
The Effect of PEG-Lifting Order on the
Performance of Protograph GLDPC Codes

Dae-Young Yun
Electrical and Computer Engineering

Seoul National University
Seoul, Republic of Korea

dyyun@ccl.snu.ac.kr

Jae-Won Kim
Electronic Engineering

Gyeongsang National University
Jinju, Republic of Korea
jaewon07.kim@gnu.ac.kr

Jong-Seon No
Electrical and Computer Engineering

Seoul National University
Seoul, Republic of Korea

jsno@snu.ac.kr

Abstract—Generalized low density parity check (GLDPC)
codes can be constructed by replacing some single parity check
(SPC) nodes in LDPC codes with generalized constraint (GC)
nodes. GC nodes are defined by component codes whose mini-
mum distance is larger than that of SPC nodes. Therefore, the
variable nodes (VNs) connected to GC nodes, which are called
doped VNs, are more protected than the undoped VNs. Due to
this effect, we observe that the doped VNs are more robust
to local cycles. The distribution of local cycles is affected by
the processing VN order of the progressive edge growth (PEG)
algorithm, where the latter processed (lifted) VNs tend to have
more local cycles. Based on the property of doped VNs and the
PEG algorithm, we show that a tangible performance gain is
achieved by placing the doped VNs in the latter order of the
PEG algorithm compared to the former order. The performance
gain is shown with a well known GLDPC code in the literature
and over both the binary erasure channel and addictive white
Gaussian noise channel.

Index Terms—Generalized low density parity check (GLDPC)
codes, low density parity check (LDPC) codes, protograph,
progressive edge growth (PEG) algorithm.

I. INTRODUCTION

Low density parity check (LDPC) codes, which were
first introduced in [1] and rediscovered in [2], have been
widely used due to their capacity-approaching performance
under low-complexity iterative decoding. Generalized LDPC
(GLDPC) codes [3] are generalized versions of LDPC codes,
which incorporate not only single parity check (SPC) nodes
but also generalized constraint (GC) nodes as their check
nodes (CNs). GC nodes represent more complex linear com-
ponent codes than single parity check codes and thus they give
stronger protection to neighbor variable nodes (VNs). One
method to construct GLDPC codes is replacing some SPC
nodes in LDPC codes with GC nodes. This replacement is
called doping [4], and the VNs connected with GC nodes are
called doped VNs. The undoped VNs are only connected with
SPC nodes, so they are less protected than the doped VNs.

The progressive edge growth (PEG) algorithm [5] is the
most popular algorithm for lifting protograph-based LDPC
codes. In an edge-by-edge manner, PEG connects a VN with a
CN while maximizing the local girth in a greedy way. Due to
the greedy behavior, local cycles tend to be more generated in
the latter processed VNs. In other words, the backward VNs
in terms of the PEG schedule may have much more local

cycles than the front VNs. Since PEG-lifted codes have this
inevitably unbalanced distribution of local cycles, we need to
consider the processing order of the PEG algorithm carefully.

In this paper, we investigate the effect of the PEG processing
order for constructing protograph GLDPC codes. While doped
VNs are protected by strong GC nodes, undoped VNs are
relatively more vulnerable to channel noise. To balance the
robustness of each VNs, we propose the PEG scheduling that
lifts undoped VNs first to make less local cycles with them and
then lifts doped VNs later. Experimental results show that the
latter doped codes which lifted by the proposed PEG ordering
outperform the former doped codes under the same doped
positions.

II. THE STRUCTURE OF PROTOGRAPH GLDPC CODES

A protograph can be represented by a base matrix. Let B
denote an mp ×np base matrix whose element bi,j represents
the number of connection between the ith CN and jth VN in
the protograph, where np,mp are the numbers of protograph
VNs and CNs, respectively. For quasi-cyclic (QC) LDPC
codes, parity check matrices (PCMs) H are obtained by
replacing elements of B with z × z circulant permutation
matrices (CPMs) with the lifting size z.

Different from LDPC codes, we need one more procedure to
obtain PCMs of GLDPC codes. Since GC nodes correspond
to multiple SPC nodes representing their component codes,
we have to replace GC nodes with their component PCMs
to make full PCMs of GLDPC codes. Instead of using PCMs
straight for iterative decoding like LDPC codes, GLDPC codes
employ a posteriori probability (APP) decoding for GC nodes
in general.

One of well-known protograph GLDPC codes with near-
capacity performance is described as the base matrix in (1).
The first row with the bold numbers represents the GC node
whose component code is the (7,4) Hamming code. One can
see the sum of the first row equals to the length of the
component code.



0 0 1 4 1 0 1
0 0 0 1 1 1 0
2 0 0 2 0 0 0
1 3 1 0 0 1 1


 (1)

315978-1-6654-9927-9/22/$31.00 ©2022 IEEE APCC 2022

20
22

 2
7t

h
A

si
a

Pa
ci

fic
 C

on
fe

re
nc

e
on

 C
om

m
un

ic
at

io
ns

 (A
PC

C
) |

 9
78

-1
-6

65
4-

99
27

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
A

PC
C

55
19

8.
20

22
.9

94
36

71

Authorized licensed use limited to: Seoul National University. Downloaded on May 12,2023 at 14:22:10 UTC from IEEE Xplore. Restrictions apply.

