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Abstract

Reward models (RMs) supervise large language
models (LLMs) by aligning outputs with human
preferences. Recently, process reward models
(PRMs) have emerged to provide finer-grained
evaluations by scoring intermediate reasoning
steps. Despite their growing importance, the ro-
bustness and biases of PRMs under textual per-
turbations remain largely unexplored. In this
work, we introduce PRMProbe, a framework to
systematically audit PRMs with respect to their
sensitivity to input modifications. We augment
ProcessBench, a publicly released benchmark of
question—answer trajectories, with eight types of
controlled perturbations, and release this extended
benchmark as PRM-BiasBench. These perturba-
tions include semantics-preserving (e.g., rephras-
ing) and semantics-altering modifications (e.g.,
injecting hallucinations). Our analysis reveals
that, unlike RMs which have known biases such
as length preference, PRMs are generally robust
to superficial edits like rephrasing and verbosity
changes but exhibit varying levels of vulnerabil-
ity to semantics-altering attacks. Surprisingly,
a substantial fraction of semantically corrupted
trajectories still receive unchanged or high re-
wards, suggesting that PRMs can overlook log-
ical errors when trajectories maintain a fluent
structure. These findings expose critical limi-
tations in current PRM designs and underscore
the need for more semantically grounded evalu-
ation strategies. The code and dataset is avail-
able at https://github.com/Squeeze AlLab/reward-
under-attack
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1. Introduction

Large language models (LLMs) have become the backbone
of modern Al systems, powering applications ranging from
conversational assistants and search engines to code gener-
ation and scientific reasoning (Achiam et al., 2023; Team
et al., 2023; Bubeck et al., 2023; Yang et al., 2025). Trained
on massive corpora of internet-scale text, these models
demonstrate strong capabilities in a wide array of tasks, in-
cluding summarization, translation, question answering, and
multi-turn dialogue (Chowdhery et al., 2022; Zhang et al.,
2022). More recently, LLMs have been increasingly applied
to domains that demand structured step-by-step reasoning,
such as solving math word problems, writing correct code,
and answering science exam questions, where correctness is
not just about producing a fluent output, but about following
a valid logical process (Cobbe et al., 2021; Hendrycks et al.,
2021; Chen et al., 2021).

To align LL.Ms with desired behaviors especially in tasks
requiring reliable multi-step reasoning reward models (RMs)
have become a central component in both supervised fine-
tuning and RL pipelines. Traditionally, these models assign
scalar rewards to full model outputs and are trained to reflect
human preferences, playing a key role in reinforcement
learning from human feedback (RLHF) (Christiano et al.,
2017; Ouyang et al., 2022; Bai et al., 2022). However,
outcome-level rewards are coarse: they provide no insight
into whether a model reasoned correctly along the way or
merely arrived at the correct answer by chance.

This has led to the development of process reward mod-
els (PRMs), which assign rewards at the level of individ-
ual reasoning steps. By offering step-by-step feedback,
PRMs promise better control during training, more inter-
pretable scoring, and better incentives for structured rea-
soning. They have recently been deployed in settings such
as scaling test-time compute (Chen et al., 2023), step-level
fine-tuning (Lightman et al., 2023), and trajectory filtering
in high-quality instruction datasets (Zhou et al., 2023).

Despite their promise, the robustness of PRMs has not been
systematically evaluated. Prior studies have identified var-
ious biases in traditional outcome-level RMs—including
sensitivity to length, sycophancy, prefix biases and reward
hacking (Singhal et al., 2024; Shen et al., 2023; Denison
et al., 2024; Kumar et al., 2025; Lee et al., 2023; Fu et al.,
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Jeff's work is 3 miles ... to work 5 times a week?
Response: ; Response:
- Let's break it down step by step!

- First, Jeff walks 3 ... (back home) = 6 miles/day.
- Second, since ... 6 miles/day x 5 days/week = ?

- Finally, multiply ... \boxed(30} miles per week.

A merchant ... much profit would this be?

- Let's break it down step by step!

