Under review as a conference paper at ICLR 2026

SAMPLE-EFFICIENT ALIGNMENT FOR LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study methods for efficiently aligning large language models (LLMs) with
human preferences given budgeted online feedback. We first formulate the LLM
alignment problem in the frame of contextual dueling bandits. This formulation,
subsuming recent paradigms such as online RLHF and online DPO, inherently
quests for sample-efficient algorithms that incorporate online active exploration.
Leveraging insights from bandit theory, we introduce a unified algorithm based on
Thompson sampling and highlight its applications in two distinct LLM alignment
scenarios. The practical agent that efficiently implements this algorithm, named
SEA (Sample-Efficient Alignment), is empirically validated through extensive ex-
periments across three model scales (1B, 2.8B, 6.9B) and three preference learning
algorithms (DPO, IPO, SLiC). The results demonstrate that SEA achieves highly
sample-efficient alignment with oracle’s preferences, outperforming recent active
exploration methods for LLMs. We will release our codebase to hopefully accel-
erate future research in this field.

Fewer better

—_
=3

SFT Online DPO
Offline DPO SEA DPO

W
=1
=

o

)
IS
=)
2

N

o
)
S
2

Passive APL
XPO SEA

—_
=3
=

o
)
o

Win rate v.s. reference respons
f=J
N
Queries required by Passive
=
~

1B 2.8B 6.9B 0 10k 20k 30k 40k 50k
Model size Queries required by alternatives
Figure 1: Win rate comparison of model responses against reference responses on the TL;DR task, judged by
the preference oracle. All compared methods use the same optimization method (DPO). (Left) Performance
improvements at convergence over SFT models achieved by offline (Offline DPO), passively online (Online
DPO), and our active exploration (SEA DPO) methods. (Right) The number of queries required by the pas-
sively online method (Passive) versus that by different active exploration methods to attain various levels of
win rates. SEA achieves the best sample efficiency for online alignment compared to XPO and APL.

1 INTRODUCTION

Aligning LLMs with human preferences is a crucial step to elicit various desirable behaviors, e.g.,
helpfulness and harmlessness (Bai et al., 2022). Moreover, it holds the potential to create superhu-
man capabilities with only human-level feedback, as verifying is believed to be easier than synthe-
sizing novel behaviors. By iteratively generating new candidates and asking for human feedback,
LLMs could learn to reinforce good behaviors and may eventually surpass human capabilities.

Existing methods, either via reinforcement learning from human feedback (RLHF) (Stiennon et al.,
2020; Ouyang et al., 2022) or direct alignment from preferences (DAP) (Rafailov et al., 2023; Azar
et al., 2024), typically require a large amount of human annotations to achieve effective alignment.
As a result, the volume of human feedback becomes a major bottleneck in practical alignment sce-
narios. This poses a challenging and under-explored research question:

How to align LLMs sample-efficiently?

To seek answers, in Sec. 2, we formalize LLM alignment as a contextual dueling bandit (CDB) (Yue
et al., 2012; Dudik et al., 2015), where the agent (i.e., the learner and decision maker, in our case
the LLM) interacts with the environment (i.e., human) to collect experience for policy improvement.
This formulation naturally calls for two key properties for sample-efficient alignment algorithms:

Under review as a conference paper at ICLR 2026

Property 1 (Online interaction). Interacting and learning online allows the agent to act with the
latest learned policy and then use that experience to immediately improve the policy.

Property 2 (Active exploration). An actively exploring agent strategically selects actions such that
the collected experience leads to maximal policy improvement.

Since the CDB formulation is general and almost subsumes all existing LLM alignment methods, it
provides us a lens to scrutinize prior methods on the axes of Properties 1 and 2. In Sec. 3, we thor-
oughly discuss prior alignment approaches, ranging from offline learning (Rafailov et al., 2023; Azar
et al., 2024) and passive learning with iterative (Christiano et al., 2017; Dong et al., 2024) or online
interaction (Guo et al., 2024), to active exploration for learning preference models (Dwaracherla
et al., 2024) or aligning LLMs (Muldrew et al., 2024; Zhang et al., 2024a; Xie et al., 2024). As will
be revealed, most prior methods (partially) fail to satisfy the two properties, resulting in inferior
sample efficiency. Moreover, through the CDB formulation, we identify two LLM alignment
scenarios, namely aligning from online users’ feedback (e.g., ChatGPT (2024)) and aligning from
crowdsourcing (Christiano et al., 2017; Ouyang et al., 2022), and shed light on their correspon-
dences to two bandit settings (explore & exploit and best-arm identification). Understanding their
differences is important for designing efficient alignment algorithms for respective scenarios. We
detail these two settings in Sec. 2 and discuss how prior works approach them in Sec. 3.

Leveraging algorithmic insights from bandit theory, our answer to the research question above is a
principled alignment algorithm based on Thompson sampling (TS) (Thompson, 1933). Our method
fulfills Properties | and 2 to enhance sample efficiency, and it solves either of the two settings
depending on practical scenarios (Sec. 4.1). We incorporate techniques including epistemic reward
model, policy-guided search and mixed preference learning to implement the proposed TS algorithm
(Sec. 4.2), yielding a practical agent which we call SEA (Sample-Efficient Alignment). In addition,
we develop and will open source a highly efficient, distributed learning system for studying online
LLM alignment methods (Sec. 5), eliminating barriers to fair empirical comparisons of different
alignment algorithms. Through extensive experiments (Sec. 6), SEA shows strong empirical results
(see Fig. 1), consistently achieving higher win rates and improved sample efficiency compared to
baseline approaches across three model scales. We will open source the codebase to hopefully
accelerate future research in this field. In summary, the contributions of this work are:

* Through the lens of contextual dueling bandits, we propose a principled Thompson sampling algo-
rithm for LLM online exploration, handling explore & exploit and best-arm identification settings.

* We develop two novel techniques to approximate Thompson sampling in LLM’s large action
space: policy-guided search and mixed preference learning. Thompson sampling requires sam-
pling a reward function from the posterior distribution and generating the sequence that maximizes
the sampled reward function. For policy-guided search, we use an existing epistemic reward
model for approximating the posterior and propose an approximate maximization method based
on sampling a finite set of sequences from the LLM, and doing maximization on the finite sample.
However, maintaining and updating a separate LLM for each reward function as suggested by
Thompson sampling would be prohibitively expensive, thus mixed preference learning is intro-
duced to align the LLM with internal reward functions to better approximate the maximization.

* To our knowledge, we are the first to study active exploration for LLM alignment with fully
online experimental verification. The online alignment codebase will be open sourced.

2 LLM ALIGNMENT AS CONTEXTUAL DUELING BANDITS

We first review the definitions and two typical objectives of Contextual Dueling Bandits (Sec. 2.1),
then translate them into the language of LLM alignment (Sec. 2.2). The tight connection between
them, as we will see, allows us to leverage insights from bandit algorithms to design efficient align-
ment algorithms for LLMs.

2.1 CONTEXTUAL DUELING BANDITS

Contextual dueling bandits (CDB) (Yue et al., 2012; Dudik et al., 2015) is proposed to study online
learning problems where the feedback consists of relative pairwise comparisons. A CDB problem
can be characterized by a tuple (C, A, P), where C is the context space, A is the action space, and
P: AxAxC — [0,1] denotes the unknown preference oracle. An agent learns by iteratively
interacting with the environment (i.e., the preference oracle IP) as follows. At each round ¢ of

Under review as a conference paper at ICLR 2026

the learning process, a context ¢; ~ pc is presented to the agent, who needs to take two actions
a;,a; € A for a “dueling” comparison. The agent then receives stochastic feedback in the form of
a comparison result z; ~ Ber (P (a; = a}|c;)) from the environment, where Ber(+) is the Bernoulli
distribution and > denotes that the first action is preferred.

Regret. The quality of the dueling actions selected by the agent is measured by the immediate
regret: Ry = P(a; = ai|c;) +P(a} = a}|c;) — 1, where a} is the best action' the agent would
take at round ¢ if it had complete knowledge of P. Intuitively, if the agent has learned how to act
optimally from round ¢ onwards, it would no longer suffer any regret since its actions would be
indistinguishable from the best action (P(a% > a.|c,) = 1 hence R, = 0 for 7 > 1).

Optimal policy. A policy 7 € Aif associates each context ¢ € C with a probability distribution
m(-|c) € A4 over the action space. The total preference of policy m over policy u given a context
sampling distribution pc € A¢ and a preference oracle PP is defined as

Py p(m > 1) = Ecrpe [EGNF('lc)Ea’NM(»IC) [P(a - a’|c)]]) (1)
We adopt the von Neumann winner (Dudik et al., 2015) as the solution concept, which requires the
optimal policy 7* to satisfy that

vr' € AG, Py p(n* = 7') > . 2)

N | =

Namely the von Neumann winner policy should beat or tie with
average.

(¢]

very policy (i.e., is zero-regret) on

Learning objectives. The goal of bandit agents is to learn an optimal policy through interactions
with the environment. There are two subtypes of objectives that focus on different learning sce-
narios. The first type considers the conventional explore and exploit (E&E) setting (Robbins, 1952;
Auer et al., 2002), where the agent learns fully online and tries to minimize the cumulative regret
over 7' rounds: 23:1 R;. The second type of objective concerns the best-arm identification (BAI)
setting (Bubeck et al., 2009; Audibert & Bubeck, 2010), where the agent is only evaluated offline on
its average performance, possibly at any round (a.k.a., anytime regret), and tries to learn the optimal
policy with minimum interaction. Both settings call for effective online exploration strategies that
satisfy Properties 1 and 2. Their differences will be made clearer with real scenarios in Sec. 2.2.

2.2 ONLINE ALIGNMENT AS CDB

Online LLM alignment can be framed as a CDB problem. Specifically, at time ¢ a text prompt (cf.
context) x; € X is sampled from a prompt distribution px. Then, two distinct responses (cf. ac-
tions), y;, y; € Y, are chosen by the agent, and presented to human annotators (cf. the environment)
for preference ranking. The winning and losing responses are labeled as (ytJr ,y;) based on a binary
stochastic feedback z; ~ Ber (P (y; > y;|x:)). The agent is expected to produce good responses
satisfying either E&E or BAI objectives, with knowledge learned from the experience accumulated
so far: Dy = {(z,,y},y;)}._,. A standard assumption is that human preferences follow the

Bradley-Terry (BT) model (Bradley & Terry, 1952):

exp (r*(xe, yr))
exp (r* (x4, yr)) + exp (r* (x4, y;
where o is the sigmoid function and r* encodes human’s implicit reward. The immediate regret
of LLM alignment can be rewritten as Ry=r*(xs, y7) — (r* (@, y:) +7* (2, y;)) /2 with the BT

assumption (Saha, 2021; Li et al., 2024), where y; is the best response for ; given human’s implicit
reward, i.e., 7* (x¢, Y7) >r* (x4, y), Vy€Y. The von Neumann winner policy is also redefined as

Py, = yilx:) = N o(r(xe,y) —r*(zn,yy), ()

7% € argmax J(7), where J(7) = EgprEyr(.|a)[r” (2, y)] is the objective, 4)
TEAS

by substituting Eq. (3) into Eq. (1) and maximizing P, p(7m = 7*) towards 1/2.

