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Abstract

The dueling bandit problem, an essential variation of the traditional multi-armed bandit
problem, has become significantly prominent recently due to its broad applications in online
advertising, recommendation systems, information retrieval, and more. However, in many
real-world applications, the feedback for actions is often subject to unavoidable delays and
is not immediately available to the agent. This partially observable issue poses a significant
challenge to existing dueling bandit literature, as it significantly affects how quickly and
accurately the agent can update their policy on the fly. In this paper, we introduce and
examine the biased dueling bandit problem with stochastic delayed feedback, revealing that
this new practical problem will delve into a more realistic and intriguing scenario involving a
preference bias between the selections. We present two algorithms designed to handle situa-
tions involving delay. Our first algorithm, requiring complete delay distribution information,
achieves the optimal regret bound for the dueling bandit problem when there is no delay.
The second algorithm is tailored for situations where the distribution is unknown, but only
the expected value of delay is available. We provide a comprehensive regret analysis for the
two proposed algorithms and then evaluate their empirical performance on both synthetic
and real datasets.

1 Introduction

In recent years, the dueling bandit problem has gained significant attention, finding wide applications in
practical domains such as online advertising and recommendation systems (Yue & Joachims, 2009; Ailon
et al., 2014; Zoghi et al., 2014a; 2015b; Komiyama et al., 2015; Agarwal et al., 2021). The K-armed dueling
bandit problem (Yue et al., 2012) is a variation of the classical K-armed bandit problem (Auer et al., 2002),
providing only relative comparison instead of absolute feedback. In the dueling bandit problem, the learner
is presented with K arms. At each trial, the learner selects a pair of arms and receives a stochastic feedback
indicating which of the two chosen options is preferred, based on an underlying stochastic pairwise preference
model. This setup enables users to express their preference for one item over another rather than assigning
numerical scores. Recognizing the challenges of consistently offering accurate absolute reviews, leveraging
preference feedback with dueling bandits has emerged as a practical approach, gaining widespread popularity
in online learning (Radlinski et al., 2008).

While existing studies in dueling bandit problem (Zoghi et al., 2014a; Komiyama et al., 2015) assume
immediate feedback observation, a major practical challenge in real-world applications is the issue of delayed
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(a) Biased dueling bandit with delayed feedback (b) Traditonal dueling bandit

Figure 1: Case (a) illustrates the e-commerce example of the biased dueling bandit with delayed feedback:
a delay occurs before the user can evaluate and potentially select Product B, and any data collected during
this delay suggests A > B. Case (b) showcases the traditional dueling bandit with immediate feedback.

feedback. In practice, feedback on actions is often not observable until after a random period. For example,
in recommendations within e-commerce (Vernade et al., 2017), it takes time for users to decide whether to
buy a product. Moreover, if a user has chosen not to purchase, the system remains unaware of this decision.
It cannot distinguish whether the decision is not to buy or if the user has not made a decision yet, a dilemma
often referred to as the delayed conversion problem. This complexity introduces significant challenges in
managing delayed feedback. A similar situation occurs with web advertisements (Chapelle, 2014; Yoshikawa
& Imai, 2018). Users take time to consider whether to click on an ad after viewing it. However, the system
must continue to display ads to other users before receiving this feedback. In particular, Chapelle (2014)
analyzed data from the online advertising company Criteo and confirmed that only 35% of feedback was
observed within an hour, while 50% was observed after 24 hours, and notably, 13% emerged two weeks later.
Another instance can be seen in clinical trials (Chow & Chang, 2006), where the impact of medical treatment
on a patient’s health frequently encounters delays. Due to these real-world challenges, the past few years
have witnessed extensive research on various types of bandit problems with delayed feedback (Vernade et al.,
2017; Grover et al., 2018). However, to the best of our knowledge, all the existing literature merely focuses
on the bandit problems with absolute numerical rewards, and how to handle the delayed feedback under the
practical dueling bandit problem receiving relative preferences between pairs still remains unexplored.

In this work, we introduce a new problem of dueling bandits in the presence of delayed feedback, characterized
by a stochastic delay between the selection of action pairs and the receipt of corresponding preference
feedback. Different from other types of bandits with delayed feedback, we further delve into a more practical
and challenging problem called biased dueling bandits under delayed feedback. Specifically, we keep the
same formulation as other bandit literature with binary rewards (Vernade et al., 2017; 2020): the player
observes a zero value when the reward for an action is inaccessible due to delay. However, unlike other
bandits with absolute numerical rewards where pulling one arm does not provide direct information about
the others, the dueling bandit outputs binary responses revealing relative preference between pairs of arms.
Consequently, the zero rewards under dueling bandits indicate a biased preference for one arm, particularly
when rewards are delayed, making the delay effect much more malicious and challenging to handle. This
treatment naturally gives an advantage to the second arm in a pair. For example, if arm i is presented first
and arm j second, and the reward is delayed, the player observes a zero value while making a decision. This
results in arm j being favored, while arm i suffers from the delay-induced bias. We will further elaborate on
this issue in Section 2. In practice, this bias in our problem setting is very common and can be characterized
as the prior knowledge or location effect indicating that one arm has an intrinsic advantage over the other.
For instance, in the e-commerce recommendation shown in Figure 1 (a), a user is browsing product A, and
the platform suggests product B on the sidebar. Before the user makes the comparison after some delay,
we can only observe the user stay at product A and hence assume the user likes A over B. In other words,
due to the common delay before the user can compare and perhaps select product B, any data collected
during that delay may inaccurately suggest a preference for product A. This comparative bias exists in many
real-world applications, and it highlights a unique and practical challenge in implementing dueling bandit
algorithms with delayed feedback, compared to other bandit algorithms with delayed feedback where each
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arm is evaluated based on independent selections and feedback, even if the feedback is delayed. Therefore,
given the existing literature on bandits with delayed feedback, our work is highly novel and intriguing since
we successfully address both the usual challenges of delayed feedback and the additional practical concerns
of bias simultaneously.

Given the broad applicability of the dueling bandit problem and the significance of handling delayed feedback
in real-world applications, our paper explores the dueling bandit with delayed feedback and presents two
dueling bandit algorithms designed to handle stochastic delayed feedback. We note that the proposed
algorithm can also be applied in general cases where there is no delay. Our main contributions can be
summarized as follows:

• We describe and formulate a novel biased dueling bandit framework that incorporates stochastic
delayed feedback.

• We present RUCB-Delay (Relative Upper Confidence Bound with delayed feedback), which deals
with delayed feedback by employing the delay distribution information. We establish the regret
bound for the algorithm and demonstrate that it matches the regret lower bound of the dueling
bandit problem when all delays are zero.

• We introduce and analyze another algorithm, MRR-DB-Delay (Multi Round-Robin Dueling Bandit
with delayed feedback), suitable for situations where the delay distribution is unknown. The algo-
rithm requires only the expected value of the delay, making it versatile and applicable in various
cases.

• We conduct an empirical evaluation of the performance of RUCB-Delay and MRR-DB-Delay using
six synthetic and real-world datasets.

1.1 Related Work

Originating from the practical benefits of considering relative feedback over absolute feedback, the duel-
ing bandit problem, initially introduced by Yue et al. (2009), has been widely investigated across various
settings. Yue et al. (2009) began with strong assumptions, relying on strong stochastic transitivity and
stochastic triangle inequality, which may frequently not align with real-world cases. Yue & Joachims (2011)
suggested a setting on a relaxed form of strong stochastic transitivity, although this remained a fairly re-
strictive condition. In response, Urvoy et al. (2013) introduced the Condorcet winner setting, where we
assume the existence of a unique best arm. Subsequent efforts have been made to generalize the concept of
the Condorcet winner, including alternatives like Borda winner (Jamieson et al., 2015; Saha et al., 2021),
Copeland winner (Zoghi et al., 2015a; Komiyama et al., 2016), and Von-Neumann winner (Dudík et al.,
2015; Balsubramani et al., 2016). Nevertheless, our focus in this study remains on the Condorcet winner
assumption, a premise commonly found in various other studies (Zoghi et al., 2014a;b; 2015b; Komiyama
et al., 2015; Chen & Frazier, 2017; Haddenhorst et al., 2021; Agarwal et al., 2021; Saha & Gaillard, 2022).

Urvoy et al. (2013) and Zoghi et al. (2013) presented algorithms with a regret bound of O(K2 log T ) for the
dueling bandit problem in the Condorcet winner setting. Subsequently, Zoghi et al. (2014a) and Komiyama
et al. (2015) introduced RUCB and RMED algorithms, respectively, achieving a bound of O(K2 + K log T )
that matches a lower bound established in (Yue et al., 2012). RUCB is built on the estimation of pairwise
probabilities and utilizes the Upper Confidence Bound (UCB) strategy to select the best arm, whereas RMED
explores the likelihood of each arm being the Condorcet winner. Several other studies have examined the
dueling bandit problem in specific settings, including investigations into robustness to corruptions (Agarwal
et al., 2021), best-of-both-world scenarios (Saha & Gaillard, 2022), and adversarial settings (Gajane et al.,
2015; Saha et al., 2021). To the best of our knowledge, our paper is the first to explore the dueling bandit
problem with stochastic delayed feedback.

