
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WASSERSTEIN HYPERGRAPH NEURAL NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

The ability to model relational information using machine learning has driven ad-
vancements across various domains, from medicine to social science. While graph
representation learning has become mainstream over the past decade, representing
higher-order relationships through hypergraphs is rapidly gaining momentum. In
the last few years, numerous hypergraph neural networks have emerged, most of
them falling under a two-stage, set-based framework. The messages are sent from
nodes to edges and then from edges to nodes. However, most of the advancement
still takes inspiration from the graph counterpart, often simplifying the aggrega-
tions to basic pooling operations. In this paper, we are introducing Wasserstein
Hypergraph Neural Network, a model that treats the nodes and hyperedge neigh-
bourhood as distributions and aggregates the information using Sliced Wasserstein
Pooling. Unlike conventional aggregators such as mean or sum, which only capture
first-order statistics, our approach has the ability to preserve geometric properties
like the shape and spread of distributions. This enables the learned embeddings
to reflect how easily one hyperedge distribution can be transformed into another,
following principles of optimal transport. Experimental results demonstrate that
applying Wasserstein pooling in a hypergraph setting significantly benefits node
classification tasks, achieving top performance on several real-world datasets.

1 INTRODUCTION

The potential to learn from relational data has substantially broadened the applicability of machine
learning, extending its reach to a wide range of fields (Johnson et al., 2023; Tong et al., 2022;
Sanchez-Gonzalez et al., 2020; Lam et al., 2023; Monti et al., 2019; Gilmer et al., 2017; Huang
et al., 2020). The flexibility of graph structures makes them well-suited for representing natural
phenomena involving various types of interactions. However, while graphs are restricted to model
pairwise connections, many real-world interactions involve more than two entities. To fill this
gap, a generalisation of graphs called hypergraphs was introduced, allowing the representation of
relationships among multiple elements.

More precisely, a hypergraph is characterised by a set of edges, where each edge connects a set of
nodes, potentially of varying cardinality. The challenge of designing hypergraph networks becomes
the challenge of properly modelling these sets. Many approaches (Chien et al., 2022; Wang et al.,
2022; Huang & Yang, 2021a) tackle this using a two-step process: first, the model aggregates
information from the nodes within each hyperedge to compute a representation for that hyperedge.
Then, it updates each node’s representation using information from the hyperedges it belongs to.
Both steps rely on methods designed to handle sets of elements.

Although set representation learning has seen significant progress in recent years (Xie & Tong, 2025),
hypergraph networks still largely rely on sum-based aggregation methods such as Deep Sets (Zaheer
et al., 2017) and Set Transformers (Lee et al., 2019). Table 1 presents the update rules of several
widely used hypergraph networks, emphasising that each of them utilises a form of the sum-based
aggregator. Despite their strong theoretical foundation, these aggregators can struggle to effectively
capture the full geometry of set-structured inputs (Naderializadeh et al., 2021).

In this work, we introduce Wasserstein Hypergraph Neural Networks (WHNN), a model that uses
Sliced Wasserstein Pooling (SWP) (Naderializadeh et al., 2021) as node and hyperedge aggregator.
This pooling is based on the Wasserstein distance, an optimal transport metric which measures the
distance between two distributions based on the cost of transporting mass from one to another. We

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Overview of the update rules used as aggregation steps in various hypergraph neural
networks from the literature. While theoretically powerful, summing can easily destroy all the
geometric relationships between points. Nv(i) is the neighbourhood of node vi of cardinality di,
Ne(j) is the neighbourhood of edge ej of cardinality dj and ϵ, W∗, W̃∗ are learnable parameters.1

Model Hyperedge aggregation Node aggregation
HGNN he ←

∑
i∈Ne(e)

1√
di
xiW xi ← 1√

di

∑
e∈Nv(i)

1
de
he

HCHA he ←
∑

i∈Ne(e)
αe,ixiW xi ←

∑
e∈Nv(i)

α̃i,eheW̃

UniGIN he ←
∑

i∈Ne(e)
xi xi ←

∑
e∈Nv(i)

heW + (1 + ϵ)xiW

ED-HNN he ←
∑

i∈Ne(e)
MLP(xi) xi ←

∑
e∈Nv(i)

MLP(xi∥he)

AllDeepSets he ← MLP(
∑

i∈Ne(e)
MLP(xi)) xi ← MLP(

∑
e∈Nv(i)

MLP(he))

AllSetTransformer he ← σ(
∑

i∈Ne(e)
(αixiWv) xi ← σ(

∑
e∈Nv(i)

(α̃eheW̃v)

argue that this geometric information is highly relevant for hypergraph learning. Our experimental
results support this claim, showing that WHNN not only outperforms traditional sum-based aggrega-
tion methods used in previous hypergraph models but also achieves superior performance compared
to several strong hypergraph methods across a range of real-world datasets for node classification.

Our main contributions are summarised as follow:

1. We propose a novel hypergraph architecture, Wasserstein Hypergraph Neural Net-
work (WHNN), which leverages Sliced Wasserstein Pooling for both node and hyperedge
aggregation to more effectively capture the geometric structure of the feature space.

2. We empirically show that Wasserstein aggregation is highly effective for hypergraph repre-
sentation, consistently outperforming traditional sum-based methods such as Deep Sets
and Set Transformers, regardless of the encoder used to process the nodes.

3. Wasserstein Hypergraph Network achieves top results on multiple real-world datasets for
node classification, highlighting the advantages of incorporating optimal transport into
hypergraph processing.

2 RELATED WORK

Hypergraph representation learning. Hypergraphs represent a versatile structure for modelling
group-wise interactions, which allows us to capture interactions between various numbers of el-
ements. This flexibility, combined with the widespread presence of higher-order interactions in
real-world scenarios, has led to a growing interest in developing machine learning architectures
for modelling hypergraph data. Some methods (Feng et al., 2019; Tang et al., 2024) reduce the
hypergraph to a clique-expansion graph that can be further processed with standard graph neural
networks. A more popular approach is based on a two-stage framework (Chien et al., 2022; Huang
& Yang, 2021a), which sends the information from node to hyperedges and then from hyperedges
back to nodes. Depending on how these stages are instantiated, several architectures emerged.
HCHA (Bai et al., 2021) and HERALD (Zhang et al., 2022) use an attention mechanism to combine
the information. AllDeepSets (Chien et al., 2022) uses Deep Set model (Zaheer et al., 2017), while
AllSetTransformer (Chien et al., 2022) uses a PMA-like (Lee et al., 2019) pooling.

In all of these methods, the information sent from the node is independent of the target hyperedge. Re-
cently, models that create edge-dependent node representations have gained traction. ED-HNN (Wang
et al., 2022) uses as messages a concatenation of node and hyperedge information, while MultiSet-
Mixer (Telyatnikov et al., 2025) uses MLP-Mixer (Tolstikhin et al., 2021) to combine the information.
Similar to our node encoder, CoNHD(Zheng & Worring, 2025) incorporates pairwise propagation at
the hyperedge-level using self-attention blocks (Lee et al., 2019) to create edge-dependent represen-
tations. However, similar to Choe et al. (2023), the model is only tested on hyperedge-dependent
node classification tasks, where each node is assigned multiple labels corresponding to the number of

1The coefficients αe,i used in summations are scalars predicted as MLP(xi||he) and σ is a composition of
skip connections and layer normalisation, while αi = (θWq)(xiWk)

T with θ, Wq and Wk as parameters.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

hyperedges it participates in. A complementary line of work (Wang et al., 2024) represents uniform
hypergraphs as high-dimensional tensors and applies tensorial operators to propagate the information.

