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Abstract

Large Language Models (LLMs) have demonstrated remarkable capabilities in complex
tasks. Recent advancements in Large Reasoning Models (LRMs), such as OpenAI o1 and
DeepSeek-R1, have further improved performance in System-2 reasoning domains like math-
ematics and programming by harnessing supervised fine-tuning (SFT) and reinforcement
learning (RL) to enhance Chain-of-Thought (CoT) reasoning. However, while longer CoT
reasoning sequences improve performance, they also introduce significant computational
overhead due to lengthy and redundant outputs, known as the “overthinking phenomenon”.
Efficient Reasoning, which seeks to optimize reasoning length and computation during
inference of reasoning models while preserving reasoning capabilities, offers practical bene-
fits such as faster processing times, lower energy consumption, and improved responsiveness,
especially valuable for reasoning-intensive applications. Despite its potential, efficient rea-
soning remains in the early stages of research.
In this paper, we provide the first structured survey to systematically investigate and ex-
plore the current progress toward achieving efficient reasoning in LLMs. Overall, relying on
the inherent mechanism of LLMs, we categorize existing works into several key directions:
(1) model-based efficient reasoning, which considers optimizing full-length reasoning
models into more concise reasoning models or directly training efficient reasoning models;
(2) reasoning output-based efficient reasoning, which aims to dynamically reduce
reasoning steps and length during inference; (3) input prompts-based efficient reason-
ing, which seeks to enhance reasoning efficiency based on input prompt properties such as
difficulty or length control. Additionally, we introduce the use of efficient data for training
reasoning models, explore the reasoning capabilities of small language models, and discuss
evaluation methods and benchmarking.

1 Introduction

Large Language Models (LLMs) have emerged as exceptionally powerful AI tools, demonstrating advanced
capabilities in natural language understanding and complex reasoning. Recently, the rise of reasoning-
focused LLMs, also referred to as reasoning-capable models or Large Reasoning Models (LRMs) (Xu et al.,
2025a) such as OpenAI o1 (OpenAI, 2024) and DeepSeek-R1 (Guo et al., 2025), has significantly improved
performance in System-2 reasoning domains (Li et al., 2025d), particularly in challenging mathematics
(Cobbe et al., 2021; Hendrycks et al., 2021) and programming tasks (Codeforces, 2025; Chen et al., 2021).
Evolving from foundational pretrained models (e.g., LLaMA (Touvron et al., 2023; Grattafiori et al., 2024))
trained with next-token prediction (Devlin et al., 2019), these models typically leverage Chain-of-Thought
(CoT) (Wei et al., 2022) reasoning chains to generate explicit, step-by-step reasoning sequences before
arriving at a final answer, significantly improving their effectiveness in reasoning-intensive tasks.

Such reasoning abilities in LLMs are typically developed through supervised fine-tuning (SFT) and rein-
forcement learning (RL), which promote iterative and systematic problem-solving abilities. For instance,
DeepSeek-R1 (Guo et al., 2025) undergoes multiple rounds of SFT and RL training, emphasizing structured
thinking templates and rule-based reward mechanisms. In particular, the rule-based rewards provides precise
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Figure 1: The pipeline of developing efficient reasoning for LLMs. A reasoning model can be trained on
the base model using SFT, RL, or a combination of both. While reasoning models demonstrate strong rea-
soning capabilities, they often suffer from the “overthinking phenomenon”, generating unnecessarily lengthy
reasoning steps. To improve efficiency, various methods can be applied to reduce redundant steps while
maintaining accuracy during post-training based on a reasoning model, or to fine-tune non-reasoning models
to incorporate efficient reasoning capabilities. This approach enables the model to answer questions with
concise and effective reasoning steps. In this paper, we explore the latest progress in efficient reasoning for
LLMs, aiming to provide insights that can guide future research and the development of reasoning-driven
applications across various domains.

and explicit feedback signals during training, effectively enhancing the general reasoning capabilities beyond
the pretrained LLM.

However, while long CoT reasoning significantly boosts accuracy, step-by-step thinking mechanisms also lead
to lengthy output responses, resulting in substantial computational overhead and increased reasoning time.
For instance, the "overthinking problem" arises when answering a simple question (Chen et al., 2024c) like,
"what is the answer of 2 plus 3?" Some reasoning models, especially smaller ones, can generate reasoning
sequences spanning thousands of tokens. This verbosity significantly increases both inference costs and
latency, limiting the practical application of reasoning models in computation-sensitive real-world scenarios,
such as real-time autonomous driving systems, interactive conversational assistants, precision robotic control
tasks, and large-scale online search engines.

Efficient reasoning, particularly the reduction of reasoning length and computation during inference of rea-
soning models as shown in Figure 1, provides direct cost reduction and improved feasibility for real-world
deployments. Recently, numerous studies (Luo et al., 2025; Yeo et al., 2025; Han et al., 2024; Ma et al., 2025b;
Hao et al., 2024) have explored ways to develop more concise reasoning paths, making efficient reasoning a
rapidly evolving research area.

In this paper, we present the first structured survey systematically exploring the progress in efficient rea-
soning for LLMs. As illustrated in Figure 2, we categorize existing work into three key directions: (1)
Model-based efficient reasoning, which focuses on optimizing full-length reasoning models into more con-
cise variants or directly training efficient reasoning models. (2) Reasoning output-based efficient reasoning,
which dynamically reduces reasoning steps and length during inference. (3) Input prompts-based efficient
reasoning, which enhances reasoning efficiency based on input properties such as difficulty or length control.
Unlike model compression techniques such as quantization (Xiao et al., 2023; Frantar et al., 2023; Lin et al.,
2024) or KV cache compression (Zhang et al., 2023; Liu et al., 2024b; Shi et al., 2024; Yuan et al., 2024),
which focus on reducing model size for lightweight inference, efficient reasoning in LLMs emphasizes smart
and concise reasoning by optimizing the length of generated reasoning sequences and reducing unnecessary
thinking steps.
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Figure 2: Overview of efficient reasoning methods, which can be summarized as model-oriented (Left: I,
II ) and reasoning output-oriented (Middle: III, IV ), and input prompts-oriented (Right: V, VI ) methods.
Specifically, (I) Reinforcement Learning with Length Reward Design (Section 3.1); (II) Supervised Fine-
Tuning with Variable-Length CoT Data (Section 3.2); (III) Compressing Reasoning Steps into Fewer Latent
Representation (Section 4.1); (IV) Dynamic Reasoning Paradigm during Inference (Section 4.2); (V) Prompt-
guided Efficient Reasoning (Section 5.1); (VI) Routing Prompts to Optimize Reasoning Efficiency (Section
5.2);

Overall, we provide a summary of the current key approaches to efficient reasoning, organizing them into
the following categories:

• Reinforcement Learning with Length-Based Reward Design (Section 3.1)

• Supervised Fine-Tuning with Variable-Length CoT Data (Section 3.2)

• Compressing Reasoning Steps into Fewer Latent Representations (Section 4.1)

• Dynamic Reasoning Paradigms During Inference (Section 4.2)

• Prompt-Guided Efficient Reasoning (Section 5.1)

• Routing Prompts to Optimize Reasoning Efficiency (Section 5.2)

Furthermore, beyond these approaches, we also include efficient LLM techniques towards reducing the com-
putation related to the reasoning models, including efficient data for reasoning model training, and model
compression methods for reasoning models. We explore other relevant topics, including:

• Training Reasoning Models with Efficient Data (Section 6.1)

• Reasoning Abilities of Small Language Models and Model Compression (Section 6.2)

• Evaluation and Benchmarking of Efficient Reasoning Models (Section 7)

The overall taxonomy of existing literature related to efficient reasoning for LLMs and efficient techniques
related to large reasoning models is provided in Figure 3.

