
Bi-Directional Goal-Conditioning on Single Policy
Function for State Space Search

Vihaan Akshaay Rajendiran
University of California, Santa Barbara

vihaanakshaay@ucsb.edu

Yu-Xiang Wang
University of California, Santa Barbara

yuxiangw@cs.ucsb.edu

Lei Li
Carnegie Mellon University

leili@cs.cmu.edu

Abstract

State space search problems have a binary (found/not found) reward system. In
our work, we assume the ability to sample goal states and use the same to define a
forward task (τ∗) and a backward task (τ inv) derived from the original state space
search task to ensure more useful and learnable samples. Similar to Hindsight
Relabelling, we define ’Foresight Relabelling’ for reverse trajectories. We also
use the agent’s ability (from the policy function) to evaluate the reachability of
intermediate states and use these states as goals for new sub-tasks. We group
these tasks and sample generation strategies and make a single policy function
(DQN) using goal-conditioning to learn all these different tasks and call it ’SRE-
DQN’ (Scrambler-Resolver-Explorer). Finally, we demonstrate the advantages of
bi-directional goal-conditioning and knowledge of the goal state by evaluating our
framework on classical goal-reaching tasks, and comparing with existing concepts
extended to our bi-directional setting. Our implementation can be found here.

1 Introduction

The state-space search problem can be defined as finding a feasible sequence of actions that would
lead an agent starting from a start state in a state space to a goal state. The reward system for this
problem is binary (+1 if goal state and 0 if not goal state). However, these problems often have a vast
number of states compared to only a limited number of goal states, making rewards very sparse A.

Bi-directional (having parallel searches from start and goal state towards each other) exploration
algorithms reduce the time complexity in typical search algorithms, and we extend it to the RL setting
1. We make two assumptions, 1) we have a universal simulator (agent can spawn at any state) and 2)
the ability to sample goal states which are reasonable assumptions for our problem.

If the forward task τ∗ (agent spawns in state from start state set and the objective of the agent is to
reach a state in the goal state set), we define backward task τ inv which is the exact reverse (agent
spawns in a state from goal state set and tries to reach a state in the start state). We also obtain
intermediate states from the agent’s trajectories to use them to define intermediate tasks. This way
we build an agent that tries to learn in a bi-directional manner A.1. We show that agents learning
multiple tasks formulated in the same state space in a goal-conditioned setting, perform better when
evaluated in just the forward task. Our main contributions in this paper include:

• A new Bi-directional Goal-conditioning (Binding Hindsight and the backward counter-part
’Foresight’) formulation that defines a new reverse task (τ inv) obtained from the original
state space search task (τ∗).

Goal-Conditioned Reinforcement Learning Workshop (NeurIPS 2023).

http://bit.ly/bd-gcrl

Figure 1: A visual depiction of (a) Hindsight Experience Replay trajectories (b) Bi-directional sample
collection & (c) ’Scrambler-Resolver-Explorer’ sample collection strategy with internal motivations.
(Hindsight and Foresight goals are shown using light green and purple cells respectively)

• A novel multi-task learning and sample generation strategy called ’Scrambler-Resolver-
Explorer’ (SRE) and its incorporation with the famous DQN algorithm.

Figure 1 shows an example of our exploration method for collecting samples and goals in a 10 x 10
Gridworld for easy visualisation. The first figure (from the left) shows some trajectories obtained
using the classical ’Hindsight Experience Replay’ (HER) method with the task (we call τ∗) of
reaching the goal state of the environment. Here, the final goal of every unsuccessful trajectory is
used to relabel the whole trajectory as the desired state (Hindsight Relabelling) and the agent is
trained in a goal-conditioned manner. We also add these states to our candidates list (explained later).
Despite learning from samples well, which otherwise wouldn’t have been as fruitful, the algorithm
still lacks an element that will help the agent push toward the goal more explicitly.

As part of our bi-directional goal-conditioning method, we add another spawn of the agent from the
goal state and the task (we call is τ inv) is to reach the start state. Similar to the forward trajectories
from HER, we take the end state of failed trajectories and add them to the candidate list as well as
use them for Foresight Relabelling (Similar to Hindsight) and train the agent for this task. Here, we
also define intermediate tasks similar to [26]. We take these intermediate candidates and sample them
based on the ability of the agent to reach them, and reach the goal state of the original task from them
(Intermediate Task Modification) and set them as goal states for a temporary task.

The intention to use an agent near the goal states is to use collect samples closer to the goal state,
which might help in propagation of rewards through other regions better. But running the scrambler
collects samples for τ inv and not τ∗. To fix this, we start a third set of spawns from the end states
of scrambler trajectories solving the original task (Trying to end in the goal state from τ∗). Now
with all these samples generated for different tasks (τ∗, τ inv and intermediate tasks), we adopt the
Goal-Conditioned Setting and train a Universal Value Functional Approximator [27] to be able to
handle all these tasks. We believe this whole formulation of generating newer tasks, despite creating
the overall learning objective of the value function more complicated, will generate more samples
with rewards and thereby make the overall learning process efficient.

2 Scrambler-Resolver-Explorer based DQN Agent

Assumptions: In this paper, we propose a new exploration strategy called "Scrambler-Resolver-
Explorer" (SRE). We first make two practical implementation/experimentation assumptions that are
applicable to most simulation-related state space search problems. First, we assume the existence of
goal states and our access to them. In many reinforcement learning applications related to control or
path planning, goal states are defined and information about them is available. In cases where goal
states are not explicitly defined, the agent can initially use a typical exploration strategy and then
switch to the "SRE" exploration once it has discovered a subset of goal states.