In contrast, we are interpreting the hyperedges as samples from a set of probability distributions,
and use Sliced Wasserstein Pooling to aggregate the information such that we preserve geometric
information. In terms of node encoders, we are experimenting with both edge-dependent and
edge-independent modules.

Set representation learning. The core operation in set representation learning is the permutation-
invariant operator that aggregates the information without imposing an order among elements. Popular
examples of such operators include summation, mean or maximum. More recently, learnable versions
of permutation-invariant poolings were introduced. Among these, Deep Sets (Zaheer et al., 2017)
uses element-wise encoding of the elements followed by summation and is proven to be a universal
approximator for permutation-invariant functions. Janossy Pooling (Murphy et al., 2019) extends this
model by explicitly aggregating pairs of elements. On the other hand, Set Transformer (Lee et al.,
2019) and RepSet (Skianis et al., 2019) use an anchor set as a reference and compute the similarity
against this set as a representation, while FSPool (Zhang et al., 2019) sorts the elements feature-wise
to create a canonical order. Recently, Kothapalli et al. (2024) shows empirically that combining an
equivariant backbone with an invariant pooling layer creates powerful set representation learning.
Inspired by optimal transport literature, Sliced Wasserstein Pooling was introduced in Naderializadeh
et al. (2021) as a geometrically-interpretable set representation technique.

Wasserstein embeddings. In recent years, Wasserstein distance has attracted significant attention
in deep learning, demonstrating success in areas such as generative modeling (Arjovsky et al.,
2017; Nguyen et al., 2021a), natural language processing (Frogner et al., 2019) and point cloud
processing (Nguyen et al., 2021b). In graph representation learning, Wasserstein distance was used
to define a similarity kernel between pairs of graphs (Togninalli et al., 2019). While recognised as
a powerful tool, computing this distance for each pair of compared graphs is extremely inefficient.
More recent works (Kolouri et al., 2021; Mialon et al., 2021; Courty et al., 2018) try to reduce this
cost by introducing Wasserstein embeddings. The purpose of a Wasserstein embedding is to infer
a vector representation such that the L2 distance in the vector space approximates the Wasserstein
distance in the input space. Particularly important for us is the work of Naderializadeh et al. (2021)
which produces set representations using efficient Wasserstein embeddings.

In order to more effectively capture the internal structure of node and hyperedge neighbourhoods, in
this work we employ Sliced Wasserstein Pooling as the aggregation operator in hypergraph message
passing, demonstrating its advantages for hypergraph representation learning.

3 BACKGROUND

3.1 HYPERGRAPH REPRESENTATION LEARNING

A hypergraph is a tuple H = (V,E) where V = {v1, v2 . . . vN} is a set of nodes, and E =
{e1, e2 . . . eM} is a set of hyperedges. Different from the graph structure, where each edge contains
exactly two nodes, in a hypergraph, each hyperedge contains a set of nodes, which can vary in
cardinality. Each node vi is characterised by a feature vector xi ∈ Rd. We denote by neighbourhood
of hyperedge ei the set of nodes that are part of that hyperedge {vj |vj ∈ ei}. Similarly, the
neighbourhood of a node vi is the set of all hyperedges containing that node Nvi = {ej |vi ∈ ej}.
Several architectures were developed for hypergraph-structured input (Feng et al., 2019; Wang et al.,
2022; Huang & Yang, 2021b; Chien et al., 2022). However, the most general pipeline follows a two-
stage framework, inspired by the bipartite representation of the hypergraphs. First, the information is
sent from nodes to the hyperedges using a permutation-invariant operator zj = fV→E({xi|vi ∈ ej}).
Secondly, the messages are sent back from hyperedge to nodes x̃i = fE→V ({zj |vi ∈ ej}).
While aggregators like Deep Sets (Zaheer et al., 2017) were theoretically capable of approximating
any permutation-invariant function on sets, they rely on the initial encoder (such as MLPs) to reshape
the feature space in a way in which the sum pooling does not lose important information. Thus, it
moves the complexity of the representation from the pooling to the initial encoding. This is in line
with the empirical results in Kothapalli et al. (2024) where, in order to preserve good performance,
mean pooling requires more complex encoders compared to more sophisticated pooling methods.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Comparison between Wasserstein and average aggregators. For each pair of synthetic
hyperedges, the Wasserstein distance is approximated by the euclidean distance between the Sliced
Wasserstein embeddings as computed by our WHNN model, whereas the Mean distance is computed
as the euclidean distance between their mean-pooled representations. While mean aggregators fail to
differentiate among the three scenarios, Wasserstein aggregators captures these geometric differences.

In this work, we are following the standard two-stage framework. Compared to existing methods, we
take advantage of the success demonstrated by Sliced Wasserstein Pooling in capturing and retaining
the geometric structure of sets and propose the first hypergraph model that uses optimal transport
techniques to perform the node and hyperedge aggregation.

3.2 SLICED WASSERSTEIN POOLING (SWP)

To ensure the method’s readability, this section introduces all the key concepts underlying our
Wasserstein Hypergraph Neural Network. First, we will define the 2-Wasserstein metric, approximate
it using the tractable Sliced-Wasserstein distance and finally present the algorithm to compute the
SWP used as an aggregator in our model.
Definition 1. The 2-Wasserstein distance between two distributions pi and pj over Rd is defined as:

W2(pi, pj) =
(

inf
γ∈Γ(pi,pj)

∫
Rn×Rn

||x− y||2dγ(x, y)
) 1

2

, (1)

where Γ(pi, pj) represent the collection of all the transport plans with marginals pi and pj .

In simpler terms, the 2-Wasserstein distance quantifies the cost of transforming one distribution
into another. Unfortunately, computing the infimum over all possible transport maps is generally
untractable. However, in the one-dimensional case (when d = 1)), a closed-form solution exists
that avoids expensive optimisation. Specifically, when pi and pj are probability distributions over

R, the 2-Wasserstein distance is given byW2(pi, pj) =
(∫ 1

0
|F−1

pi
(t)− F−1

pj
(t)|2dt

) 1
2

, where F−1
pi

and F−1
pj

denote the inverse cumulative distribution functions of pi and pj . A key practical benefit
of this formulation is that this inner integral can be empirically estimated using a discrete sum over
sorted samples from the distribution.

Building on this observation, Sliced Wasserstein distance (Bonneel et al., 2015) was introduced to
approximate the Wasserstein distance, by projecting the high-dimensional probabilities into 1D lines
using all possible directions on the unit sphere.
Definition 2. The Sliced Wasserstein distance between two distributions pi and pj over Rd is
defined as:

SW2(pi, pj) =
(∫

Sd−1

W2(Pθpi, Pθpj)dθ
) 1

2 ≈
(1

L

L∑
l=1

W2(Pθlpi, Pθlpj)︸ ︷︷ ︸
1D Wasserstein distance

) 1
2

, (2)

where Sd−1 is the unit sphere in Rd, Pθpi is the projection (pushforward) of pi onto the line direction
θ and {θl}Ll=1 represents the set of L directions used to empirically approximate the expectation.