0.5 0.55 0.6 0.65 0.7 0.75
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

F
E

R

(a)

3.5 4 4.5 5 5.5 6 6.5 7

10
-5

10
-4

10
-3

10
-2

10
-1

F
E

R

(b)

Fig. 1. Performance results of GLDPC codes lifted from protograph (1) with different PEG-lifting orders over (a): the BEC and (b): the AWGN channel.

III. EXPERIMENT SETTINGS

In this paper, we investigate the effect of the PEG-lifting
order by comparing two different orders with the same base
matrix (1). We suppose that the PEG algorithm operates in
order of the base matrix and then the different orders can be
described in terms of two base matrices as follows.


1 4 1 1 0 0 0
0 1 1 0 0 0 1
0 2 0 0 2 0 0
1 0 0 1 1 3 1


 ,



0 0 0 1 4 1 1
0 0 1 0 1 1 0
2 0 0 0 2 0 0
1 3 1 1 0 0 1




(2)
Let C1 denote the code sets lifted in the order of the left

matrix in (2), which we call the former doped codes, and C2
denote the latter doped codes. The PEG algorithm is performed
for each case from left to the right direction in an edge-by-
edge manner, which means the right nodes have worse cycle
characteristics than the left ones. Note that the left matrix in
(2) places doped VNs in front, while the right matrix in (2)
places the doped VNs in back. Therefore, the former doped
codes will generate more cycles in the vulnerable undoped
positions, while latter doped codes will make relatively sparse
cycle distribution in the undoped position.

We use lifting factor z = 15, 30, and the PEG selects a CN
randomly if there are multiple CN candidates making the tie
local girth. Due to this randomness, we make 50 codes for
each case and compare the average performance like the pre-
vious PEG works [7]. We transmitted all-zero codewords over
binary erasure channel (BEC), and additive white Gaussian
noise (AWGN) channel. Received codewords were decoded
by iterative decoder performing maximum likelihood (ML)
decoding in GC nodes.

IV. RESULTS AND CONCLUSION

The decoding results are presented in Fig. 1. Both results
show significant frame error rate (FER) gaps between two
codes C1 and C2 although they share the same protograph
structure, and accordingly the same asymptotic performance
such as the BP threshold [8]. Over the BEC, C2 with z = 30
acheives 15x lower FER than C1 at ϵ = 0.6. Over the AWGN

channel, C2 with z = 15 attains about 0.5dB performance gain
compared to C1 at FER 10−4.

By further looking into the performance of each code
instance of 50 randomly generated codes, we confirm that
the latter doped codes C2 can suppress the bad effect of
local cycles. The difference between the best and worst FER
performance among 50 codes in C2 is within in 3x while the
difference for C1 is 400x over the BEC with z=30, which
implies that the lifting order of C2 results in much more stabil-
ity against the greedy PEG algorithm. This result demonstrate
the lifting order of C2 operates much more robustly against
unstable local-greedy behavior of the PEG algorithm.

In this paper, we demonstrates that the undoped VNs which
are not protected by GC nodes are vulnerable to local cycles,
therefore the undoped VNs should be lifted first in the PEG
procedure to balance the local correction capability.

ACKNOWLEDGMENT

This work was supported in part by Samsung Electronics
Co., Ltd(IO201208-07823-01), and in part by the National
Research Foundation of Korea(NRF) grant funded by the
Korea government(MSIT) (No. 2021R1G1A1091583).

REFERENCES

[1] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf.
Theory, vol. 8, no. 1, pp. 21–28, Jan. 1962.

[2] D. J. C. Mackay and R. M. Neal, “Near shannon limit performance of
low density parity check codes,” IEEE Electron. Lett., vol. 32, no. 18,
pp. 1645–1646, 1996.

[3] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inf. Theory, vol. 27, no. 5, pp. 533–547, Sep. 1981.

[4] G. Liva, W. E. Ryan, and M. Chiani, “Quasi-cyclic generalized LDPC
codes with low error floors,” IEEE Trans. Commun., vol. 56, no. 1, pp.
49–57, Jan. 2008.

[5] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Regular and irregular
progressive edge-growth tanner graphs,” IRE Trans. Inf. Theory, vol.
51, no. 1, pp. 386-398, Jan. 2005.

[6] A. K. Pradhan and A. Thangaraj, “Near-capacity protograph doubly-
generalized LDPC codes with block thresholds,” in Proc. IEEE ISIT,
2016.

[7] G. Richter and A. Hof, “On a construction method of irregular LDPC
codes without small stopping sets,” in Proc. IEEE int. Conf. Commun.,
vol. 3, pp. 1119–1124, Jun. 2006.

[8] G. Liva and M. Chiani, “Protograph LDPC codes designed based on
EXIT analysis,” in Proc. IEEE GLOBECOM, 2007.

316

Authorized licensed use limited to: Seoul National University. Downloaded on May 12,2023 at 14:22:10 UTC from IEEE Xplore. Restrictions apply.

