.386.86

Average 78.953.55 73.454.17 68.874.52 77.443.64 73.214.2 64.044.51 65.894.19 70.694.24

10

Fluent Tracking 75.025.0 91.678.33 100.00.0 100.00.0 80.013.33 73.6810.38 76.199.52 94.745.26
State Tracking 86.679.09 63.6415.21 83.3311.24 73.3311.82 63.6415.21 61.5414.04 81.2510.08 87.512.5

Action Executability 52.3811.17 64.2913.29 73.6810.38 57.1411.07 46.6713.33 64.7111.95 65.010.94 55.011.41
Effects of Act. 68.09.52 66.6710.54 78.5711.38 69.579.81 78.5711.38 30.7713.32 61.5414.04 66.6710.54

Numerical RAC 57.1411.07 44.010.13 43.7512.81 37.518.3 33.3312.6 42.8611.07 29.4111.39 27.279.72
Composite 71.746.71 78.056.54 74.426.73 77.556.02 55.568.4 54.357.43 64.297.48 71.437.75

Average 67.424.09 67.744.21 74.364.05 73.913.75 57.434.94 55.044.4 63.574.25 64.84.29

19

Fluent Tracking 93.756.25 66.6712.6 62.518.3 100.00.0 71.4318.44 93.336.67 85.719.71 61.5414.04
State Tracking 91.675.76 81.2510.08 86.679.09 70.015.28 87.58.54 58.3314.86 78.5711.38 83.3316.67

Action Executability 52.1710.65 64.2913.29 57.8911.64 70.010.51 45.4510.87 56.2512.81 58.8212.3 68.1810.16
Effects of Act. 72.739.72 80.958.78 85.719.71 70.010.51 76.9212.16 41.6714.86 66.6711.43 76.4710.6

Numerical RAC 50.011.47 57.8911.64 38.4614.04 30.010.51 12.58.54 37.512.5 26.6711.82 31.8210.16
Composite 72.926.48 60.477.54 72.096.92 79.556.15 53.858.09 55.17.18 67.447.23 86.216.52

Average 71.93.65 67.194.17 68.754.4 70.314.05 54.874.7 56.674.54 64.464.37 66.974.53

Table 8: Performance across domains on GPT-4o on both the binary and free-answer subsets of the
benchmark, evaluated without the ramifications constraints using the zero-shot setting. The results
are categorized by the action-sequence lengths and question categories.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Action Seq. Fluent Types GPT-4o Llama-8B-Inst Llama-70B-Inst Finetuned Llama-8B

1

Base Fluents 81.255.63 65.227.02 74.555.87 96.32.57
Derived Fluents 82.814.72 76.365.73 80.284.72 86.753.72

Self-Derived Fluents 85.873.63 68.245.05 81.443.95 98.041.37
Static Properties 85.196.84 72.737.75 80.06.32 89.474.06

10

Base Fluents 88.894.68 78.797.12 75.935.82 90.574.02
Derived Fluents 75.314.79 55.386.17 72.735.08 79.384.11

Self-Derived Fluents 77.664.3 74.295.22 69.394.66 95.152.12
Static Properties 79.416.93 63.167.83 69.777.0 94.522.66

19

Base Fluents 90.244.63 63.648.37 76.196.57 83.614.74
Derived Fluents 74.424.7 44.076.46 67.475.14 76.474.2

Self-Derived Fluents 80.04.34 70.916.12 71.744.69 93.462.39
Static Properties 82.767.01 60.719.23 67.57.41 96.882.17

Table 9: Performance comparison of GPT-4o, Llama-3.1-8B-Instruct, Llama-3.1-70B-Instruct, and
fine-tuned Llama-3.1-8B on the binary subset (True/False) of the benchmark evaluated without the
ramifications constraints using the zero-shot-CoT. The results are categorized up by the fluent types

Action Seq. Fluent Types GPT-4o Llama-8B-Inst Llama-70B-Inst Finetuned Llama-8B

1
Positive Fluents 83.163.84 80.05.39 79.314.34 72.844.94
Negative Fluents 77.784.62 60.346.42 70.775.64 77.534.42

Pos. and Neg. Fluents 81.562.08 65.152.72 78.652.17 93.771.29

10
Positive Fluents 82.473.86 80.775.47 81.164.71 80.04.34
Negative Fluents 66.275.19 53.667.79 69.235.72 72.294.91

Pos. and Neg. Fluents 71.322.32 67.422.88 68.212.43 87.741.73

19
Positive Fluents 79.314.34 67.447.15 72.865.32 84.934.19
Negative Fluents 71.084.98 58.147.52 67.535.34 75.644.86

Pos. and Neg. Fluents 70.982.33 54.03.52 67.52.47 86.271.7

Table 10: Performance comparison of GPT-4o, Llama-3.1-8B-Instruct, Llama-3.1-70B-Instruct, and
fine-tuned Llama-3.1-8B on the binary subset (True/False) of the benchmark evaluated without the
ramifications constraints using the zero-shot-CoT. The results are categorized up by the fluent types

Domain Annotator 1 Annotator 2 Annotator 3 Average
Templated Rephrased Templated Rephrased Templated Rephrased Templated Rephrased

Blocksworld 3.8 4.8 5.0 4.6 3.8 4.2 4.2 4.5
Depots 4.6 4.8 3.6 4.8 4.0 4.0 4.1 4.5

Driverlog 4.8 4.8 3.6 4.2 4.4 4.6 4.3 4.5
Grippers 4.6 5.0 4.0 4.8 4.6 4.8 4.4 4.9
Mystery 4.0 4.8 4.0 4.4 3.6 4.0 3.9 4.4
Satellite 4.4 4.8 4.6 4.4 4.4 4.2 4.5 4.5
Spanner 5.0 5.0 5.0 4.6 3.8 3.8 4.6 4.5
Visitall 3.6 4.2 3.8 4.6 4.0 4.2 3.8 4.3

Average 4.3 4.8 4.2 4.6 4.1 4.2 4.2 4.5

Table 11: Naturalness scores assigned by three annotators on a scale of 1 to 5, where 1 indicates
completely incoherent text and 5 indicates natural-sounding questions. The table presents scores for
both the templated questions and paraphrased questions.

