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Abstract

The 15-minute city (15MC) is an urban planning concept that pro-

motes sustainable and inclusive cities where residents can access

essential services within a short amount of time (i.e., 15 minutes).

However, evaluating 15MC compliance in hyper-dense cities re-

mains challenging due to: (1) traditional manual assessments that

are resource-intensive and difficult to scale, and (2) POI-based met-

rics that suffer from data unavailability and lack of spatial con-

texts. In this paper, we propose a novel evaluation framework that

directly assesses 15MC compliance from geospatial imagery in

three stages: image pre-processing, representation learning, and

instance aggregation. To validate the framework, we have con-

structed a new dataset of 2,794 residential areas in Seoul, pairing

high-resolution geospatial imagery with functional urban labels.

Furthermore, we have developed a model, GeoTwin-MIL, on the

basis of the proposed framework. The model includes two key com-

ponents: (1) cross-modal contrastive learning that aligns satellite

and map representations to capture both morphological (build-

ing density) and topological (road networks) features, enabling

robust inference using only satellite images, and (2) multiple in-

stance learning to efficiently aggregate geospatial details while

detecting localized urban functions within high-resolution imagery.

The experimental results obtained from various evaluation settings

show that GeoTwin-MIL significantly outperforms single-modality

approaches or vision baselines, validating the integrative effective-

ness of the two key components and supporting the transferability

of the model without POI dependencies. The code is available at

https://github.com/20243439/geotwin_mil.git.

CCS Concepts

• Information systems→ Geographic information systems;

Spatial-temporal systems; Decision support systems; • Computing

methodologies → Image representations.

∗These authors contributed equally to this research.
†Corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 International License.

SIGSPATIAL ’25, Minneapolis, MN, USA

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2086-4/2025/11
https://doi.org/10.1145/3748636.3764182

Keywords

15-minute city, satellite imagery, multi label classification, cross-

modal contrastive learning, multiple instance learning

ACM Reference Format:

Chanjae Song, Seongyeub Chu, Jongwoo Kim, and Mun Yong Yi. 2025. A

Novel Evaluation Framework for 15-Minute City Using Satellite Imagery. In

The 33rd ACM International Conference on Advances in Geographic Informa-

tion Systems (SIGSPATIAL ’25), November 3–6, 2025, Minneapolis, MN, USA.

ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3748636.3764182

1 Introduction

The 15-minute city (15MC) is an urban planning concept that

promotes equitable access to essential services—work, education,

healthcare, commerce, and leisure—within a 15-minute walk, bike

ride, or public transit trip [18, 22]. By prioritizing barrier-free envi-

ronments, it improves spatial accessibility for vulnerable groups,

including the elderly, children, and individuals with disabilities [19].

In response, many cities are reorganizing their urban systems in

line with 15MC principles [18].

Despite its importance in urban planning, the evaluation and

implementation of 15MC principles, particularly in hyper-dense

environments, pose substantial challenges. Establishing a 15MC-

compliant environment is based primarily on bottom-up human-

led investigations, which are often time-consuming and resource-

intensive [22]; in complex built forms, manual assessment often

overwhelms practitioners [24]. Although various data-driven in-

dices have been proposed using points of interest (POI) or census

data, they are highly dependent on data availability and often fail

to capture the spatial realities of the built environment, resulting

in suboptimal accuracy, yielding surface-level, distance-based anal-

yses [2]. These limitations underscore the need for advanced evalu-

ation frameworks that move beyond proximity to assess functional

completeness and experiential accessibility [20].

To address these challenges, we propose an automated frame-

work for evaluating 15MC compliance using geospatial imagery,

specifically satellite photographs and topographic maps, readily

accessible via platforms such as Google Earth. We formulate the

task as an image-based multi-label classification problem, where the

presence of essential urban functions serves as target labels. Due to

a lack of pairwise dataset for imagery and function labels, a custom

dataset is constructed by crawling satellite and topographic images,

aligning them with 15MC elements based on POI data. A variety of
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neural network-based models are trained to predict the presence

of 15MC-related components without relying on POI data during

inference. To improve capturing high-resolution urban imagery, we

integrate contrastive learning (CL) strategies and multiple instance

learning (MIL), enabling patch-level focus.

We perform experiments on a manually constructed dataset and

explore our approach on various image representation methods,

including pre-trained CNN-based [16], CL techniques [3, 8], and

MIL [13, 23, 27]. Extensive ablation studies are also conducted to

assess the effectiveness of integrating MIL and contrastive learning

for the representation of geospatial images in the context of the

evaluation of 15MC. The results demonstrate that our method more

accurately predicts 15MC-related elements by effectively leveraging

salient imagery features, even with satellite-only inference. Our

key contributions are as follows.

• We introduce a new benchmark dataset centered on Seoul,

South Korea, one of the most hyper-dense cities in East

Asia, constructed by crawling geospatial imagery from open

platforms (e.g., Google Earth) and aligning each image with

corresponding POI data sourced from public databases.

• We propose a novel method, GeoTwin-MIL, for evaluating

15MC compliance using satellite imagery, trained with con-

trastive learning and multiple instance learning strategies,

enabling efficient and lightweight deployment by requiring

only satellite images during inference.

• We conduct comprehensive experiments, demonstrating that

our approach which incorporates contrastive learning strat-

egy and multiple instance learning extracts more meaningful

features from satellite imagery and achieves superior per-

formance in 15MC evaluation compared to a pre-trained

CNN-based and a contrastive learning-based methods.

