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ABSTRACT

This paper introduces F5-TTS, a fully non-autoregressive text-to-speech system
based on flow matching with Diffusion Transformer (DiT). Without requiring
complex designs such as duration model, text encoder, and phoneme alignment,
the text input is simply padded with filler tokens to the same length as input
speech, and then the denoising is performed for speech generation, which was
originally proved feasible by E2 TTS. However, the original design of E2 TTS
makes it hard to follow due to its slow convergence and low robustness. To address
these issues, we first model the input with ConvNeXt to refine the text representa-
tion, making it easy to align with the speech. We further propose an inference-time
Sway Sampling strategy, which significantly improves our model’s performance
and efficiency. This sampling strategy for flow step can be easily applied to ex-
isting flow matching based models without retraining. Our design allows faster
training and achieves an inference RTF of 0.15, which is greatly improved com-
pared to state-of-the-art diffusion-based TTS models. Trained on a public 100K
hours multilingual dataset, our Fairytaler Fakes Fluent and Faithful speech with
Flow matching (F5-TTS) exhibits highly natural and expressive zero-shot ability,
seamless code-switching capability, and speed control efficiency. Demo samples
can be found at https://F5-TTS.github.io. We will release all code and
checkpoints to promote community development.

1 INTRODUCTION

Recent research in Text-to-Speech (TTS) has experienced great advancement (Shen et al., 2018; Li
et al., 2019; Ren et al., 2020; Kim et al., 2020; 2021; Popov et al., 2021; Wang et al., 2023b; Tan et al.,
2024). With a few seconds of audio prompt, current TTS models are able to synthesize speech for
any given text and mimic the speaker of audio prompt (Wang et al., 2023a; Zhang et al., 2023b). The
synthesized speech can achieve high fidelity and naturalness that they are almost indistinguishable
from human speech (Shen et al., 2023; Ju et al., 2024; Chen et al., 2024; Le et al., 2024).

While autoregressive (AR) based TTS models exhibit an intuitive way of consecutively predict-
ing the next token(s) and have achieved promising zero-shot TTS capability, the inherent limita-
tions of AR modeling require extra efforts addressing issues such as inference latency and exposure
bias (Song et al., 2024; Du et al., 2024a; Han et al., 2024; Xin et al., 2024; Peng et al., 2024).
Moreover, the quality of speech tokenizer is essential for AR models to achieve high-fidelity syn-
thesis (Zeghidour et al., 2021; Défossez et al., 2022; Wu et al., 2023; Yang et al., 2023; Zhang et al.,
2023a; Bai et al., 2024; Niu et al., 2024). Thus, there have been studies exploring direct modeling
in continuous space (Liu et al., 2024a; Li et al., 2024a; Meng et al., 2024) to enhance synthesized
speech quality recently.

Although AR models demonstrate impressive zero-shot performance as they perform implicit du-
ration modeling and can leverage diverse sampling strategies, non-autoregressive (NAR) models
benefit from fast inference through parallel processing, and effectively balance synthesis quality and
latency. Notably, diffusion models (Ho et al., 2020; Song et al., 2020) contribute most to the success
of current NAR speech models (Shen et al., 2023; Ju et al., 2024). In particular, Flow Matching with
Optimal Transport path (FM-OT) (Lipman et al., 2022) is widely used in recent research fields not
only text-to-speech (Le et al., 2024; Guo et al., 2024b; Mehta et al., 2024; Lee et al., 2024; Eskimez
et al., 2024) but also image generation (Esser et al., 2024) and music generation (Fei et al., 2024).
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Figure 1: An overview of F5-TTS training (left) and inference (right). The model is trained on the
text-guided speech-infilling task and condition flow matching loss. The input text is converted to
a character sequence, padded with filler tokens to the same length as input speech, and refined by
ConvNeXt blocks before concatenation with speech input. The inference leverages Sway Sampling
for flow steps, with the model and an ODE solver to generate speech from sampled noise.

Unlike AR-based models, the alignment modeling between input text and synthesized speech is
crucial and challenging for NAR-based models. While NaturalSpeech 3 (Ju et al., 2024) and Voice-
box (Le et al., 2024) use frame-wise phoneme alignment; Matcha-TTS (Mehta et al., 2024) adopts
monotonic alignment search (Kim et al., 2020) and relies on a phoneme-level duration model; recent
works find that introducing such rigid alignment between text and speech hinders the model from
generating results with higher naturalness (Eskimez et al., 2024; Anastassiou et al., 2024).

E3 TTS (Gao et al., 2023a) abandons phoneme-level duration and applies cross-attention on the input
sequence but yields limited audio quality. DiTTo-TTS (Lee et al., 2024) uses Diffusion Transformer
(DiT) (Peebles & Xie, 2023) with cross-attention conditioned on encoded text from a pretrained
language model. To further enhance alignment, it uses the pretrained language model to finetune the
neural audio codec, infusing semantic information into the generated representations. In contrast,
E2 TTS (Eskimez et al., 2024), based on Voicebox (Le et al., 2024), adopts a simpler way, which
removes the phoneme and duration predictor and directly uses characters padded with filler tokens
to the length of mel spectrograms as input. This simple scheme also achieves very natural and
realistic synthesized results. However, we found that robustness issues exist in E2 TTS for the text
and speech alignment. Seed-TTS (Anastassiou et al., 2024) employs a similar strategy and achieves
excellent results, though not elaborated in model details. In these ways of not explicitly modeling
phoneme-level duration, models learn to assign the length of each word or phoneme according to
the given total sequence length, resulting in improved prosody and rhythm.

In this paper, we propose F5-TTS, a Fairytaler that Fakes Fluent and Faithful speech with Flow
matching. Maintaining the simplicity of pipeline without phoneme alignment, duration predictor,
text encoder, and semantically infused codec model, F5-TTS leverages the Diffusion Transformer
with ConvNeXt V2 (Woo et al., 2023) to better tackle text-speech alignment during in-context learn-
ing. We stress the deep entanglement of semantic and acoustic features in the E2 TTS model design,
which has inherent problems and will pose alignment failure issues that could not simply be solved
with re-ranking. With in-depth ablation studies, our proposed F5-TTS demonstrates stronger robust-
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ness, in generating more faithful speech to the text prompt, while maintaining comparable speaker
similarity. Additionally, we introduce an inference-time sampling strategy for flow steps substan-
tially improving naturalness, intelligibility, and speaker similarity of generation. This approach can
be seamlessly integrated into existing flow matching based models without retraining.

2 PRELIMINARIES

2.1 FLOW MATCHING

The Flow Matching (FM) objective is to match a probability path pt from a simple distribution p0,
e.g., the standard normal distribution p(x) = N (x|0, I), to p1 approximating the data distribution q.
In short, the FM loss regresses the vector field ut with a neural network vt as

LFM (θ) = Et,pt(x) ∥vt(x)− ut(x)∥2 , (1)

where θ parameterizes the neural network, t ∼ U [0, 1] and x ∼ pt(x). The model vt is trained over
the entire flow step and data range, ensuring it learns to handle the entire transformation process
from the initial distribution to the target distribution.

