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Abstract

The 15-minute city (15MC) is an urban planning concept that pro-
motes sustainable and inclusive cities where residents can access
essential services within a short amount of time (i.e., 15 minutes).
However, evaluating 15MC compliance in hyper-dense cities re-
mains challenging due to: (1) traditional manual assessments that
are resource-intensive and difficult to scale, and (2) POI-based met-
rics that suffer from data unavailability and lack of spatial con-
texts. In this paper, we propose a novel evaluation framework that
directly assesses 15MC compliance from geospatial imagery in
three stages: image pre-processing, representation learning, and
instance aggregation. To validate the framework, we have con-
structed a new dataset of 2,794 residential areas in Seoul, pairing
high-resolution geospatial imagery with functional urban labels.
Furthermore, we have developed a model, GeoTwin-MIL, on the
basis of the proposed framework. The model includes two key com-
ponents: (1) cross-modal contrastive learning that aligns satellite
and map representations to capture both morphological (build-
ing density) and topological (road networks) features, enabling
robust inference using only satellite images, and (2) multiple in-
stance learning to efficiently aggregate geospatial details while
detecting localized urban functions within high-resolution imagery.
The experimental results obtained from various evaluation settings
show that GeoTwin-MIL significantly outperforms single-modality
approaches or vision baselines, validating the integrative effective-
ness of the two key components and supporting the transferability
of the model without POI dependencies. The code is available at
https://github.com/20243439/geotwin_mil.git.
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1 Introduction

The 15-minute city (15MC) is an urban planning concept that
promotes equitable access to essential services—work, education,
healthcare, commerce, and leisure—within a 15-minute walk, bike
ride, or public transit trip [18, 22]. By prioritizing barrier-free envi-
ronments, it improves spatial accessibility for vulnerable groups,
including the elderly, children, and individuals with disabilities [19].
In response, many cities are reorganizing their urban systems in
line with 15MC principles [18].

Despite its importance in urban planning, the evaluation and
implementation of 15MC principles, particularly in hyper-dense
environments, pose substantial challenges. Establishing a 15MC-
compliant environment is based primarily on bottom-up human-
led investigations, which are often time-consuming and resource-
intensive [22]; in complex built forms, manual assessment often
overwhelms practitioners [24]. Although various data-driven in-
dices have been proposed using points of interest (POI) or census
data, they are highly dependent on data availability and often fail
to capture the spatial realities of the built environment, resulting
in suboptimal accuracy, yielding surface-level, distance-based anal-
yses [2]. These limitations underscore the need for advanced evalu-
ation frameworks that move beyond proximity to assess functional
completeness and experiential accessibility [20].

To address these challenges, we propose an automated frame-
work for evaluating 15MC compliance using geospatial imagery,
specifically satellite photographs and topographic maps, readily
accessible via platforms such as Google Earth. We formulate the
task as an image-based multi-label classification problem, where the
presence of essential urban functions serves as target labels. Due to
a lack of pairwise dataset for imagery and function labels, a custom
dataset is constructed by crawling satellite and topographic images,
aligning them with 15MC elements based on POI data. A variety of
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neural network-based models are trained to predict the presence
of 15MC-related components without relying on POI data during
inference. To improve capturing high-resolution urban imagery, we
integrate contrastive learning (CL) strategies and multiple instance
learning (MIL), enabling patch-level focus.

We perform experiments on a manually constructed dataset and
explore our approach on various image representation methods,
including pre-trained CNN-based [16], CL techniques [3, 8], and
MIL [13, 23, 27]. Extensive ablation studies are also conducted to
assess the effectiveness of integrating MIL and contrastive learning
for the representation of geospatial images in the context of the
evaluation of 15MC. The results demonstrate that our method more
accurately predicts 15MC-related elements by effectively leveraging
salient imagery features, even with satellite-only inference. Our
key contributions are as follows.

e We introduce a new benchmark dataset centered on Seoul,
South Korea, one of the most hyper-dense cities in East
Asia, constructed by crawling geospatial imagery from open
platforms (e.g., Google Earth) and aligning each image with
corresponding POI data sourced from public databases.

e We propose a novel method, GeoTwin-MIL, for evaluating
15MC compliance using satellite imagery, trained with con-
trastive learning and multiple instance learning strategies,
enabling efficient and lightweight deployment by requiring
only satellite images during inference.

e We conduct comprehensive experiments, demonstrating that
our approach which incorporates contrastive learning strat-
egy and multiple instance learning extracts more meaningful
features from satellite imagery and achieves superior per-
formance in 15MC evaluation compared to a pre-trained
CNN-based and a contrastive learning-based methods.