2 Related Work

2.1 15-Minute City

The 15-minute city (15MC) is a planning paradigm that advocates

for spatially distributed urban services such as living, working, and

enjoying within a 15-minute radius by walking, cycling, or public

transit from residents’ homes [18, 22]. By promoting compact and

accessible neighborhoods, the 15MC concept enhances inclusiv-

ity, particularly benefiting groups with limited mobility, including

older adults, children, and individuals with disabilities, through

the implementation of barrier-free urban environments [19]. As

a result, municipalities worldwide are increasingly adopting this

model to redesign their spatial and infrastructural layouts in align-

ment with 15MC principles [18]. Although the concept highlights

the importance of proximity-based service provision, it does not

imply the universal availability of all services within the 15-minute

range. To operationalize this model, Garnier and Moreno [5] iden-

tified six core urban functions-living, supplying, working, caring,

learning, and enjoying-and specified the institutional components

necessary to fulfill each function. Despite its significance in enhanc-

ing urban living, the accurate and efficient evaluation of 15-minute

city (15MC) completeness presents several challenges [2]. These

include the need to account for public transportation and local geo-

graphic contexts, as well as the substantial time and cost required

for human-based assessment.

2.2 Automated 15-Minute City Evaluation

Traditional methods of evaluating the compliance of 15MC pri-

marily rely on POI-based indices, calculating network distances to

essential services and aggregating their coverage [21]. Willberg et

al. [26] demonstrated temporal variations in accessibility, which

was significant for elderly populations. Network-based approaches

using Urban Network Analysis (UNA) measure walkability through

centrality metrics [12], while mobility-based evaluations incorpo-

rate actualmovement patterns to reveal supply-demandmismatches

[7, 28].

Multi-modal based methods extend these approaches by consid-

ering various transportation modes [6], and recent studies leverage

large-scale check-in data for comprehensive evaluation [14]. How-

ever, these methods rely heavily on structured datasets and static

POI counts, failing to capture morphological barriers, spatial dis-

continuities, or urban form evolution [10]. Our work addresses

these limitations by directly processing satellite imagery without

requiring POI data at inference time.

2.3 Image Representation Learning

Extracting meaningful representations from remote sensing im-

agery is a core challenge in urban analysis. CNN-based models such

as ResNet [9] effectively capture local visual patterns but are inher-

ently limited in modeling global spatial structures. To overcome

this limitation and reduce reliance on labeled data, self-supervised

learning (SSL) methods such as SimCLR [3] and MoCo [8] have

been introduced, demonstrating strong generalized performance on

geospatial imagery. In high-resolution satellite images, fine-grained

spatial patterns are distributed at a local scale, and assigning a single

label to the entire image can result in the loss of spatial information.

Multiple instance learning has gained attention as a suitable model

for such settings, as it allows for modeling localized information

by dividing the image into multiple instances, learning their rep-

resentations independently, and aggregating them for image-level

prediction [17]. In this study, we adopt publicly available SSL with

pretrained CNN encoders and design a cross-modal contrastive

learning approach that jointly processes satellite and map imagery.

This enables robust feature learning from high-resolution geospa-

tial data and supports automated, large-scale evaluation of 15MC

compliance across diverse urban environments.

3 Preliminary

3.1 Definition

3.1.1 Multiple Instance Learning. Multiple instance learning (MIL)

is a weakly supervised learning framework in which the training

data consist of a set of bags X = {𝑋 (𝑖 ) }𝑁𝑖=1, where each bag is

defined as 𝑋 (𝑖 ) = {𝑥
(𝑖 )
1 , 𝑥

(𝑖 )
2 , . . . , 𝑥

(𝑖 )
𝐵𝑖

} with 𝑥
(𝑖 )
𝑏

∈ R
𝑑 , and is asso-

ciated with a single bag-level label 𝑌 (𝑖 ) ∈ {0, 1}. The instance-level

labels 𝑦
(𝑖 )
𝑏

∈ {0, 1} are unobserved during training [17]. Under the

standard MIL assumption, a bag is labeled positive if at least one

instance is positive, and negative if all instances are negative.

3.1.2 Contrastive Learning. Contrastive learning is a self-supervised

representation learning framework that aims to map similar sam-

ples closer together and dissimilar samples farther apart in the
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Figure 1: Kernel-density heatmaps for representative institutions overlaid on Seoul’s administrative boundaries. The intensity

scale indicates the spatial concentration of each institution type, revealing distinct patterns of urban service distribution across

the metropolitan area.

embedding space. Given an anchor sample 𝑥 , a positive sample 𝑥+

(e.g., an augmented view of 𝑥), and one or more negative samples

{𝑥−}, a feature encoder 𝑓𝜃 is trained to minimize a contrastive loss

(e.g., InfoNCE) that encourages 𝑓𝜃 (𝑥) and 𝑓𝜃 (𝑥
+) to be more simi-

lar than 𝑓𝜃 (𝑥
−). This encourages the model to learn semantically

meaningful and discriminative representations without requiring

explicit labels.

3.2 Spatial Bias in Urban Facility Distribution

This study aims to predict the compliance of the 15MC in Seoul, a

representative hyper-dense East Asian metropolis, by assessing the

presence of six social essential 15MC functions and their associated

institutions organized by Garnier and Moreno [5] (see Table 1). As

illustrated in Figure 1, Seoul exhibits significant intra-urban dispar-

ities in the density distribution of different institutional facilities,

making manual human examination of 15MC compliance signifi-

cantly costly. In this section, we propose a method that leverages

geospatial imagery to address the aforementioned challenge by

automatically predicting the presence of 15MC-related institutions.

Furthermore, we illustrate how we synthesized a new benchmark

dataset for training the model used in our framework.