The two settings in bandits have their respective applications in LLM alignment. (1) The E&E
setting applies to the scenario of serving an LLM-based application online and aligning it continually

'We assume that a best action a* in the sense that P(a* > alc) > 1,Va € A exists for all context ¢ € C.
>We denote by A the set of all mappings C+— A 4, where A 4 is the set of all probability distributions over A.

Under review as a conference paper at ICLR 2026

Iterative RLHF Iterative or Online DAP Exploration with RMs Sample-Efficient Alignment
79 —>{yy/'}>_Human] | |79 = {y.y'}>(_Human] 71',67i§°{111.1/’]>—> 7T(7‘7i§°{y~,y’}—>
z z z z
\ S | | = | e
(a) (b) (©) (d)

Figure 2: Different paradigms to solve online LLM alignment in the CDB interface. The CDB agent is shaded
in gray. We use colors to denote learnable components, RL optimizer, direct optimizer, and active exploration.
r4 denotes a point estimate of human’s implicit reward, while R4 refers to an uncertainty-aware reward model.
Please see Sec. 3 for detailed comparisons with references to prior works.

with users’ preferences. In this setting, the agent needs to balance exploration with exploitation, thus
the cumulative regret is of interest because the quality of every response matters. In fact, commercial
systems like ChatGPT would strategically ask users to make a dueling comparison, while upholding
the quality of both responses. Please see Fig. 11 in App. I for an example. (2) The BAI setting
corresponds to the other scenario where annotators are paid to provide human feedback (Christiano
et al., 2017; Ouyang et al., 2022). The desideratum in this scenario is to align the LLM at the
minimum labeling cost, while the quality of the dueling responses is not important as long as the
experience helps sample-efficiently learn the von Neumann winner policy.

After formalizing LLM alignment in the framework of CDB and uncovering their tight connec-
tions, we next thoroughly discuss existing alignment methods in the CDB framework and reveal the
sources of their sample inefficiencies.

3 HOW PRIOR WORKS (PARTIALLY) SOLVE LLM ALIGNMENT AS CDB

We first align the notations and terminology used in CDB with commonly referred ones in the LLM
community. Previously, we used the term “agent” to denote the learner and decision maker, and
referred to its overall behavior as the “policy” 7 (as in Eq. (4)), following the standard abstraction in
RL (Sutton & Barto, 2018; Sutton et al., 2022). However, in the LLM literature, “policy” typically
refers to the generative language model alone, excluding components like reward models (RMs)
that the agent might additionally build. To avoid confusion, from now on we use my¢ to denote the
generative language model (policy) and ry: to denote the (optional) RM at time ¢, both of which are
learned from preference data D; collected up to time t. We will omit ¢ when the time-indexing is
not applicable (i.e., no online interaction) or not important in the context.

RLHF and DAP. Commonly adopted RLHF pipelines (Christiano et al., 2017; Stiennon et al., 2020;
Bai et al., 2022; Ouyang et al., 2022) first learn a proxy RM with a negative log-likelihood loss:

L(¢|D) = ~E@y+ y-)~pp 1080 (rs (2, 47) =74 (2,97))] (5)

where D is collected by querying human annotators using a behavior policy . (typically the
supervised fine-tuned policy 7y). Afterwards, offline RL® (Lange et al., 2012; Levine et al., 2020)
is conducted to learn 7y with respect to the learned reward r internally within the agent (Fig. 2a).
However, the learned model 7y might be inaccurate at regions out of the distribution (0.0.d.) of m.cf
because little training data can be collected. An effective remedy is to incorporate a pessimistic
term to combat the distributional shift, leading to a reformulation of the von Neumann winner
policy objective in Eq. (4) as

o (yl)

J(mg) = E E re(x,y) — flog —>—~ 6
(mo) = B B | Te@y) =B gﬂ'ref(y|-73)‘| (6)
estimated r* 0.0.d. reward penalty
- B[, B Ielew)] - sDa il imatle)]. @

zpx | y~mo(-|x)

which converts an online objective regarding the human’s implicit reward 7* to an offline objective
regarding the proxy reward r4. The KL penalty in Eq. (7) is widely used for language model
fine-tuning (Jaques et al., 2020; Xiong et al., 2024), and PPO (Schulman et al., 2017) has become a
default RL optimizer to maximize the KL-regularized reward. However, the performance of RLHF
is guaranteed only if the preference data D induced by m..s adequately covers 7* (Zhu et al., 2023),
which is often approximated by updating 7..r with the latest (improved) 7y for re-sampling a batch
of online experience and repeating Eq. (5) and (7). Prior works typically focus on offline or iterative

3Offline in the sense that 7y is not directly learned from online human feedback. See App. C for details.

Under review as a conference paper at ICLR 2026

online (with only a few iterations) settings (Xiong et al., 2024; Dong et al., 2024), which may
compromise sample efficiency (Property 1).

True online RLHF is difficult due to the complexity and instability of RL optimizers. For example,
Huang et al. (2024) openly reproduces offline RLHF scaling behaviors but requires many imple-
mentation tricks for training, highlighting the difficulties of an online counterpart. Fortunately, the
introduction of DAP (or direct optimizers) largely simplifies and stabilizes fine-tuning by conducting
contrastive supervised learning directly on D (Fig. 2b). While most DAP works focus on learning
from a fixed offline preference dataset, including Zhao et al. (2023); Rafailov et al. (2023); Azar
et al. (2024); Meng et al. (2024); Zhang et al. (2024b)), iterative DPO (Xu et al., 2023) observes
improved results when allowing iterative online interaction. Guo et al. (2024) further propose OAIF
to make DAP faithfully online, satisfying Property 1, and demonstrate that online learning prevents
over-fitting and yields continual performance improvement. Nevertheless, it still employs passive
exploration strategies (using y, y’ ~ mg), hindering sample efficiency (Property 2).

Online exploration in LLMs. A line of recent works (Mehta et al., 2023; Das et al., 2024; Melo
et al., 2024; Dwaracherla et al., 2024) adopts the fully online bandit formulation and incorporates
active exploration with uncertainty-aware RMs for response selection (Fig. 2¢). In particular, Mehta
et al. (2023) consider the E&E setting and develop a UCB-style (Auer et al., 2002) algorithm; Das
et al. (2024) instead select the dueling responses with the most uncertain preference estimate, tar-
geting the BAI setting in a pure exploration way; unlike the above, Melo et al. (2024) view the
problem from the angle of pool-based active learning and propose an acquisition function based on
both entropy and epistemic uncertainty; finally, the work by Dwaracherla et al. (2024) is the closest
to ours in the sense that they apply double Thompson sampling (DTS) (Wu & Liu, 2016) for explo-
ration, but DTS is designed for the E&E setting while they evaluate anytime average performance
as in the BAI setting. We will show in App. G.1 that pure exploration by Das et al. (2024) is not
the best choice for BAI, and the objective mismatch in Dwaracherla et al. (2024) could lead to sub-
optimal performance in respective settings. Meanwhile, all these works primarily focus on learning
uncertainty-aware RMs online without updating LLM policies. Therefore, all responses are sampled
from a fixed proposal policy 7g (or even a fixed dataset), making the data coverage a critical concern.

Another line of research updates LLMs online while incorporating exploration. Zhang et al. (2024a)
and Xie et al. (2024) independently propose to learn an optimistic RM to encourage exploration.
They leverage the property of DPO (Rafailov et al., 2023) to reparameterize RM with policy and
conclude with an extra optimistic term in the DPO loss function. Thus, their learning processes are
like Fig. 2b but with an optimistic direct optimizer. Muldrew et al. (2024) adopt the vanilla DPO
loss but utilize the implicit reward margin to actively select dueling responses. Yet, these methods
are tightly coupled with DPO and not compatible to other direct optimizers. Their experiments are
also limited to a few online iterations, possibly due to the implementation difficulty of a faithfully
online learning system. Given their relevance to our approach, we will reproduce them in a fully
online manner for fair comparisons in Sec. 6.1. We summarize prior works in Table 2 in App. L.

4 SEA: SAMPLE-EFFICIENT ALIGNMENT FOR LLMS

In this section we present our online exploration agent SEA (Fig. 2d). We first introduce a principled
Thompson sampling algorithm inspired by bandit theory (Sec. 4.1), and then derive SEA as its
practically efficient implementation (Sec. 4.2). Interestingly, SEA can also be viewed as an
instantiation of a classical model-based RL architecture called Dyna (Sutton, 1990), for which we
defer the discussion to App. C.

4.1 THOMPSON SAMPLING FOR LLM ALIGNMENT

Thompson sampling (T'S) (Thompson, 1933) is widely adopted for solving bandit problems at scale
due to its efficiency and strong empirical performance in general online learning problems (Chapelle
& Li, 2011; Russo et al., 2018). A bandit agent using Thompson sampling typically maintains and
incrementally updates a posterior distribution of the oracle reward p(r|D). Meanwhile, the agent
takes actions following a greedy policy with respect to a sampled RM: a; = arg max, 7(a) with
r ~ p.(-|D). This simple yet effective algorithm naturally balances exploration and exploitation:
when the agent has limited knowledge about the environment, the posterior estimate exhibits high
uncertainty so that the sampled RM could guide the greedy policy to explore; after sufficient ex-

Under review as a conference paper at ICLR 2026

Algorithm 1 Thompson sampling for LLM alignment (intractable).

Input: Prompt distribution p», unknown but queryable preference oracle P.
Initialize experience Dy < .
fort=1,...,7do
Receive a prompt ; ~ py.
Sample T~ p,,«(-|Dt_1) and set Yt < arg HlaXbeyT(:I)t, b) // Select 1st response y.
// EQE objective: aligning an online system.
5: repeat
Sample r~ pr("Dt—l) and set yz < arg maxbeyr(:ct, b) // Select 2nd response y’.
until y; # y,
// BAI objective: labeling via crowdsourcing.
6: Set y; < argmaxpeyV [0 (r(xt, yi) — r(x:, b))], /1 OR select 2nd response y'.
where V [-] computes variance over the posterior p,.(-|D;_1).
7: Query P to label {y;, ¥}, and update experience D; < D; 1 |J {(=+, y;", v,)}.
8: end for

bl s

// See Algorithm 2 for a practical version.

perience is gathered, the sampled RM approximates the oracle more closely, allowing the agent to
exploit near-optimal policies.

In the context of LLM alignment, we leverage the BT assumption (Eq. (3)) to replace the preference
oracle P with human’s implicit reward r*. This substitution enables us to model the reward
posterior p(r|D) in the standard TS framework, preserving the probabilistic structure necessary
for effective posterior sampling. Inspired by prior works (Wu & Liu, 2016; Gonzdlez et al., 2017)
on non-contextual K -arm bandits and preferential Bayesian optimization problems, we generalize
them for LLM alignment and develop a unified algorithm as shown in Algorithm 1. Note that
we assume for now the LLM agent can be fully described by the posterior p(r|D), and we defer
practical reward (r4) and policy (g) learning to Sec. 4.2.