Second, we assume that we can start a new environment instance from any state we provide, similar
to the approach in [8]. The only difference is that we do not require any information on states closer
to the goal state or a heuristic function in the state space. We simply expect to be able to spawn in
desired states, such as the goal state. We believe this assumption is reasonable for most simulated
environments for the state space search task.

2

(a) N-Chain (b) 10Chain Results (c) 15Chain Results

Figure 2: NChain experiments: Performances of all variants of agents on environments with increasing
state space size.

Agent Description: In this particular study, since most well known state space search problems
are puzzles with discrete action space, the algorithm chosen for implementation is DQN, although
it is possible to combine this exploration algorithm with other off-policy algorithms such as NAC
[13], DDPG [20], SAC [14]. We choose DQN because the features added to enhance the stability of
convergence, such as experience replay and two policy networks with different update frequencies,
are well-suited for the various agent definitions that we require. With this combination, we propose a
novel DQN-like agent called SRE-DQN D. Our algorithm has three sub agents that we call ’Scrambler’
(S), ’Resolver’(R) and ’Explorer’(E). These modules try to collect samples in a bi-directional manner
(Explorer generates forward samples and Scrambler generated backward trajectories from goal state
adversarial to the explorer) and our ’hindsight’ setup helps convert this exploration method into a
bi-directional learning strategy by potentially developing intrinsic motivation to bind transitions from
both ends.

Explorer (D.1): This module represents the traditional RL agent component of this algorithm solving
task τ∗. We sample (s∗0, g

∗) ∼ τ∗ (with intermediate task redistribution explained later)and the agent
starts from state s∗0 and explores (ϵ-greedy) the environment with goal-conditioning for g∗.

Scrambler (D.1): We use the simulator to obtain empirical samples for τ inv from τ∗ by the following:

(s∗0, g
∗) ∼ τ∗, and (g∗, s0) ≡ (sinv0 , ginv), where (sinv0 , ginv) ∼ τ inv

At the end of every episode, we initiate a new agent from the goal state g∗from(s∗0, g
∗) ∼ τ∗

equivalently, start state sinv0 from(sinv0 , ginv) ∼ τ inv (with intermediate task redistribution) and run
the agent to collect samples for this task with goal-conditioning for ginv .

Resolver (D.1): Although adding a scrambler module ensures collection of samples in the region
closer to the goal state for the training phase, it generates samples for the backward task (τ inv).
Although the states and goals can be reversed to obtain samples that are inverted from the inverted
task to simulate the forward task, the actions aren’t directly reversible and would require domain
knowledge for the same. To tackle this, we start another set of agents from every scrambler trajectory
end states and run them for the original task τ∗ (with intermediate task redistribution) from here with
g∗ goal-conditioning to ensure samples for τ∗ closer to the goal state.

Intermediate Task Modification (D.1): We consider all the terminal states of explorer and scrambler
trajectories (hindsight and foresight goals) as candidates C, we compute importance weights for these
candidates and sample them as surrogate goals for the corresponding task τ . This could also be
viewed as defining new tasks modified from the previous ones.

3 Experiments

We compare our method (SRE)1 with modifications E.1 of other work adapted to our bi-directional
setting, namely HER (only forward conditioning), RE (Forward conditioning with samples from start
and near goal state), SRE_NC(SRE but no candidate goals), SRE_NITR(SRE but random sampling
from candidates C).

We chose lesser episodes and episode length compared to typical RL experiments to ensure we notice
difference in performance. We made sure the total number of updates in the policy and the replay
buffer size remains the same for all models. We tested the algorithms on NChain(N=10 & 15) and
Grid world (N=3,5,10 & 15) environments E.2.

3

(a) 3x3 Gridworld (b) 5x5 Gridworld

(c) 10x10 Gridworld (d) 15x15 Gridworld

Figure 3: Gridworld experiments: Fewer-task agents (such as HER (1 task), RE (1 task), SRE_NC (2
task) perform better in smaller environments, but as the complexity of the environment increases,
agents with more tasks (such as SRE_NC and SRE) perform relatively better.

4 Observations & Conclusion:

In addition to our observations about the agents in the environments E.4, we study the effects of
goal-conditioning & task-defining on these state space search environments. All agents learn to
solve both the NChain environments well 2 but SRE_NITR agent did get unstable in the smaller
environment. This suggests that introducing multiple tasks/goal-conditioning for state space
search may lead to an overall increase in the number of meaningful samples, but may also pose
the danger of sudden instability or may deter the convergence of the Q-Function.

With our experiment parameters on the Gridworld 3, SRE_NC, which is a purely bi-directional agent
with two tasks (τ∗ and τ inv) and no other intermediate tasks, performs better than HER. This suggests
that learning multiple tasks/goals with the same policy network can potentially help solve the
forward task as well.

If we define agent ‘complexity’ to be proportional to the number of tasks (for instance, τ∗, τ inv,
and so on), that the agent learns in order to solve the environment. (HER and RE are one-task/low
‘complexity’ whereas SRE_NC,SRE_NITR and SRE learn two or more tasks are high-‘complexity’).
We notice that Low ‘Complexity’ Agents: As the complexity of the state space increases, we find
that the performance of the low and intermediate-‘complexity’ (HER, RE, and SRE_NC) agents
deteriorates 3. Meanwhile, High ‘Complexity’ Agents: Interestingly, the trend mentioned above is
not observed in high ‘complexity’ (SRE_NITR and SRE) agents. The performance of these agents is
observed to increase as a function of the size of the state space, relative to the other lower ‘complexity’
agents 3. This presents a strong correlation between agent ’complexity’(number of tasks being
learnt through goal-conditioning) and complexity of the state space search problem while having
the experiment parameters like exploration and episode length fixed.