Table 1: Essential functions and corresponding institutions

for 15MC.

Social Essential Functions Institutions

Living Police station, Shared accommodation, Park
Supplying Market, Bakery, Post office
Working Warehouse, Bicycle rental station, Bus stop
Caring Hospital, Sports facility, Swimming pool, Pharmacy
Learning Kindergarten, School
Enjoying Theater, Library, Bookstore, Museum, Cafe, Restaurant, Playground

3.3 15MC Evaluation Framework

Our proposed framework evaluates 15-minute city (15MC) com-

pliance in three decoupled stages. (i) Image Pre-processing: A

high-resolution satellite, map, or fused geospatial tile is divided into

fixed, non-overlapping patches and intensity-normalized, produc-

ing an ordered set suitable for batch processing. (ii) Representa-

tion Learning: A generic encoder projects each patch to an embed-

ding, distilling salient morphological or spatial cues (iii) Instance

Aggregation: Instance embeddings are pooled or attended to a

region-level descriptor, after which a multi-label classifier jointly

predicts (a) six essential urban functions and (b) 22 institution cate-

gories, listed on Table 1. This modular separation of pre-processing,

representation, aggregation and inference allows any feature en-

coder or aggregation strategy to be plugged in without altering the

downstream 15MC assessment.

For this study we instantiate stages (ii) and (iii) with a light-

weight pairing of cross-modal contrastive learning and TransMIL

aggregation, referred to as GeoTwin-MIL. Section 4 and Figure

2 details the network architecture, training logic, and schedule of

GeoTwin-MIL.

4 Method

4.1 Dataset Synthesis

4.1.1 Image cropping based on 15MC. To the best of our knowl-

edge, no publicly available dataset pairs geospatial imagery with

labels explicitly related to the 15MC concept. To address this issue,

we developed a benchmark dataset that integrates high-resolution

satellite imagery and topographic maps with labels specifically

tailored for the evaluation of 15MC in Seoul, South Korea. Given

that the 15MC concept emphasizes proximity to essential facilities

surrounding residential areas, we selected apartment complexes,

Seoul’s predominant housing type, as reference points. To sys-

tematically evaluate the performance of our proposed framework,

apartment complexes were classified according to household count

into three groups: small (under 500 households),medium (500–1,000

households), and large (over 1,000 households). This stratification
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Figure 2: The overall architecture of GeoTwin-MIL: Cross-modal contrastive learning is first performed between satellite

imagery and street map data using momentum encoders with LoRA adaptation, followed by TransMIL aggregation with

multi-head attention and positional encoding for urban function prediction.

ensures typological diversity and comprehensive spatial represen-

tativeness in Seoul’s residential areas, encompassing a total of 2,794

complexes, which consists of 408 large, 642 medium, and 1,744 small

complexes.

For each selected complex, a satellite image and the correspond-

ing topographic map were constructed covering a spatial area of

2km×2km, precisely centered on the complex coordinates (latitude

and longitude). This spatial scale ensures coverage of an approxi-

mate 1 km radius, reflecting the distance typically covered within

a 15-minute walk, a key measure within the 15MC concept. The

detailed process is as follows. Due to restrictions on direct access to

satellite-imagery APIs, we implemented an automated acquisition

method using Google Earth 1 controlled via Selenium WebDriver
2 using the Python programming language. Our methodology in-

volves a two-step image capture process designed to overcome

viewport limitations in Google Earth. Initially, the location of the

target apartment complex is pinpointed using its geographic coor-

dinates, and a uniform altitude of 1, 500m is maintained to ensure

consistent resolution of the ground sample. Subsequently, two over-

lapping images are captured by vertically shifting the viewpoint

400m (upward and downward) from the reference point. The over-

lapping regions of these images serve as alignment references for

seamless stitching, a procedure that is applied consistently to both

satellite and topographic images. The resulting geospatial images

1https://earth.google.com/web/
2https://selenium-python.readthedocs.io/getting-started.html

are therefore uniformly sized at 2km × 2km and resampled to high-

resolution PNG files of 4, 096 × 4, 096 pixels, ensuring consistent

spatial resolution and comprehensive coverage throughout the data

set. Consequently, we collected 2,794 regional images in total. The

details of the process are outlined in Figure 3 and Algorithm 1.

Algorithm 1: Cropping process of geospatial images

Input: Latitude of base location (LA), Longitude of base location (LO), Distance
adjustment factor (𝑑 = 0.00113)

Output: Combined satellite image

1 Step 1: Initialize WebDriver and Image Storage

2 Initialize WebDriver→ driver

3 Initialize empty list images for storing captured images

4 Step 2: Capture Images at Adjusted Latitudes

5 for 𝑖 ∈ {−1, 1} do
6 adjusted_latitude ← LA + 𝑖 × 𝑑 × 4

7 url ← GenerateURL(adjusted_latitude, LO)

8 image← driver.GetIMAGE(url)

9 cropped_image← Crop(image)

10 Append cropped_image to images

11 final_image← MergeIMAGE(images)

12 return final_image driver.quit()

4.1.2 Labeling institutions based on POI data. This part outlines the

process of labeling institutions within previously cropped region-

specific satellite tiles used to evaluate the compliance of 15MC. We

started by reviewing previous research to identify the necessary

conditions to meet the 15MC criteria. Building on the foundational

study of Garnier and Moreno [5], we adopt the six essential social

functions proposed as the core dimensions of the 15MC. Based on
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Figure 3: Dataset Synthesis: (A) Depicts the process of crawling and cropping satellite imagery. (B) Illustrates the procedure for

locating institutions on the satellite imagery and assigning labels based on POI data.

these functions, we curated a corresponding set of institutional

types and adapted them to reflect the urban characteristics of Seoul.