To avoid the computational cost of calculating distances between every pair of probability distributions,
the Sliced Wasserstein embedding (Naderializadeh et al., 2021) was proposed. It maps a probability

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: One stage (node-to-hyperedge) of WHNN pipeline designed to be more sensitive to the
geometric structure of the hyperedge compared to the traditional aggregators. The hypergraphs are
viewed as a collection of probability distributions {pi}, one for each hyperedge, with the observed
nodes treated as samples drawn from it. An additional distribution q is picked as a reference. Finally,
the Sliced Wasserstein Pooling is adopted as an aggregation method: each hyperedge is represented
by its Sliced Wasserstein distance to a reference distribution.

distributions pi to a vector ϕ(pi) in such a way that the Euclidean distance between the vectors
(which is inexpensive to compute) approximates the Sliced Wasserstein distance between the original
distributions ||ϕ(pi)−ϕ(pj)||2 ≈ SW2(pi, pj). In other words, it provides a vectorial representation
that captures the geometric structure of distributions, preserving information about how costly it is
to transform one distribution into another. This geometric encoding reflects characteristics such as
shape, spread, and density. This proves useful in our context, as it allows us to quantify the cost
of transforming one hyperedge into another, a measure we argue effectively captures the similarity
between group interactions (hyperedges). Figure 1 and Figure 5 in Appendix illustrates how different
node features exhibit distinct underlying distribution shapes.

Since our nodes and hyperedges are sets rather than distributions, we use a variant of this embedding
called Sliced Wasserstein Pooling (Naderializadeh et al., 2021), which is designed not as an
embedding of probability distributions themselves, but rather as an embedding of sets sampled from
those distributions. In short, Sliced Wasserstein Pooling encodes a set of points by measuring, in an
efficient way, how different they are positioned compared to a set of reference points. The complete
algorithm as used in our model is described in the following section.

4 WASSERSTEIN HYPERGRAPH NEURAL NETWORK

Our Wasserstein Hypergraph Neural Network follows the two-stage framework, by sending infor-
mation from nodes to hyperedges and vice versa. For simplicity, this section only describes the
nodes-to-hyperedges mechanism, as the hyperedge-to-node operation is entirely symmetrical. The
pipeline is visually depicted in Figure 2. For readability, the algorithm is presented sequentially for
each hyperedge. However, for efficiency, our implementation processes all hyperedges in parallel.

First, we will project the node features into a more expressive representation. Each hyperedge is
then associated with a probability distribution, with its constituent nodes treated as samples. These
distributions are embedded using a Wasserstein-based aggregator to obtain the final hyperedge
representations. Then, the hyperedge representations are fed into the hyperedges-to-nodes stage.
Below, we elaborate on each of these stages.

Node encoder. The goal of this module is to enhance the representation of node features by projecting
them into a more informative space. We are experimenting with two types of encoders: an edge-
independent one where the node is carrying the same representation in each hyperedge it is contained,
and an edge-dependent one which takes into account pairwise interactions.

The edge-independent encoder is a simple MLP, which is applied in parallel for each node. This way,
a node i is characterised by the same feature vector in each hyperedge e it is part of.

x̃e
i = MLP(xi)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

ALGORITHM 1: One Layer of Wasserstein
Hypergraph Neural Network2

1: input: node features X of hypergraph H and
ref. distribution q

2: output: updated node features X̃

3: procedure WHNN(X,H, q)

4:
5: X0 ← X

6: # Sample reference sets
7: Qv, Qe ← sample(q)

8: # Extract node and edge neighbourhood
9: Nv,Ne ← neighbourhoods(H)

10: # Node to hyperedge
11: X ← encoder(X)
12: Z ←Wasserstein(X,Nv, Qv)

13: # Hyperedge to node
14: Z ← encoder(Z)
15: X ←Wasserstein(Z,Ne, Qe)

16: # Residual connection
17: X̃ ← αX + (1− α)X0

18: return X̃

3 For simplicity in handling shapes, we assume
encoders that are independent of the hyperedge.

ALGORITHM 2: Wasserstein aggregator

1: input: entity features X; list of neighbour-
hoods to aggregate N ; samples from refer-
ence distribution Q

2: output: aggregated neighbourhoods Z

3: procedure WASSERSTEIN(X,N , Q)

4: # Project entities into slices
5: X ← XΘ
6: # Sort the samples from the reference distr.
7: Q← sort(Q)

8: for all neighbourhoods S ∈ N
9: # Extract elements in the neighbourhood

10: Xs ← {xi}i∈S

11: # If |Xs| ̸= |Q| interpolate Xs to match size
12: X ′

s ← interpolate(Xs)

13: # Sort the elements of the neighbourhood.
14: X ′

s ← sort(X ′
s)

15: # Compute the dist that approx Wass dist
16: Zs: ← Q−X ′

s

17: # Combine the slices
18: Z ← ZW

19: return Z

On the other hand, for the edge-dependent encoder, each node has a different representation in each
hyperedge it is part of. To achieve this, for each hyperedge, we are using a Set Attention Block layer
(SAB) as introduced in Lee et al. (2019), which propagates the information between each pair of two
nodes contained in that hyperedge. The full version of the block acts as follows:

zei = σ(xi +
∑
j∈e

(xiWq)(xjWk)
T (xjWv))

x̃e
i = σ(zei + MLP(zei)),

where σ denote layer normalisation and Wk, Wq and Wv ∈ Rd×d are learnable parameters.

Hyperedges as probability distributions. Unlike traditional hypergraph approaches that treat a
hyperedge as a set of nodes, we model a hyperedge as a probability distribution, with its constituent
nodes being samples drawn from that distribution. This way, the hyperedges are not only characterised
by the combination of their elements, but by the regions of the space where their elements are situated.
The nodes became prototypes of the hyperedge behaviour.

For example, a hypergraph containing two clusters of nodes suggests a bimodal underlying distribution.
On the other hand, a hyperedge where nodes are close in the feature space denotes a unimodal
probability distribution, suggesting a homophilic behaviour. A hyperedge in which nodes have similar
representations indicates a low-variance distribution, while a hyperedge with diverse nodes suggests
a more uniform distribution (see Figure 1). We consider these elements essential to capture; therefore,
we design an aggregator with the appropriate inductive bias to do so.

Let’s consider pi the probability distribution where the elements of the hyperedge ei are sampled
from. In other words, we assume each node vj ∈ ei is sampled as x̃i

j ∈ Rd ∼ pi. The goal is to
obtain hyperedge embeddings that preserve the geometric information of this underlying distribution,
such as spreading, shape etc. See Figure 5 in the Appendix for a visual representation of this structure.

Note that, by treating nodes as samples from an underlying distribution, we assume that other
unobserved nodes drawn from the same distribution are likely to belong to the same hyperedge. This

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

probabilistic interpretation proved to be powerful for set representation learning (Naderializadeh
et al., 2021), and our experiments demonstrate that hypergraph models can benefit from it as well.

Wasserstein aggregator. Interpreting hypergraphs as a collection of probability distributions allows
us to derive more powerful similarity metrics between hyperedges. As shown in the previous section,
most of the current hypergraph architectures rely on mean pooling to create hyperedge embeddings
from node representations. From a probabilistic perspective, averaging compares distributions only
based on their means. For complex data distributions, this approach fails to capture the underlying
geometry. While models relying on summation, such as Deep Sets (Zaheer et al., 2017) have been
proven to be universal approximators, they heavily rely on the internal node encoder (an MLP) to map
the features into a space where first-order statistics like mean effectively approximate the distribution.
In the hypergraph setting, where multiple sets interact in complex ways, this is hard to achieve.

This motivates us to adopt Sliced Wasserstein Pooling (Naderializadeh et al., 2021) to encode the
hyperedge distributions. Concretely, for each hyperedge e, given the node embeddings of all the
nodes in the hyperedge {x̃e

i}i∈e, we are aggregating them using the Sliced Wasserstein Pooling to
obtain a vectorial hyperedge representation: he = SWP({ x̃e

i}i∈e). The algorithm works as follows:

Step 1: Select a reference hyperedge distribution q and sample N points {yi}Ni=1 ∼ q. Choose a set
of directions {θl}Ll=1 with θl ∈ Rd×1 used as projection slices in the pooling process. Note that, in
order to obtain comparable embeddings across the entire hypergraph, we share the same reference
distribution and the same set of slices for all hyperedges.

