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Abstract

We investigate the mechanistic sources of uncertainty in large language models
(LLMs), an area with important implications for language model reliability and
trustworthiness. To do so, we conduct a series of experiments designed to identify
whether the factuality of generated responses and a model’s uncertainty originate
in separate or shared circuits in the model architecture. We approach this question
by adapting the well-established mechanistic interpretability techniques of causal
tracing and two styles of zero-ablation to study the effect of different circuits on
LLM generations. Our experiments on eight different models and five datasets,
representing tasks predominantly requiring factual recall, provide strong evidence
that a model’s uncertainty is produced in the same parts of the network that are
responsible for the factuality of generated responses.

1 Introduction

Uncertainty quantification (UQ) in large language models (LLMs) for knowledge-intensive tasks
[22] remains a critical yet understudied area. Despite achieving human-level performance on vari-
ous benchmarks, LLMs often struggle with reliable uncertainty estimation, leading to issues such
as overconfidence and hallucination [28]. This limitation has strong implications for their trust-
worthiness and safety in high-stakes applications. While recent research has explored verbalized
uncertainty in LLMs [2, 14, 15], significant gaps remain in our understanding of and ability to
improve uncertainty quantification. In particular, existing UQ techniques typically provide little
insight into the factors responsible for an uncertainty estimate, limiting their usefulness both as
practical tools for improving trustworthiness and as methods for understanding uncertainty reasoning.
We propose leveraging mechanistic interpretability, an approach focused on characterizing models’
internal reasoning mechanisms, to advance our comprehension and enhancement of uncertainty
quantification in large language models.

To better understand how LLMs generate uncertainty estimates, we trained P(IK) (probability that I
know) probes that represent the model’s uncertainty based on multiple generated answers [14]. We
then used these probes’ predicted confidences as target metrics for causal tracing and zero-ablation,
two interpretability techniques which identify the components of a model relevant for a task by testing
the effect of an intervention made on activations in the model during evaluation. We compared the
mechanistic signatures of changes in the model’s accuracy and the probe’s output to evaluate whether
the same circuits were responsible for the answer and the predicted confidence.

In our empirical evaluation, we performed causal tracing and leave-one-out and COAR-style [23]
zero-ablation for a large range of model–dataset combinations. We found that model accuracy and
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Figure 1: Left: P(IK) probing. The LLM takes a question as input and returns an answer and
last-layer activations. Answers are checked for correctness. The probe learns to predict whether
the model’s answer is correct, based on the last-layer activations. Our analysis uses the probe as a
proxy for an LLM’s P(IK). We conduct path patching and zero ablation studies on the probe and
the corresponding LLM. Right: Locations used in interventions. Path-patching restorations are at
mlp.resid, mlp.out, layer.out, and embed.out. Zero-ablations are at attn.out and mlp.out.

probe behavior largely responded to the same interventions, indicating that circuits responsible for
the factuality of responses and for the model’s uncertainty are located in the same parts of the model.

For a group of knowledge-intensive question answering tasks [22], model accuracy and probe
confidence are (highly) positively related to one another. We conclude that, at least on recall tasks, a
language model’s representation of confidence may derive mainly from “uncertainty introspection”
on its question-answering process, rather than from separate reasoning specific to its uncertainty.

To summarize, the key contributions of this paper are as follows:

1. We use mechanistic interpretability and uncertainty quantification tools to investigate the mecha-
nistic sources of uncertainty in large language models. To do so, we use a logistic P(IK) probe
with causal tracing and zero-ablation to examine whether LLM uncertainty and the factuality of
answers generated by an LLM reside in shared or separate circuits within the model.

2. We perform an extensive empirical analysis on eight different models and five recall-intensive
datasets, and find evidence that for knowledge recall, uncertainty and the factuality of answers
generated by an LLM are handled by the same parts of the model.