As we have no prior knowledge of how to approximate pt and ut, a conditional probability path
pt(x|x1) = N (x | µt(x1), σt(x1)

2I) is considered in actual training, and the Conditional Flow
Matching (CFM) loss is proved to have identical gradients w.r.t. θ (Lipman et al., 2022). x1 is the
random variable corresponding to training data. µ and σ is the time-dependent mean and scalar
standard deviation of Gaussian distribution.

Remember that the goal is to construct target distribution (data samples) from initial simple distri-
bution, e.g., Gaussian noise. With the conditional form, the flow map ψt(x) = σt(x1)x + µt(x1)
with µ0(x1) = 0 and σ0(x1) = 1, µ1(x1) = x1 and σ1(x1) = 0 is made to have all conditional
probability paths converging to p0 and p1 at the start and end. The flow thus provides a vector field
dψt(x0)/dt = ut(ψt(x0)|x1). Reparameterize pt(x|x1) with x0, we have

LCFM(θ) = Et,q(x1),p(x0)∥vt(ψt(x0))−
d

dt
ψt(x0)∥2. (2)

Further leveraging Optimal Transport form ψt(x) = (1− t)x+ tx1, we have the OT-CFM loss,

LCFM(θ) = Et,q(x1),p(x0)∥vt((1− t)x0 + tx1)− (x1 − x0)∥2. (3)

To view in a more general way (Kingma & Gao, 2024), if formulating the loss in terms of log
signal-to-noise ratio (log-SNR) λ instead of flow step t, and parameterizing to predict x0 (ϵ, com-
monly stated in diffusion model) instead of predict x1 − x0, the CFM loss is equivalent to the
v-prediction (Salimans & Ho, 2022) loss with cosine schedule.

For inference, given sampled noise x0 from initial distribution p0, flow step t ∈ [0, 1] and condition
with respect to generation task, the ordinary differential equation (ODE) solver (Chen, 2018) is
used to evaluate ψ1(x0) the integration of dψt(x0)/dt with ψ0(x0) = x0. The number of function
evaluations (NFE) is the times going through the neural network as we may provide multiple flow
step values from 0 to 1 as input to approximate the integration. Higher NFE will produce more
accurate results and certainly take more calculation time.

2.2 CLASSIFIER-FREE GUIDANCE

Classifier Guidance (CG) is proposed by Dhariwal & Nichol (2021), functions by adding the gradient
of an additional classifier, while such an explicit way to condition the generation process may have
several problems. Extra training of the classifier is required and the generation result is directly
affected by the quality of the classifier. Adversarial attacks might also occur as the guidance is
introduced through the way of updating the gradient. Thus deceptive images with imperceptible
details to human eyes may be generated, which are not conditional.

Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) proposes to replace the explicit classifier
with an implicit classifier without directly computing the explicit classifier and its gradient. The
gradient of a classifier can be expressed as a combination of conditional generation probability and
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unconditional generation probability. By dropping the condition with a certain rate during training,
and linear extrapolating the inference outputs with and without condition c, the final guided result is
obtained. We could balance between fidelity and diversity of the generated samples with

vt,CFG = vt(ψt(x0), c) + α(vt(ψt(x0), c)− vt(ψt(x0))) (4)

in CFM case, where α is the CFG strength.1

3 METHOD

This work aims to build a high-level text-to-speech synthesis system. We trained our model on the
text-guided speech-infilling task (Bai et al., 2022; Le et al., 2024). Based on recent research (Lee
et al., 2024; Eskimez et al., 2024; Liu et al., 2024b), it is promising to train without phoneme-level
duration predictor and can achieve higher naturalness in zero-shot generation deprecating explicit
phoneme-level alignment. We adopt a similar pipeline as E2 TTS (Eskimez et al., 2024) and propose
our advanced architecture F5-TTS, addressing the slow convergence (timbre learned well at an early
stage but struggled to learn alignment) and robustness issues (failures on hard case generation) of
E2 TTS. We also propose a Sway Sampling strategy for flow steps at inference, which significantly
improves our model’s performance in faithfulness to reference text and speaker similarity.

3.1 PIPELINE

Training The infilling task is to predict a segment of speech given its surrounding audio and full
text (for both surrounding transcription and the part to generate). For simplicity, we reuse the symbol
x to denote an audio sample and y the corresponding transcript for a data pair (x, y). As shown in
Fig.1 (left), the acoustic input for training is an extracted mel spectrogram features x1 ∈ RF×N

from the audio sample x, where F is mel dimension and N is the sequence length. In the scope of
CFM, we pass in the model the noisy speech (1− t)x0 + tx1 and the masked speech (1−m)⊙ x1,
where x0 denotes sampled Gaussian noise, t is sampled flow step, and m ∈ {0, 1}F×N represents a
binary temporal mask.

Following E2 TTS, we directly use alphabets and symbols for English. We opt for full pinyin to
facilitate Chinese zero-shot generation. By breaking the raw text into such character sequence and
padding it with filler tokens ⟨F ⟩ to the same length as mel frames, we form an extended sequence z
with ci denoting the i-th character:

z = (c1, c2, . . . , cM , ⟨F ⟩, . . . , ⟨F ⟩︸ ︷︷ ︸
(N−M) times

). (5)

The model is trained to reconstructm⊙x1 with (1−m)⊙x1 and z, which equals to learn the target
distribution p1 in form of P (m⊙ x1|(1−m)⊙ x1, z) approximating real data distribution q.

Inference To generate a speech with the desired content, we have the audio prompt’s mel spectro-
gram features xref , its transcription yref , and a text prompt ygen. Audio prompt serves to provide
speaker characteristics and text prompt is to guide the content of generated speech.

The sequence length N , or duration, has now become a pivotal factor that necessitates informing
the model of the desired length for sample generation. One could train a separate model to predict
and deliver the duration based on xref , yref and ygen. Here we simply estimate the duration based
on the ratio of the number of characters in ygen and yref . We assume that the sum-up length of
characters is no longer than mel length, thus padding with filler tokens is done as during training.

To sample from the learned distribution, the converted mel features xref , along with concatenated
and extended character sequence zref ·gen serve as the condition in Eq.4. We have

vt(ψt(x0), c) = vt((1− t)x0 + tx1|xref , zref ·gen), (6)

See from Fig.1 (right), we start from a sampled noise x0, and what we want is the other end of
flow x1. Thus we use the ODE solver to gradually integrate from ψ0(x0) = x0 to ψ1(x0) = x1,

1Note that the inference time will be doubled if CFG. Model vt will execute the forward process twice, once
with condition, and once without.
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given dψt(x0)/dt = vt(ψt(x0), xref , zref ·gen). During inference, the flow steps are provided in an
ordered way, e.g., uniformly sampled a certain number from 0 to 1 according to the NFE setting.

After getting the generated mel with model vt and ODE solver, we discard the part of xref . Then
we leverage a vocoder to convert the mel back to speech signal.