Delayed feedback, given its practical significance, has been a key area of research in multi-armed bandits and
online learning (Joulani et al., 2013; Vernade et al., 2017; Grover et al., 2018; Gael et al., 2020; Lancewicki
et al., 2021). A thorough analysis of online learning problems with delayed feedback including partial
monitoring settings is given in Joulani et al. (2013). Additionally, Vernade et al. (2017) proposed algorithms

3



Published in Transactions on Machine Learning Research (08/2024)

for delayed conversions in multi-armed bandits, assuming full knowledge of the delay distribution. Pike-Burke
et al. (2018) addressed a more complex problem related to delayed, aggregated anonymous feedback. Here,
the player only observes the sum of rewards received in each round after certain delays, without information
about which past actions contributed to this aggregated reward. Delays have also been extensively explored
in the adversarial setting (Cesa-Bianchi et al., 2016; Bistritz et al., 2019; Thune et al., 2019; Zimmert &
Seldin, 2020). Furthermore, recent studies have investigated delays in various bandit settings and objectives,
including linear bandits (Vernade et al., 2020), generalized linear bandits (Zhou et al., 2019; Howson et al.,
2023), kernel bandits (Vakili et al., 2023), adversarial Markov decision processes (Lancewicki et al., 2022;
Jin et al., 2022), and best-of-both-worlds algorithms (Masoudian et al., 2022; Saha & Gaillard, 2022).

1.2 Organization

The structure of the remaining sections in this paper is as follows: Section 2 provides a formal description
of our problem setting. Following that, in Section 3, we introduce the RUCB-Delay algorithm, applicable
when complete knowledge of the delay distribution is known. Section 4 presents another algorithm, MRR-
DB-Delay, designed for scenarios where the delay distribution is unknown, with only the expected value
known. The comprehensive regret analysis for the two algorithms, RUCB-Delay and MRR-DB-Delay, is
also provided in Sections 3 and 4, respectively. In Section 5, we demonstrate the performance of our two
algorithms using various simulated and real-world datasets. Finally, we conclude with a discussion of our
results in Section 6.

2 Problem Setting

In this paper, we investigate a dueling bandit problem with K arms, denoted as {1, 2, ..., K}. At each time
step, we select a pair of arms (i, j) and obtain the outcome of a pairwise comparison between the selected
arms, which is subject to a delay. The outcome of the pairwise comparison between (i, j) is stochastically
determined by a probability µij , where µij represents the likelihood of arm i beating arm j in a comparison
between the two arms. The delay is decided by a discrete distribution D, which is supported on N and is
independent of the selection of arm pairs1. We assume the existence of a Condorcet winner (Urvoy et al.,
2013), specifically arm 1 without loss of generality. This implies that there exists a unique arm, i.e. arm 1,
with µ1i = P(1 ≻ i) > 1

2 held for all i ̸= 1.

In this work, we introduce a new problem of dueling bandits under the presence of delayed feedback. The
exact procedure repeats the following steps:

1. At time step t, the player selects a pair of arms (ut, vt).

2. The environment stochastically samples an outcome Xt = I(ut ≻ vt) ∈ {0, 1} from the Bernoulli
distribution B(µutvt). Additionally, it determines a delay Dt ∈ N from the delay distribution D.

3. At the beginning of time step t + 1, the player receives outcomes from earlier rounds. For s < t + 1,
the censoring variable I(Ds ≤ t+1−s) determines whether the outcome from time step s is revealed
by time step t + 1. Define Ys,t+1 = XsI(Ds ≤ t + 1 − s); the player then observes the collection
(Ys,t+1)1≤s≤t.

Our problem setting aligns with the classic delayed feedback formulation with binary observations (Vernade
et al., 2017; 2020): the player observes zero value for delayed responses until they become available. However,
as we mention in Section 1, different from other types of bandits, the dueling bandit is intrinsically more
difficult with delayed rewards due to its feedback mechanism that involves two arms at once: on the one
hand, when Ys,t = 1, it is straightforward to determine that Xs = 1. We say that the reward converted if
Xs = 1 and the actual observation of this conversion event is indicated by Ys,t = 1. On the other hand, if
Ys,t = 0, the status of Xs (Xs = 0 or Xs = 1) remains uncertain due to the potential delay since we always

1We note that our analysis can be extended to scenarios where the delay distribution depends on the pair of arms. This is
advantageous because a user may hesitate longer when µij is close to 1/2, resulting in longer delays. However, for simplicity
and clarity, we assume independence in our work.
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observe Ys,t = 0 when the delayed feedback is not available yet regardless of the pairwise comparison result
Xs. Specifically, the scenarios Xs = 0 or Ds > t− s both would result in our observation Ys,t = 0, making it
impossible to distinguish between these two cases until the delay is resolved. Conclusively, this phenomenon
leads to a preference bias on vt over ut, and this issue is practical under the dueling bandit application as we
mention in Section 1. Therefore, our problem is intrinsically more challenging than other types of bandits
with delayed feedback due to the additional bias effects on pairwise comparisons.

Our goal is to minimize the cumulative regret up to time step T , given by

R(T ) =
T∑

t=1

∆ut + ∆vt

2 , (1)

where ∆i = µ1i − 1
2 . This formulation aligns with the standard concept of regret used in other studies (Ver-

nade et al., 2017; Pike-Burke et al., 2018; Vernade et al., 2020).

3 Algorithm: Known Delay Distribution

In this section, we introduce an algorithm designed for situations where the delay distribution D is known.
Our approach begins with estimating the parameters µij in the pairwise preference model. Following this,
we propose RUCB-Delay, an algorithm adapted from the RUCB (Relative Upper Confidence Bound) algo-
rithm (Zoghi et al., 2014a). RUCB-Delay utilizes the upper confidence bound (UCB) methodology computed
from the estimated parameters. Finally, we establish a regret bound for our proposed algorithm, demon-
strating its effectiveness in addressing the K-armed dueling bandit problem with delayed feedback.

3.1 Parameter Estimation

Let τt = P(D1 ≤ t) represent the cumulative distribution function of the delay distribution. Assuming
knowledge of the delay distribution, we possess information regarding the individual values of τt. Addition-
ally, we incorporate an M -threshold delay, restricting the observation of conversions to occur within M time
steps after the corresponding action. In other words, if the reward conversion has not been observed within
the initial M rounds, the algorithm presumes it will never occur. This censored observation setting aligns
with the study conducted in Vernade et al. (2017; 2020). This assumption has a practical advantage, as
there is no need to keep track of observations {Ys,t} for t > s + M .

We first introduce some key notations. We utilize the notation Is
i,j = I((us, vs) = (i, j)) for simplicity when

there is no potential confusion in the context. Define Nij(t) as the exact count of times we select a pair of
arms (i, j) up to time t, and Ñij(t) as the delay-discounted count, which takes into account the probability
of the reward not yet being observed:

Nij(t) =
t−1∑
s=1

( Is
i,j + Is

j,i ), (2)

Ñij(t) =
t−M∑
s=1

τM

(
Is
i,j + Is

j,i

)
+

t−1∑
s=t−M+1

τt−s

(
Is
i,j + Is

j,i

)
. (3)

Moreover, for practical benefit, as mentioned earlier, we introduce the censored observation Ỹs,t, which differs
from Ys,t only when the reward Xs is one and the delay Ds exceeds M :

Ỹs,t = Ys,t I(Ds ≤M) = Xs I(Ds ≤ min(M, t− s)).

Lastly, introduce Sij as follows:

Sij(t) =
t−M∑
s=1

Ỹs,t Is
i,j + (τM − Ỹs,t) Is

j,i +
t−1∑

s=t−M+1
Ỹs,t Is

i,j + (τt−s − Ỹs,t) Is
j,i.
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Algorithm 1 RUCB-Delay
Input: Time horizon T , α, M , {τd}M

d=1, A = {1, 2, ..., K}
Initialization:

1: for t = 1, 2, ..., T do
2: Compute uij(t) for all i ̸= j based on Equation 5
3: uii(t)← 1

2 for all i ∈ A
4: Select a pair of arms (ut, vt) according to RUCB
5: Observe the collection (Ys,t+1)1≤s≤t.
6: Update Nij(t + 1), Ñij(t + 1), and Sij(t + 1)
7: end for

Sij(t) captures the bias-corrected count of arm i beating arm j up to time t. When comparing (i, j) and if
the current observation implies j > i, we add τ instead of 1. This adjustment accounts for the preference
bias favoring the second arm over the first arm, which enables us to construct an unbiased estimator of µij .
We define µ̂ij as follows:

µ̂ij(t) = Sij(t)
Ñij(t)

, (4)

which serves as a conditionally unbiased estimator of µij when conditioned on the arm selections.
Proposition 1. µ̂ij(t) is a conditionally unbiased estimator of µij, when conditioning on the selections of
arms.

Proof. If (us, vs) = (i, j),
E(Ỹs,t|us, vs) = µijτmin(M,t−s).