2 Related Work

2.1 15-Minute City

The 15-minute city (15MC) is a planning paradigm that advocates
for spatially distributed urban services such as living, working, and
enjoying within a 15-minute radius by walking, cycling, or public
transit from residents’ homes [18, 22]. By promoting compact and
accessible neighborhoods, the 15MC concept enhances inclusiv-
ity, particularly benefiting groups with limited mobility, including
older adults, children, and individuals with disabilities, through
the implementation of barrier-free urban environments [19]. As
a result, municipalities worldwide are increasingly adopting this
model to redesign their spatial and infrastructural layouts in align-
ment with 15MC principles [18]. Although the concept highlights
the importance of proximity-based service provision, it does not
imply the universal availability of all services within the 15-minute
range. To operationalize this model, Garnier and Moreno [5] iden-
tified six core urban functions-living, supplying, working, caring,
learning, and enjoying-and specified the institutional components
necessary to fulfill each function. Despite its significance in enhanc-
ing urban living, the accurate and efficient evaluation of 15-minute
city (15MC) completeness presents several challenges [2]. These
include the need to account for public transportation and local geo-
graphic contexts, as well as the substantial time and cost required
for human-based assessment.
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2.2 Automated 15-Minute City Evaluation

Traditional methods of evaluating the compliance of 15MC pri-
marily rely on POI-based indices, calculating network distances to
essential services and aggregating their coverage [21]. Willberg et
al. [26] demonstrated temporal variations in accessibility, which
was significant for elderly populations. Network-based approaches
using Urban Network Analysis (UNA) measure walkability through
centrality metrics [12], while mobility-based evaluations incorpo-
rate actual movement patterns to reveal supply-demand mismatches
[7, 28].

Multi-modal based methods extend these approaches by consid-
ering various transportation modes [6], and recent studies leverage
large-scale check-in data for comprehensive evaluation [14]. How-
ever, these methods rely heavily on structured datasets and static
POI counts, failing to capture morphological barriers, spatial dis-
continuities, or urban form evolution [10]. Our work addresses
these limitations by directly processing satellite imagery without
requiring POI data at inference time.

2.3 Image Representation Learning

Extracting meaningful representations from remote sensing im-
agery is a core challenge in urban analysis. CNN-based models such
as ResNet [9] effectively capture local visual patterns but are inher-
ently limited in modeling global spatial structures. To overcome
this limitation and reduce reliance on labeled data, self-supervised
learning (SSL) methods such as SimCLR [3] and MoCo [8] have
been introduced, demonstrating strong generalized performance on
geospatial imagery. In high-resolution satellite images, fine-grained
spatial patterns are distributed at a local scale, and assigning a single
label to the entire image can result in the loss of spatial information.
Multiple instance learning has gained attention as a suitable model
for such settings, as it allows for modeling localized information
by dividing the image into multiple instances, learning their rep-
resentations independently, and aggregating them for image-level
prediction [17]. In this study, we adopt publicly available SSL with
pretrained CNN encoders and design a cross-modal contrastive
learning approach that jointly processes satellite and map imagery.
This enables robust feature learning from high-resolution geospa-
tial data and supports automated, large-scale evaluation of 15MC
compliance across diverse urban environments.

3 Preliminary

3.1 Definition

3.1.1  Multiple Instance Learning. Multiple instance learning (MIL)
is a weakly supervised learning framework in which the training
data consist of a set of bags X = {X(i)}f\il, where each bag is

defined as X () = {xfi), xz(i), .. ,x](gi_)} with xl(Ji) € Rd, and is asso-

ciated with a single bag-level label Y(?) € {0, 1}. The instance-level
labels yél) € {0, 1} are unobserved during training [17]. Under the
standard MIL assumption, a bag is labeled positive if at least one

instance is positive, and negative if all instances are negative.

3.1.2  Contrastive Learning. Contrastive learning is a self-supervised
representation learning framework that aims to map similar sam-
ples closer together and dissimilar samples farther apart in the
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Figure 1: Kernel-density heatmaps for representative institutions overlaid on Seoul’s administrative boundaries. The intensity
scale indicates the spatial concentration of each institution type, revealing distinct patterns of urban service distribution across

the metropolitan area.

embedding space. Given an anchor sample x, a positive sample x*
(e.g., an augmented view of x), and one or more negative samples
{x7}, a feature encoder fj is trained to minimize a contrastive loss
(e.g., InfoNCE) that encourages fy(x) and fp(x*) to be more simi-
lar than fy(x7). This encourages the model to learn semantically
meaningful and discriminative representations without requiring
explicit labels.

3.2 Spatial Bias in Urban Facility Distribution

This study aims to predict the compliance of the 15MC in Seoul, a
representative hyper-dense East Asian metropolis, by assessing the
presence of six social essential 15MC functions and their associated
institutions organized by Garnier and Moreno [5] (see Table 1). As
illustrated in Figure 1, Seoul exhibits significant intra-urban dispar-
ities in the density distribution of different institutional facilities,
making manual human examination of 15MC compliance signifi-
cantly costly. In this section, we propose a method that leverages
geospatial imagery to address the aforementioned challenge by
automatically predicting the presence of 15MC-related institutions.
Furthermore, we illustrate how we synthesized a new benchmark
dataset for training the model used in our framework.

Table 1: Essential functions and corresponding institutions
for 15MC.