We believe that this work offers promising directions for further research in Bi-directional RL as well
as goal-conditioning, particularly in exploiting state space related information (such as goal state
knowledge) that the agent observes during its interaction with the environment.

4

References
[1] F. Agostinelli, S. McAleer, A. Shmakov, and P. Baldi. Solving the rubik’s cube with deep

reinforcement learning and search. Nature Machine Intelligence, 1(8):356–363, Aug 2019.
ISSN 2522-5839. doi: 10.1038/s42256-019-0070-z. URL https://doi.org/10.1038/
s42256-019-0070-z.

[2] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
P. Abbeel, and W. Zaremba. Hindsight experience replay. CoRR, abs/1707.01495, 2017. URL
http://arxiv.org/abs/1707.01495.

[3] M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A. Petron,
M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng, and
W. Zaremba. Learning dexterous in-hand manipulation, 2018. URL https://arxiv.org/
abs/1808.00177.

[4] K. Asadi, D. Misra, and M. L. Littman. Lipschitz continuity in model-based reinforcement
learning, 2018.

[5] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison, D. Farhi, Q. Fis-
cher, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J. Pachocki, M. Petrov, H. P.
de Oliveira Pinto, J. Raiman, T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever,
J. Tang, F. Wolski, and S. Zhang. Dota 2 with large scale deep reinforcement learning. CoRR,
abs/1912.06680, 2019. URL http://arxiv.org/abs/1912.06680.

[6] A. D. Edwards, L. Downs, and J. C. Davidson. Forward-backward reinforcement learning,
2018.

[7] B. Eysenbach, R. Salakhutdinov, and S. Levine. C-learning: Learning to achieve goals via
recursive classification, 2021.

[8] C. Florensa, D. Held, M. Wulfmeier, and P. Abbeel. Reverse curriculum generation for
reinforcement learning. CoRR, abs/1707.05300, 2017. URL http://arxiv.org/abs/1707.
05300.

[9] C. Florensa, D. Held, X. Geng, and P. Abbeel. Automatic goal generation for reinforcement
learning agents, 2018.

[10] C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel. Reverse curriculum generation
for reinforcement learning, 2018.

[11] I. J. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, Cambridge, MA,
USA, 2016. http://www.deeplearningbook.org.

[12] A. Goyal, P. Brakel, W. Fedus, S. Singhal, T. Lillicrap, S. Levine, H. Larochelle, and Y. Bengio.
Recall traces: Backtracking models for efficient reinforcement learning, 2019.

[13] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. Continuous deep q-learning with model-based
acceleration, 2016.

[14] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor, 2018.

[15] T. Haarnoja, A. Zhou, S. Ha, J. Tan, G. Tucker, and S. Levine. Learning to walk via deep
reinforcement learning. CoRR, abs/1812.11103, 2018. URL http://arxiv.org/abs/1812.
11103.

[16] Z.-W. Hong, T. Chen, Y.-C. Lin, J. Pajarinen, and P. Agrawal. Topological experience replay,
2022.

[17] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine, and
K. Hausman. Mt-opt: Continuous multi-task robotic reinforcement learning at scale. CoRR,
abs/2104.08212, 2021. URL https://arxiv.org/abs/2104.08212.

5

https://doi.org/10.1038/s42256-019-0070-z
https://doi.org/10.1038/s42256-019-0070-z
http://arxiv.org/abs/1707.01495
https://arxiv.org/abs/1808.00177
https://arxiv.org/abs/1808.00177
http://arxiv.org/abs/1912.06680
http://arxiv.org/abs/1707.05300
http://arxiv.org/abs/1707.05300
http://www.deeplearningbook.org
http://arxiv.org/abs/1812.11103
http://arxiv.org/abs/1812.11103
https://arxiv.org/abs/2104.08212

[18] J. Kim, D. Cho, and H. J. Kim. Demonstration-free autonomous reinforcement learning via
implicit and bidirectional curriculum, 2023.

[19] H. Lai, J. Shen, W. Zhang, and Y. Yu. Bidirectional model-based policy optimization. In
H. D. III and A. Singh, editors, Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages 5618–5627. PMLR,
13–18 Jul 2020. URL https://proceedings.mlr.press/v119/lai20b.html.

[20] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning, 2019.

[21] M. Liu, M. Zhu, and W. Zhang. Goal-conditioned reinforcement learning: Problems and
solutions, 2022.

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning, 2013. URL https://arxiv.org/abs/1312.
5602.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. A.
Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nature, 518:529–533, 2015.

[24] A. W. Moore and C. G. Atkeson. Prioritized sweeping: Reinforcement learning with less data
and less time. Mach. Learn., 13(1):103–130, oct 1993. ISSN 0885-6125. doi: 10.1023/A:
1022635613229. URL https://doi.org/10.1023/A:1022635613229.

[25] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar. Deep dynamics models for learning
dexterous manipulation. CoRR, abs/1909.11652, 2019. URL http://arxiv.org/abs/1909.
11652.

[26] Z. Ren, K. Dong, Y. Zhou, Q. Liu, and J. Peng. Exploration via hindsight goal generation, 2019.

[27] T. Schaul, D. Horgan, K. Gregor, and D. Silver. Universal value function approximators. 07
2015.

[28] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay, 2016.

[29] A. Sharma, A. Gupta, S. Levine, K. Hausman, and C. Finn. Autonomous reinforcement learning
via subgoal curricula, 2021.

[30] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis. Mastering the game of go with deep neural networks and tree search. Na-
ture, 529(7587):484–489, Jan 2016. ISSN 1476-4687. doi: 10.1038/nature16961. URL
https://doi.org/10.1038/nature16961.

[31] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, T. P. Lillicrap, K. Simonyan, and D. Hassabis. Mastering chess and
shogi by self-play with a general reinforcement learning algorithm. CoRR, abs/1712.01815,
2017. URL http://arxiv.org/abs/1712.01815.