Then,

E(Sij(t)|{us, vs}1≤s≤t−1)

=
t−M∑
s=1

µijτM Is
i,j + (τM − µjiτM ) Is

j,i +
t−1∑

s=t−M+1
µijτt−s Is

i,j + (τt−s − µjiτt−s) Is
j,i = µijÑij(t),

where the last equality holds from the definition of Ñij(t) and the relation µji = 1− µij . Therefore,

E(µ̂ij(t)|{us, vs}1≤s≤t−1) = µij .

3.2 Algorithm

Utilizing the estimator and variables defined in Section 3.1, we propose an algorithm named RUCB-Delay
designed for the dueling bandit problem in the presence of delayed feedback. RUCB-Delay is built upon
the framework of the RUCB algorithm (Zoghi et al., 2014a), retaining a similar structure but with novel
estimators, variables, and an altered upper confidence bound. The modified upper confidence bound is given
by:

Uij(t) = µ̂ij(t) +
√

αNij(t) log t

Ñ2
ij(t)

, (5)

where α ≥ 1. Refer to Algorithm 1 for an outline of the RUCB-Delay procedure. With the novel upper
confidence bound, we follow RUCB’s approach of selecting a pair of arms (ut, vt). At each time step, we
define a potential champion set C consisting of arms that optimistically win against all other arms, meaning
Uij ≥ 1

2 for all j. We then update the current best arm set B, which will either have one element or be empty.
The idea is twofold: first, the arm in B loses its top position as the best arm if it is optimistically beaten
by another arm, and second, the arm ut will be selected from B with high probability, or from the potential

6



Published in Transactions on Machine Learning Research (08/2024)

champion set C. Specifically, if C contains exactly one element, we set B to C and select that unique element
as ut. If C has multiple elements, we choose ut from B with a probability of 0.5 and from the remaining
potential champion arms in C \ B with equal probability. After selecting the first arm ut, the second arm vt

is chosen as the one that maximizes Uutvt
.

3.3 Regret Analysis

Here, we present a regret analysis for the proposed RUCB-Delay algorithm. This is achieved by first es-
tablishing a general deviation inequality between µij and µ̂ij in Lemma 2 and utilizing it to prove the high
probability bound in Lemma 3.
Lemma 2. For any α > 0 and any pair of arms (i, j), the following inequality holds for all t,

P (|µ̂ij(t)− µij | > rij(t)) ≤ 2
t2α

where rij(t) =
√

αNij(t) log t

Ñ2
ij(t)

.

The proof of Lemma 2 is provided in Appendix A.1. With the upper confidence bound Uij defined in
Equation 5 for i ̸= j and Uii = 1

2 for all i, we define Lij(t) = 1− Uji(t). We now state the high probability
concentration inequality:
Lemma 3. Let α > 1

2 and δ > 0. Then, with probability at least 1 − δ, for any t > C(δ) and any pair of
arms (i, j), the following holds:

Lij(t) ≤ µij ≤ Uij(t),

where C(δ) =
(

(4α−1)(M+1)K(K−1)
(2α−1)δ

) 1
2α−1 .

The lemma establishes a high probability inequality that involves all large time steps and pairs of arms. By
leveraging symmetry, our analysis can be confined to cases where i < j. Additionally, if arms i and j are
compared at time s1, then at time s2, Nij and Ñij remain constant for all time steps between s1 +M and s2.
This observation narrows down the range of time steps that need to be considered. Given these observations
and Lemma 2, we present a comprehensive proof of Lemma 3 in Appendix A.1.

Given the high probability upper and lower bounds of µij from Lemma 3, we derive the following high
probability upper bound on the regret for the RUCB-Delay algorithm and state the expected regret bound.
Theorem 1. Let α ≥ 1 and δ > 0. For any T ≥ 1, with probability at least 1 − δ, the cumulative regret
R(T ) of RUCB-Delay is upper bounded by

O

(
MK2

δ

)
+ Õ

 1
τ2

1

∑
i<j

α

min(∆2
i , ∆2

j )

+ O

 K∑
j=2

α

τ2
1 ∆2

j

log T

 .

Theorem 2. For α ≥ 1, the expected regret E[R(T ))] of RUCB-Delay is upper bounded by

O
(
MK2)+ Õ

 1
τ2

1

∑
i<j

α

min(∆2
i , ∆2

j )

+ O

 K∑
j=2

α

τ2
1 ∆2

j

log T

 .

The detailed proofs for Theorems 1 and 2 are available in Appendix A.2. The components of the expected
regret upper bound in Theorem 2 share a similar structure with the regret bounds obtained in a fully
stochastic setting (Zoghi et al., 2014a), but with an additional multiplicative constant 1/τ2

1 . We may easily
verify that in the absence of delay, when τ1 = 1, our algorithm RUCB-Delay recovers the optimal regret
bound in the standard stochastic dueling bandit problem (Zoghi et al., 2014a; Komiyama et al., 2015).
Remark 1. We have developed an algorithm applicable to the delayed feedback setting in the dueling bandit
problem by introducing a series of new variables and modifying the upper confidence bound when the delay
distribution is known. We anticipate that many bandit algorithms using the Upper Confidence Bound (UCB)
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Algorithm 2 Multi Round-Robin Dueling Bandit with Delayed Feedback (MRR-DB-Delay)
Input: Time horizon T , {nm}m∈N
Initialization: γ1 = 1

2 , t = 1, m = 1,A1 = {1, 2, ..., K},
Tij(0) = ∅ for all i, j ∈ A1

1: while t ≤ T do
2: /∗ Round m starts ∗/
3: for i, j ∈ Am do
4: Let Tij(m) := Tij(m− 1)
5: while |Tij(m)| ≤ nm and t ≤ T do
6: Play arms i and j
7: Tij(m)← Tij(m) ∪ {t}
8: t← t + 1
9: end while

10: end for
11: /∗ Update mean estimates and active arm set ∗/
12: for i, j ∈ Am do
13: Ȳij(m) := 1

|Tij(m)|
∑

s∈Tij(m) Ys,t

14: end for
15: Am+1 := Am \

{
i ∈ Am : ∃j ∈ Am s.t. Ȳij(m) + γm < 1

2
}

16: γm+1 ← γm

2
17: m← m + 1
18: end while

strategy can transition to scenarios with delayed feedback by employing novel variations similar to our upper
bound.

For instance, the RR-DB algorithm (Saha & Gaillard, 2022) designed for stochastic dueling bandits can be
transformed in a similar manner. RR-DB is a straightforward methodology that, in each round, compares all
pairs of potentially optimal arms in a round-robin fashion, gradually removing significantly suboptimal arms.
Although RR-DB achieves a regret bound of O(K2 log T ) and is not optimal overall, it performs optimally
concerning the order of ∆min. In contrast to other dueling bandit algorithms (Zoghi et al., 2014a; Bengs
et al., 2021) suffering from a regret of order ∆−2

min, RR-DB relies only on ∆−1
min, which leads to an improved

worst-case regret. We adjust the upper bound uij of the RR-DB algorithm from

uij(t) := p̂ij(t) +

√
log(Kt/δ)

Nij(t)

to

uij(t) := µ̂ij(t) +
√

Nij(t) log(Kt/δ)
Ñ2

ij(t)
,

where µ̂ij is defined as Equation 4. Then, the algorithm becomes suitable for the delayed feedback setting.
We refer to this as RR-DB-Delay. Since RR-DB is not optimal, we do not delve into it in detail in this
paper. However, we will evaluate and compare the performance of RR-DB-Delay in the experimental section
(Section 5) later on.

Remark 2. We can formulate a non-asymptotic lower bound for the dueling bandit problem with stochastic
delayed feedback. For any dueling bandit algorithm and T , there exists a K-armed dueling bandit such that
R(T ) ≥ c

√
TK/τM , where c > 0 is a constant. The proof for this is deferred to Appendix D, while it remains

an open problem whether this lower bound is tight.
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4 Algorithm: Known and Bounded Expected Delay

In practice, the exact delay distribution D is often unknown and can be challenging to estimate. This section
presents a novel algorithm named Multi Round-Robin Dueling bandit with Delayed Feedback (MRR-DB-
Delay) that can be implemented when only the expected value of the delay is known and bounded.

4.1 Algorithm

MRR-DB-Delay employs a round-based elimination strategy that iteratively refines the set of active arms.
In each round, all possible pairs of active arms are played multiple times, and based on the accumulated
observations, suboptimal arms are eliminated at the end of the round.

Algorithm 2 provides a detailed overview of our algorithm, MRR-DB-Delay. In this algorithm, m denotes
the current round, while t represents the current time step, with T being the total time steps until the
algorithm concludes. Additionally, nm represents the number of times each active arm pair should be played
by round m. In the collection Tij(m), we store all time steps when arm pair (i, j) were played in the first
m rounds. The set Am identifies the active arms during round m, indicating the subset of arms currently
under consideration.

In round m, each pair of arms (i, j), where i, j ∈ Am, is played nm − nm−1 times. Then, we compute the
mean estimates Ȳij(m) of arm pairs based on the observations at that point. Finally, arm i is eliminated
if there exists another arm j in Am such that the mean estimate Ȳij(m) is less than 1

2 by γm. The gap
tolerance γm decreases exponentially over rounds, and in our further analysis (Lemma 4), we establish an
inequality between the difference of Ȳij(m) and µij . These provide a guarantee that, with high probability,
all arms, except the best arm 1, will be removed.