As Algorithm 1 presents, the first response of the duel is always selected via standard TS (Line 4).
The selection of the second response varies across different settings. Line 5 will be used for scenarios
where preference feedback is collected from online users (the E&E setting). The dueling responses
selected in this case will both try to maximize a sampled RM, so that the online user experience
is warranted with best effort. However, such algorithm can have poor asymptotic performance for
BAI problems (Russo, 2016), because sub-optimal responses with confidently high rewards might
be tried for a long time at the expense of not exploring other potentially better choices. In light
of this, Line 6 provides an alternative for scenarios where we could hire annotators for feedback
and low-quality but exploratory responses are safe to try. Specifically, Line 6 selects the second
response as the one that maximizes the variance of the preference (Eq. (3)) over the first response
y;. This variance quantifies the epistemic uncertainty of the RM, pointing the agent to the maximally
informative direction to explore for better sample efficiency.

However, Algorithm 1 is yet to be practical for LLM alignment for three main reasons. First, com-
puting and sampling from a reward posterior is intractable for nearly all RMs at LLM scale, which
are mostly based on large transformers (Lambert et al., 2024). Second, even if we managed to ap-
proximate the reward posterior, the arg max operations for response selection are still intractable
since the search space) is discrete and massive for token sequences of arbitrary length. Last but
not least, an LLM agent (Achiam et al., 2023; Touvron et al., 2023) typically consists in a generative
model 7y (e.g., a transformer (Vaswani et al., 2017)), while the algorithm above is centered around
a reward posterior p(r|D) that cannot be easily converted into a generative model. We next detail
how SEA practically addresses the three aforementioned issues.

4.2 PRACTICAL IMPLEMENTATION
4.2.1 EPISTEMIC REWARD MODEL FOR POSTERIOR SAMPLING
To implement active exploration with TS, we seek an efficient way to maintain and incrementally

update the reward posterior p(r|D). We consider deep ensemble for our purpose, due to its capability
to model epistemic uncertainty (Lakshminarayanan et al., 2017) and provable results when applied to

Under review as a conference paper at ICLR 2026

TS in linear bandits (Qin et al., 2022). Specifically, we update a set of plausible RMs independently
and online, using the preference data and a regularized negative log-likelihood loss:

K

LR(PDy) =) (Lr(¢5IDr) — M8k — 821 (8)
k=1

where £, is defined in Eq. (5), ® = {¢L}/, contains the weights of the ensemble of size K,
and \ controls the regularization towards individual initial weights ¢?. Each ensemble member
is initialized independently with random weights, and then trained with regularization to maintain
the diversity across ensemble members (Dwaracherla et al., 2024). Randomly picking a ¢}, from
®* would approximate the posterior sampling (r ~ p,.(-|D;)) for the RM (Lu & Van Roy, 2017,
Gustafsson et al., 2020). In practice, we train K MLP heads on top of a pretrained and frozen
transformer. We refer to the ensemble as the Epistemic Reward Model (ERM, denoted as Rg).

4.2.2 POLICY-GUIDED SEARCH TO APPROXIMATE arg max

With the ERM approximating the reward posterior, we need to further approximate the response
selection steps (Lines 4 to 6) which generally take the form of argmaxpecyU(b), where U
absorbs the sampled prompt, the sampled RM, and optionally the selected first response (for BAI,
Line 6). To obtain the maximum, bandit algorithms for large action spaces typically resort to an
action optimization oracle (Katz-Samuels et al., 2020; Zhu et al., 2022), but they assume a linear
structure of U with respect to b, which might be impractical for LLMs. Therefore, we instead
replace the optimization over) with sampling from a policy-guided distribution conditioned on
U, Tprior(-|2) exp (U(-)/n), which is appropriate since it favors responses y that approximately
maximize U(y). In practice, for a given prompt x;, we sample M candidate responses from the
prior policy Tprior(+|+) to construct a proposal set S; = {yi M. We then conduct a greedy search
in S; (taking n — 0) to identify the response y; (or y;) that locally maximizes the utility function
U, which is subsequently used in the duel. We also reuse the same S; for different U functions at
time ¢ to save computation. The choice of 7,ior Will be discussed in the next section.

4.2.3 ONLINE POLICY LEARNING FROM MIXED PREFERENCES

We finally resolve two remaining questions: (Q/) how to choose a sensible .., at each time ¢
and (Q2) how to get a good generative policy online. To this end, we propose a simple approach to
approximately address both questions simultaneously. That is, we can utilize any direct optimizer to
learn the policy mg: online with the following loss and use the latest online policy as Tprior:

£ﬂ'(0t‘8tv Tref,) = E(m,y*,y*)Nth [FQ‘ (x, y+, Yy, 71'ref)]) 9

where B; is a batch of preference data labeled by the oracle wherein the responses are proposed by
Tprior and selected by Rg¢, ' could be any DAP loss (see App. A for some examples), and 7ef is
chosen to be mg¢. Note that we use mge as Tprior at any time ¢, thus B¢ is a batch of on-policy data.
By contrastive training on these on-policy data, we leverage their orthogonal benefits to achieve
maximal policy improvement (Tajwar et al., 2024; Tang et al., 2024).

Now that optimizing Eq. (9) yields a good online policy 7y: (answering Q2), we need to assess
whether 7y¢ can serve as a suitable 7,40, for approximating the arg max in TS (Q1). If we optimize
et with oracle preference data, S; will be biased towards responses with high oracle reward r*.
Bias towards high-r* region is generally helpful because it aligns with arg maxpcyr(x,b) that
seeks high-reward responses. However, optimizing mg: only with oracle data can average out the
epistemic uncertainty of R, hindering the exploration efficiency. To mitigate this issue, we further
align mg: with R+ using the same direct optimizer to encourage mg: to propose high-r 4 responses
for individual 74 , leading to better approximation of arg maxpeyr(x, b) for any sampled r. To
implement, we optimize Eq. (9) over a batch of data mixture pgmx = yps, + (1- ’Y)pBE_RM, where

v € [0,1] controls the mixture ratio and BERM = {(z;, 9;", 5,)}Y_, consists of preference data
labeled by randomly sampled individual ensemble members Tt Interestingly, learning from mixed
preferences further boosts sample efficiency because it utilizes the internal ERM to get pseudo labels
instead of querying humans. This relates closely to model-based RL, for which we discuss further
in App. C. We summarize our practical algorithm (Algorithm 2) in App. A.

Under review as a conference paper at ICLR 2026

Pythia 1B Pythia 2.8B Pythia 6.9B
0.9 0.9
08 0.9
E 0.8
2 038
= 0.7 o
o 0.7 0.7 I}
g 0.6 Offline — XPO Offline — XPO : Offline -~ xPO | @
05 Online —APL | 0.6 Online = APL | 0.6 Online = APL
: SEA 05 SEA 05 SEA
0.9 09
08 : 0.9
§ . 0.8 0.8 _
s~
g7 07 07 3
B 0.6 Offline = SEA 0.6 Offline ~ SEA 0.6 Offline ~ SEA
Online Online Online
0.5 0.5 0.5
0.9 0.9 0.9
< 0.

- 7 0.7 0.7 g
§ 0.6 o)
05 Offline — SEA | 0.6 Offline ~ SEA | 0.6 Offline ~ SEA

) Online Online Online
0.5 0.5
0 10k 20k 30k 40k 50k 0 10k 20k 30k 40k 50k 0 10k 20k 30k 40k 50k
Query step Query step Query step

Figure 3: Win rate comparison of different algorithms against their initial SFT models across three scales and
three direct optimizers.

5 EXPERIMENTAL SETUP

Software. To facilitate our empirical studies, we develop a distributed learning framework for on-
line LLM alignment. The framework is based on an Actor-Learner-Oracle architecture, drawing
inspiration from Espeholt et al. (2018). We incorporate various optimizations for each component:
vLLM (Kwon et al., 2023) for actors, DeepSpeed (Rasley et al., 2020) for learners, and Mosec (Yang
et al., 2021b) for oracles. Detailed descriptions of the framework and its efficiency benchmarks are
provided in App. D & H.

Settings. We adopt SFT models tuned on TL ;DR (Stiennon et al., 2020) from Huang et al. (2024),
which cover three scales (1B, 2.8B, 6.9B) of the Pythia family (Biderman et al., 2023), as starting
points for our experiments. We use a strong scalar RM (Liu et al., 2024a)” to simulate the preference
oracle. To verify the effectiveness of SEA, we employ three direct optimizers: DPO (Rafailov et al.,
2023), IPO (Azar et al., 2024), and SLiC (Zhao et al., 2023) to serve as F' in Eq. (9). Besides, two
LLM exploration methods built on DPO, APL (Muldrew et al., 2024) and XPO (Xie et al., 2024),
are fairly compared when using DPO as the optimizer. Our experiments primarily focus on the BAI
setting (crowdsourcing labeling), where we report the win rate of learned models against initial
SFT models. All experiments are repeated three times to ensure statistical significance. Please see
App. F for more details. Additional experiments using Llama models (Grattafiori et al., 2024) and
the UltraFeedback dataset (Cui et al., 2023) can be found in Apps. G.3 and G .4.

6 EMPIRICAL STUDIES

We next present our empirical studies highlighting five results: (1) Comparisons with baselines
across various direct optimizers and model scales demonstrate SEA’s superior sample efficiency
(Sec. 6.1). (2) Ablations confirm that both online policy learning and active exploration contribute
to sample-efficient alignment, and using the learned ERM for Best-of-N sampling further improves
the performance (Sec. 6.2). (3) Different exploration strategies (Line 5 or Line 6 in Algorithm 1)
are verified to work best in respective settings. (4) SEA robustly outperforms baselines when
GPT40-mini is used as a judge to simulate human feedback. (5) Beyond the summarization task,
SEA can effectively enhance general capabilities of LLMs. (6) SEA is robust to feedback noise.
Results for (3-6) are deferred to App. G due to space constraints.

6.1 OVERALL COMPARISON

We first compare SEA with all baselines across three model scales and three direct optimizers.
APL and XPO are only compared when DPO is used as the direct optimizer, because they are
incompatible with IPO or SLiC. Fig. 3 shows the win rate curves versus the number of query
steps. Across all settings, Online agents consistently improve sample efficiency over their Offline
counterparts, validating the necessity of Property 1 for alignment algorithms. Focusing on the first

4ht‘cps ://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B.

https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B

Under review as a conference paper at ICLR 2026

Table 1: Decomposition of different driving factors of online active alignment algorithms.

Variant Inference (Test) Exploration Learn Remark
1 o passive e Online DAP (Guo et al., 2024)
2 o active (7o, Ra) SEA without ERM sync (Sec. 4.2.3)
3 T active (mo <+ Rs) SEA
4 BoN(7g, Ra) passive (7m0, Ra)
5 BoN(mg, Ra) active (7o, Ra) -
6 BoN(7g, Ra) active (mo <> Ra) SEA with Best-of-N sampling
7 BoN(myef, Ra) active Rae Not learn policy (Dwaracherla et al., 2024)

row, we observe that among prior active exploration methods, XPO gives a small improvement in
final performance over Online (passive) at the 1B scale, but falls short for larger scales. On the
other hand, APL shows a significant sample efficiency boost at the 1B scale, but this advantage
diminishes when scaling up and it performs almost the same as Online at 6.9B scale. Our method,
SEA, outperforms both offline and online passive methods across all scales and all direct optimizers,
confirming the critical role that Property 2 plays for sample-efficient alignment. Meanwhile, in
the special case of using DPO as the direct optimizer, SEA also shows superior performance to
prior online active exploration methods including APL and XPO. We invite readers to revisit Fig. 1,
where we show that SEA not only attains significantly improved final performance (Top) but also
achieves 2-5x better sample efficiency (Bottom).