Answer category No of Samples

False 13,793
True 13,319

Free-Response 14,476

Total 41,588

Table 12: Data distribution used for fine-tuning, categorized by response type. The binary question
responses are split into “True” and “False”. “Free-Response” indicates the count of open-ended
questions in the training set.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Question category No of Samples (Binary) No of Samples(Free-Response)

Fluent Tracking 11,674 4,946
State Tracking 2,264 1,133

Action Executability 1,534 1,094
Effects of Actions 1,196 1,040
Numerical RAC 5,757 3,293

Composite Questions 4,687 2,970

Total 27,112 14,476

Table 13: Data distribution used for fine-tuning, categorized by Question Categories.

Domain No of Samples (Binary) No of Samples (Free-Response)

Blocksworld 3,540 1,978
Depots 2,799 1,394

Driverlog 3,404 1,785
Grippers 3,494 1,910
Mystery 2,825 1,636
Satellite 4,037 2,073
Spanner 3,866 1,992
Visitall 3,147 1,708

Total 27,112 14,476

Table 14: Data distribution used for fine-tuning, categorized by Domains.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

F FREE ANSWERS EVALUATION DETAILS

We evaluate the free answers using Llama-3.1-70B-Instruct. The following is the few-shot-7 prompt
that we used for evaluating the responses:

Prompt for Free Answer Evaluation with Llama-3.1-70b-Instruct

Evaluate whether the LLM response and the ground truth response are semantically the
same. Examine the responses, provide reasoning for your evaluation, and then Write ”True”
if the responses are the same or ”False” if they are different. LLM Response or Ground
Truth could be ”None”.

Example 1:

[LLM Response]
Location f1 4f is connected to f1 3f, f0 4f, and f2 4f.

[Ground Truth]
location f1 4f and location f0 4f are connected, location f1 4f and location f2 4f are
connected, location f0 4f and location f1 4f are connected, location f1 3f and location f1 4f
are connected, there is a connection between location f2 4f and location f1 4f, there is a
connection between location f1 4f and location f1 3f

[Reasoning for the evaluation]
all of the connections are the same

[Answer]
True

...

Example 7:

[LLM Response]
ball1 is at room2, ball2 is at room2, ball3 is at room4, ball4 is at room1, ball5 is at room1,
ball6 is at room4, ball7 is being carried by robot1’s lgripper1, ball8 is at room4, robot1 is at
room2, robot1’s lgripper1 is not free, robot1’s rgripper1 is not free, robot1 is carrying ball7
with lgripper1, robot1 is carrying ball6 with rgripper1

[Ground Truth]
ball1 is present at room2, ball2 is at room2, ball3 is present at room4, ball4 is at room1,
ball5 is located at room1, ball7 is being carried by robot1’s lgripper1, ball8 is present at
room4, rgripper1 of robot1 is carrying ball6 and robot1 is present in room2

[Reasoning for the evaluation]
According to the ground truth, robot1 is carrying ball6, but LLM gives a contradictory
response: that ball6 is at room4

[Answer] False
—————————————————————————-
Given the examples and instructions above, evaluate the following responses:

[LLM Response]
{llm response}

[Ground Truth]
{ground truth}

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 15 shows the results of the free-answers using automatic metrics based on semantic similarity,
F1-BERTScore (Zhang et al., 2019).

Action Seq. Ques Categories GPT-4o Llama-8B-Inst Llama-70B-Inst Finetuned Llama-8B

1

Fluent Tracking 71.762.11 48.522.84 55.212.85 90.220.95
State Tracking 68.241.98 54.853.18 61.072.59 82.061.82

Action Executability 56.933.36 49.492.80 57.253.77 75.242.70
Effects of Actions 66.431.94 49.823.53 59.482.67 82.122.07
Numerical RAC 87.071.61 39.405.05 61.945.30 89.521.36

Composite Questions 55.031.65 40.591.52 40.621.77 82.581.17

Average 67.552.10 47.113.15 55.923.15 83.621.67

10

Fluent Tracking 66.462.29 51.242.98 56.893.20 85.401.74
State Tracking 70.091.26 60.432.52 64.102.23 83.781.49

Action Executability 61.313.51 54.142.79 68.282.78 79.042.40
Effects of Actions 66.191.34 52.993.09 62.052.16 82.031.78
Numerical RAC 82.381.82 29.144.13 50.395.46 85.202.62

Composite Questions 54.571.68 45.671.59 54.411.39 79.831.56

Average 66.831.98 48.932.85 59.352.87 82.471.93

19

Fluent Tracking 60.783.19 47.692.71 56.353.12 87.791.39
State Tracking 70.331.00 58.062.77 62.062.47 83.511.41

Action Executability 61.723.41 49.402.93 56.903.48 78.842.40
Effects of Actions 65.711.99 52.533.51 62.783.22 84.901.20
Numerical RAC 81.302.29 32.554.31 53.795.36 80.753.62

Composite Questions 55.481.55 50.871.40 52.751.63 77.101.76

Average 65.882.23 48.511.95 57.433.21 82.141.96

Table 15: F1-BERTScore of GPT-4o, Llama-3.1-8B-Instruct, Llama-3.1-70B-Instruct, and fine-
tuned Llama-3.1-8B on the free-answer subset of the benchmark, evaluated without the ramifications
constraints using the zero-shot-CoT. The results are categorized up by the action-sequence lengths
and question categories.

Below we share some examples where F1-BertScore fails to give an accurate score.

Low F1-BERTScore but the response is correct

[GROUND TRUTH]
robot1’s rgripper1 is available

[RESPONSE]
rgripper1 is free.