3.2 F5-TTS

E2 TTS directly concatenates the padded character sequence with input speech, thus deeply entan-
gling semantic and acoustic features with a large length gap of effective information, which is the
underlying cause of hard training and poses several problems in a zero-shot scenario (Sec.5.1). To
alleviate the problem of slow convergence and low robustness, we propose F5-TTS which acceler-
ates training and inference and shows a strong robustness in generation. Also, an inference-time
Sway Sampling is introduced, which allows inference faster (using less NFE) while maintaining
performance. This sampling way of flow step can be directly applied to other CFM models.

Model As shown in Fig.1, we use latent Diffusion Transformer (DiT) (Peebles & Xie, 2023) as
backbone. To be specific, we use DiT blocks with zero-initialized adaptive Layer Norm (adaLN-
zero). To enhance the model’s alignment ability, we also leverage ConvNeXt V2 blocks (Woo et al.,
2023). Its predecessor ConvNeXt V1 (Liu et al., 2022) is used in many works and shows a strong
temporal modeling capability in speech domain tasks (Siuzdak, 2023; Okamoto et al., 2024).

As described in Sec.3.1, the model input is character sequence, noisy speech, and masked speech.
Before concatenation in the feature dimension, the character sequence first goes through ConvNeXt
blocks. Experiments have shown that this way of providing individual modeling space allows text
input to better prepare itself before later in-context learning. Unlike the phoneme-level force align-
ment done in Voicebox, a rigid boundary for text is not explicitly introduced. The semantic and
acoustic features are jointly learned with the entire model. Not directly feeding the model with
inputs of significant length gap as E2 TTS does, the proposed text refinement mitigates the im-
pact of using inputs with mismatched effective information lengths, despite equal physical length in
magnitude as E2 TTS.

The flow step t for CFM is provided as the condition of adaLN-zero rather than appended to the
concatenated input sequence in Voicebox. We found that an additional mean pooled token of text
sequence for adaLN condition is not essential for the TTS task, maybe because the TTS task requires
more rigorously guided results and the mean pooled text token is more coarse.

We adopt some position embedding settings in Voicebox. The flow step is embedded with a sinu-
soidal position. The concatenated input sequence is added with a convolutional position embedding.
We apply a rotary position embedding (RoPE) (Su et al., 2024) for self-attention rather than sym-
metric bi-directional ALiBi bias (Press et al., 2021). And for extended character sequence ŷ, we
also add it with an absolute sinusoidal position embedding before feeding it into ConvNeXt blocks.

Compared with Voicebox and E2 TTS, we abandoned the U-Net (Ronneberger et al., 2015) style skip
connection structure and switched to using DiT with adaLN-zero. Without a phoneme-level duration
predictor and explicit alignment process, and nor with extra text encoder and semantically infused
neural codec model in DiTTo-TTS, we give the text input a little freedom (individual modeling
space) to let it prepare itself before concatenation and in-context learning with speech input.

Sampling As stated in Sec.2.1, the CFM could be viewed as v-prediction with a cosine schedule.
For image synthesis, Esser et al. (2024) propose to further schedule the flow step with a single-peak
logit-normal (Atchison & Shen, 1980) sampling, in order to give more weight to intermediate flow
steps by sampling them more frequently. We speculate that such sampling distributes the model’s
learning difficulty more evenly over different flow step t ∈ [0, 1].

In contrast, we train our model with traditional uniformly sampled flow step t ∼ U [0, 1] but apply a
non-uniform sampling during inference. In specific, we define a Sway Sampling function as

fsway(u; s) = u+ s · (cos(π
2
u)− 1 + u), (7)

which is monotonic with coefficient s ∈ [−1, 2
π−2 ]. We first sample u ∼ U [0, 1], then apply this

function to obtain sway sampled flow step t. With s < 0, the sampling is sway to left; with s > 0, the
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sampling is sway to right; and s = 0 case equals to uniform sampling. Fig.3 shows the probability
density function of Sway Sampling on flow step t.

Conceptually, CFM models focus more on sketching the contours of speech in the early stage (t →
0) from pure noise and later focus more on the embellishment of fine-grained details. Therefore, the
alignment between speech and text will be determined based on the first few generated results. With
a scale parameter s < 0, we make model inference more with smaller t, thus providing the ODE
solver with more startup information to evaluate more precisely in initial integration steps.

4 EXPERIMENTAL SETUP

Datasets We utilize the in-the-wild multilingual speech dataset Emilia (He et al., 2024) to train
our base models. After simply filtering out transcription failure and misclassified language speech,
we retain approximately 95K hours of English and Chinese data. We also trained small models for
ablation study and architecture search on WenetSpeech4TTS (Ma et al., 2024) Premium subset, con-
sisting of a 945 hours Mandarin corpus. Base model configurations are introduced below, and small
model configurations are in Appendix B.1. Three test sets are adopted for evaluation, which are
LibriSpeech-PC test-clean (Meister et al., 2023), Seed-TTS test-en (Anastassiou et al., 2024) with
1088 samples from Common Voice (Ardila et al., 2019), and Seed-TTS test-zh with 2020 samples
from DiDiSpeech (Guo et al., 2021)2. Most of the previous English-only models are evaluated on
different subsets of LibriSpeech test-clean while the used prompt list is not released, which makes
fair comparison difficult. Thus we build and release a 4-to-10-second LibriSpeech-PC subset with
1127 samples to facilitate community comparisons.

Training Our base models are trained to 1.2M updates with a batch size of 307,200 audio
frames (0.91 hours), for over one week on 8 NVIDIA A100 80G GPUs. The AdamW opti-
mizer (Loshchilov, 2017) is used with a peak learning rate of 7.5e-5, linearly warmed up for 20K
updates, and linearly decays over the rest of the training. We set 1 for the max gradient norm clip.
The F5-TTS base model has 22 layers, 16 attention heads, 1024/2048 embedding/feed-forward net-
work (FFN) dimension for DiT; and 4 layers, 512/1024 embedding/FFN dimension for ConvNeXt
V2; in total 335.8M parameters. The reproduced E2 TTS, a 333.2M flat U-Net equipped Trans-
former, has 24 layers, 16 attention heads, and 1024/4096 embedding/FFN dimension. Both models
use RoPE as mentioned in Sec.3.2, a dropout rate of 0.1 for attention and FFN, the same convolu-
tional position embedding as in Voicebox(Le et al., 2024).

We directly use alphabets and symbols for English, use jieba3 and pypinyin4 to process raw Chinese
characters to full pinyins. The character embedding vocabulary size is 2546, counting in the special
filler token and all other language characters exist in the Emilia dataset as there are many code-
switched sentences. For audio samples we use 100-dimensional log mel-filterbank features with 24
kHz sampling rate and hop length 256. A random 70% to 100% of mel frames is masked for infilling
task training. For CFG (Sec.2.2) training, first the masked speech input is dropped with a rate of 0.3,
then the masked speech again but with text input together is dropped with a rate of 0.2 (Le et al.,
2024). We assume that the two-stage control of CFG training may have the model learn more with
text alignment.