2 Background: Long CoT Reasoning Models and the Overthinking Phenomenon

2.1 Chain-of-Thought (CoT) Reasoning

Chain-of-Thought (CoT) reasoning (Wei et al., 2022) is a key approach that has been purposefully introduced
in LLMs to enhance their reasoning capabilities. In this setting, models are typically prompted to generate
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Figure 3: Taxonomy of existing literature on efficient reasoning for LLMs and efficient techniques related
to large reasoning models.

a structured reasoning chain before arriving at a final answer. Techniques in this domain have been shown
to improve overall accuracy (Wei et al., 2022) since a higher-quality generation context often leads to more
consistent and reliable final results. Several notable CoT variants have been developed: Self-Consistency
CoT (Wang et al., 2023) replaces the standard greedy decoding approach by sampling diverse reasoning paths
and selecting the most consistent answer through marginalization and aggregation. Tree-of-Thought (ToT)
prompting (Yao et al., 2023) further structures the reasoning process as a tree with backtracking, significantly
improving efficiency in solving parallelizable subtasks. Graph-of-Thoughts (GoT) prompting (Besta et al.,
2024) extends this concept by structuring thoughts into a graph, allowing iterative refinement of individual
reasoning steps. While many CoT variants exist, they generally involve different prompting techniques
to guide the behavior of models, sometimes incorporating controller-like mechanisms to manage thought
progression and usage.
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DeepSeek-R1

Okay, so I need to figure out which number is bigger between 
0.9 and 0.11. Hmm, let's see. Both are decimals, but they have 
different numbers of digits after the decimal point. Maybe I 
should start by understanding what each decimal represents.
First, 0.9. That's nine tenths, right? Because the first digit after 
the decimal is the tenths place. Now, …
Wait, but let me check another way to be sure…
Another method could be converting them to percentages. …
But just to make sure I haven't made a mistake, let me 
visualize it on a number line …
Is there any other way to verify this? Maybe subtraction…. 
Alternatively, ... So I'm confident the answer is 0.9.
0.9

Overthinking (602 words, 42 seconds)

Which is larger, 0.9 or 0.11?Which is larger, 0.9 or 0.11?

QwQ-32B

Okay, so I need to figure out which number is larger between 
0.9 and 0.11. Hmm, let me think. Both are decimals, right? 
Maybe I should compare them digit by digit. Let me recall 
how decimal comparison works.
First, I remember that …
Wait, but 0.9 has only one digit after the decimal, while 0.11 
has two. Maybe I should write them with…
Now, …
But wait, let me double-check. Maybe I made a mistake here. 
Let me think again. …
Alternatively, …
Another way could be…
Final Answer: The larger number is 0.9.

Overthinking (616 words, 19 seconds)

Which is larger, 0.9 or 0.11?Which is larger, 0.9 or 0.11?

Figure 4: An example of the “overthinking phenomenon”: when asked “Which is larger, 0.9 or 0.11?” ,
the reasoning model takes an unnecessarily long time (e.g., 19 seconds for QwQ-32B (Team) and 42 seconds
for DeepSeek-R1 (Guo et al., 2025)) to arrive at the correct answer. This example was tested in March 2025.

2.2 The Mechanism Behind Large Reasoning Models

Multi-step reasoning refers to the ability of LLMs ability to generate structured reasoning steps before
committing to a final answer. This capability is particularly beneficial for logic-intensive tasks such as
mathematics and programming. More broadly, reasoning-capable models are often favored by human users
over their non-reasoning counterparts, as evidenced by rankings in the Chatbot Arena LLM Leaderboard.1

Recent reasoning models, such as DeepSeek-R1 (Guo et al., 2025) and OpenAI o1 (Luo et al., 2025), are known
or believed to have internalized reasoning behaviors, reducing reliance on explicit test-time augmentations.
These models generate detailed CoT reasoning by iteratively producing intermediate steps and refining
solutions sequentially until reaching a final answer. Unlike traditional CoT approaches, which rely on
prompting, these reasoning models internalize their reasoning capability through extensive training.

The OpenAI o1 model is speculated to employ a tree-based search approach, such as Monte Carlo Tree
Search (MCTS) (Kocsis & Szepesvári, 2006; Coulom, 2006), combined with a Process Reward Model (PRM)
to explore reasoning paths and determine optimal solutions through guided simulations.2 DeepSeek-R1, on
the other hand, explicitly learns its reasoning capability through supervised fine-tuning and reinforcement
learning, with a particular emphasis on rule-based rewards for math and coding tasks. These models are
trained to generate reasoning steps in a predefined format before arriving at their final answers.

2.3 The Overthinking Problem in Long CoT Reasoning Models

The “overthinking phenomenon” (Team et al., 2025; Chen et al., 2024c) in long CoT reasoning models refers
to situations where LLMs generate excessively detailed or unnecessarily elaborate reasoning steps, ultimately
reducing their problem-solving efficiency. In particular, many modern reasoning models, especially those with
smaller parameter scales, tend to produce verbose reasoning or redundant intermediate steps, making them
unable to provide answers within the user-defined token budget. In worse cases, excessive reasoning steps
introduce errors or obscure logical clarity, leading to incorrect answers.

1A community-driven evaluation of leading LLMs and AI chatbots: https://lmarena.ai/?leaderboard.
2There is no official confirmation regarding OpenAI o1’s training details and mechanisms. However, sources such as https://

www.interconnects.ai/p/openais-o1-using-search-was-a-psyop and https://www.youtube.com/watch?v=6PEJ96k1kiw dis-
cuss these speculations in detail and are recommended for interested readers.
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Table 1: Comparison of different length reward-based RL methods. L(·) denotes the way of calculating the
prediction length. rc

0/rw
0 denotes reward (correct/wrong) for L(·)=0. rc

L/rw
L Reward (correct/wrong) for

L(·) = Lmax(·) with hyperparameter α. re is the exceed length penalty. yGT represents the ground truth
answer, ypred is the prediction, and yref is the reference prediction from reference model of input data x of
dataset D. πref is the policy of reference model and πθ is the policy of targeted-to-train LLMs.

Method RL Length Constraint Reward Data Model

O1-Pruner (Luo et al., 2025) PPO Ex∼D

[
Eπθ,πref

[
L(yref)

L(ypred)

]
− 1

] GSM8K
GaoKao

MATH-500

Marco-o1-7B
QwQ-32B-Preview

Demystifying (Yeo et al., 2025) PPO


rc

0 + 0.5 × (rc
L − rc

0)(1 + cos( πL(ypred)
Lmax

), if correct,
rc

0 + 0.5 × (rw
L − rw

0 )(1 + cos( πL(ypred)
Lmax

), if wrong
re, if L(ypred) = Lmax,

MATH-500
AIME-2024
TheoremQA

MMLU-Pro-1k

LLaMA-3.1-8B
Qwen2.5-7B-Math

L1 (Aggarwal & Welleck, 2025) GRPO
{

xnew = CONCAT (x, “Think for N tokens.”),
r(y, yGT , L(yGT )) = I(ypred = yGT ) − α · |L(yGT ) − L(ypred)|

AMC
GPQA
LAST
MMLU

MATH-500
AIME-2024

Olympiad-Bench

DeepSeek-R1-Distill-Qwen-1.5B

DAST (Shen et al., 2025b) SimPO Trained with constructed length preference data MATH-500
AIME-2024

DeepSeek-R1-Distill-Qwen-8B
DeepSeek-R1-Distill-Qwen-32B

Training (Arora & Zanette, 2025) PG Ex∼D [1{ypred = yGT}(1 − αf(L(ypred)))]
GSM8K

MATH-500
AIME-2024

DeepSeek-R1-Distill-Qwen-1.5B
DeepSeek-R1-Distill-Qwen-7B

Figure 4 illustrates an example of overthinking. Even though the model arrives at the correct answer early in
its reasoning process, it continues generating unnecessary intermediate steps, leading to inefficiencies. Given
the substantial resource costs associated with LLM inference (e.g., OpenAI o1 costs $60 per 1M generated
tokens), such behavior is highly undesirable. Moreover, the problem becomes even worse if longer reasoning
leads to wrong answers. In contrast, efficient reasoning models would use fewer reasoning steps to obtain
correct answers while reducing inference costs.

Addressing this challenge is particularly difficult because the pretraining recipes for reasoning-capable models
often explicitly encourage generating extended reasoning steps to improve accuracy. For example, DeepSeek-
R1-Zero, a more or less a development prototype of DeepSeek-R1, exhibits a direct correlation between
increased training duration with longer response lengths and improved benchmark performance (Guo et al.,
2025). These trends are often viewed as proxies for successful reasoning training. Consequently, improving
inference efficiency requires working against certain pretraining objectives, making it a non-trivial challenge.

This paper aims to systematically summarize various approaches and methodologies toward achieving the
challenging yet valuable goal of developing reasoning models with high efficiency and strong reasoning capa-
bilities.

3 Model-based Efficient Reasoning

From the model perspective, these works focus on fine-tuning LLMs to improve their intrinsic ability to
reason concisely and efficiently.

3.1 RL with Length Reward Design

Most reasoning models are trained using RL-based methods (e.g., DeepSeek-R1 (Guo et al., 2025), DeepSeek-
R1-Zero (Guo et al., 2025), OpenAI o1 (OpenAI, 2024), QwQ-32B-Preview (Team)) which focus on the
accuracy reward and format rewards (Guo et al., 2025). To enhance reasoning-length efficiency, some studies
propose integrating a length reward into the RL framework, which effectively shortens the reasoning process
(as shown in Table 5). In principle, the length reward assigns higher scores to short, correct answers while
penalizing lengthy or incorrect ones, thereby optimizing the length of the reasoning path.
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Table 2: Comparison of different policy optimization methods in CoT length controls. R̂t represents the
reward model. πref is the policy of reference model and πθ is the policy of target-to-train LLMs. γ is a
target reward margin term for SimPO and β is a hyperparameter to amply the preference to winning than
losing. λ is a clipping-related hyper-parameter with KL-divergence DKL[·||·]. clip(·) is a gradient clipping
function with hyperparameter ϵ to control the gradient updating progress of GRPO. The yw is for winning
responses, and yl is for losing responses of the given input data xt, where some with G on superscript denote
the outputs of different sampled groups.