[BERT SCORE]
0.71

[Llama-3.1-70B-Intruct Evaluation]
The LLM response and the ground truth response are semantically the same. The term
”free” in the LLM response is equivalent to ”available” in the ground truth response, both
indicating that the rgripper1 is not being used. True.

[ANALYSIS]
The response is a simple paraphrase of the ground truth which is easily explained by the
LLM evaluation.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

High F1-BERTScore but the response is incorrect

[GROUND TRUTH]
loc x0 y1 is not connected to loc x2 y4
loc x0 y3 is not connected to loc x2 y4
loc x1 y0 and loc x2 y4 are not connected
loc x1 y1 is not connected to loc x2 y4
...
there is no connection between loc x3 y0 and loc x2 y4
there is no connection between loc x3 y1 and loc x2 y4
there is no connection between loc x3 y2 and loc x2 y4
there is no connection between loc x3 y3 and loc x2 y4

[RESPONSE]
- loc x2 y4 is not visited.
- loc x2 y4 is connected to loc x1 y4.
- loc x2 y4 is connected to loc x3 y4.
- loc x2 y4 is not connected to loc x2 y3.
- loc x2 y4 is not connected to loc x2 y5.
...
- loc x2 y4 is not connected to loc x1 y2.
- loc x2 y4 is not connected to loc x1 y3.
- loc x2 y4 is not connected to loc x1 y5.

[BERT SCORE]
0.89

[Llama-3.1-70B-Intruct Evaluation]
The LLM response and the ground truth response are not semantically the same. The LLM
response states that loc x2 y4 is not connected to loc x2 y3, but the ground truth response
states that loc x2 y4 and loc x2 y3 are connected. Additionally, the LLM response states
that loc x2 y4 is not connected to loc x2 y5, but the ground truth response states that
loc x2 y4 and loc x2 y5 are connected. False.

[ANALYSIS]
The response contains a lot of incorrect responses. Moreover, the response fails to mention
the location of the robot. The Llama-3.1-70B-Instruct evaluation also fails to mention the
lack of the robot but correctly identifies some incorrect connections.

G DOMAINS IN ACTIONREASONINGBENCH

In the following sub-sections, we provide details regarding all the domains used in our study. We first
present the PDDL description that is given in the IPC and then present how state-space calculation
is performed for that domain. State space represents the possible number of interactions that can
be performed at a particular state. A higher state-space represents a more difficult problem for
traditional AI solvers.

G.1 BLOCKSWORLD

In this domain, we have a set of blocks that can be manipulated using four basic actions: picking
up a block from the table, putting down a block onto the table, stacking one block onto another, and
unstacking a block from atop another block. The goal is to move and stack these blocks using a
robotic hand, following specific rules and conditions.

This domain is formally represented in the IPC using the PDDL as outlined below:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Domain
Name

Fluents
Defined

Actions
Defined

Object
Defined IPC Year State

Complexity

Blocksworld 5 4 1 2000 O(2N
2+2N)

Depots 6 5 6 2002 O(24N
2+2N)

DriverLog 5 6 4 2002 O(25N
2−N)

Grippers 4 3 4 1998 O(2N
3+3N2

)

Mystery 7 3 5 1998 O(27N
2−3N)

Satellite 8 5 4 2002 O(25N
2+3N)

Spanner 6 3 4 2011 O(23N
2+2N)

Visitall 3 1 1 2014 O(2N
2+N)

Table 16: Summarizing key characteristics of various domains in ACTIONREASONINGBENCH in-
cluding the number of fluents, actions, and objects defined within each domain. Domains are cate-
gorized by year of introduction in the IPC and state space complexity, which reflects the difficulty
level for AI planners to solve each domain. A larger state space typically indicates greater complex-
ity and presents more significant challenges for traditional AI planners. “N” represents the number
of objects in each instance. For example, in the Spanner domain, N refers to the number of locations,
spanners and nuts.

PDDL description for Blocksworld domain

(define (domain BLOCKS)
(:requirements :strips :typing)
(:types block)
(:predicates (on ?x - block ?y - block)
(ontable ?x - block)
(clear ?x - block)
(handempty)
(holding ?x - block))

(:action pick-up
:parameters (?x - block)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect
(and (not (ontable ?x))
(not (clear ?x))
(not (handempty))
(holding ?x)))

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(:action put-down
:parameters (?x - block)
:precondition (holding ?x)
:effect
(and (not (holding ?x))
(clear ?x)
(handempty)
(ontable ?x)))

(:action stack
:parameters (?x - block ?y - block)
:precondition (and (holding ?x) (clear ?y))
:effect
(and (not (holding ?x))
(not (clear ?y))
(clear ?x)
(handempty)
(on ?x ?y)))

(:action unstack
:parameters (?x - block ?y - block)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect
(and (holding ?x)
(clear ?y)
(not (clear ?x))
(not (handempty))
(not (on ?x ?y))))
)

Predicates define the number of fluents in a state:

• on(b1,b2)
• ontable(b)
• clear(b)
• holding(b)
• handempty

The complexity of a state is, where N is the number of objects

O(2N
2+2N) (1)

G.2 DEPOTS

The Depots domain models a logistics environment where crates are transported between different
locations using trucks and manipulated using hoists. The goal is to efficiently move crates from
one location to another, utilizing the available resources (hoists and trucks) while adhering to the
constraints defined by the predicates and actions.