Inference The inference process is mainly elaborated in Sec.3.1. We use the Exponential Moving
Averaged (EMA) (Karras et al., 2024) weights for inference, and the Euler ODE solver for F5-
TTS (midpoint for E2 TTS as described in Eskimez et al. (2024)). We use the pretrained vocoder
Vocos (Siuzdak, 2023) to convert generated log mel spectrograms to audio signals.

Baselines We compare our models with leading TTS systems including, (mainly) autoregressive
models: VALL-E 2 (Chen et al., 2024), MELLE (Meng et al., 2024), FireRedTTS (Guo et al.,
2024a) and CosyVoice (Du et al., 2024b); non-autoregressive models: Voicebox (Le et al., 2024),
NaturalSpeech 3 (Ju et al., 2024), DiTTo-TTS (Lee et al., 2024), MaskGCT (Wang et al., 2024),
Seed-TTSDiT (Anastassiou et al., 2024) and our reproduced E2 TTS (Eskimez et al., 2024). Details
of compared models see Appendix A.

2https://github.com/BytedanceSpeech/seed-tts-eval
3https://github.com/fxsjy/jieba
4https://github.com/mozillazg/python-pinyin
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Table 1: Results on LibriSpeech test-clean and LibriSpeech-PC test-clean. The boldface indicates
the best result, and * denotes the score reported in baseline papers with different subsets for eval-
uation. The Real-Time Factor (RTF) is computed with the inference time of 10s speech. #Param.
stands for the number of learnable parameters and #Data refers to the used training dataset in hours.

Model #Param. #Data(hrs) WER(%)↓ SIM-o ↑ RTF ↓

LibriSpeech test-clean
Ground Truth (2.2 hours subset) - - 2.2* 0.754* -
VALL-E 2 (Chen et al., 2024) - 50K EN 2.44* 0.643* 0.732*
MELLE (Meng et al., 2024) - 50K EN 2.10* 0.625* 0.549*
MELLE-R2 (Meng et al., 2024) - 50K EN 2.14* 0.608* 0.276*
Voicebox (Le et al., 2024) 330M 60K EN 1.9* 0.662* 0.64*
DiTTo-TTS (Lee et al., 2024) 740M 55K EN 2.56* 0.627* 0.162*

Ground Truth (40 samples subset) - - 1.94* 0.68* -
Voicebox (Le et al., 2024) 330M 60K EN 2.03* 0.64* 0.64*
NaturalSpeech 3 (Ju et al., 2024) 500M 60K EN 1.94* 0.67* 0.296*
MaskGCT (Wang et al., 2024) 1048M 100K Multi. 2.634* 0.687* -

LibriSpeech-PC test-clean
Ground Truth (1127 samples 2 hrs) - - 2.23 0.69 -
Vocoder Resynthesized - - 2.32 0.66 -
CosyVoice (Du et al., 2024b) ∼300M 170K Multi. 3.59 0.66 0.92
FireRedTTS (Guo et al., 2024a) ∼580M 248K Multi. 2.69 0.47 0.84
E2 TTS (32 NFE) (Eskimez et al., 2024) 333M 100K Multi. 2.95 0.69 0.68
F5-TTS (16 NFE) 336M 100K Multi. 2.53 0.66 0.15
F5-TTS (32 NFE) 336M 100K Multi. 2.42 0.66 0.31

Metrics We measure the performances under cross-sentence task (Wang et al., 2023a; Le et al.,
2024). The model is given a reference text, a short speech prompt, and its transcription, and made
to synthesize a speech reading the reference text mimicking the speech prompt speaker. In specific,
we report Word Error Rate (WER) and speaker Similarity between generated and the original target
speeches (SIM-o (Le et al., 2024)) for objective evaluation. For WER, we employ Whisper-large-
v3 (Radford et al., 2023) to transcribe English and Paraformer-zh (Gao et al., 2023b) for Chinese,
following (Anastassiou et al., 2024). For SIM-o, we use a WavLM-large-based (Chen et al., 2022)
speaker verification model to extract speaker embeddings for calculating the cosine similarity of
synthesized and ground truth speeches. We use Comparative Mean Opinion Scores (CMOS) and
Similarity Mean Opinion Scores (SMOS) for subjective evaluation. For CMOS, human evaluators
are given randomly ordered synthesized speech and ground truth, and are to decide how higher the
naturalness of the better one surpasses the counterpart, w.r.t. prompt speech. For SMOS, human
evaluators are to score the similarity between the synthesized and prompt. Details of subjective
evaluations can be found in Appendix C.

5 EXPERIMENTAL RESULTS

Tab.1 and 2 show the main results of objective and subjective evaluations. We report the average
score of three random seed generation results with our model and open-sourced baselines. We use
by default a CFG strength of 2 and a Sway Sampling coefficient of −1 for our F5-TTS.

For English zero-shot evaluation, the previous works are hard to compare directly as they use dif-
ferent subsets of LibriSpeech test-clean (Panayotov et al., 2015). Although most of them claim to
filter out 4-to-10-second utterances as the generation target, the corresponding prompt audios used
are not released. Therefore, we build a 4-to-10-second sample test set based on LibriSpeech-PC
(Meister et al., 2023) which is an extension of LibriSpeech with additional punctuation marks and
casing. To facilitate future comparison, we release the 2-hour test set with 1,127 samples, sourced
from 39 speakers (LibriSpeech-PC missing one speaker).
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Table 2: Results on two test sets, Seed-TTS test-en and test-zh. The boldface indicates the best
result, the underline denotes the second best, and * denotes scores reported in baseline papers.

Model WER(%)↓ SIM-o ↑ CMOS ↑ SMOS ↑

Seed-TTS test-en
Ground Truth 2.06 0.73 0.00 3.91
Vocoder Resynthesized 2.09 0.70 - -
CosyVoice (Du et al., 2024b) 3.39 0.64 0.02 3.64
FireRedTTS (Guo et al., 2024a) 3.82 0.46 -1.46 2.94
MaskGCT (Wang et al., 2024) 2.623* 0.717* - -
Seed-TTSDiT (Anastassiou et al., 2024) 1.733* 0.790* - -
E2 TTS (32 NFE) (Eskimez et al., 2024) 2.19 0.71 0.06 3.81
F5-TTS (16 NFE) 1.89 0.67 0.16 3.79
F5-TTS (32 NFE) 1.83 0.67 0.31 3.89

Seed-TTS test-zh
Ground Truth 1.26 0.76 0.00 3.72
Vocoder Resynthesized 1.27 0.72 - -
CosyVoice (Du et al., 2024b) 3.10 0.75 -0.06 3.54
FireRedTTS (Guo et al., 2024a) 1.51 0.63 -0.49 3.28
MaskGCT (Wang et al., 2024) 2.273* 0.774* - -
Seed-TTSDiT (Anastassiou et al., 2024) 1.178* 0.809* - -
E2 TTS (32 NFE) (Eskimez et al., 2024) 1.97 0.73 -0.04 3.44
F5-TTS (16 NFE) 1.74 0.75 0.02 3.72
F5-TTS (32 NFE) 1.56 0.76 0.21 3.83

F5-TTS achieves a WER of 2.42 on LibriSpeech-PC test-clean with 32 NFE and Sway Sampling,
demonstrating its robustness in zero-shot generation. Inference with 16 NFE, F5-TTS gains an
RTF of 0.15 while still supporting high-quality generation with a WER of 2.53. It is clear that the
Sway Sampling strategy greatly improves performance. The reproduced E2 TTS shows an excellent
speaker similarity (SIM) but much worse WER in the zero-shot scenario, indicating the inherent
deficiency of alignment robustness.