- First, Jeff walks 3 ... (back home) = 6 miles/day.
- Second, since ... 6 miles/day x 5 days/week = ?
- Finally, multiply ... \boxed{30} miles per week.
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Figure 1. Overview of Reward Under Attack: A prompt-response pair (Step 1) undergoes bias injection (Step 2) such as question
shuffling. The modified sample (Step 3) is evaluated by a PRM (Step 4), and scores are compared against the original (Step 5).

2023; Webson & Pavlick, 2022)—but analogous investiga-
tions for PRMs are largely absent. In particular, it remains
unclear whether PRMs truly assign rewards based on seman-
tic correctness or whether they are vulnerable to superficial
textual variations. This is especially concerning given their
growing role in downstream applications such as reward-
guided decoding, chain-of-thought distillation, and filtering
training data for alignment (Chen et al., 2023; Lightman
et al., 2023; Zhou et al., 2023). As PRMs increasingly in-
fluence both training and inference behaviors of LLMs, a
deeper understanding of their biases, failure modes, and
generalization properties is critical.

In this work, we conduct the first systematic audit of PRMs
with respect to their sensitivity to input variations. Building
on ProcessBench (Zheng et al., 2024), a publicly available
benchmark of 3.4k verified question-answer reasoning tra-
jectories, we apply eight categories of controlled perturba-
tions. These include both semantic-preserving modifica-
tions—such as rephrasing and semantic-altering changes
such as addition of hallucinated facts.

Evaluating two representative PRMs, Skywork-o1-Open-
PRM-7B and Qwen2.5-Math-PRM-7B, we identify distinct
bias profiles and critical robustness failures. While both
models show relative stability under certain surface-level
edits, they frequently fail to penalize meaning-altering per-
turbations, particularly when the changes involve numeric or
factual content. These findings suggest that current PRMs
may rely more on fluency and structural regularity than
on deep semantic understanding.

To enable systematic investigation of these failure modes
and support reproducible research on PRM evaluation, we
develop and release a comprehensive diagnostic suite. Our
contributions are summarized as follows:

* We introduce PRMProbe, a diagnostic workflow
for evaluating PRM robustness under both semantic-
preserving and semantic-altering perturbations (§4).

* We show that different PRMs exhibit inconsistent be-
haviors when subjected to input alterations, often rely-
ing more on semantic flow rather than logical correct-

ness. (§5, §6).

* We release an annotated dataset PRM-BiasBench
based on ProcessBench, with 8 perturbation types,
along with evaluation code and semantic verification
prompts to facilitate future research (§4.2).

2. Background
2.1. Reward Models and RLHF

Reward models (RMs) are trained to approximate human
preferences over language model outputs and play a cen-
tral role in reinforcement learning from human feedback
(RLHF) (Christiano et al., 2017; Ouyang et al., 2022; Bai
et al., 2022). Given a prompt x and two completions
(y1,y2), human annotators (or heuristics) indicate which
completion is preferred. The reward model ro(x,y) is
trained to assign higher scalar scores to the preferred outputs,
allowing these comparisons to be modeled probabilistically.

A common approach is to use the Bradley—Terry model,

where the probability that y; is preferred over ys given  is:
exp(rg(z,y1))

exp(ro(z,y1)) + exp(ro(z, y2))

p(yr =y | @) =

This induces a preference likelihood objective over a dataset
of chosen vs. rejected examples (&, Ychosens Yrejected):

L(0;D) = E(z y. y)~D [loga(re(l‘, Ye) — ro(, yr)):|

This loss encourages the model to assign higher scores to
the preferred completions. Once trained, RMs are used to
optimize LLMs via reinforcement learning (e.g., PPO), or
to rank and filter generated outputs in supervised pipelines.
However, these traditional reward models operate on full
outputs and provide no signal on intermediate reasoning
quality, motivating the development of step-wise reward
modeling, which we discuss next.