Social Essential Functions Institutions

Living Police station, Shared accommodation, Park
Supplying Market, Bakery, Post office
Working Warehouse, Bicycle rental station, Bus stop
Caring Hospital, Sports facility, Swimming pool, Pharmacy
Learning Kindergarten, School
Enjoying Theater, Library, Bookstore, Museum, Cafe, Restaurant, Playground

3.3 15MC Evaluation Framework

Our proposed framework evaluates 15-minute city (15MC) com-
pliance in three decoupled stages. (i) Image Pre-processing: A

high-resolution satellite, map, or fused geospatial tile is divided into
fixed, non-overlapping patches and intensity-normalized, produc-
ing an ordered set suitable for batch processing. (ii) Representa-
tion Learning: A generic encoder projects each patch to an embed-
ding, distilling salient morphological or spatial cues (iii) Instance
Aggregation: Instance embeddings are pooled or attended to a
region-level descriptor, after which a multi-label classifier jointly
predicts (a) six essential urban functions and (b) 22 institution cate-
gories, listed on Table 1. This modular separation of pre-processing,
representation, aggregation and inference allows any feature en-
coder or aggregation strategy to be plugged in without altering the
downstream 15MC assessment.

For this study we instantiate stages (ii) and (iii) with a light-
weight pairing of cross-modal contrastive learning and TransMIL
aggregation, referred to as GeoTwin-MIL. Section 4 and Figure
2 details the network architecture, training logic, and schedule of
GeoTwin-MIL.

4 Method
4.1 Dataset Synthesis
4.1.1  Image cropping based on 15MC. To the best of our knowl-

edge, no publicly available dataset pairs geospatial imagery with
labels explicitly related to the 15MC concept. To address this issue,
we developed a benchmark dataset that integrates high-resolution
satellite imagery and topographic maps with labels specifically
tailored for the evaluation of 15MC in Seoul, South Korea. Given
that the 15MC concept emphasizes proximity to essential facilities
surrounding residential areas, we selected apartment complexes,
Seoul’s predominant housing type, as reference points. To sys-
tematically evaluate the performance of our proposed framework,
apartment complexes were classified according to household count
into three groups: small (under 500 households), medium (500-1,000
households), and large (over 1,000 households). This stratification
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Figure 2: The overall architecture of GeoTwin-MIL: Cross-modal contrastive learning is first performed between satellite
imagery and street map data using momentum encoders with LoRA adaptation, followed by TransMIL aggregation with
multi-head attention and positional encoding for urban function prediction.

ensures typological diversity and comprehensive spatial represen-
tativeness in Seoul’s residential areas, encompassing a total of 2,794
complexes, which consists of 408 large, 642 medium, and 1,744 small
complexes.

For each selected complex, a satellite image and the correspond-
ing topographic map were constructed covering a spatial area of
2km X 2km, precisely centered on the complex coordinates (latitude
and longitude). This spatial scale ensures coverage of an approxi-
mate 1 km radius, reflecting the distance typically covered within
a 15-minute walk, a key measure within the 15MC concept. The
detailed process is as follows. Due to restrictions on direct access to
satellite-imagery APIs, we implemented an automated acquisition
method using Google Earth ! controlled via Selenium WebDriver
2 using the Python programming language. Our methodology in-
volves a two-step image capture process designed to overcome
viewport limitations in Google Earth. Initially, the location of the
target apartment complex is pinpointed using its geographic coor-
dinates, and a uniform altitude of 1, 500m is maintained to ensure
consistent resolution of the ground sample. Subsequently, two over-
lapping images are captured by vertically shifting the viewpoint
400m (upward and downward) from the reference point. The over-
lapping regions of these images serve as alignment references for
seamless stitching, a procedure that is applied consistently to both
satellite and topographic images. The resulting geospatial images

Uhttps://earth.google.com/web/
Zhttps://selenium-python.readthedocs.io/getting- started.html

are therefore uniformly sized at 2km X 2km and resampled to high-
resolution PNG files of 4,096 X 4, 096 pixels, ensuring consistent
spatial resolution and comprehensive coverage throughout the data
set. Consequently, we collected 2,794 regional images in total. The
details of the process are outlined in Figure 3 and Algorithm 1.

Algorithm 1: Cropping process of geospatial images

Input: Latitude of base location (£ A), Longitude of base location (£ O), Distance
adjustment factor (d = 0.00113)
Output: Combined satellite image
Step 1: Initialize WebDriver and Image Storage
Initialize WebDriver — driver
Initialize empty list images for storing captured images
Step 2: Capture Images at Adjusted Latitudes
forie {-1,1} do
adjusted_latitude « LA +ixXd x4
url « GenerateURL (adjusted_latitude, £O)
image «— driver.GetIMAGE (url)
cropped_image «— Crop(image)
Append cropped_image to images

R T

-
5

-
=

final_image «— MergeIMAGE (images)
return final_image driver.quit()

IS

4.1.2  Labeling institutions based on POl data. This part outlines the
process of labeling institutions within previously cropped region-
specific satellite tiles used to evaluate the compliance of 15MC. We
started by reviewing previous research to identify the necessary
conditions to meet the 15MC criteria. Building on the foundational
study of Garnier and Moreno [5], we adopt the six essential social
functions proposed as the core dimensions of the 15MC. Based on
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Figure 3: Dataset Synthesis: (A) Depicts the process of crawling and cropping satellite imagery. (B) Illustrates the procedure for
locating institutions on the satellite imagery and assigning labels based on POI data.

these functions, we curated a corresponding set of institutional
types and adapted them to reflect the urban characteristics of Seoul.
Through this adaptation process, we finalized a list of 22 institu-
tional categories. For each region, we labeled the presence of the
institutions using publicly available POI datasets. Categories with
insufficient POI coverage (e.g., office buildings) were excluded from
the final inventory. Broad or ambiguous categories (e.g., leisure fa-
cilities) were further disaggregated into more specific types, such as
museums and playgrounds, to enhance semantic clarity. A compre-
hensive mapping of functions and their corresponding institution
types is provided in Table 1.