Method Optimization Objective

Policy Gradient (PG) Eπθ

[
∇θ log πθ(yt|xt)R̂t

]
PPO (Schulman et al., 2017) E

[
min

(
πθ(yt|xt)

πθref (yt|xt) R̂t, clip
(

πθ(yt|xt)
πθref (yt|xt) , 1 − ϵ, 1 + ϵ

)
R̂t

)]
SimPO (Meng et al., 2024) E

[
log σ

(
β

|yw
t

| log πθ(yw
t | xt) − β

|yl
t
| log πθ(yl

t | xt) − γ
)]

GRPO (Shao et al., 2024) E
[
min

(
πθ(yG

t |xt)
πθref (yG

t
|xt) R̂G

t , clip
(

πθ(yG
t |xt)

πθr (yG
t

|xt) , 1 − ϵ, 1 + ϵ
)

R̂G
t

)
− λDKL[πθ||πref]

]

The key question is: How to formulate the length reward in RL?

Length Reward

+1

-1

CoT Reasoning Response

Other Reward Functions

Format Reward
Accuracy Reward
…
+1  -1 +1 -1

RL

Efficient
Reasoning

Model

LLMs/
Reasoning

Model

Figure 5: Illustration of the method for RL fine-tuning with length reward designs. In principle, the length
reward assigns higher rewards to short, correct answers and penalizes lengthy or wrong answers to achieve
efficient reasoning LLMs.

Existing works leverage traditional RL optimization techniques combined with explicit length-based re-
ward to control the length of CoT reasoning are shown in Figure 5. The detailed length rewards are shown
in Table 1, and the details of different reinforcement learning optimization objectives, accompanied with
length rewards, are shown in Table 2. The work (Arora & Zanette, 2025) proposes utilizing length-based
rewards conditioned on correctness, where shorter correct answers receive higher rewards. They then apply
traditional policy gradient methods guided by this reward scheme to encourage LLMs to produce concise
reasoning steps. Expanding from the policy gradient, the following discussed work is primarily built upon
proximal policy optimization (PPO) (Schulman et al., 2017) with CoT length penalty. Demystifying (Yeo
et al., 2025) presents empirical findings from RL experiments examining how reasoning capability is in-
fluenced by length. They demonstrate that RL does not consistently or reliably increase the length and
complexity of CoT reasoning, emphasizing the necessity of controlling CoT length growth to ensure stable
performance. To mitigate these issues, they proposed a Cosine Reward based on a Dirichlet function of a
concise reward formula (Loshchilov & Hutter, 2016) and the proposed “exceed length penalty” scores. Due to
the performance impact of CoT length, Kimi k1.5 (Team et al., 2025) incorporates a length penalty into its
policy optimization (a variant of online policy mirror decent (Tomar et al., 2020)) to improve long CoT acti-
vations and facilitate effective model merging. Besides optimizing with length penalty reward, L1 (Aggarwal
& Welleck, 2025) modify the training data with the designated length constraint instruction (i.e., Think for
N tokens) before launching the policy optimization with pre-trained reasoning LLMs. O1-Pruner (Luo et al.,
2025) introduces the Length-Harmonizing Reward, combined with a PPO-style loss, to optimize reasoning
LLMs by effectively shortening the CoT length. Specifically, the Length-Harmonizing Reward is computed
based on the ratio of CoT lengths between the reference model output and the predicted results. Additionally,
this reward incorporates accuracy-based constraints comparing predictions to the reference model outputs,
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ensuring that shortening the reasoning process does not degrade task performance. Without relying on a
reference model, DAST (Shen et al., 2025b) employs SimPO (Meng et al., 2024) to fine-tune reasoning LLMs
using a constructed length-preference dataset. This dataset is generated based on a self-defined token-length
budget measurement Lbudget, defined as a linear combination of the average token length of correct responses
and the maximum allowed generation length.

These RL-based methods enable the mitigation of overthinking in reasoning-capable LLMs, where overthink-
ing refers to unnecessarily extended reasoning processes, leading to longer inference times and exceeding com-
putational budgets. By achieving nearly lossless alignment with the original reasoning capabilities of LLMs,
these budget-efficient RL strategies democratize the deployment of reasoning LLMs in resource-constrained
scenarios.

3.2 SFT with Variable-Length CoT Data

Fine-tuning LLMs with variable-length CoT data is an effective way to improve the efficiency of
reasoning. As shown in Figure 6, this series of works typically involves: (1) Constructing variable-length
CoT reasoning datasets via various methods, and (2) Applying SFT with collected data on reasoning models
to enable LLMs to learn compact reasoning chains that encapsulate effective knowledge. Note that this
method is not limited to RL-trained reasoning models; it can also directly enhance reasoning models by
injecting efficient reasoning capabilities, similar to those used in distilled reasoning models.(e.g., DeepSeek-
R1-Distill-Qwen (Guo et al., 2025)).

The key question is: How to collect variable-length CoT reasoning data, especially
for short CoT data?

SFT

LLMs/
Reasoning

Model

Efficient
Reasoning

Model

Variable-Length CoT Reasoning Data Long CoT Data

Short CoT Data
LLMs

Figure 6: Illustration of methods for utilizing SFT with variable-length CoT reasoning datasets.

3.2.1 Constructing Variable-Length CoT Reasoning Datasets

Variable-length CoT reasoning datasets refer to datasets of long/short reasoning steps that could guide
LLMs to achieve correct answers. Existing works typically gather long CoT data by prompting pre-trained
reasoning models with questions. Based on the long CoT data, the key challenge is: How to collect short
CoT data? Overall, variable-length CoT reasoning datasets can be created via either post-reasoning or
during-reasoning. We list some detailed approaches in Table 3.

Post-reasoning CoT Compression. This approach collects short CoT data by reducing redundant rea-
soning steps after full-length reasoning, either by heuristic criterion or LLMs (Yu et al., 2024; Kang et al.,
2024; Xia et al., 2025). Specifically, Yu et al. (2024) uses reasoning-capable LLMs to generate the reasoning
and answers. After generating full-length CoT data, they discard the reasoning process, only using the
questions and answers to distill system-1 LLMs. Another work C3oT improves the reasoning efficiency by
compressing the reasoning process (Kang et al., 2024). The long CoT reasoning steps were generated by
explicitly prompting LLMs. Then, it employs GPT-4 as a compressor to reduce the length of the reasoning
process while ensuring the compressed reasoning retains all key information and removes redundant words.
In addition, TokenSkip reduce the reasoning steps driven by interpretation (Xia et al., 2025). It estimates
the semantic importance of each reasoning part to the final answer and reduces the reasoning tokens. The
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Table 3: Comparison of various approaches that utilize SFT with variable-length CoT reasoning datasets.
Method Source Data Reasoning Pruning SFT LLMs

Self-Training (Munkhbat et al., 2025) GSM8K
MATH

Sampling N
reasoning then select

the shortest one
Standard Llama-3.2-{1B,3B}

Llama-3.1-8B

TokenSkip (Xia et al., 2025) GSM8K
MATH

Skip tokens according to
semantic importance Standard LLaMA-3.1-8B-Instruct

Qwen2.5-Instruct

C3oT (Kang et al., 2024)

GSM8K
MathQA
ECQA

StrategyQA

GPT-4 as compressor
to make concise

reasoning
Standard Llama-2-chat-{7B,13B}

Distilling2-1 (Yu et al., 2024) OASST2 Removing reasoning Standard Llama-2-70B-chat

Token-Budget (Han et al., 2024)
GSM8K

GSM8K-Z
MathBench

Persuing an optimal
token budget for LLMs

to complete the reasoning
Standard Llama-3.1-8B-Instruct

CoT-Valve (Ma et al., 2025b) GSM8K
PRM800k

Merging parameters
of non-reasoning and
long reasoning LLMs

Progressive

QwQ-32B-Preview
DeepSeek-R1-Distill-Llama-8B

LLaMA-3.1-8B
LLaMA-3.2-1B

Qwen32B-Instruct

LearnSkip (Liu et al., 2024a)
Analog of Algebra

Multi-digit Addition
Directional Reasoning

Stage 1: Manually skipping
Stage 2: Prompting LLMs

for shorter reasoning

Standard &
Progressive

Llama-2-7B
Phi-3-mini (3.8B)

important parts preserve the key reasoning steps that could improve the accuracy of the final answer. The
advantage of post-reasoning CoT compression is that it can achieve a higher reduction rate of the reasoning
steps, which advances more efficient reasoning.