2 Related Work

2.1 Uncertainty Quantification in Large Language Models

Uncertainty quantification in large language models is crucial for enhancing reliability, particularly in
high-stakes applications. While LLMs’ token probabilities are often well-calibrated for next-token
prediction, practical applications of UQ often require quantifications of the uncertainty in the semantic
content of the output [10]. Language models’ ability to quantify semantic uncertainty remains limited,
especially for open-ended tasks. Various techniques have been proposed to address this.

A well-studied set of techniques involves multiple sampling and clustering based on consistency. This
can be effective when clustering of responses is straightforward, but this is often not the case except
on simple tasks [15, 9, 16, 1]. Another approach, sometimes called verbalized uncertainty, is to ask
the model to state a verbal or quantitative confidence estimate [14]; the performance of such methods
is often inconsistent. On multiple-choice questions, the token probabilities may yield well-calibrated
uncertainty estimates [14]. Another option is to train a P(IK) probe, a binary classifier predicting
whether the model knows the answer. This approach is among the most effective in-distribution [20]
but struggles with generalization to out-of-distribution data [14, 20].

In this work, we focus on P(IK) probing, as it provides a potentially interpretable view into a model’s
self-assessed uncertainty by identifying a specific feature direction within the model. Beyond the
introduction of P(IK) probing itself [14], little research has been conducted on interpreting the
mechanisms behind uncertainty reasoning in LLMs. While most UQ techniques rely on eliciting
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Figure 2: Representative results of causal tracing, shown for Gemma 2 9B Instruct on three questions
in CounterFact. Only layer.out locations are shown (plus embed.out in the first row). Layer and
token position on vertical and horizontal axis respectively. The input embeddings for the starred
tokens are replaced with zeros in the corrupted and restored runs.

information about uncertainty through explicit or indirect methods, we still lack an understanding
of how this information is represented internally. Analyzing these mechanisms could improve UQ
techniques and provide insights into broader epistemic weaknesses in LLMs.

2.2 Applications for Interpretable Uncertainty Quantification

Reliable UQ could help to improve trustworthiness by allowing auditing in high-stakes applications
of LLMs, such as their use for medical and legal advice [10] and for constructing LLM-based agents
[27]. Interpretability could also help to ensure that UQ techniques remain reliable under distribution
shifts, and could contribute to detecting deception [11]. Finally, if limitations in UQ are related
to broader epistemic weaknesses in LLMs, interpretable UQ could shed light on problems such as
hallucination [29, 17] and could deepen our understanding of LLM epistemics in general, possibly
helping to address problems such as eliciting latent knowledge [6].

3 Background

Causal Tracing. Causal tracing is a causal intervention method that aims to trace and identify
important components in neural models for a given task [18, 26], which is a generalization of causal
mediation analysis [24]. In this work, we use causal tracing [18] to examine the importance and role
of individual circuits and components in LLMs. Specifically, given a specific input q, causal tracing
involves three runs: (1) a clean run, in which the original input q is given to the model, which is
used to obtain the hidden states of each layer; (2) a corrupted run, in which the input embeddings of
certain tokens are corrupted (here, replaced with zeros); and (3) a restored run, in which the input is
corrupted but the hidden states at specific locations ℓ in the model are restored using the hidden states
obtained from the clean run. By comparing the differences between the output of the clean, corrupted,
and restored runs, causal tracing allows the identification of important components in LLMs. That is,
if the restored run achieves a similar effect as the clean run, it is likely that the corresponding restored
component plays an important role in the model’s processing.

Zero-Ablation. Zero-ablation is a mechanistic intervention technique that takes advantage of a
transformer’s residual structure by treating attention or MLP layers as separable modules which read
from and write to the residual stream [8, 19]. A component ℓ (in this paper, an attention or MLP
layer) is “ablated” by replacing its output with zero. The drop in model performance on a given task
after an intervention removing a component ℓ provides a measure of the importance of ℓ for the task.