2.2. Step-by-Step Reasoning Models

To address the limitations of single-shot generation, recent
work has emphasized reasoning models that produce struc-
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-~ Prompt Response Pairs =~

! (Jeff's work is 3 miles ... to work 5 times a week? )

Response:
- Let's break it down step by step!
- First, Jeff walks 3 ... (back home) = 6 miles/day.
- Second, since ... 6 miles/day 5 days/week = ?
\- Finally, multiply ... \boxed{30} miles per week.

J

/Charlie had 10 ... stickers does Charlie have left?

Response:
- Let's break it down step ... 10 +21 = 31 stickers.
- He gets 23 stickers ... has: 31 + 23 = 54 stickers.
- He gives 9 stickers ... has: 54 - 9 = 45 stickers.
- He uses 28 stickers ... has: 45 - 28 = 17 stickers.
\- Therefore, Charlie has \boxed{17} stickers left.

Buford writes many checks every ... per year?

Response:
- To determine how ... means three times in a year.

- Now, let's calculate the ..Buford writes 3 checks.
- Adding these together ... + 2 = 4 checks/month
- Finally, to find out ... 48 + 3 = 51 checks/year,

- Thus, Buford writes (\boxed(51}) checks per year.

Attack Prompt:
Rephrase

Rephrased
Prompt Response Pairs

{ ((Jeff's work s 3 miles ... to work 5 times a week? )"

Response:

- Let's solve the problem in a step-by-step manner!

- Firstly, Jeff walk ... returning home) = 6 miles/day.

- Secondly, considering ... day x 5 days/week = ?
\- Finally, performing ... boxed{30} miles per week.. )

/Charlie had 10 ... stickers does Charlie have left? ™\

Response:
- We will solve this step by ... 11 + 22 = 33 stickers.
- He receives 23 stickers ... 33 + 23 = 56 stickers.
- He gives 9 stickers ... has: 56 - 9 = 47 stickers.
- He uses 28 stickers .. has: 47 - 28 = 19 stickers.
\- Therefore, Charlie has \boxed{19} stickers left. /

Buford writes many checks every ... per year?

Response:

-To find out the ... totals three checks per year.

- Next, we calculate the ...Buford writes 3 checks.
- Adding these gives s .. + 2 = 4 checks/month
- Finally, to determine ... 48 + 3 = 51 checks/year,

- Thus, Buford writes (\boxed{51}) checks annually.

Equivalence Prompt:
Rephrase

B Filtered Rephrased
Prompt Response Pairs

[ ((Jeff's work s 3 miles ... to work 5 times a week? )"

Response:

- Let's solve the problem in a step-by-step manner!

- Firstly, Jeff walk ... returning home) = 6 miles/day.

- Secondly, considering ... day x 5 days/week = ?
\- Finally, performing ... boxed{30} miles per week.. /

Buford writes many checks every ... per year?

Response:

- To find out the ... totals three checks per year.

- Next, we calculate the ...Buford writes 3 checks.
- Adding these gives s ... + 2 = 4 checks/month
- Finally, to determine ... 48 + 3 = 51 checks/year,

- Thus, Buford writes (\boxed{51}) checks annually,

Figure 2. Step-by-step framework for creating the PRM-BiasBench dataset. Original prompt-response pairs are perturbed using an
attack prompt via an LLM. An equivalence checker then filters out semantically altered outputs, retaining only meaning-preserving
transformations. The figure illustrates this process using a rephrasing attack as an example, incorrectly altered responses are highlighted
in red, while semantically equivalent responses passing the filter are shown in green.

tured, multi-step outputs. In settings such as math problem
solving (Cobbe et al., 2021), competition-level mathemat-
ics (Hendrycks et al., 2021), and code generation (Chen
et al., 2021), models are prompted or trained to generate
solutions one logical step at a time. This approach helps
improve both interpretability and accuracy by exposing in-
termediate computations.

Each step in the reasoning trajectory contributes to the final
outcome. As such, evaluating only the end result may miss
crucial errors in the reasoning. This motivates the need for
more fine-grained supervision and evaluation strategies that
can assess the quality of individual steps.

2.3. Process Reward Models

Process reward models (PRMs) extend traditional reward
modeling by assigning scores to individual steps within a
reasoning trajectory. Formally, given a question ¢ and a
partial trajectory (si,...,s;), a PRM computes a reward
r; = PRM(q, s<;) for each step s;. This allows for local-
ized feedback throughout the reasoning process.