Step 2: Project each node representation x̃e
i into each slice θl as follow: ze,θli = (x̃e

i)
T θl ∈ R. Since

the algorithm requires the same number of sampled nodes from both the hyperedge distribution and
the reference, when the cardinality of the hyperedge |e| ̸= N , we increase/decrease the number of
nodes in e using linear interpolation. ze,θli ← interp(ze,θli , N)

Step 3: For each hyperedge, for each slice, compute the distance between the node representations
and the reference points. hθl

e = ||ze,θlπ(i) − yπ̃(i)||, where ze,θlπ and yπ̃ represent the vectors in
sorted order. The final hyperedge embedding is obtained as a weighted mean of these embeddings:
he =

∑L
l=1(wlh

θl
e), where wl are learnable scalars combining the slices.

The process is also described in Algorithm 2. The directions θl and the reference distribution can be
either fixed at initialization or trained as learnable parameters.

Intuitively, each hyperedge is represented by a vector which measures how difficult it is to transform
the hyperedge distribution into the reference distribution. Note that these reference distributions
act only as shared anchors, similar to the origin in Euclidean space (see Appendix A for a detailed
discussion). The true strength of Wasserstein embeddings is not observed in isolation, but lies in their
ability to capture the relative distances between different entities (nodes/hyperedges).

Following the theoretical properties of Sliced Wasserstein Pooling (Naderializadeh et al., 2021), the
Euclidean distance between two hyperedge embeddings computed using the Wasserstein aggregator
approximate the Wasserstein distance between the hyperedges: ||ϕ(ei)− ϕ(ej)||2 ≈ SW2(pi, pj).
In other words, the distance between the embeddings measure the cost of transforming one hyperedge
distribution into another. Similarly, the Euclidean distance between two node embeddings measures
how easy it is to map one node neighbourhood into the other node neighbourhood.

To understand the practical advantage of using this aggregator, in Figure 1 we computed the Euclidean
distance between the Wasserstein embedding of two hyperedges and the Euclidean distance between
the mean-based representation of the hyperedges. While the mean aggregators can’t distinguish
between the three scenarios, the Wasserstein aggregator is able to capture these geometric differences
such as the difference in shape and spreading of the nodes.

This information is particularly important in hypergraph learning, as it reflects the extent of change
required to transform the characteristics of one group to resemble those of another. In the context of
node classification, this means that if the neighbourhoods of two nodes are similar in distribution, the
nodes are likely to share the same label. In contrast, average pooling tends to assign same labels to
nodes whose neighbourhoods have similar average characteristics, regardless of the form.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Ablation on the importance of Wasserstein aggregator. We test two versions of Sliced
Wasserstein Pooling: with fixed (FPSWE) or learnable (LPSWE) reference distribution. Wasserstein
aggregators outperform both Deep Sets and PMA, commonly used inside hypergraph models.

Edge to node step. For simplicity, we only described in detail the first stage of the framework, which
sends messages from nodes to hyperedges. The second stage of the framework, which creates node
representation by aggregating the information from neighbouring hyperedges, is done in a similar
way, only with different parameters. In conclusion, we not only capture the structural relationship
between hyperedges, but also the structural relationship between nodes’ neighbourhood.

5 EXPERIMENTS

Our main goal is to understand to what extent Wasserstein aggregation is beneficial for hypergraph
neural networks. Additionally, we investigate how the choice of node encoder (whether edge-
dependent or edge-independent) affects overall performance. Finally, we compare our model against
a range of strong baseline methods from the existing literature.

Datasets. We test our model on the node-classification task. We select ten real-world datasets that
vary in domain and scale. These include Cora, Citeseer, Cora-CA, DBLP-CA (Yadati et al., 2019),
ModelNet40 (Wu et al., 2015), NTU2012 (Chen et al., 2003) and 20News (Mitchell, 1997). In the
Appendix A, we also offer additional results on Senate, Congress (Fowler, 2006) and House (Chodrow
et al.). Among the standard benchmarks for hypergraph models (Yadati et al., 2019), we omitted
Pubmed due to the high percentage of isolated nodes (80.5%), which makes the relational processing
unnecessary. We follow the training procedures employed by Wang et al. (2022), randomly splitting
the data into 50% training, 25% validation and 25% test samples.

Importance of Wasserstein aggregator. Our main contribution consists of introducing Sliced
Wasserstein Pooling as a powerful aggregator for hypergraph networks. While most of the existing
methods use variations of the sum pooling to aggregate the information from each neighbourhood,
our Wasserstein aggregator presents a more in-depth understanding of the neighbourhood distribution,
having the inductive bias to capture subtle differences, such as the difference in shape or spread.

To understand to what extent this is contributing to a better hypergraph representation, we design an
ablation study in which we keep the underlying architecture fixed and only modify the aggregator.
Concretely, we are using as aggregators either Deep Set (as used by AllDeepSet (Chien et al., 2022)
and ED-HNN (Wang et al., 2022) models) or the PMA module (as in AllSetTransformer (Chien et al.,
2022) model). For our Wasserstein aggregator, we experiment with both a fixed-reference distribution
(denoted as FPSWE) or with learnable reference distribution (LPSWE). For a robust evaluation, we
are comparing these aggregators using both the edge-independent (MLP) and the edge-dependent
encoder (SAB). The results on Citeseer and NTU2012 datasets are reported in Figure 3.

Regardless of the encoder and the dataset we are testing on, both Wasserstein aggregators are
consistently outperforming both the Deep Sets and the PMA aggregators by a significant margin. A
learnable reference seems to be beneficial however, the improvement is generally marginal. Additional
experiments on other datasets show a similar trend and are provided in the Appendix A.

Importance of edge-dependent encoder. The node and hyperedge encoder transforms features
into a space where their distribution within each hyperedge captures meaningful information about
the group. As stated in the model description, we equipped our model with two types of encoders.
An edge-independent module represented by an MLP, and an edge-dependent encoder represented

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Performance on a collection of hypergraph datasets. Our model using SWP as a node
and hyperedge aggregator shows superior results. We test our model in both its variants: with edge-
independent (MLP) and edge-dependent encoder (SAB). Both options are exhibiting competitive
performance. We mark the first, second and third best performing models for each dataset.

Name Cora Citeseer Cora_CA DBLP_CA ModelNet40 NTU2012 20News
HCHA 79.14 ± 1.02 72.42 ± 1.42 82.55 ± 0.97 90.92 ± 0.22 94.48 ± 0.28 87.48 ± 1.87 80.33 ± 0.80
HNHN 76.36 ± 1.92 72.64 ± 1.57 77.19 ± 1.49 86.78 ± 0.29 97.84 ± 0.25 89.11 ± 1.44 81.35 ± 0.61

HyperGCN 78.45 ± 1.26 71.28 ± 0.82 79.48 ± 2.08 89.38 ± 0.25 75.89 ± 5.26 56.36 ± 4.86 81.05 ± 0.59
HyperGNN 79.39 ± 1.36 72.45 ± 1.16 82.64 ± 1.65 91.03 ± 0.20 95.44 ± 0.33 87.72 ± 1.35 80.33 ± 0.42
AllDeepSets 76.88 ± 1.80 70.83 ± 1.63 81.97 ± 1.50 91.27 ± 0.27 96.98 ± 0.26 88.09 ± 1.52 81.06 ± 0.54