Leave-one-out and COAR interventions. Interpretability work using ablation commonly employs
leave-one-out style interventions, in which an intervention is applied to a single component at a
time. Since larger Transformer LMs are often insensitive to smaller interventions, leave-one-out

3



interventions may struggle to meaningfully affect the target metrics. COAR [23] is a recent approach
which addresses this by applying ablation interventions to random subsets of model components.
Ablations are performed for many dataset examples and subsets of components, and linear regression
is used to predict the target metrics from a vector of ablated components; the regression coefficients
reflect the predicted effect of ablating each component on the target metric. (See [23] for details.)

4 Uncertainty Introspection and the Shared Circuits Hypothesis

The aim of this paper is to make progress toward characterizing the mechanistic structures used for
UQ in language models. To this end, we propose a theoretical hypothesis (“shared circuits”) about
the locations of these structures, along with operationalizations which we test experimentally.

Shared Circuits Hypothesis. Uncertainty quantification in question-answering (QA) sys-
tems may be carried out in a variety of ways. We hypothesize that language models are capable
of expressing uncertainty using shared circuits that both solve the underlying question-
answering task and output uncertainty information. This contrasts with the possibility that
uncertainty quantification emerges in separate circuits, either to post-process messy un-
certainty signals from question-answering circuits or to do uncertainty calculations of their
own.

Language models are known to be capable of introspective behavior in some contexts [4]. The shared
circuits hypothesis, to the extent that it is true, suggests that uncertainty quantification is one such
context. We refer to this phenomenon as “uncertainty introspection”.

We use a P(IK) probing approach as in [14] in part because of the difficulty of reasoning about
uncertainty using token probabilities. Token probabilities for open-ended questions are a highly
imperfect proxy for a model’s confidence, because they conflate semantic uncertainty, or uncertainty
about content, with syntactic uncertainty, or uncertainty about form [15]. For details on models,
datasets, and probes, see Appendices C through E.

4.1 Experiment Design: Causal Tracing

On a given question qi in a dataset Q, for each causal tracing run (clean, corrupted, and restored)
we compute the model’s sample probability m(qi) for the correct first token of the answer, and the
probe’s confidence p(qi).1 We consider each question individually because this allows a particularly
fine-grained test for shared circuits—we ask here whether the same circuits are used for QA and
UQ on an in individual question, and in the next section whether this is true in aggregate for a task.
Locations ℓ where mrestored(ℓ) ≈ mclean correspond to parts of the model which are important for
solving the QA task; likewise, locations ℓ where prestored(ℓ) ≈ pclean correspond to parts of the model
which are important for the UQ task.23

For causal tracing, we operationalize the shared circuits hypothesis in the claim that mrestored can be
predicted from prestored by interpolating between the clean and corrupted values: e.g., if the model’s
correct-token probability on a restored run is halfway between the clean and corrupted probabilities,
then the probe’s confidence should be halfway between the clean and corrupted confidences.

Specifically, for each question qi ∈ Q, we consider the linear predictor m̂restored defined by
m̂restored(ℓ)−mcorrupted

mclean−mcorrupted
=

prestored(ℓ)−pcorrupted

pclean−pcorrupted
. That is: we predict that a restoration at a location ℓ will have the

same proportional effect on the model’s performance and the probe’s response, relative to the clean
condition where there is no intervention and the corrupted condition where no data on the subject is
available. We claim that this predictor explains most of the variance in mrestored (i.e., has a high R2).
As a (somewhat weak) formalization of this, we attempt to reject the null hypothesis H0 : R2 is no
greater than expected under random permutations of the set of locations ℓ.

1Correct-first-token probability is in this case a closely aligned proxy for correct-answer probability. To test
validity, we checked 100 examples by hand and found that 98% were graded correctly.

2Although note that the converse is not strictly true; see Appendix B for details.
3Here, P(corr)restored(ℓ) and P(IK)restored(ℓ) represent the correct token probability and p probe output for a

run with the hidden state restored at location ℓ in the model; notation is likewise for clean and corrupted runs.
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Figure 3: Results of COAR for Llama 3 8B Instruct on five different datasets. Circle, triangle, and
small X markers represent MLP ablations, attention ablations, and clean runs respectively. Warmer
colors represent earlier layers. See Appendices G and H for full zero-ablation and COAR results.