The construction of labels follows a hierarchical structure of two
levels, namely the function level and the institution level: (i) At the
function level, labels represent the presence or absence of six essen-
tial social functions, detailed in Table 1. Each region is encoded as
a 6-dimensional multi-hot vector, where each element is set to 1 if
the corresponding function is satisfied and 0 otherwise. (ii) At the
institution level, the labels denote the existence of 22 specific insti-
tution types associated with the six functions. Similarly, each region
is represented as a 22-dimensional multi-hot vector, with binary
values indicating whether each institution is present (1) or not (0).
The final dataset consists of triples (image, function, institution),
where function € [0, 1]° and institution € [0, 1]%2. This hierarchi-
cal labeling strategy facilitates a comprehensive evaluation of both
high-level functional accessibility and fine-grained institutional
presence through multi-label classification tasks for 15-minute city
(15MC) assessment. The systematic procedure ensures consistent
spatial representation and reliable ground truth labeling in all 2,794
residential areas in our curated dataset. The labeling procedure is
provided in Algorithm 2.

4.2 Patch-Based Input Slicing

To support fine-grained spatial reasoning and downstream MIL,
we divide each high-resolution input image into fixed-size, non-
overlapping patches prior to training. Each satellite image yields a
set of patches H = {hy, hy, ..., hg}, and each corresponding map
image yields M = {m1,my,...,mg}, where hy,my € R? denotes

Algorithm 2: Labeling process of functions and institutions
within a boundary

Input: Bag of POI datasets B, Base latitude (£ A), Base longitude (L O)

Output: Presence of each function and institution within a region
1 Step 1: Obtain the coordinates of a target boundary
2 top_left « CalculateCoordinate( LA, LO,offset_top,offset_left)
3 top_right « CalculateCoordinate( LA, LO,offset_top, offset_right)
4 bottom_left « CalculateCoordinate( LA, LO,of fset_bottom offset_left)
5 bottom_right « CalculateCoordinate( LA, LO, offset_bottom, offset_right)
6
7
8
9

Step 2: Locate the target boundary
boundary « {top_left, top_right, bottom_left, bottom_right}
Step 3: Filter functions and institutions within the target boundary
functions_list = [living, supplying, working, caring, learning, enjoying]
functions_within_boundary = [0] X 6
institutions_within_boundary = [0] x 22
foreach POI dataset in B do
foreach index i and institution inst in POI dataset do
14 if inst within boundary then
15 L L institutions_within_boundary[i] =1
foreach index f and function func in functions_list do
17 if all inst of func exists then
18 L L functions_within_boundary[f] =1
19

return functions_within_boundary and institutions_within_boundary

the d-dimensional feature vectors obtained by independently en-
coding each patch through a pretrained encoder.

This patch-level representation allows the model to localize func-
tional attributes (e.g., parks, facilities) that may only occupy a
portion of the image. To aggregate these localized features into
a coherent region-level prediction, we adopt an MIL framework.

4.3 Patch-Based Cross-Modal Pretraining

To build a modality-aligned encoder that integrates satellite and
map features, we perform a cross-modal contrastive pre-training
based on MoCo [8]. Satellite patches (h € H) contain fine-grained
morphological cues (e.g., building shapes, densities), while map
patches (m € M) emphasize topological structures (e.g., road lay-
outs, zoning), which are often occluded in aerial views. This stage
aims to align these complementary views and learn spatial repre-
sentations that are robust across modalities.

Each training instance consists of a triplet (h, m*, m™), where his
a satellite patch, m* is a map patch from the same location (positive),
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and m~ is a patch from a different region (negative). All patches are
passed through a shared ResNet-50 backbone. The query encoder
fp processes the satellite anchor, while the momentum encoder fy,
updated via the exponential moving average (EMA), encodes the
map patches.

q=fo(h), k" =fp(m®), k™ =fop(m). )
The momentum encoder parameters are updated as:
0 — b +(1-a)l, (2)

where « is the momentum coefficient.

To enable parameter-efficient learning, only the LoRA mod-
ules [11] within the query encoder are updated during training,
while the ResNet-50 backbone remains frozen.

We use the InfoNCE objective to contrast positive and negative
pairs.

exp (sim(q, k*)/7)

2 exp(sim(q,k™)/7)’
k=eX-
where K~ is the set of negative keys from the current mini-batch,
and 7 controls the temperature of the softmax. Lower 7 sharpens
the focus on hard negatives, promoting stronger alignment.

Since gradients are propagated only through the query encoder
and its LoRA modules, the momentum encoder serves as a stable,
non-trainable target. This pretraining phase yields an encoder that
effectively captures and aligns local morphological and global topo-
logical patterns, serving as the foundation for downstream spatial
reasoning tasks such as MIL.