Obtaining Compressed CoT Data during Reasoning. This approach collects short CoT data by
prompting LLMs to generate short reasoning steps during inference and reasoning (Liu et al., 2024a;
Munkhbat et al., 2025; Han et al., 2024; Ma et al., 2025b). Specifically, Liu et al. (2024a) proposes a
human-like step-skipping method for generating shorter reasoning steps. In the first stage, based on the
original training datasets, they manually create solutions by skipping steps, either guided by human exper-
tise or by randomly merging or removing steps. Further, these concise data are labeled with prompts such
as “Solve it in n steps.”. After SFT, the model is able to generate shorter reasoning paths. In the second
stage, they prompt this model to solve problems by intrinsically skipping or compressing steps during rea-
soning. The generated concise reasoning steps with questions and answers are collected as datasets, which
are then used in SFT to make LLMs solve problems with fewer steps. Moreover, Token-Budget (Han et al.,
2024) has an important insight: an optimal token budget helps LLMs actively follow the token constraint
to complete the reasoning process. Motivated by this insight, it proposes a binary search-based method to
achieve the optimal token budgets, and follow these budgets to generate short reasoning steps. In addition,
Munkhbat et al. (2025) proposes a sampling-based method to improve reasoning efficiency. Specifically,
it examines the distribution of reasoning lengths and finds that shorter solutions appear more frequently
than the typical reasoning length. Driven by this finding, it proposes a Best-of-N (BoN) Sampling at test
time, which generates N paths of reasoning and selects the shortest one. These short reasoning paths are
collected as the dataset. Finally, CoT-Valve (Ma et al., 2025b) controls the reasoning length by mix-up the
parameters of long reasoning and non-reasoning LLMs for generating variable-length reasoning steps. They
also release their mixed dataset, such as MixChain-Z-GSM8K and MixChain-C-LIMO. The advantage of
CoT compression during reasoning is that the naturally generated reasoning steps align with the intrinsic
knowledge of LLMs, which advances more effective learning of LLMs.

3.2.2 Fine-Tuning Approaches

After collecting variable-length CoT data, existing works fine-tune LLMs to achieve efficient reasoning in
several ways, which include standard fine-tuning (e.g., parameter-efficient fine-tuning such as LoRA (Hu
et al., 2022) or full fine-tuning) and progressive fine-tuning.
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Standard Fine-tuning. Most of the work adopts standard methods to fine-tune LLMs (Liu et al., 2024a;
Munkhbat et al., 2025; Yu et al., 2024; Kang et al., 2024; Xia et al., 2025; Han et al., 2024). Specifically, these
approaches adopt LoRA (Hu et al., 2022) or full fine-tuning (Kang et al., 2024) to minimize the perplexity loss
function or DPO loss function (Han et al., 2024) on the reasoning-efficient datasets. The LoRA enables LLMs
to adapt to short reasoning steps with less than 1% of the parameters tuned. In addition, (Liu et al., 2024a)
observed the growing reasoning efficiency can generalize to out-of-domains beyond the collected datasets.

Progressive Fine-tuning. Progressive fine-tuning aims to smoothly reduce the reasoning steps during
fine-tuning (Ma et al., 2025b; Liu et al., 2024a). One way is to progressively reduce the reasoning steps of
data during fine-tuning LLMs, as employed in (Liu et al., 2024a). Another effective way is to progressively
adjust the generation of reasoning steps, as proposed by CoT-Valve (Ma et al., 2025b). Specifically, it first
learns LoRA adaptor ∆θN and θL, where LLMs with ∆θN have no reasoning steps, and that with ∆θL have
long reasoning. Then, it mix-up ∆θN and ∆θlong by α∆θN +(1−α)∆θL to generate a dataset reasoning with
variable length. Here 0 < α < 1 controls the parameter to shift from ∆θN to ∆θL, controlling the reasoning
length generated by LLMs. Finally, it fine-tunes LLMs on the generated data while progressively reducing
α from 1 to 0. In this way, reasoning efficiency is progressively improved during fine-tuning.

4 Reasoning Output-based Efficient Reasoning

From the perspective of reasoning steps in the output, these works focus on modifying the output paradigm
to enhance the ability of LLMs to reason concisely and efficiently.

4.1 Compressing Reasoning Steps into Fewer Latent Representation

Although standard CoT methods improve LLM performance by explicitly writing reasoning steps, recent
work (Deng et al., 2024) has shown that simply adding intermediate “thinking” tokens, or even meaningless
filler (e.g., “......”) (Pfau et al., 2024), can also increase performance. Geiping et al. (2025) scales up deeper
reasoning through recurrent expansions in the hidden space rather than verbose text. These findings highlight
that the benefit often lies in more hidden computation rather than purely textual decompositions. Building
on the insight that latent reasoning can allow LLMs to reason more efficiently and flexibly, with fewer (or
no) explicit textual intermediate steps, several new methods focus on compressing or replacing explicit CoT
with more compact latent representations.

The key question is: How to compress reasoning steps into latent space?

Large Language Model 🔥 Gradually Training LLM 🔥

Coconut

CCOT𝛗🔥 Decode𝛙🔥

CCOT

Self-distillation LLM 🔥

CODICoT

SoftCoT

Large Language Model ❄

Assistant LLM❄ Projection 🔥

Prompt

Answer

Intermediate Reasoning Step

Latent/So6 Thoughts

Figure 7: Comparison of methods of compressing reasoning steps into fewer latent representations.
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In general, these methods can be categorized into two types: training LLMs to inference using latent repre-
sentations or using an auxiliary model. A visualized comparison of some of these approaches is presented in
Figure 7.

Training LLMs to Leverage Latent Representations. Among the first explorations, Coconut (Chain
of Continuous Thought) (Hao et al., 2024) treats the final-layer hidden states of an LLM as “continuous
thought” to replace traditional discrete tokens. It then reuses these hidden states as the next input em-
beddings. Trained step by step, Coconut gradually adds these latent CoT tokens. The results suggest that
compressing tokens into latent representations improves both accuracy and efficiency by reducing the number
of intermediate “thinking” tokens. CODI (Shen et al., 2025c) leverages a different training process compared
to Coconut, which learns the continuous latent CoT via self-distillation. In CODI, the model serves both
teacher and student, jointly learning explicit and implicit CoT while aligning hidden activations on the to-
ken, generating the final answer. This self-distillation process enables LLMs to perform reasoning internally
without generating explicit CoT tokens. Similarly, CCOT (Cheng & Van Durme, 2024) condenses long CoT
reasoning into short contentful and continuous contemplation tokens. First, it precomputes the full CoT for a
query and selects the most important hidden states as a gold standard for compression. The CCOT module
(a LoRA) is trained to predict these key tokens. Then, the DECODE module (another LoRA) is trained on
the query plus compressed tokens. During inference, CCOT generates compressed tokens, which DECODE
uses to produce concise reasoning steps. Another type of work, summarization-based dynamic reasoning,
as mentioned in Section 4.2 explores compressing and summarizing reasoning steps in discrete space during
inference, which is similar to the introduction of “contemplation token”.

Another work, Heima (Shen et al., 2025a), inspired by Coconut (Hao et al., 2024), brings latent reasoning into
Multimodal Large Langue Models (MLLMs). Instead of always using full, lengthy reasoning explanations,
Heima replaces each stage of detailed reasoning with a single “thinking token”. With this change, the training
data is updated. Instead of long textual explanations, each reasoning stage is just one of these thinking tokens.
Then, they continue fine-tuning the model to achieve efficient reasoning. Token Assorted (Su et al., 2025)
adopts a hybrid approach. During training, part of the CoT is replaced by discrete latent tokens learned
via a VQ-VAE (Van Den Oord et al., 2017), and then the LLM is trained with a partial and high-level
abstract of the reasoning steps. The authors show that mixing text tokens with latent tokens can facilitate
training and inference by representing some reasoning steps in a compact latent form. Other than explicitly
compressing the discrete tokens into latent space, Saunshi et al. (2025) demonstrates that looping a k-layer
transformer L times can emulate the performance of a kL-layer model. This looping mechanism effectively
increases the depth of the model depth without adding parameters, enabling iterative reasoning processes
within the latent space. The study reveals that looped models implicitly generate latent thoughts, allowing
them to simulate multiple steps of CoT reasoning through successive loops.

Training Auxiliary Modules while Keeping LLMs Frozen. While most methods for continuous-
space reasoning fine-tune the pre-trained LLM, SoftCoT (Xu et al., 2025c) keeps the underlying LLM frozen.
A lightweight auxiliary model generates instance-specific soft thought tokens projected into the embedding
space of the frozen LLM. Experiments show that SoftCoT consistently boosts performance, demonstrating
the viability of augmenting LLMs with external latent reasoning tokens.