4.2 Experiment Design: Zero-Ablation

We also test the shared circuits hypothesis via zero-ablation on layers. Unlike for causal tracing, we
sample and evaluate multi-token answers. We define m(qi) as the probability of the model sampling a
correct answer when prompted on the question qi ∈ Q, and p(qi) as the probe output on that question.
Averaging over Q, we can compare changes in the model accuracy m and the average probe output p.

4.2.1 Leave-One-Out Ablation

Under the shared circuits hypothesis, the change in the probe output from ablation |pablated(ℓ) − pclean|
is large when the change in model accuracy |mablated(ℓ) −mclean| is large. Concretely, we claim that
the predictor m̂ defined by mclean − m̂ablated(ℓ) = |pablated(ℓ) − pclean| explains most of the variance in
mablated (has a high R2), and attempt to reject the null hypothesis H0 : R2 is no greater than expected
under random permutations of the layers ℓ. We consider absolute changes in the probe output only
because interventions which severely damage the model may increase the value of the probe output
(see Fig. 4.1, top), but generally do not improve the model’s correctness.

4.2.2 COAR

COAR constructs least-squares predictors for model accuracy and probe output based on vectors of
ablated components, in which the coefficient corresponding to a component ℓ represents the expected
effect of ablating ℓ. Under the shared circuits hypothesis, the predictors wm and wp for the model
accuracy and probe output should be similar. Concretely, we attempt to reject the null hypothesis H0 :
The correlation between wm and wp is no greater than expected under random permutations of the
layers ℓ. We see COAR as a useful complement to leave-one-out ablation because it addresses cases
where models are highly resilient to ablations, a common challenge for ablation on larger models.

5 Testing the Shared Circuits Hypothesis

5.1 Causal Tracing

We performed causal tracing with all eight models on a random sample of 100 questions from
CounterFact [18]. We considered only questions with mclean > 0.05 (since otherwise predicting
mrestored is trivial). We used the probe and few-shot prompt for TriviaQA. Across this sample, the
predictors m̂restored estimated mrestored well, with R2 > 0.6 in most cases. On each question qi, we
tested the null hypothesis by sampling 1000 permutations.4 In almost all cases (see Fig. 5), we reject
H0 with p < 0.05.

4Specifically, we shuffled the values of mrestored(ℓ) independently for the mlp.out, mlp.resid, and
layer.out/embed.out locations, to exclude the explanation that the predictor works well because the mlp.out
and mlp.resid states each carry less information than layer.out.
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Based on manual inspection (see graphs in the online supplement), we conclude that R2 < 1 both
due to small discrepancies between UQ and QA circuitry and due to nonlinearity in the UQ/QA
relationship. The model is typically more resilient than the probe: that is, interventions have a greater
effect on the probe than the model (creating the convex shape in Fig. 4, left). In some cases, when the
probe is confidently wrong (see Fig. 2, right), the probe may be following the path for the model’s
(incorrect) highest-probability token. As in [18], highly important locations generally fall into two
clusters: one in earlier layers at the token positions in the subject, and one at later layers at the last
token position. We note that uncertainty information and answer information are often transferred
to the last position by attention heads in different layers (Fig. 2.5 These small differences suggest
that our P(IK) probes are using the model’s question-answering circuitry directly, rather than in a
post-hoc or epiphenomenal way.

5.2 Zero-Ablation

Leave-One-Out Ablation. We performed 500 ablation trials each with eight models across five
question-answering datasets. Across this sample, the predictors m̂ablated generally estimated mablated
better than chance, with a median of R2 = 0.33. For each model–dataset combination, we tested
the null hypothesis (2) by sampling 10,000 permutations. As with the causal tracing analysis, we
shuffled attention and MLP layer interventions independently, to exclude the explanation that one
type of layer was more important than the other in a way not specific to the QA and UQ tasks. We
reject the null hypothesis with p < 0.05 in 36 out of 38 cases, and p < 0.0001 in 31 out of 38 cases.