Leon =— IOg (3)

4.4 Patch-Based Feature Aggregation

After contrastive pretraining, we reuse the query encoder fy to
transform each satellite patch h; € H into a latent embedding
Zx € R

zr = fo(hy), Vke{1,2,...,K}, 4)
yielding the full encoded bag Z = {z1,z3,...,2zx} € RE*d which
captures fine-grained morphological cues extracted from satellite
patches.

To aggregate these patch-level embeddings into a holistic region-
level representation suitable for downstream classification, we
adopt the TransMIL [23] model, designed to handle weakly-supervised
learning scenarios, where only bag-level (region-level) labels are
available, and instance-level annotations are unknown.

First, each feature vector zj is spatially contextualized using the
Pyramid Position Encoding Generator (PPEG), which reshapes the
patch sequence into a pseudo-2D layout and applies multi-scale
convolutional filters to encode local spatial dependencies:

Z = PPEG(Z), (5)

where Z € RK*4 contains position-aware patch embeddings.
Next, the model applies a stack of Transformer layers to model

complex dependencies between spatially-aware patch tokens. Specif-

ically, a Multi-Head Self-Attention (MHA) mechanism is used to

capture both short- and long-range interactions.
HY = MHA(Z), H® =MHAMHDY), (6)

where H H2) € REXd denote the intermediate feature maps
refined through attention.
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To derive a fixed-size region-level descriptor from the sequence,
a special [CLS] token is used, whose embedding is updated along
with other tokens and finally extracted as the region representation.
This vector is normalized and used as input for the classification
layer.

_ (2)

F= LN(H[CLS]), 7)
where F € R? encodes the aggregated evidence throughout the
region.

Finally, the model predicts the probability of each functional
class via a sigmoid-activated linear classifier.

Jn =0(WyF+by), Vne{l,...,C} (8)
where C is the number of predefined social function categories (e.g.,
Living, Supplying) or institution-level categories, and g, € [0, 1]
denotes the predicted likelihood that the region supports the class
n.

This architecture allows the model to exploit both morphological
patterns and spatial relationships between patches, making it well-
suited for tasks where the presence of target semantics is localized
and weakly annotated.

5 Experiments

We investigate the effectiveness of various image representation
methods, specifically, a pre-trained convolution-based approach,
a contrastive learning strategy, and a multiple instance learning
strategy on a custom dataset that we constructed. Furthermore, we
examine the incremental performance gains achieved by combin-
ing two or more of the aforementioned methods. The evaluation is
conducted at two levels: function-level and institution-level. More
precisely, we assess the alignment between model predictions and
the actual presence of socially essential functions and their cor-
responding institutions across urban regions. We further dissect
model behavior through ablation studies isolating each architec-
tural component, benchmark data efficiency in few-shot settings,
and probe robustness under distribution shifts via intra and cross
city transfers.

5.1 Baselines

We systematically evaluate various approaches for 15MC compli-
ance prediction from geospatial imagery. For feature extraction,
we adopt and examine ResNet-50 [9] pretrained on ImageNet as
a standard baseline and MoCo [8] representing self-supervised
contrastive learning framework. For aggregating different types
of image features, we compare non-learnable methods including
pooling operations (min/mean/max) [16], Hadamard product [15],
and concatenation [4], as well as learnable attention mechanisms
including gated attention [1] and cross attention [25]. Finally, for
the classification, we explore fine-tuning (FT), where a linear clas-
sification head is fully fine-tuned on pretrained features, versus
multiple instance learning framework that preserves spatial struc-
ture through bag-level aggregation. This comprehensive evaluation
enables us to identify the most effective combination for visual
urban function assessment.
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5.2 Implementation Details

Satellite-map patch pairs are resized to 224 X 224 pixels and nor-
malized using ImageNet statistics. For single-modality contrastive
learning, data augmentation includes random horizontal and ver-
tical flips with probability 0.5, and color jitter applied on-the-fly
during training. For cross-modal contrastive learning, we use the
MoCo v3 architecture pretrained with the ResNet-50 encoder from
r-50-1000ep.pth.tar, using momentum coefficient m = 0.999,
the queue size of 65,536 negative keys, and the temperature 7 = 0.2.
We freeze the backbone encoder parameters and update only rank-4
LoRA adapters, introducing approximately 0.34M trainable param-
eters. Training continues for 50 epochs using AdamW optimizer
with learning rate 7 = 1 x 10”2 and weight decay 1 = 1 x 1074,
implementing a global batch size of 1,024 through gradient accu-
mulation every 32 steps, with a mini-batch size of 32 at each step.
The learning rate schedule includes linear warm-up during the first
epoch followed by cosine decay.

For downstream classification, precomputed patch embeddings
are loaded slide-wise and linearly projected to 512 dimensions;
a learnable [CLS] token is prepended to each sequence. We em-
ploy the original TransMIL architecture, two NystromAttention
layers with 8 heads and 17 landmarks and positional PPEG en-
coding, changing only the dropout rate to 0.1. The MIL model is
optimized using Adam optimizer with learning rate n = 1 x 1073
and weight decay A = 1 x 1072, batch size of 32 slides for up to
50 epochs with early stopping patience of 10. Data are stratified
by apartment-complex category and split into train/validation/test
sets with an 8:1:1 ratio, with all results averaged over three random
seeds {1,17,42} and experiments conducted on a single NVIDIA
RTX 4070 using PyTorch 2.4 and CUDA 12.5.