[32] S. L. S. L. Soroush Nasiriany, Vitchyr Pong. Planning with goal-conditioned policies. 2019.

[33] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[34] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

[35] T. Zhang, B. Eysenbach, R. Salakhutdinov, S. Levine, and J. E. Gonzalez. C-planning: An
automatic curriculum for learning goal-reaching tasks, 2021.

6

https://proceedings.mlr.press/v119/lai20b.html
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://doi.org/10.1023/A:1022635613229
http://arxiv.org/abs/1909.11652
http://arxiv.org/abs/1909.11652
https://doi.org/10.1038/nature16961
http://arxiv.org/abs/1712.01815

Figure 4: A visual depiction of (a) Hindsight Experience Replay trajectories (b) Bi-directional sample
collection & (c) ’Scrambler-Resolver-Explorer’ sample collection strategy with internal motivations.
(Hindsight and Foresight goals are shown using light green and purple cells respectively)

Appendix

A Motivation

The combination of Reinforcement Learning Sutton and Barto [33] with the strength of highly expres-
sive function approximation offered by Deep Learning [11] has achieved multiple breakthroughs in a
wide range of control tasks such as in-hand robotic manipulation [[3],[25]], semantic object picking
[17] and walk gait generation [15] as well as long-range sequential decision-making tasks such as
the classic game of Go [30], Chess [31], Dota 2 [5], Atari games [22] and many others. However,
these successes have depended on hundreds of millions of samples and data points. Despite Deep
Reinforcement Learning having huge potential for solving many real-world practical problems that
are modelled as an MDP, the problem of sample efficiency is a big hurdle for Deep-RL researchers.

An RL agent learns how to solve a task based on the reward signals it obtains, and this varies for
each task it tries to learn. Unfortunately, most real-world problems that can be mathematically
modeled have very sparse extrinsic rewards. This only reduces the fraction of useful samples in
all the experience data that is collected by the agent, for it to learn meaningful policies from. As a
motivating example, let us consider the task of solving a rubik’s cube as a state space search problem
[1]. Rubik’s cube is a 3d puzzle with a total of over 4.3× 1019 possible states and 18 actions from
each state that connects adjacent states. Despite having over 43 quintillion states, there’s just one
state that is considered solved, and only rewarding to reach that state truly defines the problem of
solving the rubik’s cube. It was only through rigorous search (with some state space alteration that
was hand-crafted for this specific problem) that we were able to find that the shortest path is atmost
20 moves from any state to the goal/solved state.

One way to tackle this problem of sample efficiency is by careful introduction of implicit rewards
and slight modifications that does not alter the original goal motive of the MDP formulation of the
problem that is being solved. HER (Hindsight Experience Replay) [2] was a breakthrough in this
context where it was able to slight modify the policy function used to incorporate, not just the useful
samples but also the bad ones, for the agent to learn from. Specifically for the use cases where
the reward is sparse and binary (similar to the rubik’s cube case and most other state space search
problems), this algorithm learns how to achieve alternative goals, which are essentially terminal states
of failure trajectories. For their experiments, it was inferred that the agent performs better (faster)
with learning multiple simultaneous tasks rather than just one. In our work, we extend this fact by
using the agent to produce more simultaneous tasks by exploring the environment and exploiting
the ability to sample goal states of the original task, and learn from them in parallel. Our main
contributions in this paper include:

• A new Bi-directional Goal-conditioning (Binding Hindsight and the backward counter-part
’Foresight’) formulation that defines a new reverse task (τ inv) obtained from the original
state space search task (τ∗).

• A novel multi-task learning and sample generation strategy called ’Scrambler-Resolver-
Explorer’ (SRE) and its incorporation with the famous DQN algorithm.

7

A.1 An Intuitive Illustration

Figure 4 shows an example of our exploration method for collecting samples and goals in a 10 x 10
Gridworld for easy visualisation. The first figure (from the left) shows some trajectories obtained
using the classical ’Hindsight Experience Replay’ (HER) method with the task (we call τ∗) of
reaching the goal state of the environment. Here, the final goal of every unsuccessful trajectory is
used to relabel the whole trajectory as the desired state (Hindsight Relabelling) and the agent is
trained in a goal-conditioned manner. We also add these states to our candidates list (explained later).
Despite learning from samples well, which otherwise wouldn’t have been as fruitful, the algorithm
still lacks an element that will help the agent push toward the goal more explicitly.

As part of our bi-directional goal-conditioning method, we add another spawn of the agent from the
goal state and the task (we call is τ inv) is to reach the start state. Similar to the forward trajectories
from HER, we take the end state of failed trajectories and add them to the candidate list as well as
use them for Foresight Relabelling (Similar to Hindsight) and train the agent for this task. Here, we
also define intermediate tasks similar to [26]. We take these intermediate candidates and sample them
based on the ability of the agent to reach them, and reach the goal state of the original task from them
(Intermediate Task Modification) and set them as goal states for a temporary task.

The intention to use an agent near the goal states is to use collect samples closer to the goal state,
which might help in propagation of rewards through other regions better. But running the scrambler
collects samples for τ inv and not τ∗. To fix this, we start a third set of spawns from the end states
of scrambler trajectories solving the original task (Trying to end in the goal state from τ∗). Now
with all these samples generated for different tasks (τ∗, τ inv and intermediate tasks), we adopt the
Goal-Conditioned Setting and train a Universal Value Functional Approximator [27] to be able to
handle all these tasks. We believe this whole formulation of generating newer tasks, despite creating
the overall learning objective of the value function more complicated, will generate more samples
with rewards and thereby make the overall learning process efficient.