From the evaluation results on the Seed-TTS test sets, F5-TTS behaves similarly with a close WER
to ground truth and comparable SIM scores. It produces smooth and fluent speech in zero-shot
generation with a CMOS of 0.31 (0.21) and SMOS of 3.89 (3.83) on Seed-TTS test-en (test-zh), and
surpasses some baseline models trained with larger scales. It is worth mentioning that Seed-TTS
with the best result is trained with orders of larger model size and dataset (several million hours)
than ours. As stated in Sec.3.1, we simply estimate duration based on the ratio of the audio prompt’s
transcript length and the text prompt length. If providing ground truth duration, F5-TTS with 32
NFE and Sway Sampling will have WER of 1.74 for test-en and 1.53 for test-zh while maintaining
the same SIM, indicating a high upper bound.

A robustness test on ELLA-V (Song et al., 2024) hard sentences is further included in Appendix
B.5. The ablation of vocoders and additional evaluation with a non-PC test set are in Appendix B.6.
An analysis of training stability with varying data scales is in Appendix B.7.

5.1 ABLATION OF MODEL ARCHITECTURE

To clarify our F5-TTS’s efficiency and stress the limitation of E2 TTS. We conduct in-depth ablation
studies. We trained small models to 800K updates (each on 8 NVIDIA RTX 3090 GPUs for one
week), all scaled to around 155M parameters, on the WenetSpeech4TTS Premium 945 hours Man-
darin dataset with half the batch size and the same optimizer and scheduler as base models. Details
of small model configurations see Appendix B.1.

We first experiment with pure adaLN DiT (F5-TTS−Conv2Text), which fails to learn alignment
given simply padded character sequences. Based on the concept of refining the input text represen-
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Figure 2: Ablation studies on model architecture. Seed-TTS test-zh evaluation results of 155M small
models trained with WenetSpeech4TTS Premium a 945 hours Mandarin Corpus.

tation to better align with speech modality, and keep the simplicity of system design, we propose
to add jointly learned structure to the input context. Specifically, we leverage ConvNeXt’s capabil-
ities of capturing local connections, multi-scale features, and spatial invariance for the input text,
which is our F5-TTS. And we ablate with adding the same branch for input speech, denoted F5-
TTS+Conv2Audio. We further conduct experiments to figure out whether the long skip connection
and the pre-refinement of input text are beneficial to the counterpart backbone, i.e. F5-TTS and E2
TTS, named F5-TTS+LongSkip and E2 TTS+Conv2Text respectively. We also tried with the Multi-
Modal DiT (MMDiT) (Esser et al., 2024) a double-stream joint-attention structure for the TTS task
which learned fast and collapsed fast, resulting in severe repeated utterance with wild timbre and
prosody. We assume that the pure MMDiT structure is far too flexible for rigorous task e.g. TTS
which needs more faithful generation following the prompt guidance.

Fig.2 shows the overall trend of small models’ WER and SIM scores evaluated on Seed-TTS test-zh.
Trained with only 945 hours of data, F5-TTS (32 NFE w/o SS) achieves a WER of 4.17 and a SIM of
0.54 at 800K updates, while E2 TTS is 9.63 and 0.53. F5-TTS+Conv2Audio trades much alignment
robustness (+1.61 WER) with a slightly higher speaker similarity (+0.01 SIM), which is not ideal for
scaling up. We found that the long skip connection structure can not simply fit into DiT to improve
speaker similarity, while the ConvNeXt for input text refinement can not directly apply to the flat
U-Net Transformer to improve WER as well, both showing significant degradation of performance.
To further analyze the unsatisfactory results with E2 TTS, we studied the consistent failure (unable
to solve with re-ranking) on a 7% of the test set (WER>50%) all along the training process. We
found that E2 TTS typically struggles with around 140 samples which we speculate to have a large
distribution gap with the train set, while F5-TTS easily tackles this issue.

We investigate the models’ behaviors with different input conditions to illustrate the advantages
of F5-TTS further and disclose the possible reasons for E2 TTS’s deficiency. See from Tab.4 in
Appendix B.2, providing the ground truth duration allows more gains on WER for F5-TTS than E2
TTS. By dropping the audio prompt, and synthesizing speech solely with the text prompt, E2 TTS
is free of failures. This phenomenon implied a deep entanglement of semantic and acoustic features
within E2 TTS’s model design. From Tab.3 GFLOPs statistics, F5-TTS carries out faster training
and inference than E2 TTS.

The aforementioned limitations of E2 TTS greatly hinder real-world application as the failed gen-
eration cannot be solved with re-ranking. Supervised fine-tuning facing out-of-domain data or a
tremendous pretraining scale is mandatory for E2 TTS, which is inconvenient for industrial deploy-
ment. On the contrary, our F5-TTS better handles zero-shot generation, showing stronger robustness.

5.2 ABLATION OF SWAY SAMPLING

It is clear from Fig.3 that a Sway Sampling with a negative s improves the generation results. Further
with a more negative s, models achieve lower WER and higher SIM scores. We additionally include
comparing results on base models with and without Sway Sampling in Appendix B.4.
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Figure 3: Probability density function of Sway Sampling on flow step t with different coefficient s
(left), and small models’ performance on Seed-TTS test-zh with Sway Sampling (right).

As stated at the end of Sec.3.2, Sway Sampling with s < 0 scales more flow step toward early-stage
inference (t→ 0), thus having CFM models capture more startup information to sketch the contours
of target speech better. To be more concrete, we conduct a “leak and override” experiment. We
first replace the Gaussian noise input x0 at inference time with a ground-truth-information-leaked
input (1− t′)x0 + t′x′ref , where t′ = 0.1 and x′ref is a duplicate of the audio prompt mel features.
Then, we provide a text prompt different from the duplicated audio transcript and let the model
continue the subsequent inference (skip the flow steps before t′). The model succeeds in overriding
leaked utterances and producing speech following the text prompt if Sway Sampling is used, and
fails without. Uniformly sampled flow steps will have the model producing speech dominated by
leaked information, speaking the duplicated audio prompt’s context. Similarly, a leaked timbre can
be overridden with another speaker’s utterance as an audio prompt, leveraging Sway Sampling.