Through this adaptation process, we finalized a list of 22 institu-

tional categories. For each region, we labeled the presence of the

institutions using publicly available POI datasets. Categories with

insufficient POI coverage (e.g., office buildings) were excluded from

the final inventory. Broad or ambiguous categories (e.g., leisure fa-

cilities) were further disaggregated into more specific types, such as

museums and playgrounds, to enhance semantic clarity. A compre-

hensive mapping of functions and their corresponding institution

types is provided in Table 1.

The construction of labels follows a hierarchical structure of two

levels, namely the function level and the institution level: (i) At the

function level, labels represent the presence or absence of six essen-

tial social functions, detailed in Table 1. Each region is encoded as

a 6-dimensional multi-hot vector, where each element is set to 1 if

the corresponding function is satisfied and 0 otherwise. (ii) At the

institution level, the labels denote the existence of 22 specific insti-

tution types associated with the six functions. Similarly, each region

is represented as a 22-dimensional multi-hot vector, with binary

values indicating whether each institution is present (1) or not (0).

The final dataset consists of triples 〈image, function, institution〉,
where function ∈ [0, 1]6 and institution ∈ [0, 1]22. This hierarchi-
cal labeling strategy facilitates a comprehensive evaluation of both

high-level functional accessibility and fine-grained institutional

presence through multi-label classification tasks for 15-minute city

(15MC) assessment. The systematic procedure ensures consistent

spatial representation and reliable ground truth labeling in all 2,794

residential areas in our curated dataset. The labeling procedure is

provided in Algorithm 2.

4.2 Patch-Based Input Slicing

To support fine-grained spatial reasoning and downstream MIL,

we divide each high-resolution input image into fixed-size, non-

overlapping patches prior to training. Each satellite image yields a

set of patchesH = {ℎ1, ℎ2, . . . , ℎ𝐾 }, and each corresponding map

image yields M = {𝑚1,𝑚2, . . . ,𝑚𝐾 }, where ℎ𝑘 ,𝑚𝑘 ∈ R
𝑑 denotes

Algorithm2: Labeling process of functions and institutions

within a boundary

Input: Bag of POI datasets B, Base latitude (LA), Base longitude (LO)
Output: Presence of each function and institution within a region

1 Step 1: Obtain the coordinates of a target boundary

2 top_left ← CalculateCoordinate(LA, LO, offset_top, offset_left)
3 top_right ← CalculateCoordinate(LA, LO, offset_top, offset_right)
4 bottom_left ← CalculateCoordinate(LA, LO, offset_bottom, offset_left)
5 bottom_right ← CalculateCoordinate(LA, LO, offset_bottom, offset_right)
6 Step 2: Locate the target boundary

7 boundary ← {top_left, top_right, bottom_left, bottom_right}
8 Step 3: Filter functions and institutions within the target boundary

9 functions_list = [𝑙𝑖𝑣𝑖𝑛𝑔, 𝑠𝑢𝑝𝑝𝑙𝑦𝑖𝑛𝑔, 𝑤𝑜𝑟𝑘𝑖𝑛𝑔, 𝑐𝑎𝑟𝑖𝑛𝑔, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔, 𝑒𝑛𝑗𝑜𝑦𝑖𝑛𝑔]
10 functions_within_boundary = [0] × 6

11 institutions_within_boundary = [0] × 22

12 foreach POI dataset in B do
13 foreach index 𝑖 and institution 𝑖𝑛𝑠𝑡 in POI dataset do
14 if 𝑖𝑛𝑠𝑡 within boundary then
15 institutions_within_boundary[𝑖 ] = 1

16 foreach index 𝑓 and function 𝑓 𝑢𝑛𝑐 in functions_list do
17 if all 𝑖𝑛𝑠𝑡 of 𝑓 𝑢𝑛𝑐 exists then
18 functions_within_boundary[ 𝑓 ] = 1

19 return functions_within_boundary and institutions_within_boundary

the 𝑑-dimensional feature vectors obtained by independently en-

coding each patch through a pretrained encoder.

This patch-level representation allows the model to localize func-

tional attributes (e.g., parks, facilities) that may only occupy a

portion of the image. To aggregate these localized features into

a coherent region-level prediction, we adopt an MIL framework.

4.3 Patch-Based Cross-Modal Pretraining

To build a modality-aligned encoder that integrates satellite and

map features, we perform a cross-modal contrastive pre-training

based on MoCo [8]. Satellite patches (ℎ ∈ H ) contain fine-grained

morphological cues (e.g., building shapes, densities), while map

patches (𝑚 ∈ M) emphasize topological structures (e.g., road lay-

outs, zoning), which are often occluded in aerial views. This stage

aims to align these complementary views and learn spatial repre-

sentations that are robust across modalities.

Each training instance consists of a triplet (ℎ,𝑚+,𝑚−), whereℎ is
a satellite patch,𝑚+ is a map patch from the same location (positive),
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and𝑚− is a patch from a different region (negative). All patches are

passed through a shared ResNet-50 backbone. The query encoder

𝑓𝜃 processes the satellite anchor, while the momentum encoder 𝑓𝜃 ′ ,

updated via the exponential moving average (EMA), encodes the

map patches.

𝑞 = 𝑓𝜃 (ℎ), 𝑘+ = 𝑓𝜃 ′ (𝑚+), 𝑘− = 𝑓𝜃 ′ (𝑚−). (1)

The momentum encoder parameters are updated as:

𝜃 ′ ← 𝛼𝜃 ′ + (1 − 𝛼)𝜃, (2)

where 𝛼 is the momentum coefficient.