AllSetTransformers 78.58 ± 1.47 73.08 ± 1.20 83.63 ± 1.47 91.53 ± 0.23 98.20 ± 0.20 88.69 ± 1.24 81.38 ± 0.58
UniGCNII 78.81 ± 1.05 73.05 ± 2.21 83.60 ± 1.14 91.69 ± 0.19 98.07 ± 0.23 89.30 ± 1.33 81.12 ± 0.67
ED-HNN 80.31 ± 1.35 73.70 ± 1.38 83.97 ± 1.55 91.90 ± 0.19 97.75 ± 0.17 89.48 ± 1.87 81.36± 0.55

WHNN_MLP 79.84 ± 1.56 74.79 ± 1.19 84.12 ± 1.94 91.73 ± 0.24 98.47 ± 0.19 90.87 ± 1.59 81.83 ± 0.68
WHNN_(I)SAB 80.72 ± 1.96 74.92 ± 1.60 84.62 ± 1.77 91.99 ± 0.33 98.54 ± 0.21 90.68 ± 1.68 81.42 ± 0.60

by a self-attention block (SAB). While the MLP is processing information independently for each
node/hyperedge, SAB is capturing pairwise interactions between nodes/hyperedges sharing a neigh-
bourhood. The results in Figure 3 and Table 2 show similar results among the encoders, with the
edge-dependent one being slightly more powerful. However, this comes with the cost of a more
expensive model, as the edge-dependent encoder requires more memory to store all incident pairs
(node, hyperedge). To alleviate that on the larger datasets (20News and DBLP), we replace the SAB
block with the ISAB low-rank approximation introduced by Lee et al. (2019).

Comparison with baselines. In Table 2, we are comparing against a series of hypergraph networks
from the literature. With respect to aggregation strategies, HNHN (Dong et al., 2020), Hyper-
GNN (Feng et al., 2019), AllDeepSets (Chien et al., 2022), UniGCNII (Huang & Yang, 2021a) and
ED-HNN (Wang et al., 2022) use variations of Deep Sets to aggregate the information, HyperGCN (Ya-
dati et al., 2019) uses a max aggregator, while HCHA (Bai et al., 2021) and AllSetTransformer (Chien
et al., 2022) use an attention-based weighted summation. Regardless of the encoder used, our model
consistently obtains top results, outperforming the other methods on all datasets. This demonstrates
the advantages of using Wasserstein aggregators for higher-order processing. While we integrated
this aggregator into a standard two-stage framework, many existing models from the literature can be
adopted to take advantage of this type of geometric-inspired aggregation.

Implementation details. We train our models using Adam for 500 epochs, on a single GPU NVIDIA
Quadro RTX 8000 with 48GB of memory. Each model is trained 10 times with different random
splits and initialisations. The results represent the best performing model obtained during hyper-
parameter optimisation (see Appendix C). For the ablation study, the architecture is fixed to ensure
a fair comparison. We use a number of Wasserstein slices equal to the hidden dimension, and we
experiment with both learning the reference set or not. The reference is set to a uniform distribution
and we vary the number of points sampled. In Appendix A, we offer additional experiments
demonstrating that, as expected, the type of reference distribution is not essential, while the number
of sampled points should be large enough to cover the complexity of the hyperedge set.

These experimental results show that aggregating node and hyperedge neighbourhoods using Sliced
Wasserstein Pooling is highly effective for hypergraph processing, the Wasserstein aggregator consis-
tently outperforming standard methods like Deep Sets and PMA.

6 CONCLUSION

In this work, we introduce Wasserstein Hypergraph Neural Networks (WHNN), a model for process-
ing hypergraph structures. The model relies on Sliced Wasserstein Pooling to aggregate the nodes into
hyperedge representations and vice versa. This design choice, inspired by optimal transport literature,
enables us to capture more information about the internal structure of the neighbourhoods, preserving
more geometric relations between elements. The experimental results on various datasets demonstrate
that this Wasserstein aggregator is effective for modelling higher-order interactions, outperforming
traditional aggregators, making WHNN a promising tool for hypergraph representation learning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In
Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Ma-
chine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 214–223. PMLR, 06–
11 Aug 2017. URL https://proceedings.mlr.press/v70/arjovsky17a.html.

Song Bai, Feihu Zhang, and Philip H.S. Torr. Hypergraph convolution and hypergraph attention.
Pattern Recognition, 110:107637, 2021. ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.
2020.107637. URL https://www.sciencedirect.com/science/article/pii/
S0031320320304404.

Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. Sliced and radon wasser-
stein barycenters of measures. 51(1):22–45, January 2015. ISSN 0924-9907. doi: 10.1007/
s10851-014-0506-3. URL https://doi.org/10.1007/s10851-014-0506-3.

Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. On visual similarity based 3d
model retrieval. Comput. Graph. Forum, 22:223–232, 09 2003. doi: 10.1111/1467-8659.00669.

Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are allset: A multiset function frame-
work for hypergraph neural networks. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=hpBTIv2uy_E.

Philip S. Chodrow, Nate Veldt, and Austin R. Benson. Generative hypergraph clustering: From
blockmodels to modularity. Science Advances, 7(28). doi: 10.1126/sciadv.abh1303. URL
https://par.nsf.gov/biblio/10303535.

Minyoung Choe, Sunwoo Kim, Jaemin Yoo, and Kijung Shin. Classification of edge-dependent labels
of nodes in hypergraphs. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 298–309. ACM, August 2023. doi: 10.1145/3580305.3599274.
URL http://dx.doi.org/10.1145/3580305.3599274.

Nicolas Courty, Rémi Flamary, and Mélanie Ducoffe. Learning wasserstein embeddings. In Inter-
national Conference on Learning Representations, 2018. URL https://openreview.net/
forum?id=SJyEH91A-.

Yihe Dong, Will Sawin, and Yoshua Bengio. Hnhn: Hypergraph networks with hyperedge
neurons. In Graph Representation Learning and Beyond Workshop at ICML 2020, June
2020. URL https://www.microsoft.com/en-us/research/publication/
hnhn-hypergraph-networks-with-hyperedge-neurons/. Code available:
https://github.com/twistedcubic/HNHN.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
Proc. Conf. AAAI Artif. Intell., 33(01):3558–3565, July 2019.

James H. Fowler. Legislative cosponsorship networks in the US house and senate. Social Networks,
28(4):454–465, oct 2006. doi: 10.1016/j.socnet.2005.11.003. URL https://doi.org/10.
1016/j.socnet.2005.11.003.

Charlie Frogner, Farzaneh Mirzazadeh, and Justin Solomon. Learning embeddings into entropic
wasserstein spaces, 2019. URL https://arxiv.org/abs/1905.03329.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In Doina Precup and Yee Whye Teh (eds.), Proceedings
of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 1263–1272, 2017.

Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural networks.
In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21,
2021a.

Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural networks.
In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21,
2021b.

10

https://proceedings.mlr.press/v70/arjovsky17a.html
https://www.sciencedirect.com/science/article/pii/S0031320320304404
https://www.sciencedirect.com/science/article/pii/S0031320320304404
https://doi.org/10.1007/s10851-014-0506-3
https://openreview.net/forum?id=hpBTIv2uy_E
https://par.nsf.gov/biblio/10303535
http://dx.doi.org/10.1145/3580305.3599274
https://openreview.net/forum?id=SJyEH91A-
https://openreview.net/forum?id=SJyEH91A-
https://www.microsoft.com/en-us/research/publication/hnhn-hypergraph-networks-with-hyperedge-neurons/
https://www.microsoft.com/en-us/research/publication/hnhn-hypergraph-networks-with-hyperedge-neurons/
https://doi.org/10.1016/j.socnet.2005.11.003
https://doi.org/10.1016/j.socnet.2005.11.003
https://arxiv.org/abs/1905.03329

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kexin Huang, Cao Xiao, Lucas M Glass, Marinka Zitnik, and Jimeng Sun. Skipgnn: predicting
molecular interactions with skip-graph networks. Scientific reports, 10(1):1–16, 2020.