The experiment result is a shred of strong evidence proving that the early flow steps are crucial for
sketching the silhouette of target speech based on given prompts faithfully, the later steps focus more
on formed intermediate noisy output, where our sway-to-left sampling (s < 0) finds the profitable
niche and takes advantage of it. We emphasize that our inference-time Sway Sampling can be
easily applied to existing CFM-based models without retraining. And we will work in the future to
combine it with training-time noise schedulers and distillation techniques to further boost efficiency.

6 CONCLUSION

This work introduces F5-TTS, a fully non-autoregressive text-to-speech system based on flow
matching with diffusion transformer (DiT). With a tidy pipeline, literally text in and speech out,
F5-TTS achieves state-of-the-art zero-shot ability compared to existing works trained on industry-
scale data. We adopt ConvNeXt for text modeling and propose the test-time Sway Sampling strategy
to further improve the robustness of speech generation and inference efficiency. Our design allows
faster training and inference, by achieving a test-time RTF of 0.15, which is competitive with other
heavily optimized TTS models of similar performance. We will open-source our code, and models,
to enhance transparency and facilitate reproducible research in this area.

ETHICS STATEMENTS

This work is purely a research project. F5-TTS is trained on large-scale public multilingual speech
data and could synthesize speech of high naturalness and speaker similarity. Given the potential
risks in the misuse of the model, such as spoofing voice identification, it should be imperative to
implement watermarks and develop a detection model to identify audio outputs.
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A BASELINE DETAILS

VALL-E 2 (Chen et al., 2024) A large-scale TTS model shares the same architecture as VALL-
E (Wang et al., 2023a) but employs a repetition-aware sampling strategy that promotes more delib-
erate sampling choices, trained on Libriheavy (Kang et al., 2024) 50K hours English dataset. We
compared with results reported in Meng et al. (2024).

MELLE (Meng et al., 2024) An autoregressive large-scale model leverages continuous-valued
tokens with variational inference for text-to-speech synthesis. Its variants allow to prediction of
multiple mel-spectrogram frames at each time step, noted by MELLE-Rx with x denotes reduction
factor. The model is trained on Libriheavy (Kang et al., 2024) 50K hours English dataset. We
compared with results reported in Meng et al. (2024).

Voicebox (Le et al., 2024) A non-autoregressive large-scale model based on flow matching trained
with infilling task. We compared with the 330M parameters trained on 60K hours dataset English-
only model’s results reported in Le et al. (2024) and Ju et al. (2024).

NaturalSpeech 3 (Ju et al., 2024) A non-autoregressive large-scale TTS system leverages a fac-
torized neural codec to decouple speech representations and a factorized diffusion model to generate
speech based on disentangled attributes. The 500M base model is trained on Librilight (Kahn et al.,
2020) a 60K hours English dataset. We compared with scores reported in Ju et al. (2024).

DiTTo-TTS (Lee et al., 2024) A large-scale non-autoregressive TTS model uses a cross-attention
Diffusion Transformer and leverages a pretrained language model to enhance the alignment. We
compare with DiTTo-en-XL, a 740M model trained on 55K hours English-only dataset, using scores
reported in Lee et al. (2024).

FireRedTTS (Guo et al., 2024a) A foundation TTS framework for industry-level generative
speech applications. The autoregressive text-to-semantic token model has 400M parameters and
the token-to-waveform generation model has about half the parameters. The system is trained with
248K hours of labeled speech data. We use the official code and pre-trained checkpoint to evaluate5.

MaskGCT (Wang et al., 2024) A large-scale non-autoregressive TTS model without precise align-
ment information between text and speech following the mask-and-predict learning paradigm. The
model is multi-stage, with a 695M text-to-semantic model (T2S) and then a 353M semantic-to-
acoustic (S2A) model. The model is trained on Emilia (He et al., 2024) dataset with around 100K
Chinese and English in-the-wild speech data. We compare with results reported in Wang et al.
(2024).

Seed-TTS (Anastassiou et al., 2024) A family of high-quality versatile speech generation mod-
els trained on unknown tremendously large data that is of orders of magnitudes larger than the
previously largest TTS systems (Anastassiou et al., 2024). Seed-TTSDiT is a large-scale fully non-
autoregressive model. We compare with results reported in Anastassiou et al. (2024).

E2 TTS (Eskimez et al., 2024) A fully non-autoregressive TTS system proposes to model without
the phoneme-level alignment in Voicebox, originally trained on Libriheavy (Kang et al., 2024) 50K
English dataset. We compare with our reproduced 333M multilingual E2 TTS trained on Emilia (He
et al., 2024) dataset with around 100K Chinese and English in-the-wild speech data.

CosyVoice (Du et al., 2024b) A two-stage large-scale TTS system, first autoregressive text-to-
token, then a flow matching diffusion model. The model is of around 300M parameters, trained on
170K hours of multilingual speech data. We obtain the evaluation result with the official code and
pre-trained checkpoint6.

5https://github.com/FireRedTeam/FireRedTTS
6https://huggingface.co/model-scope/CosyVoice-300M
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B EXPERIMENTAL RESULT SUPPLEMENTS

The UTMOS (Saeki et al., 2022) scores reported in this section are evaluated with an open-source
MOS prediction model7. The UTMOS is an objective metric measuring naturalness.

B.1 SMALL MODEL CONFIGURATION

The detailed configuration of small models is shown in Tab.3. In the Transformer column, the num-
bers denote the Model Dimension, the Number of Layers, the Number of Heads, and the multiples
of Hidden Size. In the ConvNeXt column, the numbers denote the Model Dimension, the Number of
Layers, and the multiples of Hidden Size. GFLOPs are evaluated using the thop Python package.

As mentioned in Sec.3.2, F5-TTS leverages an adaLN DiT backbone, while E2 TTS is a flat U-
Net equipped Transformer. F5-TTS+LongSkip adds an additional long skip structure connecting
the first to the last layer (Lee et al., 2024) in the Transformer. For the Multi-Model Diffusion
Transformer (MMDiT) (Esser et al., 2024), a double stream transformer, the setting denotes one
stream configuration.

Table 3: Details of small model configurations.

Model Transformer ConvNeXt #Param. GFLOPs
F5-TTS 768,18,12,2 512,4,2 158M 173
F5-TTS−Conv2Text 768,18,12,2 - 153M 164
F5-TTS+Conv2Audio 768,16,12,2 512,4,2 163M 181
F5-TTS+LongSkip 768,18,12,2 512,4,2 159M 175
E2 TTS 768,20,12,4 - 157M 293
E2 TTS+Conv2Text 768,20,12,4 512,4,2 161M 301
MMDiT (Esser et al., 2024) 512,16,16,2 - 151M 104

B.2 ABLATION STUDY ON INPUT CONDITION

The ablation study on different input conditions is conducted with three settings: common input
with text and audio prompts, providing ground truth duration information rather than an estimate,
and retaining only text input dropping audio prompt. In Tab.4, all evaluations take the 155M small
models’ checkpoints trained on WenetSpeech4TTS Premium at 800K updates.