The nature of the reward assigned by a PRM depends heavily
on its data annotation strategy and training objective (Zhang
et al., 2025). For instance, a PRM may be trained to regress
toward the probability of reaching a correct final answer
using Monte Carlo estimates. Alternatively, a PRM can be
trained to predict whether each individual reasoning step is
factually correct.

PRMs have been applied in multiple settings, including
reward-guided speculative decoding (Chen et al., 2023),
step-level finetuning (Lightman et al., 2023), and trajectory
filtering for alignment (Zhou et al., 2023). They are also
used to select the most promising reasoning path during
inference or training.

The step-level nature of PRMs enables more targeted super-
vision, but also raises new challenges: because they operate
at a finer granularity, their sensitivity to surface-level cues
(e.g., rephrasing) and their semantic fidelity are important
open questions that motivate our empirical analysis.

3. Related Work

Robustness of Reward Models. Although reward models
(RM) have significantly advanced the alignment of language
models with human preferences, they remain susceptible
to various forms of misalignment. One prominent issue
is reward hacking, where the policy generates outputs that
receive high scores from the reward model without actually
reflecting the intended behavior (Ibarz et al., 2018; Denison
et al., 2024). This misalignment can degrade downstream
performance (Bai et al., 2022) and widen the gap between
what is rewarded and what is semantically helpful (Stiennon
et al., 2020).

Reward hacking often arises through superficial heuristics.
For example, numerous studies have documented length
bias, where longer outputs receive inflated rewards irrespec-
tive of content quality (Singhal et al., 2024; Dubois et al.,
2023; Liu et al., 2024). This is particularly problematic
in RLHF pipelines, where optimization techniques such as
PPO can amplify spurious correlations between structure
and reward.

Improving Process Reward Models. Recent efforts have
explored ways to train more robust and informative process
reward models (PRMs) that better reflect human evalua-
tions at the step level. For instance, Zhang et al. (2025)
analyzed and discussed tips to create datasets for training
strong PRMs. Similarly, Zheng et al. (2024) construct a
dataset with human-annotated reasoning trajectories, where
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annotators identify incorrect steps within multi-step solu-
tions, and train a PRM to detect such first erraneous step in
the trajectory.

More recently, Xu et al. (2025) investigate the limitations of
PRMs and find that they often latch onto shallow consistency
cues rather than learning true causal reasoning structures.
While their work highlights an important misalignment be-
tween human causal understanding and PRM scoring, it
does not comprehensively analyze PRM sensitivity to a
wide range of semantic-preserving and semantic-altering
edits. In contrast, our work systematically audits how state-
of-the-art PRMs respond to diverse controlled perturbations,
and releases a benchmark for future evaluation.

4. PRMProbe

In this section, We introduce PRMProbe, our systematic
framework for auditing the robustness and bias of process
reward models. Figure 1 shows the schematic representation
of the workflow. This section describes the models and
datasets used, the construction of our new PRM BiasBench
benchmark, our equivalence checking and manual review
procedures, and the evaluation metrics used in our analyses.

4.1. Setup

Models. We evaluate two process reward models:
Owen2.5-Math-PRM-7B and Skywork-ol-Open-PRM-
QOwen-2.5-7B. The Skywork PRM is trained to estimate the
probability of success at each intermediate step. The Qwen
PRM, in contrast, is trained to locate the first incorrect step
in a trajectory and assign it a low score, reflecting a break
in reasoning correctness.

Reasoning Trajectories. We use verified step-by-step rea-
soning trajectories from ProcessBench as the foundation for
our robustness evaluation. ProcessBench combines high-
quality trajectories generated by a diverse set of LLMs,
including Qwen2, Qwen2.5-Math, Llama-3 and Llama-3.1
variants, spanning multiple scales from 1.5B to 72B param-
eters, and covers diverse math benchmarks such as GSM8K,
MATHS500, Omni-MATH, and OlympiadBench. This di-
verse pool provides a representative sample of reasoning
chains across different problem types and model families.