5.3 Evaluation Protocol

We operationalize 15-minute city (15MC) compliance as two com-
plementary multi-label classification problems:

(1) Function level: 6 binary labels that indicate the presence of
living, supplying, working, caring, learning, enjoying. A function
label ylfcunc is positive iff every institution linked to that function
appears within the image,

func _ inst
Y = 1_[ Yei
iely

ke{l...6) )

where 7. denotes the set of associated institutions listed in Table 1.
(2) Institutional level: 22 independent binary labels that predict the
presence of each specific institution (parks, hospitals, schools, etc.).

Both tasks are evaluated using macro-averaged the F1 score and
the AUC. Macro-F1 offers a robust measure under severe label
imbalance by equally weighting classes, while AUC complements
it by assessing ranking quality across all decision thresholds.

6 Results
6.1 Dataset Analysis

Table 2 presents the general statistics of the institutions labeled
associated with each regional image, which were cropped and auto-
matically annotated as described in Section 4.1. As shown in Table 2,
there is a substantial variation in the average number of institutions,
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and the standard deviations indicate considerable disparities in the
number of institutions between regions.

Table 2: Descriptive Statistics of Institution

# Images 2794

Category Mean  Standard Deviation Minimum Maximum
Police 2.280 1.383 0 11
Accommodation  21.726 29.026 0 289
Park 1.082 0.966 0 5
Market 361.586 197.165 18 1377
Bakery 40.093 21.981 0 152
Post Office 1.999 1.311 0 9
Warehouse 0.232 0.630 0 6
Bus 112.690 39.078 18 226
Bike 27.545 9.754 1 71
Hospital 225.625 170.286 0 1482
Pharmacy 58.715 29.384 0 199
Sports 0.879 1.393 0 9
Swimming 1.521 1.535 0 11
Kindergarten 10.111 4.577 1 25
School 13.614 5.419 0 34
Theater 6.595 8.197 0 39
Library 2367 1.598 0 9
Bookstore 5.641 4.875 0 51
Museum 0.804 1.747 0 26
Cafe 142.377 83.800 5 570
Restaurant 1186.295 722.098 29 4421
Playground 6.566 4.571 0 25

Institution-level Distribution
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Figure 4: Distribution of 15-Minute City (15MC) Complete-
ness Scores.This histogram illustrates the number of resi-
dential areas corresponding to each completeness level (%)
based on the presence of essential social functions, reflecting
the spatial distribution of functional accessibility within the
city.

To further examine the overall distribution of 15MC compliance
based on the presence of essential social functions and the corre-
sponding institutions, Figure 4 illustrates the completeness of func-
tions and institutions in the collected geospatial image dataset. As
shown, the distribution at the function level resembles a normal dis-
tribution. However, when observed at the more granular institution
level, the distribution exhibits noticeable skewness. This skewness
can be attributed to the characteristics of hyper-dense cities like
Seoul, where certain institutions such as bus stops, schools, and
theaters are disproportionately abundant. In contrast, several other
institution types are sparsely and unevenly distributed, appearing
infrequently between regions, as visualized in Figure 1.



SIGSPATIAL 25, November 3-6, 2025, Minneapolis, MN, USA

Table 3: Performance comparison for urban function (F) and
institution (I) classification using different image types with
or without contrastive learning (CL) and multiple instance
learning (MIL). The best performances are written in bold,
and the second best performances are underlined.

Input CL MIL | F-F1() F-AUC(])| IF1() I-AUC(T)
sat X X 0.609 (0.032)  0.770 (0.004) | 0.890 (0.009)  0.792 (0.005)
map X X 0.557 (0.021)  0.730 (0.008) | 0.866 (0.009)  0.759 (0.003)
sat X v 0.686 (0.016)  0.764 (0.029) | 0.915 (0.010)  0.833 (0.020)
map X v 0.685 (0.029)  0.766 (0.018) | 0.913 (0.006)  0.841 (0.011)
sat v X 0.654 (0.006)  0.782 (0.005) | 0.894 (0.006)  0.792 (0.001)
map v X 0.606 (0.003)  0.672 (0.006) | 0.875 (0.003)  0.710 (0.002)
sat v v 0.751 (0.025)  0.846 (0.009) | 0.924 (0.004)  0.856 (0.012)
map v v 0.752 (0.021)  0.844 (0.008) | 0.921 (0.004)  0.856 (0.006)
sat+map v X 0.711 (0.007)  0.790 (0.028) | 0.900 (0.002)  0.774 (0.001)
sat+map v v 0.784 (0.021) 0.871 (0.008) | 0.945 (0.002) 0.915 (0.008)

6.2 Main Results

Table 3 presents a comprehensive evaluation of various approaches
for predicting 15-minute city compliance from geospatial imagery
in function-level and institution-level. We observed that leverag-
ing a pre-trained CNN-based image representation model on either
satellite imagery or topographic maps yields moderate performance
in predicting the presence of functions or institutions, achieving
over 60% on both Fl-score and AUC, except for the F1-score at
the function level. Furthermore, incorporating MIL substantially
improves the performance across all imagery types (e.g., satellite
image, topographic map) by enabling the model to focus on infor-
mative regions within high-resolution urban imagery. CL further
enhances feature representations, particularly when combined with
MIL. In particular, the CL method using augmented data based
on a single image type, either satellite imagery or topographic
maps, achieves competitive performance compared to the use of
both image types in the CL setting without MIL. Consequently,
GeoTWin-MIL, the full integration of both image types with the CL
and the MIL achieves the highest performance across all metrics,
confirming that the combination of satellite visual features and
topographic map-based geometric information through advanced
learning strategies is optimal for urban function assessment.