Ruth Johnson, Michelle M. Li, Ayush Noori, Owen Queen, and Marinka Zitnik. Graph ai
in medicine. CoRR, abs/2310.13767, 2023. URL http://dblp.uni-trier.de/db/
journals/corr/corr2310.html#abs-2310-13767.

Soheil Kolouri, Navid Naderializadeh, Gustavo K. Rohde, and Heiko Hoffmann. Wasserstein
embedding for graph learning. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=AAes_3W-2z.

Abihith Kothapalli, Ashkan Shahbazi, Xinran Liu, Robert Sheng, and Soheil Kolouri. Equivariant vs.
invariant layers: A comparison of backbone and pooling for point cloud classification, 2024. URL
https://arxiv.org/abs/2306.05553.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Ferran
Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, Alexander Merose, Stephan
Hoyer, George Holland, Oriol Vinyals, Jacklynn Stott, Alexander Pritzel, Shakir Mohamed, and
Peter Battaglia. Graphcast: Learning skillful medium-range global weather forecasting, 2023.
URL https://arxiv.org/abs/2212.12794.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 3744–
3753. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/lee19d.
html.

Grégoire Mialon, Dexiong Chen, Alexandre d’Aspremont, and Julien Mairal. A trainable optimal
transport embedding for feature aggregation and its relationship to attention, 2021. URL https:
//arxiv.org/abs/2006.12065.

Tom Mitchell. Twenty Newsgroups. UCI Machine Learning Repository, 1997. DOI:
https://doi.org/10.24432/C5C323.

Federico Monti, Fabrizio Frasca, Davide Eynard, Damon Mannion, and Michael M Bronstein. Fake
news detection on social media using geometric deep learning. arXiv preprint arXiv:1902.06673,
2019.

Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Janossy pooling:
Learning deep permutation-invariant functions for variable-size inputs. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
BJluy2RcFm.

Navid Naderializadeh, Joseph F Comer, Reed Andrews, Heiko Hoffmann, and Soheil
Kolouri. Pooling by sliced-wasserstein embedding. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, volume 34, pp. 3389–3400. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/1bc2029a8851ad344a8d503930dfd7f7-Paper.pdf.

Khai Nguyen, Nhat Ho, Tung Pham, and Hung Bui. Distributional sliced-wasserstein and applications
to generative modeling. In International Conference on Learning Representations, 2021a. URL
https://openreview.net/forum?id=QYjO70ACDK.

Trung Nguyen, Quang-Hieu Pham, Tam Le, Tung Pham, Nhat Ho, and Binh-Son Hua. Point-set
distances for learning representations of 3d point clouds, 2021b. URL https://arxiv.org/
abs/2102.04014.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In Hal Daumé III and Aarti
Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119,
pp. 8459–8468, 2020.

11

http://dblp.uni-trier.de/db/journals/corr/corr2310.html#abs-2310-13767
http://dblp.uni-trier.de/db/journals/corr/corr2310.html#abs-2310-13767
https://openreview.net/forum?id=AAes_3W-2z
https://arxiv.org/abs/2306.05553
https://arxiv.org/abs/2212.12794
https://proceedings.mlr.press/v97/lee19d.html
https://proceedings.mlr.press/v97/lee19d.html
https://arxiv.org/abs/2006.12065
https://arxiv.org/abs/2006.12065
https://openreview.net/forum?id=BJluy2RcFm
https://openreview.net/forum?id=BJluy2RcFm
https://proceedings.neurips.cc/paper_files/paper/2021/file/1bc2029a8851ad344a8d503930dfd7f7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/1bc2029a8851ad344a8d503930dfd7f7-Paper.pdf
https://openreview.net/forum?id=QYjO70ACDK
https://arxiv.org/abs/2102.04014
https://arxiv.org/abs/2102.04014

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Konstantinos Skianis, Giannis Nikolentzos, Stratis Limnios, and Michalis Vazirgiannis. Rep the
set: Neural networks for learning set representations. ArXiv, abs/1904.01962, 2019. URL
https://api.semanticscholar.org/CorpusID:102486742.

Bohan Tang, Zexi Liu, Keyue Jiang, Siheng Chen, and Xiaowen Dong. Hypergraph node classification
with graph neural networks. CoRR, abs/2402.05569, 2024. URL https://doi.org/10.
48550/arXiv.2402.05569.

Lev Telyatnikov, Maria Sofia Bucarelli, Guillermo Bernardez, Olga Zaghen, Simone Scardapane,
and Pietro Lio. Hypergraph neural networks through the lens of message passing: A common
perspective to homophily and architecture design. Transactions on Machine Learning Research,
2025. ISSN 2835-8856. URL https://openreview.net/forum?id=8rxtL0kZnX.

Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-López, Bastian Rieck, and Karsten Borgwardt.
Wasserstein weisfeiler–lehman graph kernels. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing
Systems 32 (NeurIPS), pp. 6436–6446. Curran Associates, Inc., 2019.

Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Peter Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic,
and Alexey Dosovitskiy. MLP-mixer: An all-MLP architecture for vision. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing
Systems, 2021. URL https://openreview.net/forum?id=EI2KOXKdnP.

Catherine Tong, Emma Rocheteau, Petar Veličković, Nicholas Lane, and Pietro Lio. Predicting Patient
Outcomes with Graph Representation Learning, pp. 281–293. 01 2022. ISBN 978-3-030-93079-0.
doi: 10.1007/978-3-030-93080-6_20.

Maolin Wang, Yaoming Zhen, Yu Pan, Yao Zhao, Chenyi Zhuang, Zenglin Xu, Ruocheng Guo, and
Xiangyu Zhao. Tensorized hypergraph neural networks, 2024. URL https://arxiv.org/
abs/2306.02560.

Peihao Wang, Shenghao Yang, Yunyu Liu, Zhangyang Wang, and Pan Li. Equivariant hypergraph
diffusion neural operators. arXiv preprint arXiv:2207.06680, 2022.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes, 2015. URL https://arxiv.
org/abs/1406.5670.

Jiahao Xie and Guangmo Tong. Advances in set function learning: A survey of techniques and
applications, 2025. URL https://arxiv.org/abs/2501.14991.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha
Talukdar. Hypergcn: A new method for training graph convolutional networks on hyper-
graphs. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/1efa39bcaec6f3900149160693694536-Paper.pdf.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhut-
dinov, and Alexander J Smola. Deep sets. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf.

Jiying Zhang, Yuzhao Chen, Xiong Xiao, Runiu Lu, and Shutao Xia. Learnable hypergraph laplacian
for hypergraph learning. In ICASSP, 2022.

Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett. FSPool: Learning set representations with
featurewise sort pooling. 2019. URL https://arxiv.org/abs/1906.02795.

Yijia Zheng and Marcel Worring. Co-representation neural hypergraph diffusion for edge-dependent
node classification, 2025. URL https://openreview.net/forum?id=fMUggopCYI.

12

https://api.semanticscholar.org/CorpusID:102486742
https://doi.org/10.48550/arXiv.2402.05569
https://doi.org/10.48550/arXiv.2402.05569
https://openreview.net/forum?id=8rxtL0kZnX
https://openreview.net/forum?id=EI2KOXKdnP
https://arxiv.org/abs/2306.02560
https://arxiv.org/abs/2306.02560
https://arxiv.org/abs/1406.5670
https://arxiv.org/abs/1406.5670
https://arxiv.org/abs/2501.14991
https://proceedings.neurips.cc/paper_files/paper/2019/file/1efa39bcaec6f3900149160693694536-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1efa39bcaec6f3900149160693694536-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
https://arxiv.org/abs/1906.02795
https://openreview.net/forum?id=fMUggopCYI

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix: Wasserstein Hypergraph Neural Network

This appendix contains details related to our model, including additional comparisons and ablations,
potential limitations and future work, details on the hyperparameters used in our experiments and
derivation of the computational complexity. In addition to this, we also include the code to ensure
reproducibility. The content is structured as follows:

• Section A presents results on three more datasets and additional experiments used as ablation
for our model.