Additionally, we note that the choice of direct optimizer is crucial for both online learning and active
exploration. When comparing different optimizers at the 1B scale (the first column), all Offline
agents demonstrate comparable learning efficiency and reach the same level of final performance
(around 70% win rate), but SLiC Online agent deliver slightly less improvement than DPO and IPO
Online agents. Besides, when incorporating active exploration, the SEA agent using DPO shows
much larger improvement than the other two. This suggests that selecting the most suitable policy
optimizer coupled with active exploration would yield the best agent.

6.2 ABLATION ANALYSIS

We decompose SEA into distinct components to evaluate their individual contributions. Table 1
shows the three axes we dissect SEA on, including inference methods, exploration strategies, and
learning components. We construct seven agent variants from different combinations, which cover
two closely related baselines (Dwaracherla et al., 2024; Guo et al., 2024). We show in Fig. 4 the
performance curves of each variant, all trained with DPO on 1B scale.

Win rate learning curves

The top plot compares variants that directly use the policy for
inference. Comparing with the vanilla online method (Variant-
1), we observe learning ERM for active exploration (Variant-
2) is beneficial, and aligning g+ with R+ (Variant-3) further T 4
improves sample efficiency, which validate our algorithm. Ad-
ditionally, since a reward model is learned within the agent, we
can incorporate inference-time alignment via Best-of-N (BoN)
sampling (Nakano et al., 2021; Touvron et al., 2023). This also
facilitates a direct comparison between SEA and Dwaracherla
et al. (2024), which learns a similar ERM for both explo-
ration and BoN but does not align the LLM policy. Results in
the bottom plot of Fig. 4 suggest a similar trend that Variant-
6 > Variant-5 > Variant-4. The Variant-7 (Dwaracherla et al.,
2024), however, ceases to improve after ERM converges due
to the limited capability of its fixed policy.

Policy
e
oo

\

o
=N
\
(S}
w

0.8 —

BoN
N
wn
(=)}
~

0 10k 20k 30k 40k 50k
Query step

Figure 4: Win rate comparison of dif-
ferent agent variants when using (Top)
policy and (Bottom) Best-of-N sam-
pling for inference.

7 CONCLUSION

In this paper, we study the problem of LLM alignment through the lens of contextual dueling ban-
dits and propose a Thompson sampling-based algorithm to achieve sample-efficient alignment. We
incorporate three techniques, including epistemic reward model, policy-guided search and mixed
preference learning to yield a practically efficient online alignment method. Extensive empirical
evaluation demonstrates the superior sample efficiency of our method compared to existing base-
lines. To our knowledge, this is the first work to study active exploration for online LLM alignment
with fully online experimental verification. We hope our positive empirical results, along with the
open-sourced codebase, will encourage future research in this direction, ultimately enabling LLMs
to achieve superhuman intelligence with an affordable amount of human feedback.

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Jean-Yves Audibert and Sébastien Bubeck. Best arm identification in multi-armed bandits. In
Conference on learning theory, pp. 41-53, 2010.

Peter Auer, Nicolod Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47:235-256, 2002.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learn-
ing from human preferences. In International Conference on Artificial Intelligence and Statistics,
pp. 4447-4455. PMLR, 2024.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemystaw Degbiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397-2430. PMLR, 2023.

Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: 1. the method
of paired comparisons. Biometrika, 39(3/4):324-345, 1952.

Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in multi-armed bandits prob-
lems. In Algorithmic Learning Theory: 20th International Conference, ALT 2009, Porto, Portu-
gal, October 3-5, 2009. Proceedings 20, pp. 23-37. Springer, 2009.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Rébert Busa-Fekete, Baldzs Szorényi, Paul Weng, Weiwei Cheng, and Eyke Hiillermeier.
Preference-based reinforcement learning: evolutionary direct policy search using a preference-
based racing algorithm. Machine learning, 97:327-351, 2014.

Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. Advances in neural
information processing systems, 24, 2011.

OpenAl ChatGPT. ChatGPT. https://chatgpt.com/, 2024. Accessed: 2024-09-30.

Changyu Chen, Zichen Liu, Chao Du, Tianyu Pang, Qian Liu, Arunesh Sinha, Pradeep Varakan-
tham, and Min Lin. Bootstrapping language models with dpo implicit rewards. arXiv preprint
arXiv:2406.09760, 2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback, 2023.

Nirjhar Das, Souradip Chakraborty, Aldo Pacchiano, and Sayak Ray Chowdhury. Provably sample
efficient rlhf via active preference optimization. arXiv preprint arXiv:2402.10500, 2024.

10

https://chatgpt.com/

Under review as a conference paper at ICLR 2026

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. RIlhf workflow: From reward modeling to online rlhf.
arXiv preprint arXiv:2405.07863, 2024.

Yann Dubois, Baldzs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled al-
pacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Miroslav Dudik, Katja Hofmann, Robert E Schapire, Aleksandrs Slivkins, and Masrour Zoghi. Con-
textual dueling bandits. In Conference on Learning Theory, pp. 563-587. PMLR, 2015.

Vikranth Dwaracherla, Seyed Mohammad Asghari, Botao Hao, and Benjamin Van Roy. Efficient
exploration for llms. In International Conference on Machine Learning, 2024.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In International conference on machine learning,
pp. 1407-1416. PMLR, 2018.

Javier Gonzdlez, Zhenwen Dai, Andreas Damianou, and Neil D Lawrence. Preferential bayesian
optimization. In International Conference on Machine Learning, pp. 1282-1291. PMLR, 2017.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from
online ai feedback. arXiv preprint arXiv:2402.04792, 2024.

Fredrik K Gustafsson, Martin Danelljan, and Thomas B Schon. Evaluating scalable bayesian deep
learning methods for robust computer vision. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pp. 318-319, 2020.

Jian Hu, Xibin Wu, Weixun Wang, Dehao Zhang, Yu Cao, et al. Openrlhf: An easy-to-use, scalable
and high-performance rlhf framework. arXiv preprint arXiv:2405.11143,2024.

Shengyi Huang, Michael Noukhovitch, Arian Hosseini, Kashif Rasul, Weixun Wang, and Lewis
Tunstall. The n+ implementation details of rlhf with ppo: A case study on tl; dr summarization.
arXiv preprint arXiv:2403.17031, 2024.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in neural information processing systems, 32, 2019.

Natasha Jaques, Judy Hanwen Shen, Asma Ghandeharioun, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Shane Gu, and Rosalind Picard. Human-centric dialog training via offline rein-
forcement learning. arXiv preprint arXiv:2010.05848, 2020.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise comparison and generative fusion. In Proceedings of the 61th Annual Meeting of
the Association for Computational Linguistics (ACL 2023), 2023.

Julian Katz-Samuels, Lalit Jain, Kevin G Jamieson, et al. An empirical process approach to the union
bound: Practical algorithms for combinatorial and linear bandits. Advances in Neural Information
Processing Systems, 33:10371-10382, 2020.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in neural information processing systems, 33:

21810-21823, 2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

11

Under review as a conference paper at ICLR 2026

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh Hajishirzi.
Rewardbench: Evaluating reward models for language modeling, 2024.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforce-
ment learning: State-of-the-art, pp. 45-73. Springer, 2012.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval, 5 2023.

Xuheng Li, Heyang Zhao, and Quanquan Gu. Feel-good thompson sampling for contextual dueling
bandits. arXiv preprint arXiv:2404.06013, 2024.

Chris Yuhao Liu, Liang Zeng, Liu Jiacai, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang
Liu, and Yahui Zhou. Skywork reward model series. arXiv preprint arXiv:2410.18451, 2024a.

Zichen Liu, Siyi Li, Wee Sun Lee, Shuicheng Yan, and Zhongwen Xu. Efficient offline policy
optimization with a learned model. In International Conference on Learning Representations,
2023.

Zichen Liu, Chao Du, Wee Sun Lee, and Min Lin. Locality sensitive sparse encoding for learning
world models online. In International Conference on Learning Representations, 2024b.

Xiuyuan Lu and Benjamin Van Roy. Ensemble sampling. Advances in neural information processing
systems, 30, 2017.

Viraj Mehta, Vikramjeet Das, Ojash Neopane, Yijia Dai, Ilija Bogunovic, Jeff Schneider, and Willie
Neiswanger. Sample efficient reinforcement learning from human feedback via active exploration.
arXiv preprint arxiv:2312.00267, 2023.

Luckeciano C Melo, Panagiotis Tigas, Alessandro Abate, and Yarin Gal. Deep bayesian active
learning for preference modeling in large language models. arXiv preprint arXiv:2406.10023,
2024.

Yu Meng, Mengzhou Xia, and Dangi Chen. Simpo: Simple preference optimization with a
reference-free reward. arXiv preprint arXiv:2405.14734, 2024.

William Muldrew, Peter Hayes, Mingtian Zhang, and David Barber. Active preference learning for
large language models. In International Conference on Machine Learning, 2024.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Andrew Y Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In International
Conference on Machine Learning, volume 1, pp. 2, 2000.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730-27744, 2022.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
space control. In International Conference on Machine Learning, pp. 745750, 2007.

12

https://github.com/tatsu-lab/alpaca_eval

Under review as a conference paper at ICLR 2026

Moritz Philipp and Nishihara Robert. Plasma: A high-performance shared-
memory object store, 2017. URL https://arrow.apache.org/blog/2017/08/08/
plasma-in-memory-object-store/.

Chao Qin, Zheng Wen, Xiuyuan Lu, and Benjamin Van Roy. An analysis of ensemble sampling.
Advances in Neural Information Processing Systems, 35:21602-21614, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 37, 2023.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to q*: Your language model is
secretly a g-function. In Conference on Language Modeling, 2024.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1-16. IEEE, 2020.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
mizations enable training deep learning models with over 100 billion parameters. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 3505-3506, 2020.

Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of the American
Mathematics Society, 58:527-535, 1952.

Daniel Russo. Simple bayesian algorithms for best arm identification. In Conference on Learning
Theory, pp. 1417-1418. PMLR, 2016.

Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on
thompson sampling. Foundations and Trends® in Machine Learning, 11(1):1-96, 2018.

Aadirupa Saha. Optimal algorithms for stochastic contextual preference bandits. Advances in Neural
Information Processing Systems, 34:30050-30062, 2021.

Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin Barekatain, Ioannis
Antonoglou, and David Silver. Online and offline reinforcement learning by planning with a
learned model. Advances in Neural Information Processing Systems, 34:27580-27591, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008-3021, 2020.

Richard S. Sutton. Integrated architectures for learning, planning, and reacting based on approximat-
ing dynamic programming. In Machine Learning Proceedings, pp. 216-224. Morgan Kaufmann,
1990.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018.

Richard S Sutton, Michael Bowling, and Patrick M Pilarski. The alberta plan for ai research. arXiv
preprint arXiv:2208.11173, 2022.

Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael Rafailov, Jeff Schneider, Tengyang Xie, Ste-
fano Ermon, Chelsea Finn, and Aviral Kumar. Preference fine-tuning of llms should leverage
suboptimal, on-policy data. arXiv preprint arXiv:2404.14367, 2024.