6.3 Robustness Comparison

Observing GeoTwin-MIL'’s cross-modal superiority, we investigate
its robustness under various training conditions. Figure 5 exam-
ines the robustness of different geospatial image configurations
for the classification of urban functions and institutions in batch
sizes. When CL is applied to single image types with augmenta-
tion, each image type shows distinct performance: satellite aug-
mentation benefits from larger batch sizes by generally improving
performance, while map augmentation shows the opposite trend
with overall degradation. This indicates that relying on a single
type of image can be significantly affected by batch size, which
impacts the contrastive learning (CL) strategy [3]. Interestingly,
GeoTwin-MIL successfully leverages both modalities, achieving not
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only the highest performance, but also remarkable stability across
all batch sizes. This batch size invariance demonstrates that the
proper fusion strategy of complementary image types creates more
robust representations, making the approach particularly suitable
for practical 15MC evaluation systems.

Function F1 (1)

0.80] 0.794 0.788 0.784
0.76 ‘ Z - 8 0.751
0.72 0.717
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0.871 0.871
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Figure 5: Performance comparison of models leveraging con-
trastive learning and multiple instance learning on different
image types across batch-size. Sat+Map denotes joint satel-
lite—-map inputs, Sat Aug denotes satellite-only inputs with
augmentation, and Map Aug denotes map-only inputs with
augmentation.

6.4 Aggregation Strategies Comparison

The success of cross-modality fusion naturally raises questions
about optimal aggregation strategies. Consequently, we examine
various aggregation strategies to combine satellite and map char-
acteristics in 15MC prediction as shown in Table 4. Non-learnable
methods, particularly max pooling, achieve competitive perfor-
mance, suggesting that simple feature selection can be effective
for this task. Learnable attention mechanisms improve over most
non-learnable baselines but remain still comparable to max pooling,
suggesting that merely using attention strategies fails to sufficiently
capture geospatial information. The contrastive learning approach
achieves substantial gains across all metrics representing that se-
lectively aligning meaningful features from both modality, which
are satellite imagery and topographic maps, leads to the optimal
performance.
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Table 4: Comparison of input aggregation methods for com-
bining satellite and map patches. Non-learnable methods
apply fixed operations, whereas learnable methods rely
on attention mechanisms. CL denotes our proposed cross-
modal contrastive learning approach. The best performances
are written in bold, and the second best performances are
underlined.

Method | Learnable | F-F1(1) F-AUC (1) | I-F1(1) I-AUC (1)
Min Pooling X 0.673 0.749 0.924 0.862
Mean Pooling X 0.681 0.758 0.924 0.873
Max Pooling X 0.725 0.815 0.922 0.866
Hadamard Product X 0.720 0.816 0.926 0.867
Concatenation X 0.693 0.759 0.926 0.863
Gated Attention v 0.721 0.767 0.928 0.858
Cross Attention v 0.730 0.830 0.936 0.849
CL (Ours) | v 0.784 0.871 0.945 0.915

6.5 Few-Shot Performance Analysis

To examine the performance of the model under a data scarcity
condition that reflects the reality of urban systems where data col-
lection is one of the challenging tasks, we conducted a few-shot
learning experiment with limited training data shown in Figure 6.
Although the ResNet50-FT baseline shows reasonable ability and
improves steadily with more shots, its performance gains are rel-
atively small compared to methods that incorporate contrastive
learning or MIL, indicating that additional components provide
substantial benefits in few-shot settings. GeoTwin-FT, which adds
cross-modal contrastive learning while involving linear classifi-
cation, improves moderately across all shots, demonstrating that
a better alignment enhances the performance even with limited
data. MoCo-MIL, which combines single-modal contrastive learn-
ing with MIL aggregation, shows an interesting pattern: Despite
various prior studies suggesting that MIL requires abundant data
[13, 23, 27], it consistently outperforms GeoTwin-FT, indicating
that spatial aggregation enables effective information capture even
with a few examples. GeoTwin-MIL integrates both innovations,
cross-modal representations, and MIL aggregation, achieving the
best performance with significant improvements from 1 to 4 shots
and near-optimal results at 16 shots. Component ablation reveals
that while cross-modal learning provides better features and MIL
enables spatial reasoning, their combination yields synergistic ben-
efits essential for data-efficient evaluation of 15MC.