These methods hint at a broader move toward latent reasoning, where critical thinking occurs in compressed,
non-textual forms. Such approaches can unlock improved speed, adaptive inference, parallel backtracking,
and new ways to interpret or partially reveal the model reasoning. As LLMs grow larger and tasks become
more complex, balancing thorough reasoning with computational efficiency is greatly beneficial from these
flexible and compact latent CoT paradigms.

4.2 Dynamic Reasoning Paradigm during Inference

Existing works focus on modifying the reasoning paradigm for more efficient inference. The key during
inference is choosing the proper criterion to guide the reasoning strategy. Current training-free approaches
explore dynamic reasoning using various criteria, such as reward-guided, confidence-based, and consistency-
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based selective reasoning. Additionally, a summarization-based dynamic reasoning method intrinsically
integrates the output summarization paradigm of LLMs during training.

The key question is: Which criterion to guide the inference? What is the appropriate
efficient inference paradigm?

Table 4: Comparison of different methods of dynamic reasoning paradigm of test time compute during
inference.

Category Method Training-
free?

Baseline and Its Draw-
backs

Method Description

Reward-
guided
Efficient
Reasoning

Speculative Rejec-
tion (Sun et al.,
2024)

Yes Best-of-N (BoN) De-
coding: underutilizes GPU
memory and computational
resources during the early
stages, leading to lower final
rewards.

Starts BoN with a large initial
batch size and rejects unpromis-
ing sequences periodically, efficiently
achieving higher rewards.

Reward-Guided
Speculative Decod-
ing (RSD) (Liao
et al., 2025a)

Yes Speculative Decoding:
strictly enforces unbiased-
ness, discarding useful
intermediate outputs and
leading to computational
inefficiency.

A speculative decoding method that
leverages a reward model (PRM) to
selectively accept high-quality out-
puts from a lightweight draft model,
reducing computation while preserv-
ing accuracy.

Confidence/
Certainty-
based Adap-
tive Reason-
ing

Dynamic Parallel
Tree Search (Ding
et al., 2025)

Yes Tree-of-Thoughts: diffi-
cult to parallelize due to fre-
quent switching of reasoning
focus, and inefficient because
of redundant exploration of
suboptimal solutions

Dynamically parallelizes node expan-
sion through adaptive batching and
implements a search-and-transition
mechanism (including Early Stop
and Deep Seek) to prune unpromis-
ing paths early.

Dynasor
(Certaindex-based
Scheduling) (Fu
et al., 2024)

Yes Serving systems with
uniform resource allo-
cation: allocate compute
uniformly, leading to inef-
ficient resource usage and
unmet latency targets

Dynamically allocates compute for
reasoning queries based on Certain-
dex, a statistical measure of reason-
ing progress, to maximize accuracy
within resource constraints.

FastMCTS (Li et al.,
2025a)

Yes Rejection Sampling: inef-
ficient, discards intermediate
steps, and fails to balance
problem difficulty

An MCTS-inspired sampling strat-
egy that efficiently generates high-
quality multi-step reasoning data,
providing step-level evaluation sig-
nals and balanced sampling across
problem difficulties.

Length-filtered Vote
(Wu et al., 2025)

Yes Majority Voting: ignores
reasoning quality, includes
suboptimal CoT lengths,
and suffers from noisy pre-
dictions

A voting strategy that selects an-
swers with the optimal CoT length
by filtering out excessively short or
long reasoning paths.

Consistency-
based Selective
Reasoning

Self-Truncation
Best-of-N (ST-BoN)
(Wang et al., 2025)

Yes Best-of-N Sampling: fully
generates all samples and re-
lies on costly reward models

Estimates the most promising sam-
ple early via internal embedding con-
sistency, truncating inferior samples
prematurely.

Summarization-
based Dy-
namic Rea-
soning

LightThinker
(Zhang et al.,
2025)

No Chain-of-Thought (CoT):
high memory and computa-
tional overhead due to the
generation of an excessive
number of tokens

Trains LLMs to learn when and how
to compress intermediate thoughts,
condensing long reasoning chains
into gist tokens, and uses a sparse-
patterned attention mask during in-
ference to enhance computational ef-
ficiency.

InftyThink (Yan
et al., 2025)

No Monolithic Reasoning:
reasoning output is verbose,
and can quickly exceed the
context window limit of
the LLM, resulting in poor
performance

An iterative reasoning paradigm that
interleaves reasoning steps with in-
termediate summarization, enabling
unbounded reasoning depth without
architectural modifications.

4.2.1 Dynamic Reasoning via Explicit Criteria

Train-time scaling with RL (Guo et al., 2025) can significantly enhance the reasoning ability of LLMs. How-
ever, it requires substantial computational resources to scale up the model training, making it prohibitively
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expensive (Guo et al., 2025). As an alternative, researchers have explored test-time reasoning, also known as
test-time scaling (Snell et al., 2024). Instead of relying on training to learn CoT reasoning steps, test-time
scaling leverages various inference strategies that allow models to “think longer and broader” on complex
problems. This approach consistently improves performance on challenging math and code problems that
require reasoning by increasing the computational resources allocated during inference (Snell et al., 2024;
Beeching et al.).

Test-time scaling utilizes various inference strategies to generate longer and higher-quality CoT responses.
There are several ways to scale up the inference. (1) Best-of-N sampling (Sun et al., 2024; Wang et al.,
2025) involves generating multiple responses for a given prompt, expanding the search space to identify
better solutions. After generation, the best response is selected using either majority voting, where the
most frequently occurring response is chosen; or by a reward model, which evaluates response quality based
on pre-defined criteria. This method has been shown to significantly enhance the reasoning capabilities of
LLMs (Beeching et al.). (2) Beam-based searching (Ding et al., 2025; Fu et al., 2024; Beeching et al.),
which differs from Best-of-N by structuring generation into multiple steps. Instead of generating an entire
response in one pass, beam search selects the most promising intermediate outputs with process reward
model (Uesato et al., 2022) at each step, while discarding less the optimal ones. This enables a more fine-
grained optimization of both response generation and evaluation. (3) Monte Carlo Tree Search (MCTS) (Li
et al., 2025a), where multiple solution paths are explored in parallel. MCTS generates partial responses along
different branches of a solution tree, evaluates them, and back-propagates reward values to earlier nodes.
The model then selects the branch with the highest cumulative reward, ensuring a more refined selection
process compared to traditional beam search.

Although test-time scaling can significantly reduce train-time scaling up overhead (Beeching et al.), the
large number of generated responses still makes inference computationally expensive. To address this, recent
works have been exploring methods to optimize test-time scaling.

Reward-guided Efficient Reasoning. Speculative Rejection (Sun et al., 2024) is an efficient inference-
time reasoning algorithm that optimizes Best-of-N (BoN) decoding by dynamically reducing computational
overhead (as shown in Figure 8, left). It generates multiple responses until memory limits are nearly reached,
then discards low-quality outputs based on evaluation by a reward model. This adaptive filtering substantially
reduces inference costs compared to vanilla BoN. On the other hand, Reward-Guided Speculative Decoding
(RSD) (Liao et al., 2025a) enhances the efficiency of speculative decoding specifically for multi-step reasoning
tasks. Unlike traditional speculative decoding methods, which strictly require exact token matching between
the draft model and target model, RSD leverages a Process Reward Model (PRM) to dynamically evaluate
intermediate outputs from the smaller, more efficient draft model. Outputs with high reward scores are
directly accepted, while those with lower scores are further refined by a larger, more capable target model.