To enable parameter-efficient learning, only the LoRA mod-

ules [11] within the query encoder are updated during training,

while the ResNet-50 backbone remains frozen.

We use the InfoNCE objective to contrast positive and negative

pairs.

Lcon = − log
exp

(
sim(𝑞, 𝑘+)/𝜏

)
∑

𝑘− ∈K−
exp (sim(𝑞, 𝑘−)/𝜏)

, (3)

where K− is the set of negative keys from the current mini-batch,

and 𝜏 controls the temperature of the softmax. Lower 𝜏 sharpens
the focus on hard negatives, promoting stronger alignment.

Since gradients are propagated only through the query encoder

and its LoRA modules, the momentum encoder serves as a stable,

non-trainable target. This pretraining phase yields an encoder that

effectively captures and aligns local morphological and global topo-

logical patterns, serving as the foundation for downstream spatial

reasoning tasks such as MIL.

4.4 Patch-Based Feature Aggregation

After contrastive pretraining, we reuse the query encoder 𝑓𝜃 to

transform each satellite patch ℎ𝑘 ∈ H into a latent embedding

𝑧𝑘 ∈ R
𝑑 :

𝑧𝑘 = 𝑓𝜃 (ℎ𝑘 ), ∀𝑘 ∈ {1, 2, . . . , 𝐾}, (4)

yielding the full encoded bag Z = {𝑧1, 𝑧2, . . . , 𝑧𝐾 } ∈ R
𝐾×𝑑 , which

captures fine-grained morphological cues extracted from satellite

patches.

To aggregate these patch-level embeddings into a holistic region-

level representation suitable for downstream classification, we

adopt the TransMIL [23]model, designed to handleweakly-supervised

learning scenarios, where only bag-level (region-level) labels are

available, and instance-level annotations are unknown.

First, each feature vector 𝑧𝑘 is spatially contextualized using the

Pyramid Position Encoding Generator (PPEG), which reshapes the

patch sequence into a pseudo-2D layout and applies multi-scale

convolutional filters to encode local spatial dependencies:

Z̃ = PPEG(Z), (5)

where Z̃ ∈ R
𝐾×𝑑 contains position-aware patch embeddings.

Next, the model applies a stack of Transformer layers to model

complex dependencies between spatially-aware patch tokens. Specif-

ically, a Multi-Head Self-Attention (MHA) mechanism is used to

capture both short- and long-range interactions.

H
(1) = MHA(Z̃), H

(2) = MHA(H(1) ), (6)

where H(1) ,H(2) ∈ R
𝐾×𝑑 denote the intermediate feature maps

refined through attention.

To derive a fixed-size region-level descriptor from the sequence,

a special [CLS] token is used, whose embedding is updated along

with other tokens and finally extracted as the region representation.

This vector is normalized and used as input for the classification

layer.

𝐹 = LN(H
(2)
[CLS]

), (7)

where 𝐹 ∈ R
𝑑 encodes the aggregated evidence throughout the

region.

Finally, the model predicts the probability of each functional

class via a sigmoid-activated linear classifier.

𝑦𝑛 = 𝜎 (𝑊𝑛𝐹 + 𝑏𝑛), ∀𝑛 ∈ {1, . . . ,𝐶}, (8)

where𝐶 is the number of predefined social function categories (e.g.,

Living, Supplying) or institution-level categories, and 𝑦𝑛 ∈ [0, 1]
denotes the predicted likelihood that the region supports the class

𝑛.
This architecture allows the model to exploit both morphological

patterns and spatial relationships between patches, making it well-

suited for tasks where the presence of target semantics is localized

and weakly annotated.

5 Experiments

We investigate the effectiveness of various image representation

methods, specifically, a pre-trained convolution-based approach,

a contrastive learning strategy, and a multiple instance learning

strategy on a custom dataset that we constructed. Furthermore, we

examine the incremental performance gains achieved by combin-

ing two or more of the aforementioned methods. The evaluation is

conducted at two levels: function-level and institution-level. More

precisely, we assess the alignment between model predictions and

the actual presence of socially essential functions and their cor-

responding institutions across urban regions. We further dissect

model behavior through ablation studies isolating each architec-

tural component, benchmark data efficiency in few-shot settings,

and probe robustness under distribution shifts via intra and cross

city transfers.

5.1 Baselines

We systematically evaluate various approaches for 15MC compli-

ance prediction from geospatial imagery. For feature extraction,

we adopt and examine ResNet-50 [9] pretrained on ImageNet as

a standard baseline and MoCo [8] representing self-supervised

contrastive learning framework. For aggregating different types

of image features, we compare non-learnable methods including

pooling operations (min/mean/max) [16], Hadamard product [15],

and concatenation [4], as well as learnable attention mechanisms

including gated attention [1] and cross attention [25]. Finally, for

the classification, we explore fine-tuning (FT), where a linear clas-

sification head is fully fine-tuned on pretrained features, versus

multiple instance learning framework that preserves spatial struc-

ture through bag-level aggregation. This comprehensive evaluation

enables us to identify the most effective combination for visual

urban function assessment.
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5.2 Implementation Details

Satellite–map patch pairs are resized to 224 × 224 pixels and nor-

malized using ImageNet statistics. For single-modality contrastive

learning, data augmentation includes random horizontal and ver-

tical flips with probability 0.5, and color jitter applied on-the-fly

during training. For cross-modal contrastive learning, we use the

MoCo v3 architecture pretrained with the ResNet-50 encoder from

r-50-1000ep.pth.tar, using momentum coefficient 𝑚 = 0.999,
the queue size of 65,536 negative keys, and the temperature 𝜏 = 0.2.
We freeze the backbone encoder parameters and update only rank-4

LoRA adapters, introducing approximately 0.34M trainable param-

eters. Training continues for 50 epochs using AdamW optimizer

with learning rate 𝜂 = 1 × 10−3 and weight decay 𝜆 = 1 × 10−4,

implementing a global batch size of 1,024 through gradient accu-

mulation every 32 steps, with a mini-batch size of 32 at each step.