The visual depictions 4 above help draw a quick parallel with the classic graph traversal algorithm A∗.
A∗ is a heuristic search algorithm that explores a graph by intelligently selecting the most promising
paths based on an estimated cost-to-goal. While A* search relies on explicit knowledge about the
problem domain, RL is data-driven and can handle more complex and dynamic environments just
from the data collected by the agent. A traditional RL agent trying to collect experiences from
the start state can be thought of as a vague random exploration on the graph since the reward is
extremely sparse and it wouldn’t have reached any sense of direction yet. We believe that these
modules (Explorer, Scrambler and Resolver) that produce intermediate task re-definitions and using
them for overloading the policy function could build an abstract internal directional heuristic that
guides the agent not necessarily to a single goal, but also aids in learning paths with an overall sense
of direction. (As shown in figure 4(c)) similar to the heuristic formulation in A∗. This way, we
could possibly expect our Agent to develop internal abstract heuristic functions on any dynamic
environment without having the need to manually handcraft potential functions to perform search.

B Related Work

Bi-Directional Reinforcement Learning: Our exploration algorithm is constructed around the
concept of generating samples in a bi-directional manner (Start and Goal states). There has been
very few papers that look into this style of bi-directionality. Edwards et al. [6] generates training
samples similar to ours but they try to learn the backward dynamics with a function approximator
which will mathematically be dependent on the policy and might not be a good represent of the
reverse MDP. Moore and Atkeson [24] proposed to use model-based approaches for learning the
environment dynamics first and then generating the predecessors that would help the agent converge
faster. Recall Traces Goyal et al. [12] pushed this ahead by proposing a generative model to perform
backward trajectories from goal states. Florensa et al. [8] is the next closest work, where the agent is
spawned from states farther and farther away from the goal to ensure gradual learning. Most other
bi-directional work [[19]] focuses on bi-directionality within each trajectory obtained to update their
policies.

Goal-Conditioning (GCRL) & Goal-Generation: Kim et al. [18] uses a GCRL setting Liu et al.
[21] and generates bidirectional curriculum similar to our work, but for a non-episodic setting and the
reverse is usually within the trajectories. [26] uses hindsight trajectories to generate new sub-goals to

8

be used for intermediate task planning. [29] addresses the persistent goal-conditioned problem with a
similar forward and reverse passes but also generates intermediate curriculum. Soroush Nasiriany
[32] uses a VAE for sub-goal planning in the latent space. Zhang et al. [35] uses a classifier to
predict the future state density following a certain policy and does planning using this to define
intermediate/way-point states. We adopt a very simiilar approach to simplify the computation process
by utilizing the policy network to generate intermediate goals/tasks.

C Preliminaries

Reinforcement Learning: In the context of Reinforcement Learning Algorithms, the problem is
formalized as follows: an Agent, responsible for decision making, interacts with its Environment.
This interaction is captured by a Markov Decision Process (MDP), where discrete time steps (t =
0, 1, 2, ...) govern the agent’s and environment’s dynamics. At each time step t, the agent receives
a representation of the environment’s state (St ∈ S). Guided by a policy (Πt), the agent selects
an action (At ∈ A(s)). The agent obtains a reward (Rt) at each step, and the cumulative reward
(Return) from a state is denoted by G. The objective is to find the optimal policy π∗ that maximizes
the return (G) for the agent in each state. The agent’s goal can also be rephrased as maximising the
value function V Π(s), which corresponds to the total expected discounted (by a factor of γ) reward as

V Π(s) = Es0=s,at∼Π(.|st),st+1∼P (.|st,at)[Σ
∞
t=0γ

tR(st, at)]

Q-Learning: Q-Learning [34] is an off-policy reinforcement learning algorithm that determines the
optimal action for each state. Through interactions with the environment, the agent updates Q-Values.
Utilizing transition data, including the current state (St), current action (At), next state (St+1), and
reward (Rt), the Q-Value corresponding to state St and action At is iteratively updated using the
stochastic iterative update rule, which solves the Bellman equation:

Qnew(St, At) = Q(St, At) + α(Rt + γ.max
a

Q(St+1, a)−Q(St, At))

Here, α denotes the learning rate. The policy, given Q-Values can be easily represented as Π(s) =
argmaxa Q(s, a)

Deep Q-Network: For cases with large state spaces or high dimensionality of S function ap-
proximators can be used for representing the Q-function. In DQN [23] uses a deep neural net-
work is used as function approximator. The input to the neural network is the current state,
and the output is the corresponding Q-Values for each function. In DQNs, the update rule is
θt+1 ← θt + α[(Rt +maxA Q(St+1, A; θt)−Q(St, At; θt))∇θtQ(St, At; θt)] where the parame-
ters of the neural network are denoted by θ. To help with the convergence of the Q-Network used
here, the algorithm suggests using two networks (Main Network that is updated every iteration and
Target Network that gets updated with weights of the Main Network at a lower frequency). We use
this stability factor in the DQN to define our custom learning agent.