6.6 15MC Completeness Alignment Analysis

Beyond classification accuracy, the ultimate goal of this study is
not only accurately predicting each label’s presence, but also pre-
dicting 15-minute city completeness scores. Figure 7 validates that
our visual evaluation model GeoTwin-MIL accurately predicts the
compliance of the city in 15 minutes, translating multi-label clas-
sifications into meaningful urban accessibility scores. The strong
alignment between predicted and true distributions across both
tasks confirms that our approach captures real urban patterns. This
distributional accuracy demonstrates that beyond individual label
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Figure 6: Few-shot learning performance evaluation across
varying training samples per class (1-16 shots) for function-
level and institution-level predictions. The upper bounds are
established on GeoTwin-MIL with full training data.

predictions, our model, especially GeoTwin-MIL reliably aggre-
gates urban elements into 15MC completeness metrics, enabling
automated accessibility evaluation without costly manual surveys.
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Figure 7: Probability-density comparison of 15-minute city
completeness based on our method. (a) Function-level distri-
butions and (b) institution-level distributions, where the blue
curve denotes observed values and the orange curve denotes
model predictions.

6.7 Transfer Performance Analysis

Table 5: Cross-group transfer performance on our best per-
formance method GeoTwin-MIL.“Train & Valid” denotes the
group used for training (and validation if same), “Test” the
held-out group. The best performances are written in bold,
and the second best performances are underlined.

Train & Valid Test Transfer ‘ F-F1() F-AUC(]) I-F1(]) I-AUC(})

small small X 0.671 0.771 0.906 0.771
small medium v 0.667 0.749 0.905 0.768
small large v 0.661 0.736 0.898 0.754
medium small v 0.715 0.737 0.902 0.760
medium medium X 0.726 0.810 0.899 0.800
medium large v 0.711 0.784 0.904 0.773
large small v 0.673 0.667 0.896 0.738
large medium v 0.686 0.773 0.897 0.767
large large X 0.679 0.787 0.906 0.770

Real-world deployment of the proposed framework requires ro-
bustness to distribution shifts, which we evaluate under two transfer
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(A) Case Study for Beijing 39°48'11"N 116°27'06"E
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True Label: [0, 0, 1, 0, 1, 0]
(Working, Learning)

Predicted Label: [0, 1, 1,0, 1, 0]
(Supplying, Working, Learning)
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(B) Case Study for New York 40°47'34"N 73°57'07"W

True Label: [1,1,1,1,1,0]
(Living, Supplying, Working, Caring, Learning)

Predicted Label: [1, 1, 1, 0, 1, 0]
(Living, Supplying, Working, Learning)

Figure 8: Cross-city transfer: GeoTwin-MIL trained on Seoul applied to (A) Beijing and (B) New York. Colored markers denote

facilities satisfying function labels—park (Living), market (Supplying), school (Learning),

, sports facility

(Caring). Label order: [Living, Supplying, Working, Caring, Learning, Enjoying]. Red text indicates prediction errors.

scenarios. Within Seoul, we examine performance across apartment
complex sizes in Table 5. Although in-domain performance is the
highest, we also consider cross-group settings in which the model
is trained on one of three size groups (small, medium, large) and
tested on another (e.g., trained on large, tested on medium). Results
show a clearer degradation in function-level metrics when training
and testing scales diverge, indicating greater functional diversity
across complex sizes. By contrast, institution-level performance
remains stable across transfers (I-F1 ~ 0.90), suggesting consistent
spatial placement patterns regardless of scale. Medium-sized com-
plexes emerge as the most robust training source, achieving strong
cross-scale performance, likely because they capture intermediate
urban characteristics present in both extremes.

To verify the generalizability of the proposed method beyond
Seoul, South Korea, we evaluated its performance on two addi-
tional urban systems: Beijing, China, and New York, USA. Since
data limitations prevent quantitative evaluation, we conducted case
studies to demonstrate GeoTwin-MIL’s applicability in other cities.
Figure 8 shows the predictions for Beijing and New York using our
Seoul-trained model without any fine-tuning. Although trained
exclusively on Seoul data, the model captures general patterns of
urban function in different geographic and cultural contexts. In Bei-
jing, it correctly identifies the function of “Working” and “Learning”
while overestimating the presence of “supplying”. In New York’s
diverse neighborhood, the model accurately detects most functions,
demonstrating that the learned representations generalize well be-
yond the city used for training. Although city-specific fine-tuning
would improve the model’s 15MC evaluation performance, these

results validate that GeoTwin-MIL learns fundamental urban pat-
terns transferable across different cities, offering practical value for
regions with limited labeled data.

7 Conclusion

This study presents a novel framework that evaluates 15-minute city
(15MC) compliance directly from satellite imagery, bypassing the
limitations of POI-based applications. We construct an annotated
Seoul dataset and systematically assess combinations of feature
extraction, spatial aggregation, and multi-label classification. Our
experiments show that the proposed model, GeoTwin-MIL, effec-
tively captures both fine-grained institutional presence and broader
functional completeness in diverse hyper-dense urban settings,
validating the integrative effectiveness of cross-modal contrastive
learning to bridge morphological-topological features and multiple
instance learning for fine-grained aggregation.

Overall, the study findings support the validity of the proposed
framework and indicate a scalable path toward near-real-time urban-
function monitoring that can complement or potentially replace
conventional approaches. Our present implementation relies on off-
the-shelf contrastive learning and multiple-instance learning com-
ponents, and systematically benchmarking state-of-the-art variants
to quantify their task-level impact remains an important direction
for future work.
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