The learning rate schedule includes linear warm-up during the first

epoch followed by cosine decay.

For downstream classification, precomputed patch embeddings

are loaded slide-wise and linearly projected to 512 dimensions;

a learnable [CLS] token is prepended to each sequence. We em-

ploy the original TransMIL architecture, two NystromAttention

layers with 8 heads and 17 landmarks and positional PPEG en-

coding, changing only the dropout rate to 0.1. The MIL model is

optimized using Adam optimizer with learning rate 𝜂 = 1 × 10−3

and weight decay 𝜆 = 1 × 10−5, batch size of 32 slides for up to

50 epochs with early stopping patience of 10. Data are stratified

by apartment-complex category and split into train/validation/test

sets with an 8:1:1 ratio, with all results averaged over three random

seeds {1, 17, 42} and experiments conducted on a single NVIDIA

RTX 4070 using PyTorch 2.4 and CUDA 12.5.

5.3 Evaluation Protocol

We operationalize 15-minute city (15MC) compliance as two com-

plementary multi-label classification problems:

(1) Function level: 6 binary labels that indicate the presence of

living, supplying, working, caring, learning, enjoying. A function

label 𝑦func
𝑘

is positive iff every institution linked to that function

appears within the image,

𝑦func𝑘 =
∏

𝑖∈I𝑘

𝑦inst𝑘,𝑖 , 𝑘 ∈ {1, . . . , 6}, (9)

where I𝑘 denotes the set of associated institutions listed in Table 1.

(2) Institutional level: 22 independent binary labels that predict the

presence of each specific institution (parks, hospitals, schools, etc.).

Both tasks are evaluated using macro-averaged the F1 score and

the AUC. Macro-F1 offers a robust measure under severe label

imbalance by equally weighting classes, while AUC complements

it by assessing ranking quality across all decision thresholds.

6 Results

6.1 Dataset Analysis

Table 2 presents the general statistics of the institutions labeled

associated with each regional image, which were cropped and auto-

matically annotated as described in Section 4.1. As shown in Table 2,

there is a substantial variation in the average number of institutions,

and the standard deviations indicate considerable disparities in the

number of institutions between regions.

Table 2: Descriptive Statistics of Institution

# Images 2794

Category Mean Standard Deviation Minimum Maximum

Police 2.280 1.383 0 11

Accommodation 21.726 29.026 0 289

Park 1.082 0.966 0 5

Market 361.586 197.165 18 1377

Bakery 40.093 21.981 0 152

Post Office 1.999 1.311 0 9

Warehouse 0.232 0.630 0 6

Bus 112.690 39.078 18 226

Bike 27.545 9.754 1 71

Hospital 225.625 170.286 0 1482

Pharmacy 58.715 29.384 0 199

Sports 0.879 1.393 0 9

Swimming 1.521 1.535 0 11

Kindergarten 10.111 4.577 1 25

School 13.614 5.419 0 34

Theater 6.595 8.197 0 39

Library 2.367 1.598 0 9

Bookstore 5.641 4.875 0 51

Museum 0.804 1.747 0 26

Cafe 142.377 83.800 5 570

Restaurant 1186.295 722.098 29 4421

Playground 6.566 4.571 0 25

Figure 4: Distribution of 15-Minute City (15MC) Complete-

ness Scores.This histogram illustrates the number of resi-

dential areas corresponding to each completeness level (%)

based on the presence of essential social functions, reflecting

the spatial distribution of functional accessibility within the

city.

To further examine the overall distribution of 15MC compliance

based on the presence of essential social functions and the corre-

sponding institutions, Figure 4 illustrates the completeness of func-

tions and institutions in the collected geospatial image dataset. As

shown, the distribution at the function level resembles a normal dis-

tribution. However, when observed at the more granular institution

level, the distribution exhibits noticeable skewness. This skewness

can be attributed to the characteristics of hyper-dense cities like

Seoul, where certain institutions such as bus stops, schools, and

theaters are disproportionately abundant. In contrast, several other

institution types are sparsely and unevenly distributed, appearing

infrequently between regions, as visualized in Figure 1.
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Table 3: Performance comparison for urban function (F) and

institution (I) classification using different image types with

or without contrastive learning (CL) and multiple instance

learning (MIL). The best performances are written in bold,

and the second best performances are underlined.