In many cases, the model’s uncertainty representation plays particularly nicely with zero-ablation,
remaining calibrated on average even after an intervention: using the same statistical framework
as above, the very simple predictor m̂ablated = pablated does better than expected under random
permutations in 27 out of 38 cases (at p < 0.05).6

While other explanations may be possible, one interpretation of these results is that a given component
makes a nonzero contribution to the model’s uncertainty representation if and only if it can also
contribute information about the answer.

COAR. We performed 2000 COAR trials each with all models and four datasets.7 For each trial,
the probability of ablating any given component was set at α = 0.2. We reject the null hypothesis
with p < 0.05 in all but one case. Particularly strong correlations were present for the Gemma
models; this may be related to our choice of α and these models’ robustness to interventions in the
leave-one-out experiments.

6 Discussion and Conclusion

The results of the causal tracing and zero-ablation analyses presented in the previous section broadly
support the shared circuits hypothesis, implying that—across the setups we considered—the sets
of model components used for question-answering and uncertainty quantification were largely,
albeit not entirely, the same. This suggests that P(IK) probing may be a viable way of eliciting
introspective, interpretable uncertainty estimates. Based on these findings, further research could
analyze the mechanisms responsible for P(IK) estimates in greater detail, or apply P(IK) probing as
an interpretability tool to study phenomena such as hallucination in LLMs. Similar analyses of other
methods of uncertainty quantification, such as verbalized uncertainty, may provide insight further
insight into the role of uncertainty introspection in uncertainty quantification. More generally, we
see interpretable uncertainty quantification as a potentially useful approach for both understanding
and improving LLM epistemics, in order to improve trustworthiness and reliability and allow for
better-informed technical AI governance.

5Other discrepancies occasionally occur: in particular, when an answer token (often a proper noun) is present
in the question, restorations at the corresponding token position show suppressed model accuracy but normal
probe performance. One possible explanation is that the model may be using circuitry similar to the “negative
name movers” in [25] to avoid spuriously copying input tokens to the output.

6If R2 is the fraction of the variance in mablated explained by m̂ablated = pablated, we reject the null hypothesis
R2 is no greater than expected under random permutations of the set of layers at p < 0.05 in 27/38 cases.

7We excluded MMLU because of computational resource constraints.
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A Reproducibility

Code to reproduce our results can be found at
https://github.com/crtep/sciurus

B Limitations

Causal tracing and zero-ablation, like many interpretability techniques, yield results which can
imperfectly reflect the contributions of model internals to a task. In particular:

Zero-ablation. We chose to ablate activations in the model with zeros. While the zero vector is far
from an arbitrary choice, especially given its relevance to dropout and the additive residual structure
of a transformer, this approach may lack specificity. For example, zero-ablating an early or late MLP
layer sometimes severely damages a model’s ability to produce coherent language in general, so
accuracies from ablation do not necessarily correspond to the flow of question-specific information
through the model. Approaches such as causal scrubbing [5] avoid this limitation but are generally
more computationally expensive.

Causal tracing. The “path” through the model identified comprises, to a first approximation, the
set of points in the model at which all information relevant to the task is present. As such, when
information relevant to a question passes along multiple paths in parallel, it may be that no individual
path shows a substantial difference between the restored and baseline conditions. For example, in the
question in Fig. 2 (center), restoring the input embedding for any one token of “Google Street View”
without the others has little effect on the model.

C Models and Datasets

We studied the following eight models and five datasets:

Table 1: Models and datasets studied.