Yunhao Tang, Daniel Zhaohan Guo, Zeyu Zheng, Daniele Calandriello, Yuan Cao, Eugene Tarassov,
Rémi Munos, Bernardo Avila Pires, Michal Valko, Yong Cheng, et al. Understanding the perfor-
mance gap between online and offline alignment algorithms. arXiv preprint arXiv:2405.08448,
2024.

13

https://arrow.apache.org/blog/2017/08/08/plasma-in-memory-object-store/
https://arrow.apache.org/blog/2017/08/08/plasma-in-memory-object-store/

Under review as a conference paper at ICLR 2026

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3-4):285-294, 1933.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30, 2017.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences
via multi-objective reward modeling and mixture-of-experts. arXiv preprint arXiv:2406.12845,
2024.

Jiayi Weng, Min Lin, Shengyi Huang, Bo Liu, Denys Makoviichuk, Viktor Makoviychuk, Zichen
Liu, Yufan Song, Ting Luo, Yukun Jiang, Zhongwen Xu, and Shuicheng Yan. EnvPool: A highly
parallel reinforcement learning environment execution engine. In Advances in Neural Information
Processing Systems, volume 35, pp. 22409-22421, 2022.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229-256, 1992.

Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Fiirnkranz. A survey of preference-
based reinforcement learning methods. Journal of Machine Learning Research, 18(136):1-46,
2017.

Huasen Wu and Xin Liu. Double thompson sampling for dueling bandits. Advances in neural
information processing systems, 29, 2016.

Tengyang Xie, Dylan J Foster, Akshay Krishnamurthy, Corby Rosset, Ahmed Awadallah, and
Alexander Rakhlin. Exploratory preference optimization: Harnessing implicit q*-approximation
for sample-efficient rlhf. arXiv preprint arXiv:2405.21046, 2024.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for rlhf under
kl-constraint. In Forty-first International Conference on Machine Learning, 2024.

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason Weston. Some things are more cringe than
others: Preference optimization with the pairwise cringe loss. arXiv preprint arXiv:2312.16682,
2023.

Fan Yang, Gabriel Barth-Maron, Piotr Staiczyk, Matthew Hoffman, Siqi Liu, Manuel Kroiss, Aedan
Pope, and Alban Rrustemi. Launchpad: A programming model for distributed machine learning
research. arXiv preprint arXiv:2106.04516, 2021a.

Keming Yang, Zichen Liu, and Philip Cheng. MOSEC: Model Serving made Efficient in the Cloud.
https://github.com/mosecorg/mosec, 2021b.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. Advances in neural information
processing systems, 34:28954-28967, 2021.

Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-armed dueling bandits
problem. Journal of Computer and System Sciences, 78(5):1538—-1556, 2012.

Shenao Zhang, Donghan Yu, Hiteshi Sharma, Ziyi Yang, Shuohang Wang, Hany Hassan, and Zhao-
ran Wang. Self-exploring language models: Active preference elicitation for online alignment.
arXiv preprint arXiv:2405.19332, 2024a.

Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei Gao, and Min Lin. Chain of preference opti-

mization: Improving chain-of-thought reasoning in llms. Advances in Neural Information Pro-
cessing Systems, 38, 2024b.

14

https://github.com/mosecorg/mosec

Under review as a conference paper at ICLR 2026

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf:
Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595-46623, 2023.

Banghua Zhu, Michael Jordan, and Jiantao Jiao. Principled reinforcement learning with human feed-
back from pairwise or k-wise comparisons. In Proceedings of the 40th International Conference
on Machine Learning, pp. 43037-43067. PMLR, 2023.

Yinglun Zhu, Dylan J Foster, John Langford, and Paul Mineiro. Contextual bandits with large action
spaces: Made practical. In International Conference on Machine Learning, pp. 27428-27453.
PMLR, 2022.

15

Under review as a conference paper at ICLR 2026

A ALGORITHM DETAILS

While Algorithm 1 presents our Thompson sampling algorithm for LLM alignment, it is intractable
and centered around the reward posterior modeling. We next present a practical sample-efficient
alignment agent that learns both an LLLM policy and an epistemic reward model (ERM) online.

Algorithm 2 Sample-efficient alignment (SEA) for LLMs
Input: Reference policy mrer, DAP loss function F', prompt distribution px, unknown but queryable
preference oracle P, mixture ratio .

1: Initialize experience Do < @, policy mgo < mrer, and ERM weights ®° = {¢2}5_; randomly.
2: fort=1,...,7do

3: Receive a prompt &; ~ pr. _
4: Sample M responses y; ~ myt—1(:|x:) to construct S; = {yi} ;.
5 Sample ¢ ~ Uniform(®'~") and set y; < arg max, g, 74 (z¢, b). /1 Select 1st response y.
// EQE objective: aligning an online system.
6: repeat
Sample ¢ ~ Uniform(®'~') and set y; < arg max, 5,74 (z¢, b). // Select 2nd response y’.

until y; # y,
// BAIL objective: labeling via crowdsourcing.
7: Set y{ {— arg maxpes, Vo [0’ (r¢(wt, yt) — r¢(wt, b))], // OR select 2nd response y’.
where V4 [-] computes variance across ensemble members of &'~
8: if g < 7y for g ~ Uniform(0, 1) then
Label {y:, y; } with P to obtain B; = {(z¢, y;",y;)} and update experience D; <+ D;—1 | B:.
else
Use Rgt—1 to get synthetic labels and obtain B; = {(x:, ¥, , ¥;)}
end if
9: Update ERM with the regularized NLL loss (Eq. (8)):

O @' — arVaLr (P Dy).
// Reward learning.
10: Update policy with the direct optimizer (Eq. (9)):
0t < 9t71 - awveﬁw(9t71|6t7 Tref, F)

// Policy learning.
11: end for

In Algorithm 2, we describe an online setting where a single example is processed at each time ¢
(batch size b = 1). This is mainly for notational convenience, while in implementation we set b to
be the training batch size (e.g., 128). We instantiate the reward posterior with an epistemic reward
model, which allows for efficient incremental update and sampling. We also replace the global
optimization (arg maxpcy) with a policy-guided local search among proposals sampled from the
latest online policy my:—1. At each time ¢, we update ERM weights ® with m gradient steps with
randomly sampled batches from the experience D;. We find setting m = 5 suffices to achieve a
reasonable accuracy. The policy parameters 6 are updated using mixed preference data, with a
~ proportion being the real environment experience and the remaining (1 —) from the ERM’s
synthetic experience. Note that the synthetic experience is not added into D, to ensure reward
learning always uses ground truth environment data.

We consider the following three direct optimizers in our experiments:
* DPO (Rafailov et al., 2023):

+ o _ o (y+|w) Tret (Y~ |)
Fe(w,y 7y)’n—I‘Cf) - 1Og0 (/B IOg 7Tref (y+|w) 7_(_9 (y_|$) (10)

e TPO (Azar et al., 2024):

+ - 1)’
i . 7o (YT |x) Tret (Y |53)) _) 11
o(@, Yy, Y, Teer) (Og (Wrcf(yﬂw)ﬂe (y~|z) 2 o

e SLiC (Zhao et al., 2023):

+ —
Fy(@,y*,y ™ mer) = max (o, 1 log W) et (0 "”)

12
oot (97]2) 76 (- |2) (12

16

Under review as a conference paper at ICLR 2026

where (3 controls the rate of deviation of 7y from 7 f.

B FULL RELATED WORKS

In Sec. 3, we reviewed prior approaches to the LLM alignment problem. Table 2 provides a struc-
tured summary of these methods, highlighting their characteristics across exploration, interaction,
and proposal policy design.

Method Exploration Interaction Proposal Policy
Active Passive Online Iterative Offline) T3
Christiano et al. (2017) v v v v
RL Stiennon et al. (2020) v v v v
Optimizer Bai et al. (2022) 4 v v v
Ouyang et al. (2022) v v v v
Zhao et al. (2023) v 4 v
Rafailov et al. (2023) v v v
Azar et al. (2024) v v v
Meng et al. (2024) v v v
Xu et al. (2023) v v/ v
Direct Guo et al. (2024) v v
Optimizer Mehta et al. (2023) v v
Das et al. (2024) v v
Melo et al. (2024) v v
Dwaracherla et al. (2024) v v
Zhang et al. (2024a) v v
Xie et al. (2024) v v
Muldrew et al. (2024) v v

Table 2: A summary of prior work. 7 denotes the proposal policy that is continuously updated based on
newly collected preference data, while mg denotes a fixed proposal policy. Algorithms that encompass online
interaction (Property 1), active exploration (Property 2), and learnable 7y offer the best sample efficiency.
Notably, only three methods (listed at the bottom of the table) satisfy these characteristics, and we include
them for comparisons in our experiments.

C ON CONNECTIONS WITH SINGLE-STEP RL

By viewing contextual dueling bandits as single-step preference-based RL (PbRL) (Busa-Fekete
et al., 2014; Wirth et al., 2017) problems, we can interpret paradigms shown in Fig. 2 from the RL
perspective.

RLHF approaches (Fig. 2a) are instances of offline model-based RL (Kidambi et al., 2020; Yu
et al., 2021; Schrittwieser et al., 2021; Liu et al., 2023; Tajwar et al., 2024), where they learn a
reward model (no need for a transition model since the prompt-response interaction is single-step)
of the environment from a batch of offline collected data, and train a policy (i.e., LLM) to maximize
the return (i.e., expected one-step reward) with respect to the learned reward.

In contrast, DAP methods (Fig. 2b) are similar to policy-based model-free RL algorithms, e.g.,
REINFORCE (Williams, 1992) which conducts policy gradient update:

EII!NXEyNﬂ'g("Z) [R(:B7 y)Vg IOg o (ylw)]) (13)

where R(x,y) is the return (i.e., cumulative reward) of the trajectory. To connect with DAP, we
could set R as arbitrary scalar values based on the binary preference outcomes, e.g., R(z,y*) = ¢
and R(x,y~) = —(for preference triplet {x,y*,y~ }. In this way we could rewrite Eq. (13) as

Egnx By g mmg (- |2) Byt -y—)~P [((Vg log g (y T |x) — Vg log Wg(y*\:c))] , (14)

by repeating action sampling twice and querying the oracle for preference labeling. This matches
the gradient direction of contrastive DAP losses (e.g., see Section 4 of DPO (Rafailov et al., 2023))
if we optimize them online (Guo et al., 2024).

Additionally, active reward learning from behavior policy’s data distribution (Fig. 2c) can be
regarded as inverse RL (Ng & Russell, 2000), which tries to recover environment’s reward function
given expert trajectories. In the context of LLM alignment, the preference data {z,y*,y~}¥,
directly encodes human’s implicit reward r*, which can be inversely learned with assumptions such

17

Under review as a conference paper at ICLR 2026

as the BT model (Bradley & Terry, 1952). However, existing methods belonging to this paradigm
mostly rely on a fixed (and suboptimal) behavior policy for response sampling, whose coverage
inherently limits the quality of the recovered reward function.