Confidence/Certainty-based Adaptive Reasoning. Dynamic Parallel Tree Search (DPTS) (Ding
et al., 2025) optimizes tree-based reasoning in LLMs by addressing two main inefficiencies by introducing:
(1) Parallelism Streamline optimizes memory and compute by storing only incremental KV cache updates
and dynamically adjusting the number of extended nodes based on available GPU memory, (2) Search and
Transition Mechanism balances exploration and exploitation using confidence-based criteria. Overall, dur-
ing inference, the system cuts off uncertain paths to save time. FastMCTS (Li et al., 2025a) is another
confidence-based method that aims to optimize multi-step reasoning data synthesis. Traditional rejection
sampling generates multiple candidate responses independently, selecting only the correct ones, but it is
often inefficient and struggles with imbalanced sampling. Inspired by MCTS, FastMCTS prioritizes high-
confidence traces for deep reasoning. Additionally, it adjusts tree expansion based on problem complexity,
improving both efficiency and reasoning diversity. Another line of research leverages certainty or uncertainty
measures to guide adaptive reasoning. Certaindex (Fu et al., 2024), a certainty metric, quantifies the confi-
dence of LLMs throughout reasoning using semantic entropy, reward model scores, or a combination of both.
A higher certaindex indicates that further reasoning steps are unlikely to change the final answer, allowing
early termination to free resources for more challenging queries. Dynasor, an inference system built on this
principle, optimizes compute scheduling by dynamically tracking reasoning progress instead of allocating
resources uniformly. Length-filtered Vote (Wu et al., 2025) is another work that leverages uncertainty to im-
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Figure 8: Examples of efficient Best-of-N sampling methods. (Left) Speculative Rejection (Sun et al., 2024)
uses a reward model to estimate partial generation quality. It then early stops the sampled sequence with
lower scores. (Right) ST-BoN (Wang et al., 2025) evaluates the latent embedding of the early generation.
The latent embedding of each thinking path will be used to calculate pairwise consistency between other
tokens. The sequence with the highest consistency is more likely to arrive at the correct answer.

prove CoT reasoning. The study finds that longer reasoning chains do not always improve accuracy; instead,
performance initially improves but eventually declines due to error accumulation. The authors provide a
mathematical analysis proving the existence of an optimal CoT length, determined by model capability and
task difficulty. To exploit this, they propose Length-filtered Voting, a length-aware majority voting method
that groups answers by CoT length and selects the most reliable group based on prediction uncertainty.

Consistency-based Selective Reasoning. Self-Truncation Best-of-N (ST-BoN) (Wang et al., 2025) en-
hances BoN sampling efficiency by introducing early termination (as shown in Figure 8, right), similar to
Speculative Rejection (Sun et al., 2024). However, unlike Speculative Rejection using reward models, ST-
BoN leverages consistency as the metric to measure the importance. Specifically, it leverages the consistency
of latent embeddings to evaluate response quality. The core insight is that “the closer a sample is to oth-
ers, the more likely its path will lead to the correct answer”. Then, ST-BoN selects the most consistent
Chain-of-Embedding (CoE) to others and regards it as the optimal sample.

4.2.2 Summarization-based Dynamic Reasoning

Some existing methods choose to optimize reasoning efficiency by training LLMs to summarize intermedi-
ate thinking steps. LightThinker (Zhang et al., 2025) proposes to train LLMs to learn when and how to
compress intermediate reasoning steps. Instead of storing long thought chains, LightThinker compresses
verbose reasoning into compact “gist tokens” to reduce memory and computational costs. Implementing this
summarization paradigm requires a sparse-patterned attention mask, ensuring the model focuses only on es-
sential compressed representations. InftyThink (Yan et al., 2025) introduces an iterative reasoning method
that enables essentially infinite reasoning chains while maintaining strong accuracy without surpassing the
context window limit. It achieves this by iteratively generating a thought, summarizing it, and discard-
ing previous thoughts and summaries, retaining only the most recent summary. Additionally, InftyThink
provides a technique for converting existing reasoning datasets into an iterative format for training models
under this paradigm.

5 Input Prompts-based Efficient Reasoning

From the perspective of input prompts and questions, these works focus on enforcing length constraints or
routing LLMs based on the characteristics of input prompts to enable concise and efficient reasoning.

5.1 Prompt-guided Efficient Reasoning

Prompt-guided efficient reasoning explicitly instructs LLMs to generate fewer reasoning steps, can be a
straightforward and highly effective method for improving the efficiency of reasoning models. As shown in
Table 5, different methods propose different prompts to ensure concise reasoning outputs from the model.
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Table 5: A summary of prompts used with reasoning models to generate concise reasoning outputs. For
further details, refer to Section 5.1.
Method Prompt

TALE-EP (Han et al., 2024) Budget Estimation: (...) Task: Analyze the given question and estimate
the minimum number of tokens required to generate a complete and accurate
response. Please give the response by strictly following this format: [[bud-
get]], for example, Budget: [[12]].
Token-budget-aware CoT: Please answer the above question. Let’s think
step by step and use less than <Token-Budget> tokens.

CoD (Xu et al., 2025b) Think step by step, but only keep a minimum draft for each thinking step,
with 5 words at most. Return the answer at the end of the response after a
separator ####.

CCoT (Renze & Guven, 2024) Be concise.

Token Complexity (Lee et al., 2025) BulletPoints (...) only use bullet points.
OnlyNumbers (...) only use numbers or equations.
NoSpaces (...) do not use any spaces or line breaks.
NoProperGrammar (...) do not use proper grammar.
AbbreviateWords (...) abbreviate words as much as possible.
WordLimit(k) (...) use at most k words. k ∈ {1, . . . , 100}
CharLimit(k) (...) use at most k letters. k ∈ {1, . . . , 500}
TokenLimit(k) (...) use at most k tokens. k ∈ {1, . . . , 500}
StepLimit(k) (...) use at most k steps. k ∈ {1, . . . , 5}
ChineseCoT (...) Respond in Chinese
ChineseCoT(k) (...) Use at most k Chinese characters. k ∈ {1, . . . , 500}

The key question is: Which prompts can accurately control the reasoning length of
LLMs?

Enforcing Concise Reasoning via Varying Prompts. Token-Budget (Han et al., 2024) proposes set-
ting a token budget in prompts to reduce unnecessary reasoning tokens. To optimize efficiency while preserv-
ing accuracy, TALE-EP (Han et al., 2024) introduces a training-free, zero-shot method for budget estimation.
TALE-EP first estimates a reasonable token budget by prompting the LLM itself. It then incorporates this
estimate into a prompt that specifies the token constraint, guiding the LLM to generate a more token-
efficient yet accurate response. This work is also categorized in Section 3.2 with further SFT. CoD (Xu
et al., 2025b) observes that LLMs often generate excessively verbose reasoning steps, whereas humans typ-
ically record only the most essential insights. To enhance reasoning efficiency, they propose Chain-of-Draft
prompting. Similar to CoT prompting, CoD encourages step-by-step reasoning but introduces policies to
limit verbosity. For instance, their prompt instructs: “Think step by step, but only keep a minimum draft for
each thinking step, with at most five words.” They find that this approach preserves the necessary interme-
diate steps while maintaining accuracy, significantly reducing token usage. Lee et al. (2025) systematically
studies the relationship between reasoning length and model accuracy across various prompts with explicit
compression instructions (e.g., “use 10 words or less”). Their analysis reveals a universal trade-off between
reasoning length and accuracy, showing that different prompt-based compression strategies align on the same
accuracy-compression curve. They hypothesize that each task has an intrinsic token complexity, the mini-
mum number of tokens required for successful problem-solving. By computing information-theoretic limits
on the accuracy-compression trade-off, they found that existing prompt-based compression methods fall far
short of these limits, indicating significant room for improvement. Renze & Guven (2024) introduced Concise
Chain-of-Thought (CCoT) prompting, a technique that prompts LLMs to perform step-by-step reasoning
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while explicitly instructing them to “be concise.” MARP (Chen et al., 2024a) introduces modifying prompts
to limit single-step computations, effectively refining the reasoning boundary. Further, they increase the
per-step computation and decrease global planning steps.

Fine-tuning after Prompting. As noted in Section 3, some approaches collect short CoT data using
prompt-based methods, then apply SFT to develop an efficient reasoning model (Han et al., 2024). Beyond
performing direct prompt-based reasoning, these fine-tuned models often deliver more promising performance
when tackling complex reasoning challenges.

5.2 Prompts Attribute-Driven Reasoning Routing

User-provided prompts can range from easy to difficult tasks. Routing strategies for efficient reasoning
dynamically determine how language models handle queries based on their complexity and uncertainty.
Ideally, reasoning models can automatically assign simpler queries to faster but less reasoning-capable LLMs,
while directing more complicated queries to slower but stronger reasoning LLMs.

The key question is: What criterion should be used to determine the attributes (e.g.,
difficulty) of prompts?

Unknown Criteria. Anthropic releases Claude 3.7 Sonnet (Anthropic, 2023), notable for being the first
hybrid reasoning model. Claude 3.7 Sonnet was developed through RL, enabling it to allocate more time to
complex reasoning tasks that require deeper analysis, ultimately producing better results. The model offers
two response modes: quick answers or step-by-step thinking. Users can leverage API to manage the amount
of time the model spends thinking. Although the specifics of the routing criterion remain unclear, Claude
3.7 Sonnet represents the first hybrid reasoning model, setting a foundation for subsequent routing-based
large reasoning models.