Model Parameters Layers
Llama 2 7B 7B 32
Llama 2 7B Chat 7B 32
Llama 2 13B 13B 40
Llama 2 13B Chat 13B 40
Llama 3 8B 8B 32
Llama 3 8B Instruct 8B 32
Gemma 2 2B Instruct 2B 26
Gemma 2 9B Instruct 9B 42

Dataset
TriviaQA [13]
WebQuestions [3]
MMLU [12]
ARC [7]
CounterFact [18]

All the datasets studied, with the partial exception of MMLU, are “recall-intensive” in that they
largely depend on recalling factual information learned during training. The datasets were chosen to
represent a range of recall-intensive tasks, across open-ended (TriviaQA, WebQuestions, CounterFact)
and multiple-choice (MMLU, ARC) formats and at varying levels of difficulty. These datasets also
represent a range of linguistic styles. (In particular, WebQuestions consists of questions derived from
web searches, which may be imprecisely posed and may exhibit informal orthography and grammar;
“messy” questions of this kind reflect an important use case of LLM question-answering.)

ARC includes both the ARC-Easy and ARC-Challenge splits. ARC questions are drawn from
standardized tests; the datasets listed as ARC (Hg) and ARC (Other) correspond, respectively, to the
“Mercury” test and to a combination of the other 20 tests.

We used the CounterFact dataset exclusively for causal tracing. We reformulated CounterFact prompts
as questions to match the format of our other datasets. Because we used the TriviaQA probe for the
causal tracing experiment with CounterFact, we also did few-shot prompting with the prompt from
TriviaQA.
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We did some preliminary ablation experiments on other task types, including simple synthetic math
tasks and the LAMBADA [21] comprehension task. Results for LAMBADA were generally similar
to those for the recall tasks, although in some cases we had difficulty training probes to high accuracy.
Early results for the synthetic math tasks may show some evidence of separate circuits (although
further analysis is needed).

C.1 Licenses for Models and Datasets

Models:

• Llama 2 is licensed under the Llama 2 Community License Agreement, available at
https://ai.meta.com/llama/license/.

• Llama 3 is licensed under the Meta Llama 3 License, available at
https://llama.meta.com/llama3/license/.

• Gemma 2 is licensed under the Gemma Terms of Use, available at
https://ai.google.dev/gemma/terms.

Datasets:

• TriviaQA is licensed under the Apache License 2.0, available at
https://www.apache.org/licenses/LICENSE-2.0.

• WebQuestions is licensed under the Creative Commons Attribution 4.0 International License,
available at https://creativecommons.org/licenses/by/4.0/.

• MMLU (Massive Multitask Language Understanding) is licensed under the MIT License,
available at https://opensource.org/licenses/MIT.

• ARC (AI2 Reasoning Challenge) is licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License, available at https://creativecommons.org/licenses/by-
sa/4.0/.

• CounterFact is licensed under the MIT License, available at https://opensource.org/licenses/MIT.

D Probe Design

We construct a dataset on which to train the P(IK) probe according to the following steps.

1. Perform 32 forward passes for each question on the question-answering task. We used few-shot
prompting with 5 examples to ensure that the model answered in the right format.

2. Check whether a model’s answers are correct. Specifically, we check whether a model’s answer
contains any correct answer as a substring, ignoring case.

3. For each question in the dataset, save the number of correct and incorrect answers (implying a
“true probability” of the model answering correctly).

4. Also, for each question, save the output of the model’s last layer (before the unembedding). This
is a vector in Rdmodel .

The P(IK) probe is a logistic classifier p : Rdmodel → (0, 1) which takes these last layer activations as
input and returns the proportion of correct answers. For example, if the model answers a question
correctly 47% of the time, the probe should output 0.47 when given the last-layer activations at the
last token of that question. We trained with binary cross-entropy loss, using dropout and a triangular
learning rate schedule, and used a low learning rate (η = 3× 10−6) as in [14].