4.2. PRM BiasBench

To systematically evaluate the robustness and failure modes
of process reward models (PRMs), we introduce PRM Bias-
Bench, a benchmark suite comprising semantically verified
perturbations applied to high-quality reasoning trajectories.
PRM BiasBench extends ProcessBench by injecting con-
trolled biases and adversarial edits specifically designed
to probe PRM sensitivity to both superficial and meaning-

altering changes. Figure 2 and Algorithm 1 shows the over-
all steps to generate the modified trajectories.

Bias Injection. Starting from verified trajectories in Pro-
cessBench, we apply eight controlled perturbation templates
that target distinct reasoning properties. These include
semantics-preserving modifications—such as rephrasing,
verbosity adjustments, and within-step reordering—as well
as semantics-altering attacks such as question shuffling, nu-
merical value changes, hallucinated facts, and question re-
moval. Each perturbation is generated automatically via
structured prompting and subsequently filtered through an
equivalence validation pipeline.

Bias Verification and Manual Review. To ensure that
each modified trajectory faithfully reflects its intended mod-
ification, we use a strong LLM (GPT-40) to verify that
the injected bias is present and works as intended. For
high-impact cases with large reward deviations, we con-
duct manual inspection to resolve any ambiguous outcomes.
This hybrid validation ensures that reward differences are
attributable to the target bias rather than spurious generation
artifacts.

Benchmark Composition. PRM BiasBench consists of
thousands of verified perturbation pairs, each annotated
with the perturbation type, and original versus modified
PRM scores. This enables fine-grained auditing of PRM
robustness and bias profiles under diverse conditions. We
release the complete suite, along with prompt templates
and validation code, to facilitate reproducibility and future
extensions.

4.3. Robustness Evaluation

For each perturbation pair (7', T'), we compute the reward
difference AR = R(T) — R(T) where R(T) denotes the
scalar reward assigned to the entire trajectory, extracted
from step-wise scores according to the specific PRM, de-
pending on their training strategy. In particular, we define:

RSkywork(T) =Tn,
Rowen(T) = minr;.

Here, r; denotes the reward at step ¢ and r,, denotes the
reward at the final step. To evaluate PRM robustness we
used the mean and standard deviation of AR for each per-
turbation type, along with distribution plots, to highlight
model-specific failure modes and outliers.

5. Semantics-Preserving Modifications

Process reward models (PRMs) should evaluate the logical
integrity and correctness of each reasoning step independent
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(a) Rephrasing
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(c) Decreased Verbosity
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(b) Increased Verbosity

[0 Skywork 01 PRM
ol Qwen Math PRM

-0.2 0.0 0.2
AR (Modified - Original)

(d) Reordering Within Steps

Figure 3. Distribution of reward changes (A R) for four semantics-preserving perturbations: (a) Rephrasing, (b) Increased Verbosity,
(c) Decreased Verbosity, and (d) Reordering within steps. For robust PRMs, A R should be centered near zero with minimal deviation,
indicating invariance to superficial linguistic edits. Skywork shows broader and slightly left-skewed distributions, revealing mild sensitivity

to style variation compared to Qwen.

Algorithm 1 Reward Under Attack
1: Input:
2:  Trajectory T
3:  PRM function ComputePRMReward
4:  Transformation function ApplyAttack
5:  Equivalence checker CheckEquivalence
6
7
8
9

: Output:
Reward difference AR or not _equivalent
¢ Reig < ComputePRMReward(7") // Score original T
. T <« ApplyAttack(T) // Apply transformation
10: Rmoq < ComputePRMReward(T) /I Score modified
11: // Skip semantically different pairs
12: if CheckEquivalence(7,T) = False then
13:  return not_equivalent
14: end if
15: AR + Riod — Rorig
16: return AR

of superficial surface-level variations in phrasing. Although
prior works (Singhal et al., 2024; Dubois et al., 2023; Liu
et al., 2024) have shown that reward models are biased to-
wards trivial linguistic changes such as length bias, rephras-
ing, and verbosity this raises a critical question: Do PRMs
inherit similar sensitivities?