• Section B highlights a series of potential limitations that can be addressed to improve the
current work, together with a discussion on potential future work.

• Section C presents the list of hyperparameters used in our experiments.

• Section D derives the computational complexity of our model.

A ADDITIONAL EXPERIMENTS

Experiments on additional datasets. Due to space constrain, in the main paper, we show results
on seven benchmarks usually used in the hypergraph literature. Here, we provide additional results
on three more datasets, Senate, Congress (Fowler, 2006) and House (Chodrow et al.). Compared to
the previous ones, for these datasets, the nodes are not equipped with features, so we adopt the usual
setup in which synthetic features are generated using Gaussian noise (Wang et al., 2022). However,
this limitation of the benchmarks makes it harder to interpret or understand the input space.

The results in Table 3 show a consistent trend with the other benchmarks: even when the feature
space is synthetically generated, the Wasserstein aggregator enhances the representations and yields
improved performance.

Table 3: Performance comparison on Congress, Senate, and House datasets. The WHNN model,
which improves the message passing hypergraph architecture with a Wasserstein aggregator, leads to
better results, clearly overcoming the DeepSet-based models.

Model Congress Senate House

HCHA 90.43 ± 1.20 48.62 ± 4.41 61.36 ± 2.53
HNHN 53.35 ± 1.45 50.93 ± 6.33 67.80 ± 2.59
HyperGCN 55.12 ± 1.96 42.45 ± 3.67 48.32 ± 2.93
HyperGNN 91.26 ± 1.15 48.59 ± 4.52 61.39 ± 2.96
AllDeepSets 91.80 ± 1.53 48.17 ± 5.67 67.82 ± 2.40
AllSetTransformer 92.16 ± 1.05 51.83 ± 5.22 69.33 ± 2.20
UniGCNII 94.81 ± 0.81 49.30 ± 4.25 67.25 ± 2.57
ED-HNN 95.00 ± 0.99 64.79 ± 5.14 72.45 ± 2.28

WHNN_MLP 95.67 ± 0.90 66.48 ± 3.56 72.66 ± 1.26
WHNN_(I)SAB 95.42 ± 0.99 67.04 ± 4.80 72.04 ± 1.78

Importance of Wasserstein aggregator. In the main paper, we included ablation studies on Citeseer
and NTU datasets. Here we report additional results for Cora_CA and ModelNet40 datasets (Figure 4)
together with the numerical results for all experiments (Table 4).

For each experiment, we kept the architecture fixed and modified the aggregator used in the two stages
to be either Deep Set, PMA, or the learnable (LPSWE) or fixed (FPSWE) Wasserstein aggregator. The
results are similar across the datasets, with Wasserstein Pooling proving to be beneficial compared to
Deep Sets and PMA. In terms of encoder type, we noticed that, in some cases, for a fixed architecture,
SAB tends to model the distribution better than MLPs.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 4: Additional results for the ablation study on the importance of Wasserstein aggregator
for hypergraph representation learning Cora_CA and ModelNet datasets. FPSWE denotes the
Wasserstein aggregator with fixed reference while LPSWE denotes the Wasserstein aggergator
with learnable reference distribution. Regardless of the encoder used to project the nodes and
hyperedges, the Wasserstein aggregators outperform both the Deep Sets and PMA commonly used
inside hypergraph models.

Table 4: Numerical results for the ablation study comparing DeepSet, PMA and our Wasserstein
aggregator with fixed (FPSWE) or learnable (LPSWE) references.

Model MLP encoder SAB encoder
Citeseer NTU Cora_ca ModelNet Citeseer NTU Cora_ca ModelNet

DeepSet 70.14 ± 0.69 88.75 ± 1.88 77.81 ± 2.03 97.43 ± 0.29 70.10 ± 0.57 88.15 ± 1.32 78.17 ± 1.02 96.45 ± 0.42
PMA 71.45 ± 0.48 87.87 ± 1.79 80.23 ± 0.81 98.14 ± 0.26 71.33 ± 0.86 87.67 ± 1.53 80.08 ± 1.35 96.81 ± 0.33
FPSWE 74.20 ± 0.66 89.74 ± 1.65 82.39 ± 1.27 98.04 ± 0.32 73.60 ± 0.99 89.62 ± 1.61 84.07 ± 1.23 97.91 ± 0.24
LPSWE 73.45 ± 0.81 89.98 ± 1.62 83.75 ± 1.74 98.20 ± 0.27 74.15 ± 0.99 89.94 ± 1.59 83.93 ± 1.68 98.27 ± 0.31

Influence of the reference distribution and the number of samples. For our nodes and hyperedge
embeddings, the reference distribution only acts as a common anchor, similar to the origin in
an Euclidean space. On its own, each set embedding (node/hyperedge representation) contains
information about how different the underlying distribution is compared to the same reference
distribution. However, when computing the relative distance between two sets (two nodes, two
hyperedges), the reference distribution cancels out, and we obtain information about how one
hyperedge can be transformed into another (regardless of the shape and characteristics of the reference
distribution). Because of that, we expect the choice of reference distribution to have minimal impact
on the performance, mostly attributed to numerical stability.

To validate this, we design a series of experiments in which we modify the shape of the reference
distribution and the number of samples used to represent it.

In the first experiment, we pick the reference distribution to be either uniform, Gaussian, Poisson or a
learned distribution. For the learnable distribution, we consider the samples from the distribution to
be learnable parameters.

The results in Table 5 suggest that the choice of distribution has little effect, with only slight
variations observed in the NTU datasets and for the learnable distribution, differences likely due to
computational stability issues.

In the second set of experiments, we run the same setup as before, but modify the number of sampled
points from the reference distribution. If all sets have the same cardinality, the standard approach
is to select a number of reference points equal to this cardinality (thus avoiding the need for linear
interpolation). However, this is not possible in the hypergraph domain, where hyperedges tend to
have various cardinalities. Thus, we expect the model to perform well as long as we pick the number
of reference points to be comparable to most of the cardinalities. The experiments in Table 5 show a
small drop in performance for very few reference points (when M = 2 for Citeeser and Cora_CA
datasets, and M ∈ {2, 5} for NTU), with comparable performance otherwise.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Ablation study comparing performance when varying the type of reference distributions
and the number of points sampled from them. Since the reference distribution serves only as a
shared anchor for all sets, it has little impact on final accuracy. The empirical results on three datasets
confirm this intuition.

(a) Ablation study on Citeseer dataset.

Distr. 2 ref 5 ref 10 ref 25 ref 50 ref

Uniform 74.55 ± 1.68 74.88 ± 1.59 74.72 ± 1.63 74.69 ± 1.77 74.84 ± 1.73
Normal 74.51 ± 1.73 74.83 ± 1.61 74.71 ± 1.65 74.71 ± 1.79 74.81 ± 1.72
Poisson 74.63 ± 1.54 74.81 ± 1.53 74.70 ± 1.66 74.66 ± 1.79 74.83 ± 1.73
Learnable 74.62 ± 1.55 74.60 ± 1.41 74.85 ± 1.54 74.68 ± 1.75 74.85 ± 1.69

(b) Ablation study on Cora_CA dataset

Distr. 2 ref 5 ref 10 ref 25 ref 50 ref

Uniform 84.38 ± 1.51 84.74 ± 1.60 84.63 ± 1.63 84.56 ± 1.71 85.03 ± 1.82
Normal 84.19 ± 1.79 84.69 ± 1.57 84.53 ± 1.65 84.50 ± 1.80 84.75 ± 1.79
Poisson 84.12 ± 1.80 84.51 ± 1.61 84.63 ± 1.66 84.49 ± 1.73 84.70 ± 1.71
Learnable 84.29±1.94 84.51 ± 1.49 84.50 ± 1.35 84.62 ± 1.63 84.62 ± 1.75

(c) Ablation study on NTU dataset.