This domain is formally represented in the IPC using the PDDL as outlined below:

PDDL description for Depots domain

(define (domain depots)
(:requirements :strips :typing)
(:types place locatable - object
depot distributor - place

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

truck hoist surface - locatable
pallet crate - surface)

(:predicates (at ?x - locatable ?y - place)
(on ?x - crate ?y - surface)
(in ?x - crate ?y - truck)
(lifting ?x - hoist ?y - crate)
(available ?x - hoist)
(clear ?x - surface))

(:action Drive
:parameters (?x - truck ?y - place ?z - place)
:precondition (and (at ?x ?y))
:effect (and (not (at ?x ?y)) (at ?x ?z)))

(:action Lift
:parameters (?x - hoist ?y - crate ?z - surface ?p - place)
:precondition (and (at ?x ?p) (available ?x) (at ?y ?p) (on ?y ?z) (clear ?y))
:effect (and (not (at ?y ?p)) (lifting ?x ?y) (not (clear ?y)) (not (available ?x)) (clear ?z) (not
(on ?y ?z))))

(:action Drop
:parameters (?x - hoist ?y - crate ?z - surface ?p - place)
:precondition (and (at ?x ?p) (at ?z ?p) (clear ?z) (lifting ?x ?y))
:effect (and (available ?x) (not (lifting ?x ?y)) (at ?y ?p) (not (clear ?z)) (clear ?y)(on ?y
?z)))

(:action Load
:parameters (?x - hoist ?y - crate ?z - truck ?p - place)
:precondition (and (at ?x ?p) (at ?z ?p) (lifting ?x ?y))
:effect (and (not (lifting ?x ?y)) (in ?y ?z) (available ?x)))

(:action Unload
:parameters (?x - hoist ?y - crate ?z - truck ?p - place)
:precondition (and (at ?x ?p) (at ?z ?p) (available ?x) (in ?y ?z))
:effect (and (not (in ?y ?z)) (not (available ?x)) (lifting ?x ?y)))
)

Predicates define the number of fluents in a state:

• (at ?x - locatable ?y - place)
• (on ?x - crate ?y - surface)
• (in ?x - crate ?y - truck)
• (lifting ?x - hoist ?y - crate)
• (available ?x - hoist)
• (clear ?x - surface))

O(24N
2+2N) (2)

G.3 DRIVERLOG

This domain is modeled to simulate logistics operations where drivers, trucks, and objects must be
moved between different locations. The primary focus is on transporting objects via trucks, either
driven by drivers or moved manually by walking. The key actions in this domain include loading
and unloading trucks, drivers boarding and disembarking trucks, driving trucks between connected
locations, and walking when no truck is involved.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

This domain is formally represented in the IPC using the PDDL as outlined below:

PDDL description for Driverlog domain

(define (domain driverlog)
(:requirements :typing) (:types location locatable - object
driver truck obj - locatable)
(:predicates
(at ?obj - locatable ?loc - location)
(in ?obj1 - obj ?obj - truck)
(driving ?d - driver ?v - truck)
(link ?x ?y - location) (path ?x ?y - location)
(empty ?v - truck))

(:action LOAD-TRUCK
:parameters
(?obj - obj
?truck - truck
?loc - location)
:precondition (and (at ?truck ?loc) (at ?obj ?loc))
:effect (and (not (at ?obj ?loc)) (in ?obj ?truck)))

(:action UNLOAD-TRUCK
:parameters
(?obj - obj
?truck - truck
?loc - location)
:precondition (and (at ?truck ?loc) (in ?obj ?truck))
:effect (and (not (in ?obj ?truck)) (at ?obj ?loc)))

(:action BOARD-TRUCK
:parameters
(?driver - driver
?truck - truck
?loc - location)
:precondition (and (at ?truck ?loc) (at ?driver ?loc) (empty ?truck))
:effect (and (not (at ?driver ?loc)) (driving ?driver ?truck) (not (empty ?truck))))

(:action DISEMBARK-TRUCK
:parameters
(?driver - driver
?truck - truck
?loc - location)
:precondition (and (at ?truck ?loc) (driving ?driver ?truck))
:effect (and (not (driving ?driver ?truck)) (at ?driver ?loc) (empty ?truck)))

(:action DRIVE-TRUCK
:parameters
(?truck - truck
?loc-from - location
?loc-to - location
?driver - driver)
:precondition
(and (at ?truck ?loc-from)
(driving ?driver ?truck) (link ?loc-from ?loc-to))
:effect (and (not (at ?truck ?loc-from)) (at ?truck ?loc-to)))

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

(:action WALK
:parameters
(?driver - driver
?loc-from - location
?loc-to - location)
:precondition (and (at ?driver ?loc-from) (path ?loc-from ?loc-to))
:effect (and (not (at ?driver ?loc-from)) (at ?driver ?loc-to)))
)

Predicates define the number of fluents in a state:

• (at ?obj - locatable ?loc - location)

• (in ?obj1 - obj ?obj - truck)

• (driving ?d - driver ?v - truck)

• (link ?x ?y - location)

• (path ?x ?y - location)

• (empty ?v - truck)

O(25N
2−N) (3)

G.4 GRIPPER

This domain represents a transportation domain where a robot with two grippers can move between
rooms, pick up objects, and drop them off. The robot can only hold one object in each gripper at a
time. This domain could solve tasks where the robot needs to transport multiple objects from one
room to another by strategically moving, picking up, and dropping items.

This domain is formally represented in the IPC using the PDDL as outlined below:

PDDL description for Gripper domain

(define (domain gripper-strips)
(:requirements :strips :typing)
(:types room object robot gripper)
(:predicates (at-robby ?r - robot ?x - room)
(at ?o - object ?x - room)
(free ?r - robot ?g - gripper)
(carry ?r - robot ?o - object ?g - gripper))

(:action move
:parameters (?r - robot ?from ?to - room)
:precondition (and (at-robby ?r ?from))
:effect (and (at-robby ?r ?to) (not (at-robby ?r ?from))))

(:action pick
:parameters (?r - robot ?obj - object ?room - room ?g - gripper)
:precondition (and (at ?obj ?room) (at-robby ?r ?room) (free ?r ?g))
:effect (and (carry ?r ?obj ?g)
(not (at ?obj ?room))
(not (free ?r ?g))))

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

(:action drop
:parameters (?r - robot ?obj - object ?room - room ?g - gripper)
:precondition (and (carry ?r ?obj ?g) (at-robby ?r ?room))
:effect (and (at ?obj ?room)
(free ?r ?g)
(not (carry ?r ?obj ?g)))))

Predicates define the number of fluents in a state:

• (carry ?r - robot ?o - object ?g - gripper)

• (at-robby ?r - robot ?x - room)

• (at ?o - object ?x - room)

• (free ?r - robot ?g - gripper)

O(2N
3+3N2

) (4)

G.5 MYSTERY

The Mystery domain represents a transportation system where vehicles move between locations,
constrained by fuel levels, and can load or unload cargo, constrained by available space. The key
aspects of this domain are managing fuel for vehicle movement and managing space for loading
and unloading cargo. Locations are connected, and the system also handles fuel transitions, space
transitions, and the movement of objects across a grid of locations.