Lastly, in each round, we need to determine the value of nm, indicating how many times we will play each
pair of arms. The determination of nm is crucial as it plays a significant role in the algorithm’s ability to
efficiently eliminate suboptimal arms and has a substantial impact on regret performance. We choose nm so
that the confidence bound established in Lemma 4 holds with high probability. This naturally results in the
algorithm effectively removing arms with suboptimal performance. The selection of nm in Algorithm 4 is as
follows:

nm = C1 log(Tγ2
m)

γ2
m

+
C2
√

E[D] log(Tγ2
m)

γm
+ C3E[D]

γm
, (6)

where C1 and C2 are some constants, and E[D] represents the expected value of the delay. The complete
formula for nm and further details on the derivation of nm are provided in Appendix B.1.
Remark 3. In fact, with a different value of nm, MRR-DB-Delay can also manage aggregated and anony-
mous delayed feedback (Pike-Burke et al., 2018). In this situation, the player only observes the reward
summation in each round after some delay, without knowing which specific past actions led to this total
reward. Detailed analysis on this aspect can be found in Appendix C.

4.2 Regret Analysis

Here, we conduct a regret analysis for MRR-DB-Delay under the choice of nm in Equation 6. We establish
an error bound between µij and Ȳij(m), and subsequently derive the expected regret bound of the algorithm.

Let tm be the time step at the end of round m. The sum of discrepancies between µij and the observation
Ys,tm

during comparisons of arms i and j can be decomposed as follows:∑
s∈Tij(m)

(µij − Ys,tm
) =

∑
s∈Tij(m)

(µij −Xs) + (Xs − Ys,tm
)

The first term represents the difference between the true parameter µij and the outcome Xs, capturing
the error in the absence of delayed feedback. Since the average of Xs is an unbiased estimator of µij , the
first term can be bounded using concentration inequalities. On the other hand, the second term is nonzero
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only when the reward is converted but remains unobserved due to the delay, thereby illustrating the impact
of delay on unobserved converted output. This decomposition allows us to separately analyze the effect
of preference bias and delay. We establish an upper bound for each term and present the following high
probability bound, along with a comprehensive proof given in Appendix B.1.
Lemma 4. For any round m ≥ 1 and any pair of active arms (i, j) ∈ Am, with probability at least 1− 2

T γ2
m

,

µij − Ȳij(m) ≤ γm

2 .

We now provide the expected regret bound of MRR-DB-Delay in Theorem 3. Please refer to Appendix B.2
for a detailed proof.
Theorem 3. The expected regret E[R(T ))] of Algorithm 2 is upper bounded by

K∑
i=2

O

(
K log(T∆2

i )
∆i

+ K
√

log(T∆2
i )E[D] + KE[D]

)

While its regret bound is larger than that of RUCB-Delay proposed in Section 3, MRR-DB-Delay possesses
a significant advantage in that it can be utilized even when the complete delay distribution is unknown.
Moreover, MRR-DB-Delay is advantageous in terms of the order of ∆min, as it only depends on ∆−1

min,
whereas RUCB-Delay relies on ∆−2

min.

5 Experiments

Following the introduction of our algorithms and theoretical analysis, this section involves a comparison of
the performance of our proposed algorithms through numerical experiments conducted on various synthetic
and real-world datasets.

Algorithms. We evaluate the performance of three algorithms introduced in our paper with the baseline:
1. RUCB-Delay (Section 3), 2. RR-DB-Delay (Remark 1 in Section 3), and 3. MRR-DB-Delay (Section 4).
RUCB-Delay and RR-DB-Delay are algorithms that necessitate knowledge of the complete delay distribution,
whereas MRR-DB-Delay only requires the expected value of the delay. We note that the regret bound,
considering only terms related to K and T , for RUCB-Delay is O(K log T ), while RR-DB-Delay and MRR-
DB-Delay have a bound of O(K2 log T ). To the best of our knowledge, there are no other known methods
applicable to dueling bandit problems when there is a delay in feedback. However, we also included a baseline
comparison using RUCB (Zoghi et al., 2014a) to effectively demonstrate the advantages of our proposed delay-
specific algorithms. RUCB is an algorithm designed without accounting for delayed feedback; therefore, we
update the output as soon as the delayed feedback is received.

Experimental Setup. We plot the regret performance of all three algorithms on six distinct datasets,
which are described in the following paragraph. For all experiments, we set the time horizon to T = 200, 000.
However, for datasets where all three algorithms converge earlier than this fixed horizon, we plot the results
only up to the earlier convergence time for better visualization. The regret performance for all plots was
assessed by averaging the cumulative regret, as defined in Equation 1, across 100 runs. Both the average and
standard deviation are reported in the plots. Similar to Vernade et al. (2017; 2020), we assume that the delay
distribution follows a geometric distribution with p = 0.01, implying a mean E[D] = 100. Also, based on
our regret analysis in Theorem 2, we set α = 1.0 for RUCB-Delay. For the baseline comparison, RUCB uses
the number of times arm i beats arm j to establish their upper confidence bound, which includes potentially
delayed feedback. We employ the most up-to-date values and update this count as soon as delayed feedback
is received. Lastly, as discussed in Section 3.1, we introduce a windowing parameter denoted as M for
computational efficiency in RUCB-Delay and RR-DB-Delay. When dealing with an unbounded delay, we
encounter practical storage issues since we need to keep track of previous actions to update Ñij and Sij . The
windowing framework allows us to address this with an array of size M . We set the windowing parameter
M = 1000. Given that τ1000 = 0.999 with the geometric delay distribution, introducing the windowing
parameter in this experiment is expected to have practically no impact on regret performance.

10



Published in Transactions on Machine Learning Research (08/2024)

(a) Six Rankers (b) MSLR (c) Tennis

(d) Arithmetic (e) Car Preference (f) Sushi

Figure 2: Average Cumulative Regret. The regret performances, averaged over 100 independent runs, along
with their standard deviations, are reported for each dataset and algorithm.

Datasets. We perform experiments using the following six datasets. We provide a brief description of each
dataset, including the number of arms:

• Six rankers (K = 6): a preference matrix generated from the six retrieval functions within the
full-text search engine of ArXiv.org (Yue & Joachims, 2011).

• MSLR (K = 5): a 5 × 5 preference matrix introduced by Zoghi et al. (2015a) is extracted from
a subset of rankers originating from the Microsoft Learning to Rank (MSLR) dataset (Qin & Liu,
2013). The MSLR dataset includes relevant information between queries and URLs, comprising
more than 30,000 queries.

• Tennis (K = 8): a dataset, constructed by Ramamohan et al. (2016), is based on the results of
tennis matches organized by the Association of Tennis Professionals (ATP) among 8 international
tennis players. The element (i, j) represents the proportion of times player i has defeated player j.

• Arithmetic (K = 10): a synthetic preference matrix with ten arms where µij = 0.5 + 0.025(j − i).
A similar data was first used in (Komiyama et al., 2015).

• Car Preference (K = 10): a dataset of car preferences (Abbasnejad et al., 2013) collected from 60
users in the United States. The preference matrix was constructed based on the pairwise comparison
data of users evaluating 10 different cars. Each user expressed their preferences for all 45 pairs of
cars.

• Sushi (K = 16): a dataset derived from the sushi preference dataset (Kamishima, 2003), comprising
the preferences of 5,000 Japanese users for 100 different types of sushi. Komiyama et al. (2015; 2016)
selected 16 sushi types from the dataset and represented them in a preference matrix.
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Results. The regret evaluations of the three algorithms for all datasets are presented in Figure 2. Across
all datasets except for Tennis, RUCB-Delay outperforms RR-DB-Delay and MRR-DB-Delay, providing em-
pirical support for their respective regret bound guarantees. Additionally, upon comparing the average
performance of RR-DB-Delay and MRR-DB-Delay, we observe a slight superiority of RR-DB-Delay. How-
ever, it is essential to highlight that MRR-DB-Delay holds a notable advantage as it can be implemented
with only the knowledge of the expected value of delay, unlike RUCB-Delay and RR-DB-Delay, which require
complete delay distribution. Another critical aspect to highlight is the baseline comparison: The baseline
method, RUCB, becomes futile and fails to converge across all datasets. This observation distinctly high-
lights the superiority of our approaches, specifically tailored for settings with delayed rewards. Notably,
the innovative estimator introduced in RUCB-Delay significantly enhances the algorithm’s effectiveness and
robustness to delayed observations.

When examining the performance of RUCB-Delay, it can be observed that the regret increases more slowly in
the early stages compared to RR-DB-Delay and MRR-DB-Delay. This fact is aligned with our expectation
since both RR-DB-Delay and MRR-DB-Delay initially attempt all possible arm pairs before eliminating
suboptimal arms, leading to a rapid increase in regret at the beginning. Additionally, for datasets with many
arms having small ∆i, these arms tend to be eliminated later. As a result, comparably large differences in
regret performance may arise between RUCB-Delay and both RR-DB-Delay and MRR-DB-Delay.