Last but not least, SEA depicted in Fig. 2d resembles a class of online model-based RL algorithms,
known as Dyna (Sutton, 1990; Janner et al., 2019), that learns a world model from environment
experience and trains a base agent (consisting of reactive policies and value functions) from both
environment experience and model experience. Compared to model-free methods, Dyna naturally
enables more sample-efficient learning by planning with the learned world model to update the base
agent. In SEA, we learn the reward model online and update the LLM (i.e., the reactive policy)
with model-planing experience by mixed preference learning (Sec. 4.2.3). Online model-based RL
algorithms could suffer from catastrophic forgetting in the face of nonstationary data (Liu et al.,
2024b), and we leave it for future work. Overall, this model-based RL formulation is powerful and
explains popular LLM techniques, e.g., Best-of-N sampling (Touvron et al., 2023) can be viewed
as planning for acting, which trades compute for performance. We believe it is a promising path
leading us to unlock superhuman capabilities of LLMs.

D DISTRIBUTED LEARNING FRAMEWORK

The interactive nature of LLM alignment necessitates an integrated online learning system that sim-
ulates the interface. The absence of a performant open-source online alignment system has restricted
many existing works to only a few iterations of batch learning (Muldrew et al., 2024; Dong et al.,
2024; Chen et al., 2024; Zhang et al., 2024a; Xie et al., 2024), which creates a mismatch with their
theories that typically require a large number of online interaction rounds. Even worse, such absence
also makes the comparison between different LLM exploration methods difficult, often restricting
evaluations to the simplest iterative DAP baselines (Zhang et al., 2024a; Xie et al., 2024).

To fill this gap, we build a highly efficient learning system for ex-
perimenting with online LLM alignment algorithms. We notice
that the computational bottleneck lies in online response sampling
(i.e., autoregressive generation) and preference labeling (e.g., hu- Learner

man, large RMs, or large LLMs), which mirrors the slow actor- vLLM
environment interaction seen in RL systems. Inspired by dis-
tributed deep RL systems which spawn many actors or environ-
ments in parallel (Espeholt et al., 2018; Weng et al., 2022), we de- Learner
sign an Actor-Learner-Oracle architecture for online LLM align- Master
ment, which is depicted in Fig. 5. The three types of workloads
(i.e., actor, learner and oracle) are heterogeneous and require dif-
ferent optimization. In particular, we adopt vLLM (Kwon et al.,
2023) for the actor to accelerate the autoregressive response gen- for experimentine online LLM
eration. We also use DeepSpeed’s ZeRO (Rasley et al., 2020; Ra- alignmﬂnt algoritl%ms

jbhandari et al., 2020) strategies to enhance the memory efficiency '

of the learner. The updated model weights are broadcasted from the learner master to all actors after
every optimizer step efficiently via NCCL, similar to Hu et al. (2024). Furthermore, to improve the
scalability, we wrap the oracle RM as a service using Mosec (Yang et al., 2021b), which supports
dynamic batching and parallel processing, to minimize preference query latency. Finally, we lever-
age DeepMind Launchpad (Yang et al., 2021a) to compose all workloads into a distributed program
and adopt Plasma (Philipp & Robert, 2017) to efficiently transfer data across process boundaries.

Experience

Mosec
Experience

Figure 5: The learning system

We benchmark our system’s efficiency against a concurrent implementation of online DPO by Hug-
gingFace’, which utilizes only DeepSpeed for memory optimization. Our system achieves up to
2.5x latency reduction compared to this counterpart, demonstrating its computational efficiency.
Due to space constraints, detailed benchmarking methods and results are presented in App. H.

E BASELINE METHODS

We review four baseline methods that are relevant to this work and used for comparisons in our
experiments.

Shttps://huggingface.co/docs/trl/main/en/online_dpo_trainer.

18

https://huggingface.co/docs/trl/main/en/online_dpo_trainer

Under review as a conference paper at ICLR 2026

Offline DAP. We review DPO (Rafailov et al., 2023), which is a representative work in the direction
of Direct Alignment from Preferences (DAP). It simplifies the two-stage pipeline of offline RLHF as
a single step of supervised learning by leveraging the closed-form solution (Peters & Schaal, 2007;
Peng et al., 2019) of the RL objective in Eq. (7):

. (yl) = %mef@m exp%r(m,y)), (15)

where Z () normalizes such that X, 7, (y|x) = 1, to reparametrize r as a function of

r(x,y) = Blog 7% + Blog Z(x). (16)

Consequently, plugging Eq. (16) into the reward model loss (Eq. (5)) yields a contrastive loss that
directly optimizes the policy:

7o (Y |x) Mret (y|m))] ’ (17)

w0 Byt y-) o {‘ loga (ﬂ o8 ot (0 2) mo (- |)

where D is a pre-collected offline preference dataset.

We also experiment different DAP methods® besides DPO, such as TPO (Azar et al., 2024) and
SLiC (Zhao et al., 2023), whose loss functions are shown in Eq. (11) and (12).

Online DAP (Guo et al., 2024). In contrast to the conventional DAP methods that learn a policy
from a fixed dataset D, online DAP proposes to collect on-policy preference data to update the policy
online. It first samples responses from the current policy (y,y’) ~ mg,, then acquires preference
labels to form a batch B, = {(z,y*,y~)}’_;. One gradient step minimizing the DAP loss over
this data batch to get 7y, ,, which is used for the next iteration. Such approach not only mitigates
the over-fitting issue faced by offline DAP methods (Guo et al., 2024), but also facilitates online
interaction (Property 1) with the environment, falling into the second paradigm of CDB solution
algorithms (Fig. 2b).

Active Preference Learning (APL) (Muldrew et al., 2024). APL follows the online DAP paradigm,
but is restricted to DPO due to its reliance on DPO implicit rewards. Two techniques are proposed
by APL to actively select both prompts and dueling responses for querying the preference oracle:

1. Predictive entropy (PE) for selecting prompts. In this step APL computes a Monte-Carlo
estimate of PE for each prompt as H.,(y|x) ~ —%1_; log mp(y,|x)/N, where y,, ~
7o(-|) and log 7y (y, |x) is the summation of log probabilities of each token. Then, APL
filters a subset of prompts with high PE to form Xs.

2. Preference model certainty for selecting dueling responses. For prompts in Xg, APL gen-
erates many responses for each prompt, then selects the pair with largest reward mar-
gin measured as |*(x;,y;) — 7(x;, y;)|, where 7 is the DPO implicit reward 7(x,y) =
pAlog mo(y|x) — log mret (y|2)).

By above two steps, APL actively explores more uncertain prompts and responses in an online DPO
paradigm, satisfying both Properties 1 and 2.

Exploratory Preference Optimization (XPO) (Xie et al., 2024). XPO studies LLM alignment
in the framework of token-level MDP, and leverages the property that DPO conducts implicit Q*-
approximation (Rafailov et al., 2024), so that

™ (y|x)

Tref (Y|)

where V* is the optimal value function depending only on the prompt x. XPO incorporates
the implicit (global) optimism for exploration by overestimating the value V., (x) = r*(xz,y) —

ﬁlog = T*($7 y) - V*(CC) vy7 (18)

Blog =Wz) Thig is achieved by optimizing the policy with a modified DPO loss:

Tret (Y]
. . 7o (y*|) mrer (¥~ |)

E C e 1 ref12) — 1 1 19

I?TLD (myty= yref)mpge | X108 mo(y" |z) —logo (ﬂ 0g Tret (Yt |@) 70 (y~|2))| (19)

SWe use “DAP method” and “direct optimizer” interchangeably.

19

Under review as a conference paper at ICLR 2026

where y**f ~ 7r,c¢(-|x) and B is an on-policy data batch in the same vein as online DPO. Intuitively,
the first term in Eq. (19) biases the policy toward a large value estimation such that V., = V*,
implementing the optimism in the face of uncertainty (OFU) for exploration. Theoretically, Xie
et al. (2024) also prove the sample complexity bound of XPO, making it a promising algorithm for

online LLM alignment.

Self-exploring language model (SELM) (Zhang et al., 2024a) is a concurrent work of Xie et al.
(2024) that proposes nearly the same theoretic algorithm to achieve OFU. However, the practical
implementation of SELM involves offline preference dataset for training, making it hard to bench-
mark in an online alignment setting like ours. Therefore, we will keep XPO as our baseline for
comparison.

F FULL EXPERIMENTAL DETAILS

In the main text we focus on the task of summarization using the TL;DR dataset. This provides
a lightweight and clean setting to extensively study different algorithmic designs with affordable
computational resources. App. F.1 provides the full details of this setting.

To further validate the sample efficiency of SEA in aligning LLMs to perform general tasks, we
adopt the UltraFeedback dataset (Cui et al., 2023) and evaluate trained LLMs on AlpacaEval 2.0 (Li
et al., 2023). App. F.2 provides more details of this setting.

F.1 DETAILS OF TL;DR TASK

Models. We experiment three model scales (1B, 2.8B, 6.9B) from the Pythia family (Biderman
et al., 2023). We take pretrained SFT models from Huang et al. (2024) as 7, for the starting model
in all experiments. Except in Sec. 6.1, we use 1B model for other experiments to save computation.

Preference oracle. We simulate the process of human feedback with a strong scalar RM and refer
it as preference oracle. We choose Skywork-Reward-L1lama-3.1-8B’ (Liu et al., 2024a), which is
top-ranked in RewardBench leaderboard (Lambert et al., 2024), as the preference oracle.

Epistemic reward model. We build ERM on top of a pretrained 0.4B transformer (Jiang et al.,
2023), by removing its head and adding an ensemble of MLPs. The size of ensemble is set to
K = 20, and all MLPs contain 2 hidden layers of 128 nodes. Note that the ERM is chosen to be
much smaller than the preference oracle following Dwaracherla et al. (2024), which reflects the fact
that human preferences can be more complex than what the agent can model. The regularization
coefficient A is fixed to be 0.5 after a coarse hyperparameter search.

Data. We employ the widely adopted TL;DR dataset (Stiennon et al., 2020) for our experiments.
It consists of Reddit posts as prompts, and the agent is required to give summaries that align with
human preferences. We fix 50k prompts for training and limit the query budget to 50k as well.

DAP methods. We adopt three DAP methods (direct optimizers) to thoroughly validate our algo-
rithm, including DPO (Rafailov et al., 2023), IPO (Azar et al., 2024) and SLiC (Zhao et al., 2023).
Except in Sec. 6.1, all experiments are done with DPO as the direct optimizer.

Baselines. Similar to Guo et al. (2024), we include the offline and online variants of different
DAP methods as baselines. Additionally, we compare with two active exploration baselines built
on online DPO: APL (Muldrew et al., 2024) and XPO (Xie et al., 2024). A detailed review of all
baselines can be found in App. E.

Metrics. We use the win rate of agent’s responses against reference responses judged by the
preference oracle as the performance metric. This metric can reflect both the agent’s cumulative
regret and anytime regret (i.e., average performance). In the E&E setting, we measure the “online”
win rate of the agent’s dueling responses that are executed during experience collection and take
the average. In the BAI setting, we measure the “offline” win rate by evaluating the latest agent’s
responses given a fixed set of 1000 holdout prompts periodically. We mainly focus on the BAI
setting because crowdsourcing seems a major scenario for most practitioners, and present one set of
experiments for comparing different exploration strategies in both settings. When the comparison
is only made within a model scale, we report the relative win rate against the initial STF models.