Our probes generally showed good calibration (with most expected calibration errors < 5%) and
moderate sharpness (with most balanced accuracies between 60% and 75%). Probes for the ARC
tasks were especially likely to train poorly, but probe accuracy and calibration otherwise did not show
constistent trends across models and datasets. The accuracy of the unablated models varied from
29% to 91%, with the worst performance on WebQuestions and MMLU and the best performance on
ARC. (See Appendix 2 for a table of model and probe performance).
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E Model and Probe Performance

Model Dataset Model accuracy Probe accuracy (bal.) ECE

Llama 2 7B

TriviaQA 0.6006 0.7787 0.0342
WebQuestions 0.4016 0.6674 0.0320

MMLU 0.3984 0.6571 0.0265
ARC (Mercury) 0.5845 0.6731 0.0363

ARC (Other) 0.6260 0.7011 0.0327

Llama 2 7B Chat

TriviaQA 0.5850 0.7819 0.0315
WebQuestions 0.4343 0.7051 0.0213

MMLU 0.4688 0.6701 0.0272
ARC (Mercury) 0.6973 0.6375 0.0294

ARC (Other) 0.7632 0.6719 0.0395

Llama 3 8B

TriviaQA 0.6582 0.7026 0.0366
WebQuestions 0.4158 0.7034 0.0405

MMLU 0.6055 0.7455 0.0171
ARC (Mercury) 0.8496 0.6035 0.0459

ARC (Other) 0.8423 0.5991 0.0313

Llama 3 8B Instruct

TriviaQA 0.6509 0.7037 0.0397
WebQuestions 0.4460 0.7213 0.0530

MMLU 0.6445 0.7201 0.0300
ARC (Mercury) 0.8779 0.6014 0.0495

ARC (Other) 0.8569 0.6658 0.0362

Llama 2 13B

TriviaQA 0.6680 0.6938 0.0324
WebQuestions 0.4346 0.6948 0.0403

MMLU 0.4958 0.7252 0.0284
ARC (Mercury) 0.7290 0.5010 0.1029

ARC (Other) 0.7764 0.6691 0.0239

Llama 2 13B Chat

TriviaQA 0.6377 0.7020 0.0414
WebQuestions 0.4468 0.7202 0.0306

MMLU 0.4902 0.6913 0.0208
ARC (Mercury) 0.7134 0.6395 0.0475

ARC (Other) 0.7637 0.5973 0.0192

Gemma 2 2B Instruct

TriviaQA 0.4180 0.7221 0.0136
WebQuestions 0.2910 0.6501 0.0517

MMLU 0.4617 0.6803 0.0344
ARC (Mercury) 0.7876 0.6310 0.0228

ARC (Other) 0.7705 0.6051 0.0612

Gemma 2 9B Instruct
TriviaQA 0.6392 0.7374 0.0306

WebQuestions 0.3579 0.7264 0.0529
ARC (Other) 0.9126 0.5786 0.0354

Table 2: Model performance metrics
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F Additional Results for Causal Tracing
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Figure 4: Predicting the correct-token probability m given the probe output p, for Gemma 2 9B
Instruct (left) and Llama 2 7B (right). The black and red X (small, top-right and bottom-left) show
the clean and corrupted runs; all others show restored runs. Yellow points are later in the sequence.
The grey line shows the predictor m̂.

Llama 2
7B Base
Llama 2
7B Chat
Llama 3
8B Base
Llama 3
8B Inst.
Llama 2

13B Base
Llama 2

13B Chat
Gemma 2

2B Inst.

< −1 −0.5 0 0.5 1

R2

Gemma 2
9B Inst.