This domain is formally represented in the IPC using the PDDL as outlined below:

PDDL description for Mystery domain

(define (domain mystery-strips)
(:requirements :typing)
(:types space fuel location movable - object
vehicle cargo - movable)
(:predicates
(at ?v - movable ?l - location)
(conn ?l1 ?l2 - location)
(has-fuel ?l - location ?f - fuel)
(fuel-neighbor ?f1 ?f2 - fuel)
(in ?c - cargo ?v - vehicle)
(has-space ?v - vehicle ?s - space)
(space-neighbor ?s1 ?s2 - space))

(:action move
:parameters (?v - vehicle ?l1 ?l2 - location ?f1 ?f2 - fuel)
:precondition (and (at ?v ?l1)
(conn ?l1 ?l2)
(has-fuel ?l1 ?f1)
(fuel-neighbor ?f2 ?f1))
:effect (and (not (at ?v ?l1))
(at ?v ?l2)
(not (has-fuel ?l1 ?f1))
(has-fuel ?l1 ?f2)))

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

(:action load
:parameters (?c - cargo ?v - vehicle ?l - location ?s1 ?s2 - space)
:precondition (and (at ?c ?l)
(at ?v ?l)
(has-space ?v ?s1)
(space-neighbor ?s2 ?s1))
:effect (and (not (at ?c ?l))
(in ?c ?v)
(not (has-space ?v ?s1))
(has-space ?v ?s2)))

(:action unload
:parameters (?c - cargo ?v - vehicle ?l - location ?s1 ?s2 - space)
:precondition (and (in ?c ?v)
(at ?v ?l)
(has-space ?v ?s1)
(space-neighbor ?s1 ?s2))
:effect (and (not (in ?c ?v))
(at ?c ?l)
(not (has-space ?v ?s1))
(has-space ?v ?s2)))
)

Predicates define the number of fluents in a state:

• (at ?v - movable ?l - location)

• (has-fuel ?l - location ?f - fuel)

• (in ?c - cargo ?v - vehicle)

• (has-space ?v - vehicle ?s - space)

• (conn ?l1 ?l2 - location)

• (fuel-neighbor ?f1 ?f2 - fuel)

• (space-neighbor ?s1 ?s2 - space)

O(27N
2−3N) (5)

G.6 SATELLITE

The Satellite domain represents a simplified model for managing and controlling satellites and their
onboard instruments. The goal in this domain is to coordinate the behavior of satellites, including
turning them toward desired directions, powering instruments on and off, calibrating instruments,
and capturing images.

This domain is formally represented in the IPC using the PDDL as outlined below:

PDDL description for Satellite domain

(define (domain satellite)
(:requirements :strips :typing)
(:types satellite direction instrument mode)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

(:predicates
(on board ?i - instrument ?s - satellite)
(supports ?i - instrument ?m - mode)
(pointing ?s - satellite ?d - direction)
(power avail ?s - satellite)
(power on ?i - instrument)
(calibrated ?i - instrument)
(have image ?d - direction ?m - mode)
(calibration target ?i - instrument ?d - direction))

(:action turn to
:parameters (?s - satellite ?d new - direction ?d prev - direction)
:precondition (and (pointing ?s ?d prev))
:effect (and (pointing ?s ?d new) (not (pointing ?s ?d prev))))

(:action switch on
:parameters (?i - instrument ?s - satellite)
:precondition (and (on board ?i ?s) (power avail ?s))
:effect (and (power on ?i) (not (calibrated ?i)) (not (power avail ?s))))

(:action switch off
:parameters (?i - instrument ?s - satellite)
:precondition (and (on board ?i ?s) (power on ?i))
:effect (and (not (power on ?i)) (power avail ?s)))

(:action calibrate
:parameters (?s - satellite ?i - instrument ?d - direction)
:precondition (and (on board ?i ?s)
(calibration target ?i ?d)
(pointing ?s ?d)
(power on ?i))
:effect (calibrated ?i))

(:action take image
:parameters (?s - satellite ?d - direction ?i - instrument ?m - mode)
:precondition (and (calibrated ?i)
(on board ?i ?s)
(supports ?i ?m)
(power on ?i)
(pointing ?s ?d))
:effect (have image ?d ?m)))

Predicates define the number of fluents in a state:

• (on-board ?i - instrument ?s - satellite)

• (supports ?i - instrument ?m - mode)

• (pointing ?s - satellite ?d - direction)

• (have-image ?d - direction ?m - mode)

• (calibration-target ?i - instrument ?d - direction)

• (power-avail ?s - satellite)

• (power-on ?i - instrument)

• (calibrated ?i - instrument)

O(25N
2+3N) (6)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

G.7 SPANNER

This domain models a simple world where a man moves between locations, picks up spanners, and
uses them to tighten loose nuts. The actions available to the man involve walking between locations,
picking up the spanner, and tightening nuts using the spanner if all conditions are met.