In this section, we apply a suite of semantics-preserving
modifications that are designed to change the linguistic form
of a reasoning trajectory while leaving its underlying logical
structure and final answer intact. By subjecting PRMs to
these controlled perturbations, we aim to probe whether
they genuinely capture semantic accuracy or simply react to
surface-level text artifacts. Below, we detail the four distinct
categories of semantics-preserving perturbations applied in
our evaluations, accompanied by illustrative examples:

5.1. Rephrasing

Example 1: Rephrasing

Original:

Step R: “Compute the sum of the first three terms:
2+44+6=12"

Rephrased:

Step R: “Add the initial three numbers together to
get2+4+6=12"

This attack rephrases each step in the reasoning trajectory us-
ing a different but equivalent language (Example 1: Rephras-
ing). Figure 3(a) shows that both distributions have low
deviations and are centered near zero, indicating that many
trajectories are scored similarly before and after the rephras-
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ing. Thus, it is safe to say that current PRMs are mostly
robust to small paraphrasing changes. However, Skywork
PRM exhibits a broader distribution with a heavier left tail.
This suggests that Skywork is more sensitive to paraphrasing
than Qwen.

5.2. Increased Verbosity

Example 2: Increased Verbosity

Original:

Step V: “Divide both sides by 4 to isolate x: 8z /4 =
12/4, sox = 3.”

Verbose:

Step V: “Now, in order to solve for the variable
x, we take the equation 8x = 12 and divide both
sides of this equality by 4. This yields 8z /4 = 12/4,
which simplifies directly to x = 3.”

This attack adds redundant but semantically equivalent lan-
guage to each step in the reasoning trajectory (Example 2:
Increased Verbosity). Figure 3(b) shows that both PRMs’
reward-change distributions remain tightly centered near
zero, indicating minimal impact from mere lengthening of
the text. Nevertheless, Skywork PRM has a slightly wider
spread and a more pronounced left tail, suggesting it is
somewhat more sensitive to verbosity than Qwen.

5.3. Decreased Verbosity

Example 3: Decreased Verbosity

Original:

Step C: “The height of the beanstalk after n days
can be expressed as: 4 x 2".”

Concise:

Step C: “After n days, the beanstalk’s height is
4 x 2"

This modification reduces verbosity by making each reason-
ing step more concise while preserving all logical content
(Example 3: Decreased Verbosity). Figure 3(c) presents
the distribution of reward changes (AR= Modified — Orig-
inal) for both PRMs. Qwen2.5-Math-PRM-7B remains
tightly centered near zero, indicating minimal sensitivity
to brevity, whereas Skywork-o1-Open-PRM-7B exhibits a
broader spread and a more negative mean shift, suggesting
it is somewhat more sensitive to concise phrasing as well.

5.4. Reordering Within Steps (Conclude Before
Reasoning)

Example 4: Reordering

Original:

Step O: “Josh has 2 apples. He got two more, so
Josh now has 2 + 2 = 4 apples.”

Reordered:

Step O: “Josh now has 2 + 2 = 4 apples, since he
had 2 apples and got two more.”

This modification places the conclusion of a step before its
supporting reasoning while preserving all logical content
(Example 4: Reordering). Figure 3(d) shows the distribu-
tion of reward changes for both PRMs. Qwen2.5-Math-
PRM-7B displays a heavier left tail and greater variance,
indicating more frequent reward drops under atypical or-
dering. Skywork-01-Open-PRM-7B remains closer to zero
with only a slight left skew and a moderately wider spread.
These results indicate that both PRMs rely on structural
conventions rather than purely semantic understanding.

Insight 1 9:

Across all four semantics-preserving edits: rephrasing,
verbosity changes and reordering within steps both PRMs
remain largely invariant (most |AR| < 0.02), with Qwen
showing tighter, more symmetric distributions and Sky-
work exhibiting slightly heavier tails and mild left skews.
This demonstrates strong but not perfect semantic ro-
bustness and highlights the benefit of augmenting PRM
training with diverse, perturbed trajectories to eliminate
remaining stylistic biases.