Distr. 2 ref 5 ref 10 ref 25 ref 50 ref

Uniform 90.19 ± 1.38 90.21 ± 1.60 90.67 ± 1.17 90.47 ± 1.31 90.80 ± 1.21
Normal 90.18 ± 1.37 90.07 ± 1.57 90.59 ± 1.50 91.01 ± 1.46 90.41 ± 1.47
Poisson 90.19 ± 1.38 90.25 ± 1.61 90.50 ± 1.49 90.39 ± 1.02 90.41 ± 1.87
Learnable 90.51 ± 1.39 90.50 ± 1.38 90.52 ± 1.26 90.62 ± 1.37 90.58 ± 1.06

B LIMITATIONS AND FUTURE WORK

As discussed in the main paper, we treat the neighbourhood of each node as a sample from an
underlying probability distribution. This approach assumes that any additional nodes drawn from
this distribution should belong to the same neighbourhood as the observed ones. This aligns with
the intuition that elements within a group should share common characteristics. While the datasets
we used support this assumption, there may be real-world scenarios where it does not hold. Our
model relies solely on the node encoder to project features into a space where the assumption is
approximately valid.

Moreover, due to this continuous view of the neighbourhood (as a distribution of probability) together
with the interpolation step, the current model may lose information about the exact cardinality of the
neighbourhoods. In situations where neighbourhood size is important, we recommend encoding it as
an explicit feature. However, we mention that this is an issue we share with the mean-based pooling
algorithms.

The main goal of this paper is to highlight the benefits of using geometrically-inspired poolings for
aggregating neighbourhood information in hypergraphs. While we focused entirely on hypergraphs,
a similar idea can be applied on graph neural networks or other topological structures to aggregate
messages coming from each node’s neighbourhood. As future work, it would be interesting to see to
what extent these models can benefit from Wasserstein aggregators.

Moreover, while the proposed model integrates the Wasserstein aggregator into a standard two-stage
pipeline, several other architectures, such as ED-HNN which uses summation as an aggregator, might
benefit from adopting it. We are leaving this investigation as future work.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 5: Diagram showing how different geometric arrangements of node embeddings correspond
to distributions with varying shapes and spreads.

C IMPLEMENTATION DETAILS

The results reported in Table 2 of the main paper are obtained using random hyperparameter tuning.
We report here the range of parameters that we searched for. Table 6 and Table 7 contain the best
hyperparameter configuration for the WHNN_MLP model and WHNN_SAB. We depict in bold
the parameters specific to the Wasserstein aggregator, in italic the parameters specific to the SAB
encoder, while the rest of them are the standard parameters used in the two-stage hypergraph models.
In our experiment, we search for the following hyperparameters:

• num_ref: number of elements sampled from the reference distribution {5, 10, 25, 50}
• learnable_W: choose between learning or not the reference distribution {True, False}
• heads: number of heads used by the SAB block {1, 2, 4}
• MLP_layers: number of layers in all MLPs used {0, 1, 2}
• MLP_hid: number of hidden units in all MLPs used. This is also the number of slices used

by Wasserstein aggregator. {128, 256, 512}
• MLP2_layers: using or not an additional linear projection after the residual connection of

each stage {0, 1}
• Cls_layers: number of layers in the final classifier MLP {1, 2}
• Cls_hid: number of hidden units in the final classifier MLP {96, 128, 256}
• self_loops: using or not self loops {True, False}
• dropout: dropout used inside the model {0.5, 0.6, 0.7}
• in_dropout: dropout used in the begining of the model {0.2, 0.5, 0.6, 0.7}
• fixed hyperparameters: All models use 1 layer of WHNN, LayerNorm normalisation, the

residual coefficient α fixed to 0.5, and they are trained for 500 epochs with a learning rate
of 0.001.

D COMPUTATIONAL COMPLEXITY

In this section, we first derive the theoretical complexity for both versions of our Wasserstein
Hypergraph Neural Network: using the edge-independent encoder (WHNN_MPN) and using the
edge-dependent encoder (WHNN_SAB).

For the theoretical analysis, we present the complexity for a hypergraph with N nodes, M hyperedges,
the maximum cardinality of a hyperedge Ke, the maximum number of hyperedges a node is part of
Kv and R number of reference points sampled from the reference distribution.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: The best configuration of hyperparameters used by our model WHNN_MLP on all tested
datasets. We mark with bold the parameters that are specific to the Wasserstein aggregator.

Parameter Cora Citeseer Cora_CA DBLP_CA ModelNet40 NTU2012 20News

num_ref 25 10 25 5 50 25 25
learnable_W True False True True False False False
MLP_layers 1 2 2 2 1 1 0
MLP2_layers 0 0 1 0 0 1 0
MLP_hid 128 256 256 512 256 512 512
Cls_layers 1 1 1 2 2 2 2
Cls_hid 256 128 96 96 96 96 96
self_loops True True True True True False False
dropout 0.7 0.5 0.6 0.7 0.5 0.5 0.5
in_dropout 0.7 0.5 0.6 0.7 0.2 0.2 0.2

Table 7: The best configuration of hyperparameters used by our model WHNN_SAB on all tested
datasets. We mark with bold the parameters that are specific to the Wasserstein aggregator and with
italic the parameters that are specific to the SAB encoder.

Parameter Cora Citeseer Cora_CA DBLP_CA ModelNet40 NTU2012 20News

num_ref 10 5 50 5 25 25 5
learnable_W True False False False False False True
heads 2 4 1 4 1 2 2
MLP_layers 2 2 2 1 1 2 2
MLP2_layers 0 0 1 1 0 0 0
MLP_hid 128 256 128 256 256 512 512
Cls_layers 1 1 1 2 2 2 2
Cls_hid 128 256 128 96 96 96 96
self_loops True False True True True True False
dropout 0.7 0.7 0.5 0.7 0.5 0.5 0.5
in_dropout 0.7 0.7 0.5 0.7 0.2 0.2 0.2

Regarding the encoders, the edge-independent one (MLP) has a complexity of O(N) while the
edge-dependent one (SAB) has complexity O(M ×K2) due to the pairwise exchange of messages
(K2) inside each hyperedge (M).

For the Wasserstein aggregator, the complexity for the nodes to hyperedges stage consists of the
complexity of the linear interpolation applied for each hyperedge to obtain R points from the set of
Ke points representing the hyperedge. After that, all we need to do is an elementwise difference
between the interpolated points and the reference points. To sort each hyperedge, the complexity is
O(KelogKe), and the complexity for interpolating on each sorted hyperedge is (R× logKe) for a
total of M × (R× logKe +KelogKe). Similarly, for the hyperedge to node stage, the complexity is
N × (R× logKv +KvlogKv).

For comparison, the complexity of a Deep Set pooling is O(M ×Ke +N ×Kv)

17

	Introduction
	Related Work
	Background
	Hypergraph Representation Learning
	Sliced Wasserstein Pooling (SWP)

	Wasserstein Hypergraph Neural Network
	Experiments
	Conclusion
	Additional experiments
	Limitations and Future work
	Implementation details
	Computational complexity