Table 4: Ablation study on different input conditions. The boldface indicates the best result, and the
underline denotes the second best. All scores are the average of three random seed results.

Model Common Input Ground Truth Dur. Drop Audio Prompt
WER ↓ SIM ↑ WER ↓ SIM ↑ WER ↓ SIM ↑

F5-TTS 4.17 0.54 3.87 0.54 3.22 0.21
F5-TTS+Conv2Audio 5.78 0.55 5.28 0.55 3.78 0.21
F5-TTS+LongSkip 5.17 0.53 5.03 0.53 3.35 0.21
E2 TTS 9.63 0.53 9.48 0.53 3.48 0.21
E2 TTS+Conv2Text 18.10 0.49 17.94 0.49 3.06 0.21

B.3 COMPARISON OF ODE SOLVERS

The comparison results of using the Euler (first-order), midpoint (second-order), or improved Heun
(third-order, Heun-3) ODE solver during F5-TTS inference are shown in Tab.5. The Euler is in-
herently faster and performs slightly better typically for larger NFE inference with Sway Sampling
(otherwise the Euler solver results in degradation).

7https://github.com/tarepan/SpeechMOS
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Table 5: Evaluation results of F5-TTS on LibriSpeech-PC test-clean, Seed-TTS test-en and Seed-
TTS test-zh, employing the Euler, midpoint or Heun-3 ODE solver, and with different Sway Sam-
pling s values. The Real-Time Factor (RTF) is computed with the inference time of 10s speech.

LibriSpeech-PC test-clean Seed-TTS test-en Seed-TTS test-zh
F5-TTS WER SIM-o UTMOS WER SIM-o UTMOS WER SIM-o UTMOS RTF

Ground Truth 2.23 0.69 4.09 2.06 0.73 3.53 1.26 0.76 2.78 -
s = −1
16 NFE Euler 2.53 0.66 3.88 1.89 0.67 3.76 1.74 0.75 2.96 0.15
16 NFE midpoint 2.43 0.66 3.87 1.88 0.66 3.70 1.61 0.75 2.87 0.26
32 NFE Euler 2.42 0.66 3.90 1.83 0.67 3.76 1.56 0.76 2.95 0.31
32 NFE midpoint 2.41 0.66 3.89 1.87 0.66 3.72 1.58 0.75 2.91 0.53
16 NFE Heun-3 2.39 0.65 3.87 1.80 0.66 3.70 1.55 0.75 2.88 0.44
s = −0.8
16 NFE Euler 2.82 0.65 3.73 2.14 0.65 3.70 2.28 0.72 2.74 0.15
16 NFE midpoint 2.58 0.65 3.86 1.86 0.65 3.68 1.70 0.73 2.83 0.26
32 NFE Euler 2.50 0.66 3.89 1.81 0.67 3.74 1.62 0.75 2.94 0.31
32 NFE midpoint 2.42 0.66 3.89 1.84 0.66 3.70 1.62 0.75 2.91 0.53
16 NFE Heun-3 2.40 0.65 3.85 1.78 0.66 3.68 1.56 0.74 2.84 0.44

Table 6: Base model evaluation results on LibriSpeech-PC test-clean, Seed-TTS test-en and test-zh,
with and without proposed test-time Sway Sampling (SS, with coefficient s = −1) strategy for flow
steps. All generations leverage the midpoint ODE solver for ease of ablation.

Model WER(%)↓ SIM-o ↑ UTMOS ↑ RTF ↓

LibriSpeech-PC test-clean
Ground Truth (1127 samples) 2.23 0.69 4.09 -
Vocoder Resynthesized 2.32 0.66 3.64 -
E2 TTS (16 NFE w/ SS) 2.86 0.71 3.66 0.34
E2 TTS (32 NFE w/ SS) 2.84 0.72 3.70 0.68
E2 TTS (32 NFE w/o SS) 2.95 0.69 3.56 0.68
F5-TTS (16 NFE w/ SS) 2.43 0.66 3.87 0.26
F5-TTS (32 NFE w/ SS) 2.41 0.66 3.89 0.53
F5-TTS (32 NFE w/o SS) 2.84 0.62 3.70 0.53

Seed-TTS test-en
Ground Truth (1088 samples) 2.06 0.73 3.53 -
Vocoder Resynthesized 2.09 0.70 3.33 -
E2 TTS (16 NFE w/ SS) 1.99 0.72 3.55 0.34
E2 TTS (32 NFE w/ SS) 1.98 0.73 3.57 0.68
E2 TTS (32 NFE w/o SS) 2.19 0.71 3.33 0.68
F5-TTS (16 NFE w/ SS) 1.88 0.66 3.70 0.26
F5-TTS (32 NFE w/ SS) 1.87 0.66 3.72 0.53
F5-TTS (32 NFE w/o SS) 1.93 0.63 3.51 0.53

Seed-TTS test-zh
Ground Truth (2020 samples) 1.26 0.76 2.78 -
Vocoder Resynthesized 1.27 0.72 2.61 -
E2 TTS (16 NFE w/ SS) 1.80 0.78 2.84 0.34
E2 TTS (32 NFE w/ SS) 1.77 0.78 2.87 0.68
E2 TTS (32 NFE w/o SS) 1.97 0.73 2.49 0.68
F5-TTS (16 NFE w/ SS) 1.61 0.75 2.87 0.26
F5-TTS (32 NFE w/ SS) 1.58 0.75 2.91 0.53
F5-TTS (32 NFE w/o SS) 1.93 0.69 2.58 0.53
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B.4 SWAY SAMPLING EFFECTIVENESS ON BASE MODELS

From Tab.6, it is clear that our Sway Sampling strategy for test-time flow steps consistently improves
the zero-shot generation performance in aspects of faithfulness to prompt text (WER), speaker simi-
larity (SIM), and naturalness (UTMOS). The gain of applying Sway Sampling to E2 TTS (Eskimez
et al., 2024) proves that our Sway Sampling strategy is universally applicable to existing flow match-
ing based TTS models.

B.5 ELLA-V HARD SENTENCES EVALUATION

ELLA-V (Song et al., 2024) proposed a challenging set containing 100 difficult textual patterns
evaluating the robustness of the TTS model. Following previous works (Chen et al., 2024; Meng
et al., 2024; Eskimez et al., 2024), we include generated samples in our demo page8. We additionally
compare our model with the objective evaluation results reported in E1 TTS (Liu et al., 2024b).

StyleTTS 2 is a TTS model leveraging style diffusion and adversarial training with large speech
language models. CosyVoice is a two-stage large-scale TTS system, consisting of a text-to-token
AR model and a token-to-speech flow matching model. Concurrent with our work, E1 TTSDMD is
a diffusion-based NAR model with a distribution matching distillation technique to achieve one-step
TTS generation. Since the prompts used by E1 TTSDMD are not released, we randomly sample 3-
second-long speeches in our LibriSpeech-PC test-clean set as audio prompts. The evaluation result
is in Tab.7. We evaluate the reproduced E2 TTS and our F5-TTS with 32 NFE and Sway Sampling
and report the averaged score of three random seed results.