Goal-Conditioned RL: In our work, we’re mostly concerned about state space search problems. In
such problems, this paradigm expects the agent to learn to navigate from any state to another, rather
than sticking to a single or a small set of target states. In this setting, the reward function R is a
binary indicator function to determine if the desired state (goal) is reached:

Rtask(st, at, st + 1) = Rtask(st+1, sg) =

{
1 if st+1 == sg
0 otherwise

c

Universal Value Function Approximators (UVFA): Following the approach from [27], where
policies and value functions are trained on a goal g ∈ G and a state s ∈ S, instead of the typical
setting where it is just trained with states, Hindsight Experience Replay (HER) [2] proposes the
policy network to be a function of the state and the goal (ie. Π : S × G → A.) This way, the agent
is expected to learn how to navigate from the start state to the goal state, both present in the inputs
and the outputs can be used to find the best action. This reformulates the Q-function to depend on
the goal in addition to the state-action pair QΠ(st, at, g) = E[Rt|st, at, g]. This also allows us to
represent a single function approximator to represent a large number of value functions. Let a task
τ : S × G → [0, 1] be the joint distribution over task starting state s0 ∈ S and task goal g ∈ G and

9

different goals, we could still use the same function approximator V Π(st, g) for various tasks by
defining

V Π(τ∗) := E(s0,g)∼τ∗ [V Π(so, g)]

As part of our work, we wish to extend this by generating more pseudo-goals that are close to the
goal states of the original task. It would also help to have more samples in the vicinity of the goal
state as that will train the policy network to converge to true Q-values faster. To achieve both these
tasks, we define another agent that collects samples from the goal-state in reverse.

Surrogate Objective for Goal-conditioned RL: The Lipschitz continuity assumption (Asadi et al.
[4]) is as follows:

|V Π(τ ′)− V Π(τ)| ≤ L ·D(τ, τ ′)

where D(τ, τ
′
) = infµ∈Γ(τ,τ ′)(Eµ[d((s0, g), (s

′

0, g
′
))]) is the Wassersetein distance based on a

distance metric d(., .). Multiple research works (([9],[26],[18])) previously, have used this assumption
to modify the main objective of the RL problem into a lower-bound maximization objective:

max
Π

V Π(τ∗) := E(s0,g)∼τ [V
Π(s0, g)] ≥ max

τ,Π
[V Π(τ)− L ·D(τ, τ∗)]

This is typically solved using weighted bipartite matching. K particles are observed from τ∗ to be
an empirical approximate τ̂∗. Then, for each of these task instances, a trajectory is found from the
replay buffer that minimises the sum:

∑
(ŝi0,g

i)∈τ̂∗ w((ŝi0, ĝ
i), τ i) where

w((ŝi0, ĝ
i), τ i) := c||ϕ(ŝi0 − ϕ(si0)||2 +min

t

(
||ĝi − ϕ(sit)||2 − 1/L · V Π(si0, ϕ(s

i
t))

)
D Scrambler-Resolver-Explorer based DQN Agent (SRE-DQN)

Assumptions: In this paper, we propose a new exploration strategy called "Scrambler-Resolver-
Explorer" (SRE). We first make two practical implementation/experimentation assumptions that are
applicable to most simulation-related state space search problems. First, we assume the existence of
goal states and our access to them. In many reinforcement learning applications related to control or
path planning, goal states are defined and information about them is available. In cases where goal
states are not explicitly defined, the agent can initially use a typical exploration strategy and then
switch to the "SRE" exploration once it has discovered a subset of goal states.

Second, we assume that we can start a new environment from any state we provide, similar to the
approach in [8]. The only difference is that we do not require any information on states closer to
the goal state or a heuristic function in the state space. We simply expect to be able to spawn in
desired states, such as the goal state. We believe this assumption is reasonable for most simulated
environments.

Agent Description: In this particular study, since most well known state space search problems
are puzzles with discrete action space, the algorithm chosen for implementation is DQN, although
it is possible to combine this exploration algorithm with other off-policy algorithms such as NAC
[13], DDPG [20], SAC [14]. We choose DQN because the features added to enhance the stability of
convergence, such as experience replay and two policy networks with different update frequencies,
are well-suited for the various agent definitions that we require. With this combination, we propose a
novel DQN-like agent called SRE-DQN. Our algorithm has three sub agents that we call ’Scrambler’
(S), ’Resolver’(R) and ’Explorer’(E). These modules try to collect samples in a bi-directional manner
(Explorer generates forward samples and Scrambler generated backward trajectories from goal state
adversarial to the explorer) and our ’hindsight’ setup helps convert this exploration method into a
bi-directional learning strategy by potentially developing intrinsic motivation to bind transitions from
both ends.

D.1 Sample Generation

Explorer: This module represents the traditional RL agent component of this algorithm solving task
τ∗. We sample (s0, g

∗) ∼ τ∗ (with intermediate task redistribution explained later) agent starts from
random a state sampled from the set of start states and tries out actions with an ϵ-greedy fashion, with
the hindsight feature on. This way, it can be explained that the essence of this module is to reach the

10

Figure 5: DQN: Scrambler-Resolver-Explorer Agent Architecture. Scrambler Policy & Resolver
Policy are based on Target Q-Network, and Explorer Policy is based on Main Q-Network

Algorithm 1 SRE-DQN

Given:
• DQN-Agent with main Q-network A and target network A′ with the Universal Value

Function Approximation setting and Forward task τ∗ of the environment.
Initialize C for candidates (Hindsight and Foresight) goals.
Initialize A & A′ with same weights & replay buffer B
for Episode = 1 to M do

Explorer Module (I): Sample (s∗0, g
∗) from τ∗

Spawn agent at s∗0 and run till end of episode with policy Πex(.||g∗) to generate samples
Add Hindsight Relabelled (With final state of episode) Samples to B
If not done: add final state to Candidate List C with ITR(τ∗) and ITR(τ inv)
Explorer Module (II): Repeat Explorer Module (I) with (g ∼ C) with ITR(τ∗)
Scrambler Module (I): Sample (sinv0 , ginv) from τ inv

Spawn agent at sinv0 and run till end of episode with policy Πsc(.||ginv) to generate samples
Add Foresight Relabelled (With final state of episode) Samples to B
If not done: add final state to Candidate List C with ITR(τ∗) and ITR(τ inv)
Scrambler Module (II): Repeat Scrambler Module (I) with (g ∼ C) with ITR(τ inv)
Resolver Module: Spawn agent at st (Final state of scrambler trajectory and run till end of
episode with policy Πre(.||g∗) to generate samples

end for
for t = 1, N do

Sample minibatch MB from replay buffer B
Perform one step of optimization on A using A,A′ and minibatch MB