Input CL MIL F-F1 (↑) F-AUC (↑) I-F1 (↑) I-AUC (↑)

sat � � 0.609 (0.032) 0.770 (0.004) 0.890 (0.009) 0.792 (0.005)

map � � 0.557 (0.021) 0.730 (0.008) 0.866 (0.009) 0.759 (0.003)

sat � � 0.686 (0.016) 0.764 (0.029) 0.915 (0.010) 0.833 (0.020)

map � � 0.685 (0.029) 0.766 (0.018) 0.913 (0.006) 0.841 (0.011)

sat � � 0.654 (0.006) 0.782 (0.005) 0.894 (0.006) 0.792 (0.001)

map � � 0.606 (0.003) 0.672 (0.006) 0.875 (0.003) 0.710 (0.002)

sat � � 0.751 (0.025) 0.846 (0.009) 0.924 (0.004) 0.856 (0.012)

map � � 0.752 (0.021) 0.844 (0.008) 0.921 (0.004) 0.856 (0.006)

sat+map � � 0.711 (0.007) 0.790 (0.028) 0.900 (0.002) 0.774 (0.001)

sat+map � � 0.784 (0.021) 0.871 (0.008) 0.945 (0.002) 0.915 (0.008)

6.2 Main Results

Table 3 presents a comprehensive evaluation of various approaches

for predicting 15-minute city compliance from geospatial imagery

in function-level and institution-level. We observed that leverag-

ing a pre-trained CNN-based image representation model on either

satellite imagery or topographic maps yields moderate performance

in predicting the presence of functions or institutions, achieving

over 60% on both F1-score and AUC, except for the F1-score at

the function level. Furthermore, incorporating MIL substantially

improves the performance across all imagery types (e.g., satellite

image, topographic map) by enabling the model to focus on infor-

mative regions within high-resolution urban imagery. CL further

enhances feature representations, particularly when combined with

MIL. In particular, the CL method using augmented data based

on a single image type, either satellite imagery or topographic

maps, achieves competitive performance compared to the use of

both image types in the CL setting without MIL. Consequently,

GeoTWin-MIL, the full integration of both image types with the CL

and the MIL achieves the highest performance across all metrics,

confirming that the combination of satellite visual features and

topographic map-based geometric information through advanced

learning strategies is optimal for urban function assessment.

6.3 Robustness Comparison

Observing GeoTwin-MIL’s cross-modal superiority, we investigate

its robustness under various training conditions. Figure 5 exam-

ines the robustness of different geospatial image configurations

for the classification of urban functions and institutions in batch

sizes. When CL is applied to single image types with augmenta-

tion, each image type shows distinct performance: satellite aug-

mentation benefits from larger batch sizes by generally improving

performance, while map augmentation shows the opposite trend

with overall degradation. This indicates that relying on a single

type of image can be significantly affected by batch size, which

impacts the contrastive learning (CL) strategy [3]. Interestingly,

GeoTwin-MIL successfully leverages both modalities, achieving not

only the highest performance, but also remarkable stability across

all batch sizes. This batch size invariance demonstrates that the

proper fusion strategy of complementary image types creates more

robust representations, making the approach particularly suitable

for practical 15MC evaluation systems.

Figure 5: Performance comparison of models leveraging con-

trastive learning and multiple instance learning on different

image types across batch-size. Sat+Map denotes joint satel-

lite–map inputs, Sat Aug denotes satellite-only inputs with

augmentation, and Map Aug denotes map-only inputs with

augmentation.

6.4 Aggregation Strategies Comparison

The success of cross-modality fusion naturally raises questions

about optimal aggregation strategies. Consequently, we examine

various aggregation strategies to combine satellite and map char-

acteristics in 15MC prediction as shown in Table 4. Non-learnable

methods, particularly max pooling, achieve competitive perfor-

mance, suggesting that simple feature selection can be effective

for this task. Learnable attention mechanisms improve over most

non-learnable baselines but remain still comparable to max pooling,

suggesting that merely using attention strategies fails to sufficiently

capture geospatial information. The contrastive learning approach

achieves substantial gains across all metrics representing that se-

lectively aligning meaningful features from both modality, which

are satellite imagery and topographic maps, leads to the optimal

performance.
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Table 4: Comparison of input aggregation methods for com-

bining satellite and map patches. Non-learnable methods

apply fixed operations, whereas learnable methods rely

on attention mechanisms. CL denotes our proposed cross-

modal contrastive learning approach. The best performances

are written in bold, and the second best performances are

underlined.

Method Learnable F-F1 (↑) F-AUC (↑) I-F1 (↑) I-AUC (↑)

Min Pooling � 0.673 0.749 0.924 0.862

Mean Pooling � 0.681 0.758 0.924 0.873

Max Pooling � 0.725 0.815 0.922 0.866

Hadamard Product � 0.720 0.816 0.926 0.867

Concatenation � 0.693 0.759 0.926 0.863

Gated Attention � 0.721 0.767 0.928 0.858

Cross Attention � 0.730 0.830 0.936 0.849

CL (Ours) � 0.784 0.871 0.945 0.915

6.5 Few-Shot Performance Analysis

To examine the performance of the model under a data scarcity

condition that reflects the reality of urban systems where data col-

lection is one of the challenging tasks, we conducted a few-shot

learning experiment with limited training data shown in Figure 6.

Although the ResNet50-FT baseline shows reasonable ability and

improves steadily with more shots, its performance gains are rel-

atively small compared to methods that incorporate contrastive

learning or MIL, indicating that additional components provide

substantial benefits in few-shot settings. GeoTwin-FT, which adds

cross-modal contrastive learning while involving linear classifi-

cation, improves moderately across all shots, demonstrating that

a better alignment enhances the performance even with limited

data. MoCo-MIL, which combines single-modal contrastive learn-

ing with MIL aggregation, shows an interesting pattern: Despite

various prior studies suggesting that MIL requires abundant data

[13, 23, 27], it consistently outperforms GeoTwin-FT, indicating

that spatial aggregation enables effective information capture even

with a few examples. GeoTwin-MIL integrates both innovations,

cross-modal representations, and MIL aggregation, achieving the

best performance with significant improvements from 1 to 4 shots

and near-optimal results at 16 shots. Component ablation reveals

that while cross-modal learning provides better features and MIL

enables spatial reasoning, their combination yields synergistic ben-

efits essential for data-efficient evaluation of 15MC.