"https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B.

20

https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B.

Under review as a conference paper at ICLR 2026

When the comparison is across scales (Fig. 1 Left), we report the absolute win rate against the
ground truth responses in the dataset.

Hyperparameters. We set 5 = 0.1 for DPO and 8 = 0.2 for SLiC and find they are robust for
all scales. We tune /3 from {0.2,0.3,0.5, 1.0} for IPO across scales and report the best performing
results. We sample M = 20 on-policy responses with a temperature 7 = 0.7 during training, and
use greedy decoding for offline evaluation (BAI’s metric). We use the Adam optimizer with learning
rate of 5 x 10~7 and cosine scheduling, and set the batch size to be 128. We initialize the mixture
ratio y of SEA to be 1 and adjust it to 0.7 after a burn-in period of 1k samples.

All hyperparameters are kept the same for offline and online baselines, except that online methods
update the sampling policy after every gradient step as the latest 7y, . For APL and XPO, we keep the
learning rate and DPO’s (3 the same for apple-to-apple comparisons. Specifically for APL, we ini-
tially sample 1024 prompts per batch and use the predictive entropy to filter a subset of 128 prompts.
Then, we sample 8 responses per prompt and use the preference model certainty to finalize two re-
sponses for the duel. Specifically for XPO, we follow the their recommended optimism coefficient
toseta =5 x 1076,

Statistical significance. There are various factors to introduce randomness during online learning.
We thus launch 3 independent runs for every experiment with different random seeds. All the
results are reported with mean and standard error to indicate their statistical significance.

Computational resources. Experiments at all scales are conducted on a single machine with 8
A100 GPUs to run the learner and actors. We additionally host a separate remote server with workers
spawned on 16 A100 GPUs for the oracle RM®, so that it can be queried by all concurrently running
experiments. All experiments conducted for this research consume about 2 A100 GPU years.

F.2 DETAILS OF GENERAL TASKS

Model. Following Meng et al. (2024); Zhang et al. (2024a), we employ L1ama3-8B-Instruct’ as
our initial model 7.

Preference oracle. We follow Meng et al. (2024) to adopt ArmoRM-L1ama3-8B-v@.1'" (Wang et al.,
2024) as the preference oracle to provide online preference feedback.

Data. We take the UltraFeedback dataset (Cui et al., 2023), which is widely used for LLM alignment
in the literature. We filter out samples whose prompt is longer than 1800 tokens and result in 61k
samples. We extract prompts from the filtered dataset while excluding the responses. The prompt
set are collected from multiple sources and cover diverse domains, making it suitable to improve
LLM’s capability on general tasks.

DAP method and baselines. We employ the state-of-the-art DAP method, SimPO (Meng et al.,
2024), as our direct optimizer. Since SimPO is originally an offline algorithm, we extend it to
Online SimPO and take both offline and online variants as baselines.

Evaluation. We evaluate SEA and baselines using AlpacaEval 2.0 (Li et al., 2023). It consists of
805 test prompts, and uses GPT4-Turbo to judge the quality of model responses against reference
responses generated by GPT-4-Turbo. We follow the standard protocol to report both the win rate
(WR) and the Length-Controlled win rate (LC) (Dubois et al., 2024).

Hyperparameters. We follow SimPO’s recommended hyperparameters to set 5 = 10 and v/8 =
0.3. We use a learning rate of 8 x 10~7 and batch size of 128. The decoding temperature is set
to be 0.9 for generating evaluation outputs. The same hyperparameters apply to baselines and our
method. Configurations of SEA are kept the same as those in the TL ;DR task (App. F.1).

G EXTENDED EMPIRICAL STUDIES

We present additional empirical studies in this section, including investigation on different explo-
ration strategies (App. G.1) and preference oracles (App. G.2) on the TL;DR task, as well as the
performance comparison on AlpacaEval 2.0 for general tasks (App. G.3).

8We utilize the Kubernetes service for routing requests to multiple Mosec (Yang et al., 2021b) instances.
9ht‘cps://hugging1°ace.co/meta—llama/Meta—Llama—3—88—Instruct.
]Ohttps://huggingface.co/RLHFlow/ArmoRM—Llama3—88—v®.1.

21

https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1

Under review as a conference paper at ICLR 2026

Online performance (E&E) Offline performace (BAI) GPT40-mini-as-a-judge
0.9
0.8 ~/ VY -
o3
E
E 0.7
= : :
0.6 Uncertainty Y Uncertainty
E&E TS E&E TS Offline — XPO ~ SEA
0.5 BAITS BAITS Online = APL
0 10k 20k 30k 40k 50k 0 10k 20k 30k 40k 50k 0 10k 20k 30k 40k 50k
Query step Query step Query step

Figure 6: (Left and Middle) Win rate comparison of different exploration strategies measured in E&E and
BALI settings. (Right) Win rate comparison of different agents when using GPT4o-mini to simulate human
feedback via LLM-as-a-judge.

G.1 CHOICE OF EXPLORATION STRATEGIES

Recalling that different LLM alignment scenarios (online system or crowdsourcing) require differ-
ent exploration strategies to meet their respective learning objectives (Sec. 2.2). We investigate three
strategies based on posterior sampling and compare them on both online and offline performance.
The first strategy (Uncertainty) focuses on pure exploration with information maximization. It seeks
the pair of dueling responses that exhibits the largest epistemic uncertainty, which is implemented
by selecting the pair whose logits difference has the largest variance across ensemble members.
The second (E&E-TS) and the third (BAI-TS) strategies follow the principles in Algorithm 1,
and their differences are between Line 5 and Line 6. The comparison results are shown in Fig. 6
(Left and Middle). Focusing on the left plot, we observe that E&E-TS strategy achieves the best
online performance, which is within our expectation. In contrast, Uncertainty shows the worst
online performance because it tries to maximize the information gain but does not prioritize reward
maximization. On the other hand, conclusions are interestingly different when taking the offline
performance as the metric. In this case, BAI-TS and Uncertainty both exhibit more efficient offline
performance improvement than E&E-TS. This can be attributed to that exploration for uncertainty
minimizing helps to identify more informative responses to train the LLM policy. Moreover,
BAI-TS > Uncertainty indicates exploration with both reward and information maximization is
better than exploration with only information maximization. E&E-TS, however, always chooses two
responses with similarly high quality to exploit. This can not only lead to less efficient exploration,
but also result in less efficient policy learning due to smaller DAP loss gradients.

G.2 ALIGNING LLMS WITH A HUMAN SIMULATOR

Results presented so far are based on experimenting LLM alignment with the preference oracle
being a scalar reward model, which is deterministic and does not capture the potential randomness
of the choice by real humans. To test different agents in a more realistic setting, we use generative
models as human simulator in an LL.M-as-a-judge (Bubeck et al., 2023; Zheng et al., 2023) manner.
In particular, we directly query the OpenAl API and use gpt-40-mini-2024-07-18 as the judge
to provide preference feedback. We use a similar prompt template to Li et al. (2023)’s, which is
shown in Fig. 10. We also randomly swap the order of two responses to mitigate the known position
bias of LLM judges. The results are shown in Fig. 6 (Right). We can observe the performance
curves generally exhibit higher variance, possibly due to the randomness introduced in the feedback
process, which puts more stringent requirements for learning algorithms. The two active exploration
methods demonstrate opposite results to those in Sec. 6.1—APL learns fast initially but is eventually
outperformed by Online, while XPO improves over Online after stabilizing its training and delivers
a better final performance. Our agent, SEA, is shown to offer the best sample efficiency as well
as asymptotic performance, further validating the importance of online learning and well-designed
active exploration mechanism.

G.3 PERFORMANCE ON GENERAL TASKS
We investigate the generalizability of SEA by training with the prompt set from UltraFeedback (Cui

et al., 2023) and evaluating the model performance on AlpacaEval 2.0 (Li et al., 2023). Fig. 7 shows
the Length-Controlled (LC) win rate of different models against GPT-4-Turbo. The left plot com-

22

Under review as a conference paper at ICLR 2026

Table 3: AlpacaEval 2.0 results. LLM ex-
ploration methods are highlighted in blue.

S
vy

Q
—
S 40 Model LC WR
<
% 35 GPT-4 Omni (05/13) 575 513
3 GPT-4 Turbo (04/09) 55.0 46.1
=30 Offline + SEA Offline + SEA Yi-Large Preview 519 575
Online Online SEA+SimPO 474 411
sl o n Claude 3 Opus (02/29) 40.5 26.1
Query step Gradient step SELM 347 34.8
XPO 29.4

Figure 7: LC win rates on AlpacaEval 2.0 with respect to query ~ Llama 3 8B Instruct ~ 22.9 22.6
budget and gradient update budget.

pares the sample efficiency (in terms of the number of queries) of offline, online and SEA SimPO.
The results suggest that enabling online interaction does not improve the sample efficiency over the
offline counterpart. Such observation is in stark contrast to what we have seen in the TL;DR task,
where the online agent always improves over the offline ones. We hypothesize that this is due to the
different coverage of ¢ in these two tasks. For TL;DR, which is a much easier task, the initial SFT
models already have good coverage, permitting online DAP with only passive exploration to work
reasonably well; however, for more challenging tasks, the insufficient coverage of m..s would lead
to sample complexity exponential in % (Xie et al., 2024), which necessitates deliberate exploration,
such as Thompson sampling proposed in this work. The above claim is justified by observing that
SEA largely improves the sample efficiency over the online and offline variants.

Attentive readers may have noticed that comparing query budget could be advantageous to SEA be-
cause pseudo labels are used in mixed preference learning (Sec. 4.2.3), which results in more gradi-
ent steps given the same query budget. In the right plot of Fig. 7, we show the performance versus
gradient step. We can observe SEA has the steepest learning curve, verifying that it explores more
informative samples to yield faster improvement.

Last but not least, in Table 3, we show the AlpacaEval 2.0 LC win rates of XPO and SELM (as
reported in their papers), along with ours and several cutting-edge LLMs. SEA is agnostic to direct
optimizers, thus it can leverage the state-of-the-art SIimPO to achieve a high LC of 47.4%. On the
other hand, XPO and SELM can only be applied to DPO, restricting their potential to incorporate
future advances in direct optimization algorithms.

G.4 ROBUSTNESS UNDER NOISY FEEDBACK

We further analyze the robustness of SEA under noisy preference feedback. We split the Ul-
traFeedback dataset into training (60k) and testing (2k) sets and train from the Llama-3.2-1B-
Instruct model. Unlike previous experiments, we use a stronger reward model backbone based on
Skywork/Skywork-Reward-V2-Llama-3.2-1B to show demonstrate the generalibility of our method.
We inject the preference feedback noise by randomly flipping the binary feedback with 10% proba-
bility.

step | SEA-DPO Online-DPO SEA-DPO-Noisy ~ Online-DPO-Noisy

0 0.48 0.49 0.48 0.49
100 0.59 0.51 0.54 0.50
200 0.56 0.54 0.58 0.54
300 0.58 0.58 0.60 0.57
400 0.60 0.59 0.62 0.58
500 0.63 0.61 0.63 0.59

Table 4: Comparison of SEA-DPO and Online-DPO under clean and noisy settings.