Training a Classifier. RouteLLM (Ong et al., 2024) trains a query router to dispatch incoming queries
to suitable LLMs based on complexity. The authors utilize a substantial amount of preference data col-
lected from Chatbot Arena as training data, enabling effective routing decisions for question-answering and
reasoning tasks. Consequently, simpler queries are directed to low-latency LLMs, while complex queries
are assigned to higher-latency, more powerful LLMs, significantly accelerating overall reasoning efficiency.
Sketch-of-Thought (SoT) (Aytes et al., 2025) leverages routing and prompting to minimize token usage
during reasoning. A lightweight DistilBERT-based router dynamically selects the most suitable paradigm
based on the characteristics of the questions. Inspired by cognitive science, SoT employs three distinct
paradigms: Conceptual Chaining, which connects ideas with minimal verbalization; Chunked Symbolism,
which structures mathematical reasoning into concise symbolic representations; and Expert Lexicons, which
adopts domain-specific shorthand used by experts.

Uncertainty. Besides relying on additional routers, Self-Ref (Chuang et al., 2025c) enables LLMs to
autonomously decide when to route by extracting intrinsic uncertainty scores as self-routing indicators.
Specifically, they fine-tune uncertainty-specialized tokens within the LLMs to align uncertainty predictions
with prediction correctness in both question-answering and reasoning tasks. This ensures that only uncertain
or incorrect outputs trigger routing to more capable LLMs, which decreases the latency of LLM inference.
Confident (Chuang et al., 2025a) aims to provide calibrated data for predicting and initializing routing
strategies in both LLM question-answering and reasoning tasks without requiring access to user queries.
This approach enables more efficient and reliable decision-making in determining whether an LLM should
confidently generate an answer or escort the query to a stronger model, ultimately improving reasoning
efficiency from a query-level perspective in online LLM service scenarios.
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6 Reasoning Abilities via Efficient Training Data and Model Compression

6.1 Training Reasoning Models with Less Data

Improving the efficiency of reasoning models requires optimizing not just the model architecture but also the
data used for training. Recent work has shown that carefully selecting, structuring, and leveraging training
data can significantly reduce data requirements while maintaining or even improving reasoning performance.
Although all approaches focus on efficient data selection, they vary in defining and utilizing efficiency.

The key question is: How to construct less but high-quality training data?

Minimal but High-Impact Data Selection. LIMO (Ye et al., 2025) challenges the conventional belief
that complex reasoning tasks require extensive training data. They introduce LIMO, a framework that elicits
sophisticated reasoning abilities using minimal but precisely curated examples. By choosing high-quality
questions based on Level of difficulty, Generality, and Knowledge Diversity and high-quality solutions based
on Optimal Structural Organization, Effective Cognitive Scaffolding, and Rigorous Verification, with only
817 carefully selected training samples, LIMO can outperform previous models that utilized over 100,000
examples. s1 (Muennighoff et al., 2025) focuses on enhancing reasoning performance by controlling test-time
computational resources. They curate a compact dataset based on Quality, Difficulty and Diversity, s1K,
comprising 1,000 high-quality questions paired with reasoning traces. Through supervised fine-tuning on
this dataset and implementing “budget forcing”, which regulates the reasoning duration during inference,
s1-32B exceeds OpenAI o1-preview on MATH and AIME24, demonstrating that strategic test time scaling
can effectively enhance reasoning capabilities without extensive training data.

Self-Verification as a Data-Efficient Training Signal. S2R (Ma et al., 2025a) infuse LLMs with self-
verification and self-correction abilities through RL. Initially, models are fine-tuned on a curated dataset to
establish these capabilities. Subsequently, RL both at the outcome level and the process level is employed
to enhance these skills further. With only 3,100 initialization samples, their fine-tuned models consistently
improve the performance on reasoning tasks among all base models. S2R fine-tuned Qwen2.5-Math-7B
can outperform models trained on comparable amounts of long CoT distilled data on the MATH500 and
GSM8K.

6.2 Reasoning Capabilities of Small Language Models via Distillation and Model Compression

LLMs have demonstrated remarkable reasoning capabilities across various complex tasks, benefiting from
their extensive training on diverse datasets. However, their substantial computational and memory de-
mands pose challenges for deployment in resource-constrained environments, such as edge devices, mobile
applications, and real-time systems. In scenarios where efficiency, cost, or latency is a primary concern,
Small Language Models (SLMs) offer a viable alternative. The ability of SLMs to retain strong reasoning
capabilities while operating under strict resource constraints is crucial for expanding the accessibility and
practicality of AI-powered reasoning systems. To achieve this, two main categories of approach are explored:
Distillation and Model Compression.

The key question is: How do small language models perform on reasoning tasks?
What impact does model compression (e.g., quantization) have on their reasoning abil-
ities?

Distillation. Distillation is a crucial technique for transferring the reasoning capabilities of LLMs to SLMs
while maintaining efficiency. However, Li et al. (2025c) finds a phenomenon named Small Model Learnability
Gap, which highlights the challenges of distilling complex reasoning processes from large model to small
model, showing that SLMs struggle to emulate the reasoning depth of their larger counterparts. To address
this, various approaches have been proposed. Both Li et al. (2025c) and Chenglin et al. (2024) explored
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mixed distillation, with Li et al. (2025c) blending long and short CoT reasoning examples, while Chenglin
et al. (2024) combined CoT and PoT (Program of Thought) to improve the effectiveness of knowledge
distillation from LLMs to SLMs on specific tasks. In comparison, Feng et al. (2024) introduced counterfactual
distillation, augmenting the training set by masking causal features in the original question, prompting the
LLM to complete the masked text, and generating multi-view CoT (positive and negative views) of each
data for enhancing the effectiveness of knowledge distillation. In addition, Zhu et al. (2024) developed a
feedback-driven distillation technique that iteratively refines distillation datasets. They first prompt an LLM
to generate an initial distillation dataset, then expand it by creating diverse and complex questions from
existing ones, and finally, this enriched dataset is used to fine-tune SLMs. Another strategy, proposed by
Zhao et al. (2024), incorporates probing and retrieval mechanisms into the distillation pipeline. It trains
two complementary distilled SLMs, a probing model and a reasoning model, where the probing model
retrieves relevant knowledge, which the reasoning model then uses to construct a step-by-step rationale for
the answer. Chen et al. (2024b) introduced adaptive thinking during distillation, allowing the models to
dynamically adjust reasoning strategies based on the complexity of the task. Furthermore, Liao et al. (2025b)
proposed SKIntern, a framework that internalizes symbolic knowledge into SLM to improve CoT reasoning
quality and efficiency, while Zhang et al. (2024) introduces SCORE, a pipeline that generates self-correction
data from SLMs and fine-tunes the model to function as a self-correcting reasoner. These diverse distillation
techniques demonstrate that efficiently transferring reasoning capabilities from LLMs to SLMs requires not
only reducing the model size but also carefully and strategically structuring the knowledge transfer process
to preserve logical depth and generalization.

Pruning and Quantization. Beyond directly distilling knowledge from LLMs to SLMs, an alternative
approach involves compressing an LLM into an SLM using techniques such as quantization and pruning.
Srivastava et al. (2025) conducted a comprehensive study analyzing the impact of various model compression
techniques on reasoning ability. Their findings reveal that quantization, which reduces model precision
to lower-bit representations, preserves reasoning performance remarkably well, allowing SLMs to maintain
logical coherence and problem-solving capabilities while significantly reducing memory and computational
costs.

In contrast, pruning, which removes specific weights or neurons in the model based on their importance,
leads to severe degradation in reasoning quality, disrupting the model’s ability to follow multi-step logical
processes. This suggests that compression-based approaches are more effective than training SLMs from
scratch, as they allow models to retain reasoning structures inherited from LLMs. However, a critical
challenge remains: SLMs often struggle with the instruction following, indicating that compression alone is
insufficient. Additional fine-tuning or adaptation methods may be required to align compressed models with
user intent and ensure they can effectively interpret and execute complex reasoning tasks.

7 Evaluation and Benchmark

Recent research has introduced innovative benchmarks and evaluation frameworks to systematically assess
the reasoning capabilities of LLMs. As LLMs continue to advance in their ability to perform complex rea-
soning tasks, the need for rigorous, standardized evaluation metrics and frameworks has become increasingly
important.

Evaluating Overthinking. Cuadron et al. (2025) introduces a framework to systematically analyze the
"overthinking" in LLMs, where models favor extended internal reasoning over necessary environmental in-
teractions. By examining 4,018 trajectories in agentic tasks, the study identified patterns such as Analysis
Paralysis, Rogue Actions, and Premature Disengagement. Cuadron et al. (2025) also proposed a novel
“overthinking score” and showed a strong correlation between higher scores and decreased task performance.
Mitigation strategies such as selecting solutions with lower overthinking scores can improve performance by
30% and at the same time reduce computational overhead by 43%.

Effect of Long CoT Reasoning. Yeo et al. (2025) provides a comprehensive analysis of the mechanism
underlying long CoT reasoning. In addition to presenting several key insights, they propose a reward design
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to enhance the stability of reasoning ability during training and reduce the CoT length, which is also shown
in Section 3.1. Jin et al. (2024) reveals a strong relationship between the length of the reasoning chain and
the effectiveness of model outputs. Models tend to perform better with extended reasoning steps, suggesting
the CoT length is more crucial than accuracy for effective problem-solving.