This domain is formally represented in the IPC using the PDDL as outlined below:

PDDL description for Spanner domain

(define (domain spanner)
(:requirements :typing :strips)
(:types
location locatable - object
man nut spanner - locatable
)

(:predicates
(at ?m - locatable ?l - location)
(carrying ?m - man ?s - spanner)
(useable ?s - spanner)
(link ?l1 - location ?l2 - location)
(tightened ?n - nut)
(loose ?n - nut))

(:action walk
:parameters (?start - location ?end - location ?m - man)
:precondition (and (at ?m ?start) (link ?start ?end))
:effect (and (not (at ?m ?start)) (at ?m ?end)))

(:action pickup spanner
:parameters (?l - location ?s - spanner ?m - man)
:precondition (and (at ?m ?l) (at ?s ?l))
:effect (and (not (at ?s ?l)) (carrying ?m ?s)))

(:action tighten nut
:parameters (?l - location ?s - spanner ?m - man ?n - nut)
:precondition (and (at ?m ?l)
(at ?n ?l)
(carrying ?m ?s)
(useable ?s)
(loose ?n))
:effect (and (not (loose ?n))(not (useable ?s)) (tightened ?n)))
)

Predicates define the number of fluents in a state:

• (at ?m - locatable ?l - location)

• (carrying ?m - man ?s - spanner)

• (link ?l1 - location ?l2 - location)

• (useable ?s - spanner)

• (tightened ?n - nut)

• (loose ?n - nut))

O(23N
2+2N) (7)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

G.8 VISITALL

The VisitAll domain is focused on controlling a robot that needs to visit all places on a connected
grid. The robot’s movement is governed by the connectivity of places, and each move changes
the robot’s location and marks the visited place. The task is essentially to traverse the entire grid,
visiting every place, while ensuring the robot follows connectivity constraints.

This domain is formally represented in the IPC using the PDDL as outlined below:

PDDL description for VisitAll domain

(define (domain grid-visit-all)
(:requirements :typing)
(:types place - object)
(:predicates (connected ?x ?y - place)
(at-robot ?x - place)
(visited ?x - place))

(:action move
:parameters (?curpos ?nextpos - place)
:precondition (and (at-robot ?curpos) (connected ?curpos ?nextpos))
:effect (and (at-robot ?nextpos) (not (at-robot ?curpos)) (visited ?nextpos)))
)

Predicates define the number of fluents in a state:

• (connected ?x ?y - place)

• (at-robot ?x - place)

• (visited ?x - place)

O(2N
2+N) (8)

H PLANNING DESCRIPTION AND TOOLS

Planning, at its core, involves determining a sequence of actions that transforms the world from
an initial state to a goal state. A world state specifies which fluents are true or false at any given
time. The planning domain, denoted as D, specifies the fluents, actions, and their effects within
the system. Typically, planning domains are represented using formal languages such as PDDL or
ASP. In these languages, a transition function ΦD : states×actions → states defines how actions
transform an initial state into a resulting state.

H.1 PLANNING DOMAIN DEFINITION LANGUAGE (PDDL)

PDDL is a formal language developed for expressing planning problems and domain models. Since
its inception, PDDL has been extended to address increasingly complex planning scenarios, par-
ticularly those involving deterministic problems (Haslum et al., 2019). PDDL facilitates the spec-
ification of both the planning domains and problem instances, including objects, initial, and goal
states. In this study, we employ the “STRIPS” (Stanford Research Institute Problem Solver) subset
of PDDL (Fikes & Nilsson, 1971). Additionally, the domains are “typed”, meaning that objects in
the planning problem are assigned specific types and subtypes, ensuring a structured representation
of the problem space.

H.2 ANSWER SET PROGRAMMING (ASP)

ASP is a declarative approach to problem-solving based on logic programming and non-monotonic
reasoning. Unlike traditional planning languages like PDDL, ASP focuses on defining constraints
and rules that describe potential solutions, rather than directly encoding state transitions. In ASP, a

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

problem is encoded as a logic program consisting of rules, facts, and constraints, and the solution is
an ”answer set” that satisfies all the constraints of the problem. In this study, we use ASP to generate
the complete state-space by applying the sequence of actions starting from the initial state.

I CLASSIFICATION OF FLUENTS

The subsequent sections provide a detailed classification of fluents across all 13 domains included
in ACTIONREASONINGBENCH, as described in section 3.2.

I.1 BLOCKSWORLD

In the BLOCKSWORLD domain, the fluents are categorized as follows:

1. Static Properties - No static properties are present

2. Base Fleunts - onTable(block)

3. Derived Fluents - clear(block), handEmpty

4. Self-Derived Fluents - holding(block), on(block,block)

I.2 DEPOTS

In the DEPOTS domain, the fluents are categorized as follows:

1. Static Properties - No static properties are present

2. Base Fleunts - No base fluents are present

3. Derived Fluents - clear(surface), available(hoist)

4. Self-Derived Fluents - at(locatable,place), on(crate,surface),
in(crate,truck), lifting(hoist,crate)

I.3 DRIVERLOG

In the DRIVERLOG domain, the fluents are categorized as follows:

1. Static Properties - link(location,location), path(location,location)

2. Base Fleunts - No base fluents are present

3. Derived Fluents - empty(truck)

4. Self-Derived Fluents - at(locatable,location), in(object,truck),
driving(driver,truck)

I.4 GRIPPERS

In the GRIPPERS domain, the fluents are categorized as follows:

1. Static Properties - No static properties are present

2. Base Fleunts - carry(robot,object,gripper)

3. Derived Fluents - free(robot,gripper)

4. Self-Derived Fluents - at robby(robot,room), at(object,room)

I.5 MYSTERY

In the MYSTERY domain, the fluents are categorized as follows:

1. Static Properties - space neighbor(space,space),
fuel neighbor(fuel,fuel), conn(location,location)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

2. Base Fleunts - No base fluents are present

3. Derived Fluents - No derived fluents are present

4. Self-Derived Fluents - at(movable,location), in(cargo,vehicle),
has space(vehicle,space), has fuel(location,fuel)

I.6 SATELLITE

In the SATELLITE domain, the fluents are categorized as follows:

1. Static Properties - on board(instrument,satellite),
supports(instrument,mode), calibration target(instrument,direction)

2. Base Fleunts - power on(instrument), calibrated(instrument),
have image(direction,mode)

3. Derived Fluents - power avail(satellite)

4. Self-Derived Fluents - pointing(satellite,direction)

I.7 SPANNER

In the SPANNER domain, the fluents are categorized as follows:

1. Static Properties - link(location,location)

2. Base Fleunts - carrying(man,spanner), tightened(nut)

3. Derived Fluents - loose(nut), useable(spanner)

4. Self-Derived Fluents - at(locatable,location)

I.8 VISITALL

In the VISITALL domain, the fluents are categorized as follows:

1. Static Properties - connected(place,place)

2. Base Fleunts - No base fluents are present

3. Derived Fluents - visited(place)

4. Self-Derived Fluents - at robot(place)

J RESPOSNES ON RAMIFICATION DATASET

In the following sections, we illustrate some instances and responses that we see from GPT-4o and
o1-preview.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

J.1 GPT-4O

A Ramificaiton question for State Tracking

[DOMAIN DESCRIPTION]
A block can only be picked up if it is clear, on the table, and the hand is empty, resulting in
the block being held. A held block can be put down, placing it back on the table. Blocks
can be stacked if the first block is held and the second block is clear, causing the first block
to rest on top of the second. Unstacking occurs when the hand is empty, the first block is
clear, and on top of the second, resulting in the first block being held again. A block is clear
if nothing is on top of it and it’s not held, and the hand is empty if it’s not holding anything.
Blocks are stable when clear and on the table, and they can be painted if stable and the hand
is empty. A block is considered on display if it can be painted and has no other block on top
of it.

[INITIAL CONDITIONS]
Block b1 is stacked on block b4, block b2 has no blocks on top of it, block b2 is stacked on
block b6, block b3 has no blocks on top of it, block b3 is stacked on block b5, block b4 is
positioned on the table, block b5 is stacked on block b7, block b6 is positioned on the table,
block b7 is stacked on block b1 and the hand is empty.

[QUESTION]
Given the initial condition, the following actions are taken: block b3 is unstacked from
block b5 to achieve the current state. In this state, if block b3 is placed down, what are all
the valid properties of the state (including both affirmative and negated properties)? If there
are no valid properties, state None.

Response to the above question

[REASON]
To determine the valid properties of the state after block b3 is placed down, we need to
follow the sequence of actions and check the conditions for each property.

1. **Initial Conditions:**
- b1 is on b4.
- b2 is on b6.
- b3 is on b5.
- b4 is on the table.
- b5 is on b7.
- b6 is on the table.
- b7 is on b1.
- The hand is empty.

2. **Action: Unstack b3 from b5:**
- The hand must be empty.
- b3 must be clear and on top of b5.
- Result: b3 is held, b5 is now clear.

3. **Current State after unstacking b3:**
- b1 is on b4.
- b2 is on b6.
- b3 is held.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

- b4 is on the table.
- b5 is on b7 and is clear.
- b6 is on the table.
- b7 is on b1.
- The hand is not empty (holding b3).

4. **Action: Place b3 down:**
- The hand must be holding b3.
- Result: b3 is placed on the table, the hand is empty.

5. **Final State after placing b3 down:**
- b1 is on b4.
- b2 is on b6.
- b3 is on the table and clear.
- b4 is on the table.
- b5 is on b7 and is clear.
- b6 is on the table.
- b7 is on b1.
- The hand is empty.

6. **Valid Properties:**
- b1 is on b4.
- b2 is on b6.
- b3 is on the table.
- b3 is clear.
- b4 is on the table.
- b5 is on b7.
- b5 is clear.
- b6 is on the table.
- b7 is on b1.
- The hand is empty.
- b1 is not clear (b7 is on it).
- b2 is not clear (nothing on it but it is on b6).
- b4 is clear (nothing on it and on the table).
- b6 is clear (nothing on it and on the table).
- b7 is not clear (b5 is on it).
- b3 is stable (clear and on the table).
- b4 is stable (clear and on the table).
- b6 is stable (clear and on the table).
- b3 can be painted (stable and hand is empty).
- b4 can be painted (stable and hand is empty).
- b6 can be painted (stable and hand is empty).
- b3 is on display (can be painted and no block on top).
- b4 is on display (can be painted and no block on top).
- b6 is on display (can be painted and no block on top).

[ANSWER]
- b1 is on b4.
- b2 is on b6.
- b3 is on the table.
- b3 is clear.
- b4 is on the table.
- b5 is on b7.
- b5 is clear.
- b6 is on the table.
- b7 is on b1.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

- The hand is empty.
- b1 is not clear.
- b2 is not clear.
- b4 is clear.
- b6 is clear.
- b7 is not clear.
- b3 is stable.
- b4 is stable.
- b6 is stable.
- b3 can be painted.
- b4 can be painted.
- b6 can be painted.
- b3 is on display.
- b4 is on display.
- b6 is on display.

From the above response, we can see that block b4 is not stable, but the model says it is stable.

J.2 O1-PREVIEW

A Ramificaiton question for State Tracking

[DOMAIN DESCRIPTION]
A block can only be picked up if it is clear, on the table, and the hand is empty, resulting in
the block being held. A held block can be put down, placing it back on the table. Blocks
can be stacked if the first block is held and the second block is clear, causing the first block
to rest on top of the second. Unstacking occurs when the hand is empty, the first block is
clear, and on top of the second, resulting in the first block being held again. A block is clear
if nothing is on top of it and it’s not held, and the hand is empty if it’s not holding anything.
Blocks are stable when clear and on the table, and they can be painted if stable and the hand
is empty. A block is considered on display if it can be painted and has no other block on top
of it.