6 Discussion

We have studied the biased dueling bandit problem with stochastic delayed feedback and introduced two
main algorithms, each accompanied by a comprehensive analysis. The first algorithm, RUCB-Delay, is
designed for scenarios where the complete delay distribution is available. It leverages parameter estimation
of the underlying model and incorporates a UCB strategy. This algorithm recovers the optimal regret bound
for the dueling bandit problem in the absence of delay. The second algorithm, MRR-DB-Delay, is crafted for
situations where information about the distribution is unavailable, and only the expected values are known.
It employs a multi-round-robin fashion by playing all active arm pairs a predetermined number of times
in each round. To the best of our knowledge, our methods are the first to delve into the delayed feedback
setting within the dueling bandit framework. The efficiency of our proposed algorithms is then validated
under numerical experiments.

There are several potential directions for future research. To begin with, it is intriguing to investigate
algorithms that can be implemented without any knowledge of the delay, such as its expected value, while
this problem remains challenging since existing algorithms for the simpler multi-armed bandit with delayed
feedback still require additional side information. Furthermore, conducting theoretical studies to understand
the impact of employing estimates of the delay distribution could be insightful. While our study assumed
a Condorcet winner, it would be beneficial to extend the problem to consider Borda or Copeland winners.
Last but not least, the biased dueling bandit presents a compelling area of study due to the pervasive nature
of biases confounding user preferences in real-world applications. Despite its practical significance, this
challenge remains largely underexplored in the existing literature.
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A Regret Analysis of RUCB-Delay

A.1 Proof of Lemmas 2 and 3

Lemma 2. For any α > 0 and any pair of arms (i, j), the following inequality holds for all t,

P (|µ̂ij(t)− µij | > rij(t)) ≤ 2
t2α

where rij(t) =
√

αNij(t) log t

Ñ2
ij(t)

.

Proof. Let

Z :=
t−1∑
s=1

Ỹs,t Is
i,j + (1− Ỹs,t) Is

j,i.

Then, we obtain the relation

Sij(t) = Z +
t−1∑
s=1

(τmin(M,t−s) − 1) Is
j,i.

Let’s first consider the case conditioning on the selection of arms {us, vs}1≤s≤t−1. Then, we have

Sij(t)− Z =
t−1∑
s=1

(τmin(M,t−s) − 1) Is
j,i = µijÑij(t)− E(Z).

Therefore, we can set an upper bound for the left-hand side conditioned on the selection of arms as:

P (|µ̂ij(t)− µij | > rij(t) | {us, vs}1≤s≤t−1) = P(|Z − E(Z)| > rij(t)Ñij(t) | {us, vs}1≤s≤t−1) ≤ 2
t2α

.

The inequality holds by Hoeffding’s Inequality since each censored observation Ỹs,t is independent given the
selection of arms.

Finally, since the right-hand side term of the above inequality does not depend on the selection of arms, we
may remove the conditioning by the law of total probability and obtain:

P (|µ̂ij(t)− µij | > rij(t)) ≤ 2
t2α

.

Lemma 3. Let α > 1
2 and δ > 0. Then, with probability at least 1 − δ, for any t > C(δ) and any pair of

arms (i, j), the following holds:
Lij(t) ≤ µij ≤ Uij(t),

where C(δ) =
(

(4α−1)(M+1)K(K−1)
(2α−1)δ

) 1
2α−1 .

Proof. Let Gij(t) denote the good event where we have µij ∈ [Lij(t), Uij(t)] at time t, and let Bij(t) be the
bad event where µij /∈ [Lij(t), uij(t)] at time t.

For i < j, the relations µij = 1 − µji, Uij(t) = 1 − Lji(t), and Lij(t) = 1 − Uji(t) hold. Thus, the
event Gij(t) is true if and only if Gji(t) is true. Additionally, Gii(t) is always true because, as constructed,
µii = lii(t) = uii(t) = 1

2 . Hence, it is sufficient to focus only on Gij(t) for i < j.

We define σij
n as the time step when arms i and j were compared for the n-th time. We note that Nij(σij

n ) = n

by definition. For any n, if σij
n + M < σij

n+1, then
√

αNij(t) log t

Ñ2
ij

(t) is an increasing function of t for all

σij
n + M ≤ t < σij

n+1. Also, µ̂ij(t) is a constant for all σij
n + M ≤ t < σij

n+1. Therefore, if Gij(σij
n + k) holds

true for all 0 ≤ k ≤M , it implies that Gij(t) holds for all σij
n ≤ t < σij

n+1.
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Using the above observations, for any T > 0, we have

P (∀t > T, i, j, Gij(t))

= P
(
∀i < j, Gij(t) for ∀T ≤ t ≤ max

(
σij

Nij(T ) + M, T
)

and Gij(σij
n + k) for ∀n ≥ Nij(T ) + 1, 0 ≤ k ≤M

)
.

Next, by considering the complement of the events on both sides of the above equation and applying the
union bound, we arrive at the following:

P (∃ t > T, i, j s.t. Bij(t))

≤
∑
i<j

(
P
(
∃ t ∈

[
T, max

(
σij

Nij(T ) + M, T
)]

s.t. Bij(t)
)

+P
(
∃n ≥ Nij(T ) + 1, 0 ≤ k ≤M s.t. σij

n + k < σij
n+1 and Bij(σij

n + k)
))

≤
∑
i<j

P

(
∃t ∈

[
T, max

(
σij

Nij(T ) + M, T
)]

: |µij − µ̂ij(t)| >
√

αNij(t) log t

Ñ2
ij(t)

)
︸ ︷︷ ︸

(a)

+ P

∃n ∈ [Nij(T ) + 1, T ], k ∈ [0, M ] : σij
n + k < σij

n+1 and
∣∣µij − µ̂ij(σij

n + k)
∣∣ >

√√√√αNij(σij
n + k) log(σij

n + k)
Ñ2

ij(σij
n + k))


︸ ︷︷ ︸

(b)

+ P

∃n > T, k ∈ [0, M ] : σij
n + k < σij

n+1 and
∣∣µij − µ̂ij(σij

n + k)
∣∣ >

√√√√αNij(σij
n + k) log(σij

n + k)
Ñ2

ij(σij
n + k))


︸ ︷︷ ︸

(c)



Let’s break down the expression on the right-hand side into three components, denoted as (a), (b), and (c),
and then derive upper bounds for each of these components. The first part (a) can be upper bounded as:

(a) ≤ P

(
∃t ∈ [T, T + M ] : Nij(t) = Nij(T ) and |µij − µ̂ij(t)| >

√
αNij(t) log t

Ñ2
ij(t)

)

≤ P

(
∃t ∈ [T, T + M ] : Nij(t) = Nij(T ) and |µij − µ̂ij(t)| >

√
αNij(t) log T

Ñ2
ij(t)

)

≤
M∑

k=0

T∑
n=1

P

(
Nij(T + k) = Nij(T ) = n and |µij − µ̂ij(T + k)| >

√
αNij(T + k) log T

Ñ2
ij(T + k)

)

≤ 2(M + 1)
T∑

n=1

1
T 2α
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where the last inequality holds from Lemma 2. Second, (b) can be upper bounded as:

(b) ≤ P

∃Nij(T ) + 1 ≤ n ≤ T, 0 ≤ k ≤M : σij
n + k < σij

n+1 and
∣∣µij − µ̂ij(σij

n + k)
∣∣ >

√√√√αNij(σij
n + k) log T

Ñ2
ij(σij

n + k))


≤

M∑
k=0

T∑
n=1

P

σij
n + k < σij

n+1 and
∣∣µij − µ̂ij(σij

n + k)
∣∣ >

√√√√αNij(σij
n + k) log T

Ñ2
ij(σij

n + k))


≤ 2(M + 1)

T∑
n=1

1
T 2α

The first inequality holds because Nij(T ) + 1 ≤ n and σij
n + k > T , while the second inequality results from

applying the union bound. The last inequality holds again from Lemma 2. Similarly, by using the fact that
n ≤ σij

n and Lemma 2, we can obtain an upper bound for (c) as follows:

(c) ≤ P

∃n > T, 0 ≤ k ≤M : σij
n + k < σij

n+1 and
∣∣µij − µ̂ij(σij

n + k)
∣∣ >

√√√√αNij(σij
n + k) log n

Ñ2
ij(σij

n + k))


≤

M∑
k=0

∞∑
n=T +1

P

σij
n + k < σij

n+1 and
∣∣µij − µ̂ij(σij

n + k)
∣∣ >

√√√√αNij(σij
n + k) log n

Ñ2
ij(σij

n + k))


≤ 2(M + 1)

∞∑
n=T +1

1
n2α

Putting all these results together, we obtain

P (∃ t > T, i, j s.t. Bij(t))

≤ 2(M + 1)
∑
i<j

(
2

T∑
n=1

1
T 2α

+
∞∑

n=T +1

1
n2α

)

= 2(M + 1)K(K − 1) 1
T 2α−1 + (M + 1)K(K − 1)

∞∑
n=T +1

1
n2α

≤ 2(M + 1)K(K − 1) 1
T 2α−1 + (M + 1)K(K − 1)

∫ ∞

T

dx

x2α

= (M + 1)(4α− 1)K(K − 1)
(2α− 1)T 2α−1

Therefore, when T = C(δ), we obtain P (∃ t > C(δ), i, j s.t. Bij(t)) ≤ δ which concludes the proof.