8 Applications and Discussion

8.1 Applications

Autonomic Driving. Efficient reasoning LLMs are able to greatly improve autonomic driving (Cui et al.,
2024; Xing et al., 2025) by helping them understand large amounts of sensor data in a human-like way. They
make the cars better at making decisions, so the vehicles can plan for difficult driving situations and react
quickly when unexpected events occur. By combining information from cameras, LiDAR, radar, and other
sensors, these models help cars drive more safely, choose better routes, and assess risks as they happen.
Moreover, because they can explain why they make certain decisions, both passengers and regulators feel
more confident in the technology, and the cars can interact more smoothly with smart road systems.

Embodied AI. Efficient reasoning LLMs make embodied AI (Duan et al., 2022) much smarter by helping
robots and smart devices understand and react to the world around them. These models process lots of data
from cameras, sensors, and other inputs in a way that resembles human thinking. This deep understanding
means that a robot can quickly decide the best way to move, handle unexpected changes, and interact safely
with people. For example, in a busy factory or a home setting, a robot using these models can navigate
obstacles, adjust to new situations, and even explain its actions in simple terms. Altogether, efficient
reasoning LLMs boost the reliability, safety, and usefulness of embodied AI systems in daily environments.

Healthcare. Efficient reasoning LLMs would improve healthcare (He et al., 2023) by helping doctors and
researchers work with large amounts of medical data more easily. They can quickly analyze patient records,
test results, and medical research to spot important trends and patterns that might be hard to see otherwise.
This support can lead to faster and more accurate diagnoses, better treatment recommendations, and fewer
mistakes. In addition, these models can break down complex medical information into plain language, making
it easier for both medical professionals and patients to understand. Generally, efficient reasoning LLMs make
healthcare processes smoother and more reliable, leading to better care and outcomes for patients.

8.2 Discussion and Future Directions

Improving Reasoning Ability. From another perspective on efficiency, improving reasoning performance
is an important topic (Chen et al., 2025; Sui et al., 2025). To prioritize promising avenues by discarding
ineffective strategies early, Meta-Reasoner (Sui et al., 2025) leverages contextual multi-armed bandits for
evaluating reasoning progress and selecting the optimal strategy. In each round, the LLM produces a new
reasoning step, and the meta-reasoner evaluates its output and generates a progress report, the meta-reasoner
uses contextual multi-arm bandit to choose the best guidance strategy for the reasoning step. ITT (Chen
et al., 2025) treats each transformer layer as a step in an internal thinking process. By dynamically allocating
extra processing to difficult tokens through adaptive routing, ITT enables smaller language models to achieve
performance comparable to larger models while using fewer training resources.

Safety of Efficient Reasoning. Safety and efficiency in LLMs often pull in opposite directions, as op-
timizing one always leads to the performance degradation of the other. When enhancing safety, such as
filtering harmful content, mitigating adversarial attacks, and enabling self-correction, the reasoning model
typically requires additional computational resources and longer reasoning sequences, leading to increased
inference costs and slower response times. Conversely, prioritizing efficiency by minimizing token usage and
computational overhead may reduce the reasoning ability to self-reflect, verify its outputs, or defend against
adversarial manipulations. This trade-off reflects the well-known principle that there is no “free lunch”,
making it crucial to strike a careful balance between safety and efficiency. Kuo et al. (2025) investigates
the robustness of safety checks in large CoT reasoning models, revealing severe security flaws in commer-
cial systems. They introduce the malicious-educator benchmark and demonstrate that with their hijacking
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Chain-of-Thought (H-CoT) attack, models can drastically reduce their refusal rates, leading to the gener-
ation of harmful content. Li et al. (2025b) investigate the safety of long reasoning models. It is observed
that while longer outputs enable self-correction and enhance safety, some attack strategies exploit extended
generations. They propose a dynamic output length control via an RL-based method to maintain both rea-
soning quality and security. Balancing safety and efficiency in long reasoning models remains a challenging
yet crucial area of investigation.

RL vs. SFT, which is better? When comparing RL (Section 3.1) and SFT (Section 3.2) for creating
efficient reasoning language models, the answer is unclear as each method has its own strengths. RL allows a
model to learn by trial and error, rewarding it for satisfactory decisions, which can assist it find creative ways
to solve problems in new situations. However, this approach can sometimes be unpredictable and require a
lot of training. On the other hand, SFT teaches the model using carefully chosen efficient CoT examples
constructed by either humans or models, leading to more consistent behavior and easier control. Yet, SFT
might struggle when faced with challenges that are not covered in its training data. In practice, combining
both methods might be a promising direction and potentially works best because it harnesses the creativity
of RL and the reliability of SFT, resulting in a model that is both adaptable and stable.

Evaluation and Benchmark. While previous works have introduced certain evaluation frameworks and
benchmarks for efficient reasoning, they still lack a comprehensive and standardized leaderboard for fair
comparison. Several challenges hinder advancement in this area: First, different studies often utilize varying
model architectures, making direct comparison difficult. Second, the evaluation tasks and datasets used
are not consistent across works. Third, disparities in training resources further complicate benchmarking.
Therefore, there is a pressing need to establish a comprehensive evaluation framework and public leaderboards
that can facilitate transparent, reproducible, and holistic assessment of efficient reasoning methods.

Multimodal Efficient Reasoning. Building on the advances in reasoning with LLMs, recent efforts
have extended reasoning techniques to multimodal large language models (MLLMs) Huang et al. (2025) for
tackling visually grounded and complex tasks. As computational demands increase with multimodal data,
there is a growing need for concise and efficient reasoning within MLLMs. However, optimizing reasoning
length and computation in multimodal settings introduces unique challenges, such as modality alignment
and cross-modal information fusion. Addressing these issues and developing effective strategies for efficient
multimodal reasoning represents a promising and impactful research direction.

Comparisons of Efficient Reasoning Methods. Efficient reasoning methods can be divided into three
main categories: model-based, output-based, and input-based approaches. Specifically, the model-based
category includes RL-based and SFT-based methods. RL-based approaches often suffer from instability and
are expensive to train, while SFT-based methods are generally more stable but require additional computa-
tional resources and costs for dataset construction. Output-based methods encompass both latent space and
dynamic inference-time computation techniques. The key distinction here is that dynamic inference-time
computation is typically training-free. However, these methods are not primarily designed to reduce reason-
ing length, but rather to decrease inference-time computational requirements or implement paradigms like
Best-of-N reasoning. Input-based methods include input-prompt and query-based strategies. Input-prompt
methods are advantageous due to their simplicity. Adding a budget-controlling prompt can effectively achieve
concise reasoning. Query-based routing, on the other hand, involves integrating specific modules to evaluate
the question difficulty, which can be implemented in both training and training-free settings.

Reasoning Length vs. Usefulness and Interpretability. Reducing reasoning length may improve
computational efficiency, but it also raises questions about the usefulness and interpretability of the result-
ing outputs. Shorter reasoning traces can accelerate inference and reduce resource consumption; however,
if reasoning steps are overly condensed, they may omit important intermediate justifications, potentially
reducing the transparency and trustworthiness of the decisions of models. More systematic investigation is
needed to understand how compression impacts the practical utility and clarity of model outputs.

Faithfulness of Efficient Reasoning. Efficient reasoning methods should ideally retain interpretable and
logically consistent intermediate steps, ensuring that outputs remain meaningful. Nonetheless, there are
observed cases where LLMs generate correct final answers even if some intermediate steps are meaning-
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less. Ensuring that reduced-length reasoning remains both accurate and interpretable is an open research
challenge.

8.3 Broader Impacts

Efficient reasoning models hold promise for making advanced LLMs more accessible and sustainable, reducing
computational costs and energy consumption. However, as these models become more widely adopted, it is
crucial to ensure their transparency, fairness, and robustness, especially in high-stakes applications.

9 Conclusion

This paper provides the first structured survey of efficient reasoning in LLMs, categorizing existing ap-
proaches into three areas: model-based, reasoning output-based, and input prompts-based methods. Addi-
tionally, it discusses efficient data utilization, reasoning capabilities of smaller models, evaluation techniques,
and benchmarking, accompanied by a continuously updated public repository to support future research.
Crucially, efficient reasoning approaches offer significant practical benefits across various domains: reducing
computational costs in healthcare diagnostics, enhancing real-time decision-making and safety in autonomous
driving, boosting the reliability and usefulness of embodied AI systems, and enabling quicker, more prof-
itable responses in financial algorithmic trading and risk assessment. These advancements highlight the
broad economic and societal value of efficient reasoning in LLMs.
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