Table 7: Results of zero-shot TTS WER on ELLA-V hard sentences. The asterisk * denotes the
score reported in E1 TTS. Sub. for substitution, Del. for Deletion, and Ins. for Insertion.

Model WER(%))↓ Sub.(%)↓ Del.(%)↓ Ins.(%)↓
StyleTTS 2 (Li et al., 2024b) 4.83* 2.17* 2.03* 0.61*
CosyVoice (Du et al., 2024b) 8.30* 3.47* 2.74* 1.93*
E1 TTSDMD (Liu et al., 2024b) 4.29* 1.89* 1.62* 0.74*
E2 TTS (Eskimez et al., 2024) 8.58 3.70 4.82 0.06
F5-TTS 4.40 1.81 2.40 0.18

We note that a higher WER compared to the results on commonly used test sets is partially due to
mispronunciation (yogis to yojus, cavorts to caverts, etc.). The high Deletion rate indicates a word-
skipping phenomenon when our model encounters a stack of repeating words. The low Insertion rate
makes it clear that our model is free of endless repetition. We further emphasize that prompts from
different speakers will spell very distinct utterances, where the ASR model transcribes correctly for
one, and fails for another (e.g. quokkas to Cocos).

B.6 COMPARISON OF VOCODERS AND BETWEEN PC AND NON-PC

The inference results with pretrained BigVGAN (Lee et al., 2022) and Vocos (Siuzdak, 2023) re-
spectively as vocoder are shown in Tab.8, along with additional evaluation on a non-Capitalized
version removing all Punctuations (non-PC) of the filtered LibriSpeech-PC (LS-PC) test-clean sub-
set. The non-PC version equals a LibriSpeech (LS) test-clean subset, with which we provide more
comprehensive comparisons with previous works.

Moreover, we include WER scores measuring with a Hubert-large-based (Hsu et al., 2021) ASR
model9, with which our reproduced multilingual E2 TTS with 32 NFE and Vocos as vocoder
achieves a WER of 2.92 on LS-PC test-clean and 2.66 if Sway Sampling applied.

8https://F5-TTS.github.io
9https://huggingface.co/facebook/hubert-large-ls960-ft
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Table 8: F5-TTS Base model evaluation results on LS-PC test-clean, LS test-clean, Seed-TTS test-
en (Seed test-en) and test-zh (Seed test-zh) with BigVGAN and Vocos, default setting as in Sec.5.
The WER scores in brackets indicate results leveraging the Hubert-large-based ASR model.

NFE steps LS-PC test-clean LS test-clean Seed test-en Seed test-zh
& Vocoder WER SIM-o WER SIM-o WER SIM-o WER SIM-o
Ground Truth 2.23(1.89) 0.69 2.29(1.86) 0.69 2.06 0.73 1.26 0.76
16 NFE - Vocos 2.53(2.34) 0.66 2.72(2.53) 0.66 1.89 0.67 1.74 0.75
16 NFE - BigVGAN 2.21(1.96) 0.67 2.55(2.34) 0.67 1.65 0.66 1.64 0.74
32 NFE - Vocos 2.42(2.09) 0.66 2.44(2.16) 0.66 1.83 0.67 1.56 0.76
32 NFE - BigVGAN 2.11(1.81) 0.67 2.28(2.03) 0.67 1.62 0.66 1.53 0.74

B.7 TRAINING STABILITY WITH DIFFERENT DATASET SCALES

We train F5-TTS 158M small models on LibriTTS (Zen et al., 2019) 585 hours and LJSpeech (Ito
& Johnson, 2017) 24 hours English datasets to provide insights on our model’s training stability
with different dataset scales, typically to see whether it can maintain stable training on limited data.
Both training takes place with the same configuration as described in Sec.5.1 and Appendix B.1
despite a batch size of 307,200 audio frames (0.91 hours) as base models. Every 100K update takes
approximately 8 hours on 8 NVIDIA H100 SXM GPUs.

Same as Sec.5, we report the average score of three random seed generation results, using a CFG
strength of 2, a Sway Sampling coefficient of −1, and 32 NFE steps. Since LJSpeech is a single-
speaker dataset, we measure the metrics on in-set tests (1000 samples organized with 4 to 7 seconds
to infer with an around 3-second prompt). It is clear from Tab.9 that our design enables stable
training to learn speech-text alignment (without grapheme-to-phoneme) with varying data amounts.

Table 9: F5-TTS small models evaluation results on LibriSpeech-PC test-clean (model trained on
LibriTTS 585 hours multi-speaker dataset), and on LJSpeech in-set test samples (model trained on
24 hours single-speaker LJSpeech); Vocos as vocoder, Whisper-large-v3 as ASR model.

Train Set LibriTTS - 585 hours LJSpeech - 24 hours
Test Set LibriSpeech-PC test-clean LJSpeech in-set tests

Updates WER(%)↓ SIM-o ↑ UTMOS ↑ WER(%)↓ SIM-o ↑ UTMOS ↑

Ground Truth 2.23 0.69 4.09 2.36 0.72 4.36
100K 29.5 0.53 3.78 5.64 0.72 4.17
200K 4.58 0.59 4.07 2.93 0.72 4.18
300K 2.71 0.60 4.11 3.26 0.71 4.12
400K 2.44 0.60 4.11 3.90 0.70 4.05
500K 2.20 0.60 4.10 4.68 0.70 3.99
600K 2.23 0.59 4.10 5.25 0.69 3.93
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C SUBJECTIVE EVALUATION DETAILS

To evaluate speech quality, we conduct a CMOS subjective evaluation. 20 natives were invited for
both English and Mandarin to evaluate 30 rounds with randomly selected utterances for all three
test sets and all model variants. Evaluators were informed in detail about the guidelines and scoring
criteria for the CMOS test, for example, the general instruction part:

• Most important: use high-quality studio headphones and a good sound card!
• Listen through all test files and test sets before you do any ratings to get used to the material.
• Rate the quality of the test items only compared to the reference on top.
• Try to rate the overall impression of a test item and don’t concentrate on single aspects.

For the CMOS test, the overall quality of a generated speech is first rated from −3 (bad quality
compared to the reference) to +3 (much better than the reference) integer scale, then reported in
average differentials with received scores of ground truth speech. For SMOS, a 1 to 5 with 0.5 as an
interval rating is employed (higher better). Judges are to score the similarity between the synthesized
and prompt speech with clearly differentiated instructions mentioning:

• Try to rate concentrating on the speaker similarity aspects with reference speech.

We encourage more rigorous and transparent subjective evaluations, such as releasing used samples
if not open-sourcing the model checkpoints. Meanwhile inviting more evaluators leads to more
comprehensive and fair rating scores. Just for reference, DiTTo-TTS (Lee et al., 2024) received
and reported 6 and 12 ratings for SMOS and CMOS, respectively, NaturalSpeech 3 (Ju et al., 2024)
invited 12 natives to judge 20 samples for CMOS and 10 samples for SMOS.
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