A.2 Proof of Theorems 1 and 2

Theorem 1. Let α ≥ 1 and δ > 0. For any T ≥ 1, with probability at least 1 − δ, the cumulative regret
R(T ) of RUCB-Delay is upper bounded by

O

(
MK2

δ

)
+ Õ

 1
τ2

1

∑
i<j

α

min(∆2
i , ∆2

j )

+ O

 K∑
j=2

α

τ2
1 ∆2

j

log T

 .

Proof. We first state a high probability bound for the number of comparisons for each arm.

With probability at least 1− δ, for any t > C(δ) and any pair of arms (i, j) ̸= (1, 1), the following holds:

Nij(t) ≤ 4α log t

τ2
1 min(∆2

i , ∆2
j ) . (7)
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Moreover, let Nδ
ij(t) denote the number of comparisons between arms i and j performed between time C(δ)

and t. Then,
Nδ

ij(t) ≤ 4α log t

τ2
1 min(∆2

i , ∆2
j ) (8)

holds as well. The proof of this statement closely follows the analysis presented in Proposition 2 of Zoghi
et al. (2014a), with a modification to Equation (3) of Zoghi et al. (2014a) as follows:

Uij(s)− Lij(s) = 2
√

αNij(s) log s

Ñ2
ij(s)

≤ 2

√
α log s

τ2
1 Nij(s) ≤ 2

√
α log t

τ2
1 Nij(t) ≤ min{∆i, ∆j}.

Now, let T̂δ be the smallest time that such that

T̂δ > C

(
δ

2

)
+ D log T̂δ,

where D := 1
τ2

1

∑
i<j

4α
min(∆2

i
,∆2

j
) and the existence of such T̂δ is guaranteed. Then, according to the above

statement and Lemma 3, we can assert with a probability of 1− δ
2 that

∀t > C

(
δ

2

)
, i, j, µij ∈ [Lij(t), Uij(t)],

and
∀(i, j) ̸= (1, 1), N

δ/2
ij (T̂δ) ≤ 4α log T̂δ

τ2
1 min(∆2

i , ∆2
j ) .

In this case, when t > C
(

δ
2
)

and i > 1, arm i cannot be compared against itself. This is due to the fact that
uii(t) = 1

2 < µ1i ≤ u1i(t) which holds by Lemma 3. Additionally, we have(
T̂δ − C

(
δ

2

))
−
∑
i<j

N
δ/2
ij (T̂δ) ≥

(
T̂δ − C

(
δ

2

))
− 1

τ2
1

∑
i<j

4α log T̂δ

min(∆2
i , ∆2

j ) > 0

by the definition of T̂δ. Therefore, this implies that there exists a time Tδ ∈
(

C
(

δ
2
)

, T̂δ

]
when arm 1 was

played against itself. At that time Tδ, we had uj1(Tδ) < 1
2 for all j > 1, indicating that B = {1}.

With the above insights, we follow the proof strategy outlined in Theorem 4 of Zoghi et al. (2014a). Equation
7 in Zoghi et al. (2014a) requires modification, taking the form:

Ñ1(T ) ≤
K∑

j=2
Ñ1j(T ) ≤

K∑
j=2

4α log T

τ2
1 ∆2

j

=: N̂1(T ).

Furthermore, we can upper bound the cumulative regret similar to Equation 8 in Zoghi et al. (2014a) as
follows:

R(T ) ≤ Tδ∆max +
K∑

j=2

4α∆1j log T

τ2
1 ∆2

j

+
N̂1(T )∑

l=1
nl∆max. (9)

While the notations for C and D have undergone modifications compared to Zoghi et al. (2014a), we may
verify that all subsequent statements remain valid, and we are able to upper bound each term in Equation 9
as follows:

R(T ) ≤ Tδ∆max +
K∑

j=2

2α log T

τ2
1 ∆j

+
N̂1(T )∑

l=1
nl∆max

≤
(

2C

(
δ

2

)
+ 2D log 2D

)
∆max +

K∑
j=2

2α log T

τ2
1 ∆j

+ 4∆max log 2
δ

+
K∑

j=2

8α

τ2
1 ∆2

j

∆max log T

which concludes the proof.
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Theorem 2. For α ≥ 1, the expected regret E[R(T ))] of RUCB-Delay is upper bounded by

O
(
MK2)+ Õ

 1
τ2

1

∑
i<j

α

min(∆2
i , ∆2

j )

+ O

 K∑
j=2

α

τ2
1 ∆2

j

log T

 .

Proof. Let

HT (1− δ) :=
(

2C

(
δ

2

)
+ 2D log 2D

)
∆max +

K∑
j=2

2α log T

τ2
1 ∆j

+ 4∆max log 2
δ

+
K∑

j=2

8α

τ2
1 ∆2

j

∆max log T.

For fixed T , we view R(T ) as a random variable. By the relationship between the expected value of a random
variable and its cumulative distribution function, we obtain:

E[R(T )] =
∫ 1

0
F −1

R(T )(q)dq <

∫ 1

0
HT (q)dq.

Then, for integration of HT , we only need to foucs on terms that depend on δ:

E[R(T )] <

∫ 1

0
HT (q)dq

=
∫ 1

0

(
2C

(
1− q

2

)
+ 2D log 2D

)
∆max +

K∑
j=2

2α log T

τ2
1 ∆j

+ 4∆max log 2
1− q

+
K∑

j=2

8α

τ2
1 ∆2

j

∆max log Tdq

= 2D log 2D∆max +
K∑

j=2

2α log T

τ2
1 ∆j

+
K∑

j=2

8α

τ2
1 ∆2

j

∆max log T + ∆max

∫ 1

0

[
2C

(
1− q

2

)
+ 4 log 2

1− q

]
dq.

Moreover, the above integral can be computed as:∫ 1

0

[
2C

(
1− q

2

)
+ 4 log 2

1− q

]
dq =

(
2(4α− 1)(M + 1)K(K − 1)

2α− 1

) 1
2α−1 2α− 1

α− 1 + 4(log 2 + 1)

<

(
2(4α− 1)(M + 1)K(K − 1)

2α− 1

) 1
2α−1 2α− 1

α− 1 + 8.

Therefore, the expected regret can be upper bounded by

E[R(T ))] ≤
(

8 +
(

2(4α− 1)(M + 1)K(K − 1)
2α− 1

) 1
2α−1 2α− 1

α− 1

)
∆max

+2D log 2D∆max +
K∑

j=2

2α(∆j + 4∆max)
τ2

1 ∆2
j

log T.

Remark 4. In studies focusing on delayed feedback (Vernade et al., 2017; 2020), certain analyses include
τm in the regret bound instead of τ1. We note that in Theorem 1 and 2, τ1 can be replaced with τM

M+1 . This
substitution is justified by the following inequality. If Nij(t−M) ≥ 1, then

Ñij(t) ≥ Ñij(t)
M + 1 + M

M + 1
Ñij(t)

Nij(t−M)

≥ Nij(t−M)
M + 1 τM + M

M + 1τM

≥ τM

M + 1Nij(t).

The condition Nij(t−M) ≥ 1 is satisfied when all pairs of arms are initially selected before the beginning of
the algorithm. Therefore, in further analysis, τ1 can be substituted with τM

M+1 . However, for simplicity, we
maintain the use of τ1 in subsequent analysis.
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B Regret Analysis of MRR-DB-Delay

B.1 Proof of Lemma 4

Lemma 4. For any round m ≥ 1 and any pair of active arms (i, j) ∈ Am, with probability at least 1− 2
T γ2

m
,

µij − Ȳij(m) ≤ γm

2 .

Proof. Let tm denote the time step when round m concludes, and define Ps = XsI(Ds > tm−s)I(s ∈ Tij(m)).
Additionally, denote Gt as the σ-algebra generated by actions, outcomes, delays, and observations up to time
step t. We will start by proving two lemmas.

Lemma 5. With probability greater than 1− 1
T γ2

m
,

∑
s∈Tij(m)

(µij −Xs) ≤
√

nm log(Tγ2
m)

2 .

Proof. Applying Hoeffding’s inequality and Lemma 19 from Pike-Burke et al. (2018), we obtain the inequal-
ity:

P

 ∑
s∈Tij(m)

(µij −Xs) ≥ λ

 ≤ exp
(
−2λ2

nm

)

Then, choosing λ =
√

nm log(T γ2
m)

2 completes the proof.

Lemma 6. Let Qt =
∑t

s=1 (Ps − E(Ps|Gs−1)). With probability at least 1− 1
T γ2

m
,

Qtm ≤
2
3 log(Tγ2

m) +
√

2E[D] log(Tγ2
m)

Proof. {Qt}∞
t=0 is a martingale with respect to the filtration {Gt}∞

t=0 with increments Qt − Qt−1 = Pt −
E(Pt|Gt−1). Also, we have

tm∑
s=1

E
(
Qs

2|Gs−1
)

=
tm∑

s=1
Var(Ps|Gs−1) ≤

tm∑
s=1

E(P 2
s |Gs−1) ≤

tm∑
s=1

P(Ds > tm − s) ≤ E[D].