Goodness of fit for causal tracing predictor

Model p < 0.05 p ≥ 0.05

Llama 2 7B 55 0
Llama 2 7B Chat 51 0
Llama 3 8B 53 1
Llama 3 8B Instruct 51 2
Llama 2 13B 51 3
Llama 2 13B Chat 45 4
Gemma 2 2B Instruct 47 1
Gemma 2 9B Instruct 50 0

Figure 5: Top. Values of R2 for the causal tracing predictor. “<” signifies cases where R2 < −1
(which is possible because the predictor is not a linear-regression line). Bottom. Number of
occurrences of p-values for causal tracing.
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G Full Results for Zero-Ablation
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Figure 6: Results of zero-ablation for eight models and five datasets. Circle, triangle, and X markers
represent MLP ablations, attention ablations, and clean runs respectively. Warmer colors represent
earlier layers. Error bars for individual points are omitted for legibility, but std. err. < 0.032 in all
cases (by the bounds on p and m).
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Figure 7: (continued) Results of zero-ablation for eight models and five datasets. Circle, triangle, and
X markers represent MLP ablations, attention ablations, and clean runs respectively. Warmer colors
represent earlier layers. Error bars for individual points are omitted for legibility, but std. err. < 0.032
in all cases (by the bounds on p and m).
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H Full Results for COAR
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Figure 8: COAR coefficients for zero-ablation for eight models and four datasets. Circle and triangle
markers represent MLP and attention ablations respectively. Warmer colors represent earlier layers.
Error bars for individual points are omitted for legibility. The two values for R2

COAR are the fraction
of variance in m and p explained by the COAR prediction from the set of ablations.
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Figure 9: (continued) COAR coefficients for zero-ablation for eight models and four datasets. Circle
and triangle markers represent MLP and attention ablations respectively. Warmer colors represent
earlier layers. Error bars for individual points are omitted for legibility. The two values for R2

COAR
are the fraction of variance in m and p explained by the COAR prediction from the set of ablations.
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I Computational Resources

This project has used approximately 1200 GPU-hours of computation time on an academic cluster,
mainly on RTX8000 GPUs with 48 GB of memory, including approximately 600 GPU-hours
for results used directly in this paper. Results for individual model/dataset combinations can be
reproduced independently; for example, the code to produce the TriviaQA / Llama 3 8B Instruct
results ran in approximately 20 GPU-hours.

J Ethics Statement

This paper intends to advance the areas of interpretability and uncertainty quantification for language
models, with the primary aim of making language models more reliable and more trustworthy.
We expect these research directions in general to reduce societal risks from machine learning (for
example, by allowing for warning signals in situations where a model might be lying or making
a dangerous mistake). Nevertheless, since reliability work also makes systems more useful, some
caution is warranted: for example, users might be tempted to deploy the resultant more-reliable
systems in higher-stakes contexts in which tail risks from failures are greater.

The humanoid and sciuroid robots in Fig. 1 were created using DALL-E 3.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This paper proposes methods for studying uncertainty quantification in lan-
guage models, and provides evidence for a “shared circuits” hypothesis across a range of
models and tasks; we do not claim to address other settings (e.g., larger models or non-recall-
based questions). Our introduction suggests some potential applications of our methods
(e.g., the study of hallucinations) which we do not claim to pursue these in this paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We note the limited range of our experimental settings. We also acknowledge
the major limitations of the mechanistic interpretability techniques we use (in particular,
their tendency to produce noisy results which can be difficult to formalize) in Appendix B,
and note that the hypotheses which we test formally are imperfect proxies for our shared
circuits hypothesis.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We do not present theoretical results.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We present novel results based largely on existing mechanistic interpretability
techniques, which we describe in sufficient detail to allow replication. We describe our
probing setup in detail in Appendix D. We also provide code for reproducing our work.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide code for reproducing our work.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the major details of our experimental setup in the body and
appendices, with full details provided in the code.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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We describe the statistical tests used for our main results and note the details of our permuta-
tion sampling setup.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, in Appendix I.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work uses commonly-used datasets intended for research and does not
involve human subjects or sensitive data. While this is largely a foundational paper, we
discuss some potential societal impacts and safety implications in Appendix J.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: While this is largely a foundational paper, we discuss some potential societal
impacts and safety implications in Appendix J.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not create or release data or models that have a high risk for misuse.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our use of libraries, data, and models is consistent with the relevant licenses
and terms of use. We provide explicit license information in the references section.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide documented code for reproducibility.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or human subjects.
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