6. Semantics-Altering Modifications

Process reward models (PRMs) should not only be invariant
to trivial rewordings but also sensitive to genuine breaks
in logical correctness. While the previous section (Sec-
tion 5) probed surface-level robustness, here we introduce
semantics-altering modifications that deliberately disrupt
key aspects of a reasoning trajectory and should cause a
marked decrease in per-step rewards.

In this section, we apply four classes of semantics-altering
edits: question shuffling, numerical perturbation, hallucina-
tion injection, and information removal. Below, we describe
each attack category with illustrative examples:



Reward Under Attack: Evaluating the Sensitivity of Process Reward Models

1
4] 777 Skywork 01 PRM i
I Qwen Math PRM i
61 i
1
1
1
5 1
2 !
2 41 |
K |
a 1
34 i
I

2]

11

-10 -0.4 -0.2 0.0 TR

AR (Modified - Original)
(a) Question Shuffling
) i
1 [ Skywork 01 PRM !
[0 Qwen Math PRM !
6] i
1
1
1
51 1
2 !
@, !
] |
o i
i
1
)

0
-1.0 -0.8 -0.6 -0.2 0.0 0.2 0.4

-0.4 X
AR (Modified - Original)

(c) Numerical Value Change

Skywork 01 PRM
Skywork 01 PRM [1st step]
64 [0 Qwen Math PRM

Density

-0.6

-0.4 -0.2 0.0
AR (Modified - Original)

(b) Question Removal
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Figure 4. Distribution of reward changes (A R) for four semantics-altering perturbations: (a) Question Shuffling, (b) Question Removal, (c)
Numerical Value Change, and (d) Reasoning Hallucination. Qwen shows weaker penalization for question mismatches and hallucinations,
while Skywork more consistently reduces rewards for corrupted reasoning.

6.1. Question Shuffling

Example 5: Question Shuffling

Original:

“Jeff’s work is 3 miles away. He walks ... if he has
to work 5 times a week?”

Step 1: First, Jeff walks 3 ... = 6 miles/day.

Question Shuffling:

“The red rope was four times ... length of the red
rope in centimeters?”

Step 1: First, Jeff walks 3 ... = 6 miles/day.

This modification assigns each trajectory a different prompt
from ProcessBench ensuring none remain paired with their
original prompt so that the reasoning steps no longer match
the new question. Figure 4(a) shows that Skywork-ol-
Open-PRM-7B exhibits a large mean drop with a peak near
—0.20, indicating strong penalization for mismatched ques-
tion-reasoning pairs. Whereas, Qwen2.5-Math-PRM-7B
peak near O with a heavier left tail, reflecting more variable
sensitivity.

6.2. Question Removal

Example 6: Question Removal

Original:

“Jeff’s work is 3 miles away. He walks ... if he has
to work 5 times a week?”

Step 1: First, Jeff walks 3 ... = 6 miles/day.

Question Removal:
(Prompt removed.)
Step 1: First, Jeff walks 3 ... = 6 miles/day.

This modification removes the question entirely, providing
only the reasoning steps to the PRM. It probes how much
each model’s reward depends on having the original prompt
as context. Figure 4(b) shows Qwen2.5-Math-PRM-7B
has a peak around 0 with long tail indicating only minor
reliance on the prompt. Whereas, Skywork-01-Open-PRM-
7B’s first-step scores drop sharply (heavy negative tail) but
its cumulative trajectory score largely recovers, suggesting
the prompt is most critical for early step evaluation.
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6.3. Question Numerical Value Change

Example 7: Question Numerical Value Change

Original:

“Jeff’s work is 3 miles away. He walks ... if he has
to work 5 times a week?”

Step 1: First, Jeff walks 3 ... = 6 miles/day.

Numerical Value Change:

“Jeff’s work is 8 miles away. He walks ... if he has
to work 7 times a week?”

Step 1: First, Jeff walks 3 ... = 6 miles/day.