Then by Freedman’s version of Bernstein’s inequality (Theorem 1.6 of Freedman (1975)), we obtain the
following inequality:

P(Qtm
≥ λ) ≤ exp

(
− λ2/2
E[D] + λ/3

)
.

Finally, pick λ = log(T γ2
m)

3 +
√

log2(T γ2
m)

9 + 2E[D] log(Tγ2
m) and since

log(Tγ2
m)

3 +

√
log2(Tγ2

m)
9 + 2E[D] log(Tγ2

m) ≤ 2
3 log(Tγ2

m) +
√

2E[D] log(Tγ2
m),

this concludes the proof.
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Now, we employ the following decomposition:∑
s∈Tij(m)

(µij − Ys,tm
) =

∑
s∈Tij(m)

(µij −Xs) + (Xs − Ys,tm
)

=
∑

s∈Tij(m)

(µij −Xs) + Qtm +
tm∑

s=1
E(Ps|Gs−1)

Both the first and second terms can be bounded with high probability using Lemma 5 and 6, respectively.
The last term can be bounded as follows:

tm∑
s=1

E(Ps|Gs−1) ≤ µij

tm∑
s=1

P(Ds > tm − s) ≤ E[D]

Therefore, with a probability greater than 1− 2
T γ2

m
, the following holds:

µij − Ȳij(m) = 1
nm

∑
s∈Tij(m)

(µij −Ys,tm) ≤ 2
3nm

log(Tγ2
m) +

(
1√
2nm

+
√

2E[D]
nm

)√
log(Tγ2

m) + E[D]
nm

(10)

Defining nm as

nm =

 1
γ2

m

(√
log(Tγ2

m)
2 +

√
log(Tγ2

m)
2 + 4

3γm log(Tγ2
m) + 2γm

√
2E[D] log(Tγ2

m) + 2γmE[D]
)2


ensures that the right-hand side of Equation 10 is less than or equal to γm

2 , concluding the proof.

B.2 Proof of Theorem 3

Theorem 3. The expected regret E[R(T ))] of Algorithm 2 is upper bounded by

K∑
i=2

O

(
K log(T∆2

i )
∆i

+ K
√

log(T∆2
i )E[D] + KE[D]

)

Proof. We follow the proof structure presented in the proof of Theorem 2 of Pike-Burke et al. (2018). For
any arm i, let Mi denote the round when arm i is eliminated. Additionally, for any arm i, let’s define

mi := min
{

m ≥ 1 : γm <
2
3∆i

}
.

Then by the definition of mi, we have
∆i

3 ≤ γmi
<

2
3∆i.

Furthermore, we introduce Nij as the number of comparisons between arms i and j up to time T , and Ni

as the total number of times arm i has been played by time T :

Nij := Nij(T ) =
T∑

t=1
I((ut, vt) = (i, j)) + I((ut, vt) = (j, i))

Ni :=
T∑

t=1
I(ut = i) + I(vt = i)
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Also, for any arm i, let Ri(T ) := Ni
∆i

2 . Then the cumulative regret can be expressed as

R(T ) =
∑
i<j

Nij
∆i + ∆j

2 =
K∑

i=1
Ni

∆i

2 =
K∑

i=1
Ri(T ).

Therefore, we decompose the expected regret as follows:

E[R(T )] = E

[
K∑

i=1
Ri(T )

]

= E

[
K∑

i=1
Ri(T )I(M1 ≥ mi)

]
︸ ︷︷ ︸

(a)

+E

[
K∑

i=1
Ri(T )I(M1 < mi)

]
︸ ︷︷ ︸

(b)

To bound each component, we prove the following two lemmas.

Lemma 7. For any arm i ̸= 1,

P(Mi > mi and M1 ≥ mi) ≤
2

Tγ2
mi

.

Proof. Define an event
A =

{
Ȳi1(mi) ≤ µi1 + γmi

2

}
which occurs with high probability, specifically at least 1− 2

T γ2
mi

by Lemma 4. If the event A happens,

Ȳi1(mi) ≤ µi1 + γmi

2 = 1
2 −∆i + γmi

2
<

1
2 −

3
2γmi

+ γmi

2 = 1
2 − γmi

.

Therefore, if M1 ≥ mi, we have Mi ≤ mi. This implies that if Mi > mi and M1 ≥ mi, the event A does not
occur. Hence, we obtain

P(Mi > mi and M1 ≥ mi) ≤ P(Ac ∩ {i ∈ Ami
}) ≤ 2

Tγ2
mi

.

Lemma 8. Let the event Fi(m) be the event that the optimal arm 1 is eliminated by arm i in round m.
Then, for any arm i,

P(Fi(m)) ≤ 2
Tγ2

m

.

Proof. By the condition that an arm is eliminated,

P(Fi(m)) = P
(

1, i ∈ Am and Ȳ1i(m) + γm <
1
2

)
Define an event

A =
{

Ȳ1i(m) > µ1i −
γm

2

}
.

If A occurs,
Ȳ1i(m) > µ1i −

γm

2 >
1
2 −

γm

2 >
1
2 − γm

which implies arm 1 will not be removed by arm i in round m. Therefore, by Lemma 4, we obtain

P(Fi(m)) ≤ P(Ac ∩ {i ∈ Am}) ≤
2

Tγ2
m

.
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Bounding Term (a). By Lemma 7, we can bound the first term as follows:

E

[
K∑

i=1
Ri(T )I(M1 ≥ mi)

]

≤
K∑

i=1
E [Ri(T )I(Mi ≤ mi)] +

K∑
i=1

E
[

T∆i

2 I(Mi > mi, M1 ≥ mi)
]

≤
K∑

i=1

∆i

2 nmi
K + T

2

K∑
i=1

2∆i

Tγ2
mi

≤
K∑

i=1

∆i

2 nmi
K +

K∑
i=1

9
∆i

=
K∑

i=1

(
9

∆i
+ ∆inmiK

2

)
.

Bounding Term (b). Let mmax = maxi̸=1 mi. By Lemma 7 and 8,

E

[
K∑

i=1
Ri(T )I(M1 < mi)

]

=
mmax∑
m=1

E

[
I(M1 = m)

∑
i:mi>m

1
2Ni∆i

]

≤
mmax∑
m=1

E
[
I(M1 = m)T max

i:mi>m
∆i

]

≤
mmax∑
m=1

3P(M1 = m)Tγm =
mmax∑
m=1

K∑
i=1

3P(Fi(m))Tγm

≤
mmax∑
m=1

 ∑
i:mi<m

3P(M1 ≥ mi, Mi > mi)Tγm +
∑

i:mi≥m

3P(Fi(m))Tγm


≤

mmax∑
m=1

 ∑
i:mi<m

6
Tγ2

mi

T
γmi

2m−mi
+

∑
i:mi≥m

6
Tγ2

m

Tγm


≤

K∑
i=1

mmax∑
m=mi

6
γmi

2mi−m +
K∑

i=1

mi∑
m=1

6
2−m

≤
K∑

i=1

36
∆i

+
K∑

i=1
12 · 2mi

≤
K∑

i=1

36
∆i

+
K∑

i=1

36
∆i

=
K∑

i=1

72
∆i

where the last two inequalities hold from 2mi = 1
γmi
≤ 3

∆i
.

Therefore, we have provided upper bound for terms (a) and (b), and the expected regret is overall upper
bounded by:

E[R(T )] ≤
K∑

i=1

(
81
∆i

+ ∆inmi
K

2

)
.
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Lastly, our choice of nmi
can be bounded as follows:

nmi =

 1
γ2

mi

(√
log(Tγ2

mi
)

2 +
√

log(Tγ2
mi

)
2 + 4

3γmi log(Tγ2
mi

) + 2γmi

√
2E[D] log(Tγ2

mi
) + 2γmiE[D]

)2


≤
⌈

1
γ2

mi

(
2 log(Tγ2

mi
) + 8

3γmi
log(Tγ2

mi
) + 4γmi

√
2E[D] log(Tγ2

mi
) + 4γmi

E[D]
)⌉

≤ 1 + 2 log(4T∆2
i /9)

γ2
mi

+ 8 log(4T∆2
i /9)

3γmi

+ 4
√

2E[D] log(4T∆2
i /9)

γmi

+ 4E[D]
γmi

≤ 1 + 18 log(4T∆2
i /9)

∆2
i

+ 8 log(4T∆2
i /9)

∆i
+ 12

√
2E[D] log(4T∆2

i /9)
∆i

+ 12E[D]
∆i

Thus, the total expected regret is bounded by

E[R(T )] ≤
K∑

i=2

(
9K log(4T∆2

i /9)
∆i

+ 4K log(4T∆2
i /9) + 6K

√
2E[D] log(4T∆2

i /9) + 81
∆i

+ 6K E[D] + 1
2K∆i

)

C MRR-DB-Delay on delayed, aggregated, and anonymous feedback

In this section, we illustrate the regret guarantee of MRR-DB-Delay when handling delayed, aggregated, and
anonymous feedback in the dueling bandit problem. Here we also assume a known and bounded delay as
in Section 4. For a comprehensive description of the delayed, aggregated, and anonymous feedback setting,
please refer to Pike-Burke et al. (2018). We conduct a regret analysis with the following choice of nm:

nm =

 1
γ2

m

(√
2 log(Tγ2

m) +
√

2 log(Tγ2
m) + 8

3γm log(Tγ2
m) + 6γmmE[τ ]

)2
 (11)

Lemma 9. Consider the delayed, aggregated, and anonymous feedback setting and the choice of nm given by
equation 11. For any round m ≥ 1 and any pair of active arms (i, j) ∈ Am, with probability at least 1− 3

T γ2
m

,

µij − Ȳij(m) ≤ γm

2 .