For every ’K’ steps, update A′ parameters with A
end for

final goal of the environment. When it acts greedily,it uses the Main Q-Network (A) of the SRE-DQN
agent. This policy is called Πex and can be formally defined as:

Πex:{(s0,g)∼τ∗}(si||g) =
{
argmaxa A(si||g), with probability (ϵ)
Random Action, with probability (1-ϵ)

Scrambler: In an ideal scenario, for training the agent for task τ∗, the knowledge of the MDP and its
reverse dynamics could be used to ensure that the scrambler reaches states least explored thereby
states that are most likely for the agent to have a bad value estimates. [10] tries to achieve this by
starting the agent from states closer to the goal state and eventually moving them farther and farther
away and measuring its ability to solve from a state from the value function. But since we do not
always have access to this from the simulator, in this paper, we try to condition the reverse problem of
the original MDP as a new task τ inv. We rather use the same simulator to obtain empirical samples
for τ inv from τ∗ by the following:

(s∗0, g
∗) ∼ τ∗, and (g∗, s0) ≡ (sinv0 , ginv), where (sinv0 , ginv) ∼ τ inv

11

Now that we have a new task for the same policy network, at the end of every episode, we initiate a
new agent from the goal state g∗from(s∗0, g

∗) ∼ τ∗ equivalently, start state s′0from(s′0, g
′) ∼ τ inv

(with intermediate task redistribution) and run the agent to collect samples for this task. We use the
Target network (A′) to generate the samples for the scrambler module as generating scrambles is a
very dynamic progress and making it dependent on the main Q-Network (A) might make the whole
learning process more unstable and affect the convergence of the policy network.

Πsc:{(s0,g)∼τ inv}(si||g) =
{
argmaxa A′(si||g), with probability (ϵ)
Random Action with probability (1− ϵ)

Resolver: The aim of adding a scrambler module is to ensure we collect enough samples in the
region closer to the goal state for the training phase, but the above formulation generates samples
for the backward task (τ∗). Although the states and goals can be reversed to obtain samples that are
inverted from the inverted task to simulate the forward task, the actions aren’t directly reversible. To
explain this better, let us say that the sample from τ inv is (s1, a, s2), to make this useful for the agent
learning to solve task τ∗, we would want (s2, a′, s1). To enable this task and the module itself to
work, we require revAction(), which is hard to estimate without domain knowledge about the MDP.
To overcome this requirement, we start another set of agents from every scrambler trajectory (sctraj)
end states and run them for the original task τ∗ (with intermediate task redistribution) from here.

Πre:{(s0,g)|(s0)∼sctrajand(_,g)∼τ∗}(si||g) =
{
argmaxa A′(si||g), with probability (ϵ)
Random Action with probability (1− ϵ)

Intermediate Task Modification: Revisiting the construction of intermediate task distribution from
Ren et al. [26], the first step is to obtain K trajectories from experience replay B that are most similar
to that of the original task τ∗. The expression below is the original objective re-written for the case
where states and goals are in the same space (for state space search problems):

ΣK
i=1

(
c||ŝi0 − si0||+min

t

(
||ĝi − sit||2 − 1/L · V Π(si0, s

i
t)
))

where, (ŝ0i, ĝi) ∼ τ∗ and {(sit)}Tt=1 ∼ B. Then, the surrogate goals for the intermediate task is
chosen from argminsit

(
||ĝi − sit||2 − 1/L · V Π(si0, s

i
t)
)
. In abstract terms, we could see that this

procedure helps pick, first the trajectory that is closest to the original task τ∗ and then the next steps
finds the state in these trajectories that is closest to represent the goal from τ∗. We adapt a similar
idea but since the whole trajectory of the scrambler that is generated for the task τ inv cannot be
a good representative of the task, yet we want to utilize the scrambler trajectories. To make this
work, we adopt the practical implementation idea from Zhang et al. [35]. In this work [7], a classifier
is learnt for predicting whether a state comes from a future state density following a policy or a
marginal state, and then use this to classify way-points to use as surrogate goals. We stick to the
regular distance metric similar to Ren et al. [26]. we consider all the terminal states of explorer and
scrambler trajectories (hindsight and foresight goals) as candidates, we compute important weights
for these candidates and sample them as surrogate goals for the corresponding task. Formalising this,
let the task be τ (Could be τ∗ or τ inv) and the set of candidates be C. Let the sample from the task
distribution be

(s0, g) ∼ τ Then, importance(c ∼ C) ∝ (d(s0, c) ·max
a

Q(c, a, g))/(d(c, g) ·max
a

Q(s0, a, c))

Where d(., .) is some distance metric and maxa Q(s1, a, s2) represents the ability of the agent to go
from state s1 to s2 in our reward setting.

E Experiments

E.1 Baselines

One of the main strengths of our method is how it can be viewed as an exploration strategy for sample
collection that can be added to most off-policy algorithms. During training, Experience Replay-based
methods for sample efficiency, such as Prioritized Experience Replay [28], Topological Experience
Replay [16], or any other methods, can be employed on the samples collected by the agents to train
efficiently.

12

(a) N-Chain (b) 10Chain Results (c) 15Chain Results

Figure 6: NChain experiments: Performances of all variants of agents on environments with increasing
state space size.

In this section, we focus on comparing the SRE-DQN (or DQN-SRE interchangably) with few
relevant and similar methods derived to our case to study the impact of multi-directional goal
conditioning and its effects on increasing state space size and convergence of the Q-function.