This modification alters key numeric values in the prompt
while the corresponding reasoning trajectory is untouched.
Figure 4(c) shows that both PRMs strongly penalize these
semantic breaks: Qwen2.5-Math-PRM-7B’s distribution is
tightly peaked near —1.0, indicating near-complete reward
collapse whenever numbers are wrong, whereas Skywork-
01-Open-PRM-7B exhibits a broader negative distribution
centered around roughly —0.5, suggesting it sometimes still
grants partial credit. We also observe a secondary bump
around 0 in roughly 5-10% of cases, the modified prompts
change numeric values that were irrelevant to solution va-
lidity (e.g., years or extraneous statistics), so the PRMs
correctly maintain their original scores.

6.4. Reasoning Hallucination

Example 8: Reasoning Hallucination

Original:
If a and b are integers ... is divided by 20?
Step 1: To find the remainder ... divided by 20.

Step N: The remainder when ... by 20 is .
Reasoning Hallucination:

If @ and b are integers ... is divided by 20?

Step 1: To find the remainder ... divided by 20.
Assuming that a and b are both greater than 20, we
proceed with the calculation accordingly.

Step N: The remainder when ... by 20 is .

J

This modification injects a spurious assumption or false
fact into a reasoning step, breaking the logical flow while
preserving surface syntax. Figure 4(d) shows that Qwen2.5-
Math-PRM-7B exhibits a sharp peak at —1.0, indicating
near-certain collapse of reward whenever a hallucination
occurs, whereas Skywork-o1-Open-PRM-7B’s distribution
is centered around O with a long negative tail reflecting that
it treats the hallucination as valid and gradually recovers its

score over subsequent steps.

Insight 2 9:

Across these four semantics-altering attacks, we see that
both PRMs are capable of detecting genuine breaks in
logical correctness, but with markedly different behav-
iors. Skywork-01-Open-PRM-7B applies consistent early
penalties but often recovering toward the original reward
over later steps whereas Qwen2.5-Math-PRM-7B acts as
a near-binary filter, collapsing its score almost determin-
istically for any numeric or factual corruption but failing
to flag mismatches in structure or missing context.

7. Discussion

Our systematic audit reveals that while current process re-
ward models (PRMs) are generally robust to superficial
linguistic edits such as rephrasing, verbosity changes, and
within-step reordering, this invariance is not perfect: we
observe mild but measurable reward fluctuations even for
semantics-preserving modifications. This suggests that
PRMs can still latch onto shallow stylistic cues, highlight-
ing the benefit of augmenting PRM training with diverse,
perturbed reasoning trajectories to improve true linguistic
invariance.

In contrast, PRMs exhibit clear limitations in detecting more
serious semantic corruptions. Semantics-altering perturba-
tions such as question shuffling, numerical inconsistencies,
or hallucinated reasoning steps often fail to elicit sufficiently
lower rewards, especially in the Qwen PRM. This indicates
that fluency and step-like structure can overly influence
PRM scoring, allowing reward hacking even in step-wise
evaluations.

These findings raise important concerns for downstream
applications that rely on PRMs, such as test-time scaling,
RL with PRM rewards, and alignment filtering. If PRMs do
not reliably capture genuine logical correctness, they risk
reinforcing flawed reasoning patterns during training and
inference. Our study thus underscores the need for more
semantically grounded PRMs, robust to adversarial and out-
of-distribution inputs, and trained with diverse perturbations
to mitigate reliance on shallow cues.

8. Conclusion

In this work, we presented the first systematic robustness
audit of process reward models under a suite of carefully
controlled semantic-preserving and semantic-altering pertur-
bations. Our experiments show that existing PRMs demon-
strate strong invariance to trivial surface changes but remain
vulnerable to deeper semantic failures, highlighting a critical
misalignment between fluency and reasoning correctness.
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To foster progress, we release the PRMProbe framework
and the PRM-BiasBench dataset as open tools to test and
improve the robustness of PRM. We hope that this work
inspires new training objectives, evaluation metrics, and
diagnostic strategies that close the gap between apparent
fluency and true stepwise reasoning quality.
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