Proof. We omit the proof here since the analysis of Lemma 1 in Pike-Burke et al. (2018) can be similarly
applied here.

Theorem 10. Under the delayed, aggregated, and anonymous feedback setting and the choice of nm given
by equation 11, the expected regret E[R(T ))] of Algorithm 2 is upper bounded by

K∑
i=2

O

(
K log(T∆2

i )
∆i

+ K log
(

1
∆i

)
E[τ ]

)

Proof. We follow the organization in the proof of Theorem 3 in Appendix B.2. Similarly, for any arm i,
let Mi be the round when arm i is removed and define mi := min

{
m ≥ 1 : γm < 2

3 ∆i

}
. Then we know

∆i

3 ≤ γmi < 2
3 ∆i. Additionally, we use the same notation of Nij , Ni, R(T ), and Ri(T ) as employed in

the proof of Theorem 3 in Appendix B.2. We once again break down the expected regret and bound each
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element using Lemma 11 and 12.

E[R(T )] = E

[
K∑

i=1
Ri(T )

]

= E

[
K∑

i=1
Ri(T )I(M1 ≥ mi)

]
︸ ︷︷ ︸

(a)

+E

[
K∑

i=1
Ri(T )I(M1 < mi)

]
︸ ︷︷ ︸

(b)

Lemma 11. For any arm i ̸= 1,

P(Mi > mi and M1 ≥ mi) ≤
3

Tγ2
mi

.

Proof. The proof is identical to that of Lemma 7, with the only difference being the utilization of the upper
bound probability from Lemma 9.

Lemma 12. Let the event Fi(m) be the event that the optimal arm 1 is eliminated by arm i in round m.
Then, for any arm i,

P(Fi(m)) ≤ 3
Tγ2

m

.

Proof. The proof is identical to that of Lemma 8, differing only in the upper bound probability from Lemma 9.

Bounding Term (a). By Lemma 11, we have

E

[
K∑

i=1
Ri(T )I(M1 ≥ mi)

]

≤
K∑

i=1
E [Ri(T )I(Mi ≤ mi)] +

K∑
i=1

E
[

T∆i

2 I(Mi > mi, M1 ≥ mi)
]

≤
K∑

i=1

∆i

2 nmi
K + T

2

K∑
i=1

3∆i

Tγ2
mi

≤
K∑

i=1

∆i

2 nmi
K + 3

2

K∑
i=1

9
∆i

=
K∑

i=1

(
27
2 ·

1
∆i

+ ∆inmi
K

2

)
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Bounding Term (b). Let mmax = maxi̸=1 mi. Using Lemma 11 and 12, we obtain

E

[
K∑

i=1
Ri(T )I(M1 < mi)

]

=
mmax∑
m=1

E

[
I(M1 = m)

∑
i:mi>m

1
2Ni∆i

]

≤
mmax∑
m=1

E
[
I(M1 = m)T max

i:mi>m
∆i

]

≤
mmax∑
m=1

3P(M1 = m)Tγm

≤
mmax∑
m=1

 ∑
i:mi<m

3P(M1 ≥ mi, Mi > mi)Tγm +
∑

i:mi≥m

3P(Fi(m))Tγm


≤

mmax∑
m=1

 ∑
i:mi<m

9
Tγ2

mi

T
γmi

2m−mi
+

∑
i:mi≥m

9
Tγ2

m

Tγm


≤

K∑
i=1

mmax∑
m=mi

9
γmi

2mi−m +
K∑

i=1

mi∑
m=1

9
2−m

≤
K∑

i=1

54
∆i

+
K∑

i=1
18 · 2mi ≤

K∑
i=1

54
∆i

+
K∑

i=1

54
∆i

=
K∑

i=1

108
∆i

where we also employed the relation 2mi = 1
γmi
≤ 3

∆i
.

Consequently, by the upper bound proved for terms (a) and (b), the expected regret can be upper bounded
by:

E[R(T )] ≤
K∑

i=1

(
243
2

1
∆i

+ ∆inmi
K

2

)
and since nmi

defined in equation 11 can be bounded as

nmi
=

 1
γ2

mi

(√
2 log(Tγ2

mi
) +

√
2 log(Tγ2

mi
) + 8

3γmi
log(Tγ2

mi
) + 6γmi

miE[τ ]
)2


≤
⌈

1
γ2

mi

(
8 log(Tγ2

mi
) + 16

3 γmi
log(Tγ2

mi
) + 12γmi

miE[τ ]
)⌉

≤ 1 + 8 log(4T∆2
i /9)

γ2
mi

+ 16 log(4T∆2
i /9)

3γmi

+ 12 log2(3/∆i)E[τ ]
γmi

≤ 1 + 72 log(4T∆2
i /9)

∆2
i

+ 16 log(4T∆2
i /9)

∆i
+ 72 log(3/∆i)E[τ ]

∆i
,

we conclude that the total expected regret is bounded by

E[R(T )] ≤
K∑

i=2

(
36K log(4T∆2

i /9)
∆i

+ 8K log(4T∆2
i /9) + 36K log(3/∆i)E[τ ] + 243

2
1

∆i
+ 1

2K∆i

)
.
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D Lower Bound on the Regret

Proposition 13. For any dueling bandit algorithm and T , there exists a K-armed dueling bandit such that
R(T ) ≥ c

√
TK/τM , where c > 0 is a constant.

Proof. The proof of this proposition closely follows the proof of Theorem 3 in (Vernade et al., 2020). Firstly,
let’s define a parameter µ1 ∈ RK×K . For all i > 1, we set µ1

1i = 1
2 + ∆ and µ1

i1 = 1
2 −∆, where 0 ≤ ∆ ≤ 1

8 .
Additionally, for all i ̸= 1 and j ̸= 1, we define µ1

ij = 1
2 . Now, let k = arg mini>1 Eµ1 [Ni(T )]. Since we

choose two arms at each time step, using the pigeonhole principle, we find that Eµ1 [Nk(T )] ≤ 2T
K−1 . Next,

we introduce another parameter µ2 ∈ RK×K . We define µ2
k1 = 1

2 + ∆ and µ2
ki = 1

2 + 2∆ for all i > 2, while
for all i ̸= k and j ̸= k, µ2

ij = µ1
ij .

Then, by the definition of regret and µ1, it follows that

Rµ1(T ) ≥ T∆− ∆
2 Eµ1 [N1(T )]

= T∆− ∆
2 Eµ1 [N1(T )I(N1(T ) ≤ T ) + N1(T )I(N1(T ) > T )]

≥ T∆− T∆
2 Pµ1(N1(T ) ≤ T )− T∆Pµ1(N1(T ) > T )

= T∆
2 Pµ1(N1(T ) ≤ T ).

Similarly, we have

Rµ2(T ) ≥ ∆
2 Eµ2 [N1(T )] ≥ T∆

2 Pµ2(N1(T ) > T ).

Then, we use Bretagnolle-Huber inequality and obtain Rµ1(T ) +Rµ2(T ) ≥ T ∆
4 exp(−KL(Pµ1 ,Pµ2)). Also,

the relative entropy between Pµ1 and Pµ2 can be expressed as follows:

KL(Pµ1 ,Pµ2) =
K∑

i=2
Eµ1 [Nki(T )]d

(
τm

2 , τm

(
1
2 + 2∆

))
+ Eµ1 [Nk1(T )]d

(
τm

(
1
2 −∆

)
, τm

(
1
2 + ∆

))
+

K∑
i=2

Eµ1 [Nik(T )]d
(

τm

2 , τm

(
1
2 − 2∆

))
+ Eµ1 [N1k(T )]d

(
τm

(
1
2 + ∆

)
, τm

(
1
2 −∆

))
≤ Eµ1 [N1(T )] · 32τm∆2 ≤ 64T

K − 1τm∆2,

where d(p, q) = p log( p
q ) + (1 − p) log( 1−p

1−q ) and the inequality holds by the relation between the relative
entropy and χ2 distance. Therefore,

Rµ1(T ) +Rµ2(T ) ≥ T∆
4 exp

(
− 64T

K − 1τm∆2
)

.

Finally,by setting ∆ =
√

K−1
128T τm

, we achieve

Rµ1(T ) +Rµ2(T ) ≥ c
√

TK/τm,

which completes the proof.
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