HER-DQN: uses DQN with hindsight experience replay relabelling. This will be a true baseline
since this agent is only goal-conditioned in one direction (forward) and only collects samples from
the start state (agent is not given information about the goal state).

RE-DQN: which uses goal conditioning in the forward direction but similar to Florensa et al. [10]
uses a random action agent to scramble from goal state and a resolver module starts from these
scrambled states to obtain task τ∗ samples making sure the samples obtained are of a similar spread
(near start and goal state). This helps us understand the impact of uni-directional (forward) goal
conditioning compared to multi-directional).

SRE_NC-DQN: uses bi-directional conditioning similar to SRE-DQN but does not use any candidates
in between. This essentially forces the agent to solely learn only two tasks (namely forward τ∗

and backward τ inv) and reduce the burden of overloading multiple policy functions in one UVFA
function.

SRE-NITR: is an SRE agent without ’Iterative Task Redistribution’. Here, we ignore the sampling
method proposed (similar to way-point sampling from Zhang et al. [35]) to sample from candidate
goals in the state space. We still pick candidates in uniform, ensuring there are multiple modified
tasks along with τ∗ and τ inv for the agent to learn from.

E.2 Environments

We conducted our experiments on two classic state space search environments by increasing the size
and goal-conditioning tasks. namely NChain 6a (10Chain and 15Chain) and Simple Gridworld
(3x3, 5x5, 10x10 and 15x15). In the NChain problem , an agent moves along a chain of N states, with
the goal of maximizing its cumulative reward. The agent can take two actions at each state: move
forward to the next state, or jump back to an earlier state and each move has a probabilistic failure
value = 0.2. The only positive reward in NChain emits at the rightmost terminal state (i.e., node N).
We also used a simple Gridworld environment where the agent starts from the left bottom end and the
goal state is top right. The agent is allowed to take 4 actions, one in any direction with probability of
slip = 0.1 in any other direction.

E.3 Setting

Since these search space problems are indeed simple environments for Deep RL agents, we choose
to make the exploration and sample collection very strict (by reducing the number of episodes and
number of steps in an episode lesser than typical RL experiments). To determine this experiment
setting, we start with experimenting on the NChain environment (which is a flattened out version of
the Gridworld) since it is simpler to learn, and borrowed the same experiment setting to the Gridworld
runs.

E.4 Observations

NChain: All agents learn to solve both the NChain environments well. However, the SRE_NITR
agent, despite learning well for larger environments, did get unstable in the smaller environment. This

13

(a) 3x3 Gridworld (b) 5x5 Gridworld

(c) 10x10 Gridworld (d) 15x15 Gridworld

Figure 7: Gridworld experiments: Fewer-task agents (such as HER (1 task), RE (1 task), SRE_NC (2
task) perform better in smaller environments, but as the complexity of the environment increases,
agents with more tasks (such as SRE_NC and SRE) perform relatively better.

suggests that introducing multiple intermediate tasks may lead to an overall increase in the number of
meaningful samples, but may also pose the danger of sudden instability or may deter the convergence
of the Q-Function.

Gridworld: With our experiment parameters, some agents’ performances deteriorate with more
episodes. This can be explained in light of the exploration factor (ϵ-greedy) decaying with the number
of episodes. Initially, these agents were able to reach the goal state due to random actions but were
not reaching the goal state later since they did not learn the optimal policy. HER performs worse
than the other agents in all variants of the Gridworld. On the other hand, SRE_NC, which is a purely
bi-directional agent with two tasks (τ∗ and τ inv) and no other intermediate tasks, performs well here.
This suggests that learning multiple tasks/goals with the same policy network can potentially help
solve the forward task as well.

Moreover, we observe a rather interesting trend in the relative performances of the different agents
within a given Gridworld environment as a function of environment complexity (size) and agent
‘complexity’. We can define agent ‘complexity’ to be proportional to the number of (sub)tasks
(for instance, τ∗, τ inv, and so on), that the agent learns in order to solve the environment. By this
definition, HER and RE agents are low ‘complexity’ agents as they learn only one task, whereas
SRE_NC, which learns two different tasks (τ∗ and τ inv), is an agent with intermediate ’complexity,’
and SRE_NITR and SRE, both of which learn more than two tasks (intermediate tasks), are high-
‘complexity’ agents. The correlation between environment and agent complexity and the performance
of the agents is discussed in further detail below.

• Low ‘Complexity’ Agents: As the complexity of the state space increases, we find that the
performance of the low and intermediate-‘complexity’ (HER, RE, and SRE_NC) agents
deteriorates.7.

• High ‘Complexity’ Agents: Interestingly, the trend mentioned above is not observed in high
‘complexity’ (SRE_NITR and SRE) agents. The performance of these agents is observed to
increase as a function of the size of the state space, relative to the other lower ‘complexity’
agents.

14

The poor performance of the low and intermediate ‘complexity’ agents in more complex environments
could be due to their capacity (which is a function of the agent ‘complexity’) for solving the
environment having been reached. Meanwhile, high ‘complexity’ agents naturally need more samples
to learn from. In our experiments, we had fixed the experiment parameters and only varied the state
space size, which explains why less ‘complex’ agents (fewer tasks) perform better in less ‘complex’
state spaces with the same number of episodes and experiment parameters, and more ‘complex’
agents’ relative performance gets better as we increase the state space complexity.

15

	Introduction
	Scrambler-Resolver-Explorer based DQN Agent
	Experiments
	Observations & Conclusion:
	Motivation
	An Intuitive Illustration

	Related Work
	Preliminaries
	Scrambler-Resolver-Explorer based DQN Agent (SRE-DQN)
	Sample Generation

	Experiments
	Baselines
	Environments
	Setting
	Observations