[INITIAL CONDITIONS]
Block b1 is positioned above block b7, block b2 has no blocks on it, block b2 is stacked on
block b6, block b3 is stacked on block b4, block b4 is situated on the table, block b5 has no
blocks on it, block b5 is situated on the table, block b6 is stacked on block b3, block b7 is
on the table, block b8 is positioned above block b1, block b9 has no blocks on it, block b9
is stacked on block b8, and the hand is empty.

[QUESTION]
Based on the initial condition, the following actions are taken: block b9 is removed from
block b8 to achieve the current state. In this state, identify all valid properties that do not
include negations and list them; if there are no such properties, indicate None.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Response to the above question

[REASON]
After removing block b9 from block b8, block b9 is placed on the table, and the hand
remains empty. Block b9 now has no blocks on top of it and is not held, so it is **clear**.
Since it is on the table, it is also **stable**. With the hand empty and block b9 being stable,
it **can be painted**. As there are no blocks on top of it, block b9 is **on display**.

Similarly, block b5 is on the table with no blocks on top and is not held, making it
clear and **stable**. It **can be painted** and is **on display**.

Block b7 is on the table and, with no blocks explicitly on top of it after the action, is
clear, **stable**, **can be painted**, and is **on display**.

Blocks b1 and b8 have no blocks on top of them and are not held, so they are **clear**.

Block b2 has no blocks on top and is not held, so it is **clear**, though it is not on
the table and thus not stable.

The hand is explicitly stated to be **empty** in the current state.

[ANSWER]
- The hand is empty
- Block b1 is clear
- Block b2 is clear
- Block b5 is clear
- Block b5 is on the table
- Block b5 is stable
- Block b5 can be painted
- Block b5 is on display
- Block b7 is clear
- Block b7 is on the table
- Block b7 is stable
- Block b7 can be painted
- Block b7 is on display
- Block b8 is clear
- Block b9 is clear
- Block b9 is on the table
- Block b9 is stable
- Block b9 can be painted
- Block b9 is on display

From the above response, we can see that block b1 is not clear, but the model says it is clear.

K IMPACT OF INPUT FORMATS ON LLM PERFORMANCE

In this section, we explore the effects of different input formats on LLMs. Specifically, we compare
the performance of LLMs when inputs are presented in formal language (PDDL) or in templated
formats generated during the data creation pipeline (described in Section 3.4), as opposed to natural
language. For our analysis, we sampled 10% of the test set from ACTIONREASONINGBENCH,
covering all question categories and action sequence lengths.

K.1 FORMAL LANGUAGE (PDDL)

Table 17 presents the performance of LLMs when provided inputs in the formal language PDDL.
Our results reveal a significant drop in performance for most models. GPT-4o shows a notable per-
formance degradation of 16.03% compared to the natural language baseline. Similarly, Llama-3.1-
70B-Instruct experiences a 6.7% decrease in accuracy. Interestingly, Llama-3.1-8B-Instruct exhibits

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Action Seq. GPT-4o Llama-8B-Inst Llama-70B-Inst

1 43.907.75 26.836.92 53.667.79
10 48.787.81 17.075.88 31.717.27
19 33.337.55 17.956.15 25.646.99

Table 17: Performance comparison of GPT-4o, Llama-3.1-8B-Instruct, and Llama-3.1-70B-Instruct
on the free-answer subset of the benchmark evaluated without the ramifications constraints using the
zero-shot-CoT. The input is given in the formal language, i.e. PDDL. The results are categorized up
by the action sequence length.

a 3.78% increase in performance, likely attributable to its initially low baseline performance. These
findings suggest that the pretraining phase of LLMs, predominantly focused on natural language,
plays a crucial role in shaping their reasoning capabilities. Consequently, formal language inputs,
that deviate from this training paradigm, may hinder model performance.

K.2 TEMPLATED LANGUAGE

Action Seq. GPT-4o Llama-8B-Inst Llama-70B-Inst

1 76.926.75 32.507.40 63.417.52
10 66.677.55 19.516.19 47.507.89
19 64.107.68 17.956.15 25.646.99

Table 18: Performance comparison of GPT-4o, Llama-3.1-8B-Instruct, and Llama-3.1-70B-Instruct
on the free-answer subset of the benchmark evaluated without the ramifications constraints using the
zero-shot-CoT. The input is given in the templatized language. The results are categorized up by the
action sequence length.

Table 18 summarizes the performance of LLMs when inputs are presented in the templated formats
described in Section 3.4 rather than in fully paraphrased natural language. The results indicate
a consistent improvement across all models. Notably, GPT-4o achieves the highest gain, with an
average performance improvement of 11.2%. Llama-3.1-8B-Instruct exhibits the second largest
improvement, with a 6.5% increase, while Llama-3.1-70B-Instruct demonstrates a modest gain of
1.81%. These results suggest that templated inputs reduce the verbal reasoning burden on LLMs,
leading to more accurate outputs.

40

	Introduction
	Related Works
	ActionReasoningBench
	Question Categories
	Fluent Categories
	Dataset Structure and Variations
	Data Creation & Validation
	Data Splits

	Experiments and Evaluation
	Results and Discussion
	Ramifications Results

	Conclusion
	Limitations & Future Work
	Describing an Instance from ActionReasoningBench
	Additional Results
	Zero-shot-CoT Binary Result
	Few-shot-3 Results
	Results by Domains
	Results by Fluents

	Data Verification
	Fine-tuning Details
	Free Answers Evaluation Details
	Domains in ActionReasoningBench
	Blocksworld
	Depots
	Driverlog
	Gripper
	Mystery
	Satellite
	Spanner
	VisitAll

	Planning Description and Tools
	Planning Domain Definition Language (PDDL)
	Answer Set Programming (ASP)

	Classification of Fluents
	Blocksworld
	Depots
	Driverlog
	Grippers
	Mystery
	Satellite
	Spanner
	Visitall

	Resposnes on Ramification Dataset
	GPT-4o
	o1-preview

	Impact of Input Formats on LLM Performance
	Formal Language (PDDL)
	Templated Language