6.6 15MC Completeness Alignment Analysis

Beyond classification accuracy, the ultimate goal of this study is

not only accurately predicting each label’s presence, but also pre-

dicting 15-minute city completeness scores. Figure 7 validates that

our visual evaluation model GeoTwin-MIL accurately predicts the

compliance of the city in 15 minutes, translating multi-label clas-

sifications into meaningful urban accessibility scores. The strong

alignment between predicted and true distributions across both

tasks confirms that our approach captures real urban patterns. This

distributional accuracy demonstrates that beyond individual label

Figure 6: Few-shot learning performance evaluation across

varying training samples per class (1-16 shots) for function-

level and institution-level predictions. The upper bounds are

established on GeoTwin-MIL with full training data.

predictions, our model, especially GeoTwin-MIL reliably aggre-

gates urban elements into 15MC completeness metrics, enabling

automated accessibility evaluation without costly manual surveys.

Figure 7: Probability-density comparison of 15-minute city

completeness based on our method. (a) Function-level distri-

butions and (b) institution-level distributions, where the blue

curve denotes observed values and the orange curve denotes

model predictions.

6.7 Transfer Performance Analysis

Table 5: Cross-group transfer performance on our best per-

formance method GeoTwin-MIL.“Train & Valid” denotes the

group used for training (and validation if same), “Test” the

held-out group. The best performances are written in bold,

and the second best performances are underlined.

Train & Valid Test Transfer F-F1 (↑) F-AUC (↑) I-F1 (↑) I-AUC (↑)

small small � 0.671 0.771 0.906 0.771

small medium � 0.667 0.749 0.905 0.768

small large � 0.661 0.736 0.898 0.754

medium small � 0.715 0.737 0.902 0.760

medium medium � 0.726 0.810 0.899 0.800

medium large � 0.711 0.784 0.904 0.773

large small � 0.673 0.667 0.896 0.738

large medium � 0.686 0.773 0.897 0.767

large large � 0.679 0.787 0.906 0.770

Real-world deployment of the proposed framework requires ro-

bustness to distribution shifts, whichwe evaluate under two transfer
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(A) Case Study for Beijing 39 48'11"N 116 27'06"E

True Label: [0, 0, 1, 0, 1, 0]
(Working, Learning)

Predicted Label: [0, 1, 1, 0, 1, 0]
(Supplying, Working, Learning)

(B) Case Study for NewYork 40 47'34"N 73 57'07"W

True Label:  [1, 1, 1, 1, 1, 0]  
(Living, Supplying, Working, Caring, Learning)

Predicted Label: [1, 1, 1, 0, 1, 0]
(Living, Supplying, Working, Learning)

Figure 8: Cross-city transfer: GeoTwin-MIL trained on Seoul applied to (A) Beijing and (B) New York. Colored markers denote

facilities satisfying function labels—park (Living), market (Supplying), school (Learning), warehouse (Working), sports facility

(Caring). Label order: [Living, Supplying, Working, Caring, Learning, Enjoying]. Red text indicates prediction errors.

scenarios. Within Seoul, we examine performance across apartment

complex sizes in Table 5. Although in-domain performance is the

highest, we also consider cross-group settings in which the model

is trained on one of three size groups (small, medium, large) and

tested on another (e.g., trained on large, tested on medium). Results

show a clearer degradation in function-level metrics when training

and testing scales diverge, indicating greater functional diversity

across complex sizes. By contrast, institution-level performance

remains stable across transfers (I-F1 ≈ 0.90), suggesting consistent

spatial placement patterns regardless of scale. Medium-sized com-

plexes emerge as the most robust training source, achieving strong

cross-scale performance, likely because they capture intermediate

urban characteristics present in both extremes.

To verify the generalizability of the proposed method beyond

Seoul, South Korea, we evaluated its performance on two addi-

tional urban systems: Beijing, China, and New York, USA. Since

data limitations prevent quantitative evaluation, we conducted case

studies to demonstrate GeoTwin-MIL’s applicability in other cities.

Figure 8 shows the predictions for Beijing and New York using our

Seoul-trained model without any fine-tuning. Although trained

exclusively on Seoul data, the model captures general patterns of

urban function in different geographic and cultural contexts. In Bei-

jing, it correctly identifies the function of “Working” and “Learning”

while overestimating the presence of “supplying”. In New York’s

diverse neighborhood, the model accurately detects most functions,

demonstrating that the learned representations generalize well be-

yond the city used for training. Although city-specific fine-tuning

would improve the model’s 15MC evaluation performance, these

results validate that GeoTwin-MIL learns fundamental urban pat-

terns transferable across different cities, offering practical value for

regions with limited labeled data.

7 Conclusion

This study presents a novel framework that evaluates 15-minute city

(15MC) compliance directly from satellite imagery, bypassing the

limitations of POI-based applications. We construct an annotated

Seoul dataset and systematically assess combinations of feature

extraction, spatial aggregation, and multi-label classification. Our

experiments show that the proposed model, GeoTwin-MIL, effec-

tively captures both fine-grained institutional presence and broader

functional completeness in diverse hyper-dense urban settings,

validating the integrative effectiveness of cross-modal contrastive

learning to bridge morphological-topological features and multiple

instance learning for fine-grained aggregation.

Overall, the study findings support the validity of the proposed

framework and indicate a scalable path toward near-real-time urban-

function monitoring that can complement or potentially replace

conventional approaches. Our present implementation relies on off-

the-shelf contrastive learning and multiple-instance learning com-

ponents, and systematically benchmarking state-of-the-art variants

to quantify their task-level impact remains an important direction

for future work.
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