Table 4 reports win rates against the initial model during training on the test questions. SEA-
DPO consistently learns faster and converges to a higher win rate than Online-DPO, reinforcing
the effectiveness and generality of our approach across model families and datasets. Besides, when
preference noise is present, the learning efficiency of both methods is harmed. However, SEA still

23

Under review as a conference paper at ICLR 2026

leads to better sample efficiency and final performance, demonstrating its robustness to feedback
noise.

H SYSTEM BENCHMARKING

We conduct a rigorous benchmarking comparison on the efficiency of online DPO training using our
learning system, alongside the trl’s implementation'!.

Settings. In alignment with the examples provided by trl, we use the TL;DR (Stiennon et al., 2020)
dataset and evaluate training efficiency at three model scales: 1B, 2.8B and 6.9B parameters for both
SFT-ed LLMs'? and exclusively trained RMs'?. This is similar to the settings in our experiments
(see App. F) except that we fix the preference oracle to be a strong general-purpose RM.

Hardware & Software. All benchmarking experiments are conducted on a single machine with
eight A100-40G GPUs and 96 AMD EPYC 7352 CPUs. To ensure fair comparison, we align all key
hyperparameters for both our codebase and trl. The DeepSpeed ZeRO-2 strategy is employed by
default when GPU memory suffices; otherwise, ZeRO-3 or ZeRO-2-offload is utilized as applicable.
Notably, the distributed architecture of our implementation provides flexibility in system configu-
ration, enabling adjustments to accommodate memory and computational time constraints. Fig. 8
illustrates two example configurations employed in our benchmarking experiments. We will provide
all benchmarking scripts in our codebase for reproducibility.

* Config 1 collocates all three workloads on each of the GPUs. Specifically, eight vLLM
instances (for actors) and eight Mosec workers (for oracle RMs) are spawned to run inde-
pendently on each GPU. After a batch of responses is generated (by actors) and labeled (by
oracle RMs), it is sent to the learner, which runs on all eight GPUs coordinated through
ZeRO strategies for policy learning. The updated policy weights are then broadcasted to all
actors for on-policy response sampling on subsequent prompt batch. While this configura-
tion maximizes GPU utilization, it requires substantial GPU memory to accommodate all
workloads and is thus employed only for 1B scale experiments.

» Config 2 only collocates actor and oracle workloads on half of the GPUs, reserving the
remaining four GPUs exclusively for the learner. This is suited for larger-scale experiments
(e.g., 2.8B or 6.9B), where additional GPU memory is allocated to the learner. However,
this setup incurs idle time on half of the GPUs due to data dependency, as the learner must
await new preference data, and the actor must await updated policies. An alternative is to
implement asynchronous data collection, where minor data staleness is allowed by using
0:_1 to generate data for updating 6;. Although this data would not be strictly on-policy,
asynchronous training could reduce idle time and enhance GPU utilization. This approach
has proven effective in large-scale RL systems (Berner et al., 2019), and we leave this
optimization to future work.

Results. Benchmarking results for the latency of training a batch of 128 samples are presented in
Fig. 9. Overall, training with the config 2 demonstrates consistently greater efficiency than trl,
achieving up to a 2.5x reduction in latency at the 2.8B scale.

We next analyze the time costs for individual stages: generate, oracle and learn. Across all scales
and configurations, ours demonstrates significantly lower generate time than trl, due to distributed
actors utilizing vLLM. Additionally, at the 6.9B scale, ours requires substantially less oracle time
than trl, as trl employs ZeRO-3 to prevent GPU memory overflow, thereby slowing inference.
In contrast, ours config 2 allows for flexible collocation, enabling oracle RMs hosted via Mosec to
operate in parallel without sharding. However, ours config 2 incurs longer learn time compared to
trl due to the use of only half the available GPUs. This limitation also explains why, at the 1B
scale, config 2 has higher latency than config 1 across all stages.

Uhttps://github.com/huggingface/trl/blob/main/trl/trainer/online_dpo_trainer.py

12https://huggingface.co/trl—lib/pythia—1b—deduped—tldr—sft;https://huggingface.
co/trl-1lib/pythia-2.8b-deduped-tldr-sft;https://huggingface.co/trl-1ib/pythia-6.
9b-deduped-tldr-sft

]3https://huggingface.co/trl—lib/pythia—1b—deduped—tldr—rm;https://huggingface.
co/trl-1lib/pythia-2.8b-deduped-tldr-rm;https://huggingface.co/trl-1lib/pythia-6.
9b-deduped-tldr-rm

24

https://github.com/huggingface/trl/blob/main/trl/trainer/online_dpo_trainer.py
https://huggingface.co/trl-lib/pythia-1b-deduped-tldr-sft
https://huggingface.co/trl-lib/pythia-2.8b-deduped-tldr-sft
https://huggingface.co/trl-lib/pythia-2.8b-deduped-tldr-sft
https://huggingface.co/trl-lib/pythia-6.9b-deduped-tldr-sft
https://huggingface.co/trl-lib/pythia-6.9b-deduped-tldr-sft
https://huggingface.co/trl-lib/pythia-1b-deduped-tldr-rm
https://huggingface.co/trl-lib/pythia-2.8b-deduped-tldr-rm
https://huggingface.co/trl-lib/pythia-2.8b-deduped-tldr-rm
https://huggingface.co/trl-lib/pythia-6.9b-deduped-tldr-rm
https://huggingface.co/trl-lib/pythia-6.9b-deduped-tldr-rm

Under review as a conference paper at ICLR 2026

Config 1: full collocation Config 2: half collocation
device:0 (DA DOGA DO deviee0 (B0 @00 D0
device:l (o)) | @00 | CRD0 device:1 (6o J())0 Ce 0
device:2 (6 () A a0 " &0 6 device:2 (Ao) 60 60
device:3 (o)) l a0 l 0 l device:3 (o)) e)0 0
device:4 ([0 J() 5 o)) 5 6 () i device:4 N o 6
device:5 (6o () o)) 6 () device:5 l l
device:6 (0o ())0 %)) device:6 ‘i’l H b
device:7 (G)OO J ()OO J 6)00 device:7 s
time —> time —>

(J Actor: vLLM inference] Oracle: Mosec service ([Learner: DeepSpeed WV Weights synchronization

Figure 8: Two example configurations of our learning system used in benchmarking experiments.

Benchmarking ours against huggingface/trl

trl-learn B ours-learn Ce32
< 60 il
2 rl-oracle ours-oracle
S 48.83
54 trl-generate M ours-generate :
172)
401 trl-other ours-other
2
L
i 23.56
'S 20
< 13.77
M 9.25
§ 4.67
NEFE-eaEtng | |
config 1 config 2 config 2 config 2 config 2 config 2
gloo ncc gloo ncc gloo ncc
1B 2.8B 6.9B

Figure 9: Averaged training latency (over 10 batches, equivalent to 1280 samples) comparing ours against
huggingface/trl.

The other category accounts for time costs associated with data loading, tokenization, and communi-
cation. Here, inter-process communication is the primary cost, with trl showing minimal overhead
as all three stages operate within the same process on identical micro-batches, avoiding weight syn-
chronization. By contrast, ours requires considerable time to transfer updated policy weights from
the learner to all actors. While NCCL is recommended for synchronization over GLOQO, it requires
older vLLM packages (prior to version 0.4.3), which may lack support for newer LLM architec-
tures. Moreover, NCCL is incompatible with config 1 due to its restriction on the learner master
process establishing two separate process groups (one for DeepSpeed, the other for weight synchro-
nization). In summary, we recommend future researchers prioritize the config 2 and employ NCCL
when feasible.

I ADDITIONAL MATERIALS

In this section, we include a comparison of prior works (Table 2), the prompt template we use for
LLM-as-a-judge (Fig. 10), and an example showing ChatGPT actively explores (Fig. 6).

25

Under review as a conference paper at ICLR 2026

LLM-as-a-Judge Prompt Template

I require a leaderboard for various large language models. I’ll provide you with prompts
given to these models and their corresponding outputs. Your task is to assess these responses,
and select the model that produces the best output from a human perspective.

Instruction

{instruction}

Model Outputs

Here are the unordered outputs from the models. Each output is associated with a specific
model, identified by a unique model identifier.

{

"model_identifier: "0",

"output": {response0}

"model_identifier: "1",

"output": {responsel }

}

Task

Evaluate the models on the basis of the quality and relevance of their results, and select
the model that generated the best result. Reply with the identifier of the best model. Our
evaluation will only take into account the first character of your answer, so make sure it
contains only one of the identifiers and nothing else (no quotation marks, no spaces, no new
lines, ...).

Figure 10: We provide the prompt with two responses and ask GPT to choose the preferred one. We parse the
first token’s logits of “0” and “1”” and apply the BT model to obtain the relative preference.

26

Under review as a conference paper at ICLR 2026

I want to use this For k8s readiness check, which requires a return
value "0" if success, how to write the script?

You're giving feedback on a new version of ChatGPT.

which response do you prefi

@

To create a script for a Kubernetes readiness check using curl, where
youreturna @ status on success (typically when the HTTP status code
is 280), you can combine curl with a conditional check on the HTTP

status code. I the status is 200 , the script will exit with @ (indicating

success); otherwise, it will return a non-zero value (indicating Failure).

Here's an example of how you can write this scripk:

{curl -X POST -H

Explanation:

= curl sends the request and captures the HTTP status code in the
STATUS variable.

« The if statement checks if the status code is 280 .

= IF the status code is 208, the script exits with @ , indicating
success (readiness).
= If the status is anything other than 208 , the script exits with

1, indicating failure.

You can modify the binary string or URL as necessary for your specific

readiness check.

| prefer this response

Figure 11: ChatGPT system asks for users’ preference feedback to strategically explore better answers. In
this case, algorithms should be designed around the objective of minimizing cumulative regret (i.e., the E&E

For a Kubernetes readiness check, you need to return @ ifthe curl
command succeeds (e.g., status code 20), and a non-zero value if it

fails.

Here's a simple bash script that achieves this:

url -X POST -H

Breakdown:

« curl ... -w "%{http_code}" : Captures the HTTP status code

from the curl request.

« The if condition checks if the status code is 280 (indicating

SUCCess).
« exit ©:Indicates a successful readiness check.
« exit 1:Indicates failure, so Kubernetes will consider the pod not

ready.

You can adjust the script depending on the specific status code(s) that

you consider successful.

| prefer this response

setting), because the quality of both responses generated by the system affects user experience.

27

	Introduction
	LLM alignment as contextual dueling bandits
	Contextual dueling bandits
	Online alignment as CDB

	How prior works (partially) solve LLM alignment as CDB
	SEA: sample-efficient alignment for LLMs
	Thompson sampling for LLM alignment
	Practical implementation
	Epistemic reward model for posterior sampling
	Policy-guided search to approximate red!20!violet
	Online policy learning from mixed preferences

	Experimental setup
	Empirical studies
	Overall comparison
	Ablation analysis

	Conclusion
	Algorithm details
	Full related works
	On connections with single-step RL
	Distributed learning framework
	Baseline methods
	Full experimental details
	Details of TL;DR task
	Details of general tasks

	Extended empirical studies
	Choice of exploration strategies
	Aligning LLMs with a human simulator
	Performance on general tasks
	Robustness under noisy feedback

	System benchmarking
	Additional materials

