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ABSTRACT

The recent scaling of test-time compute for LLMs has restricted the practical de-
ployment of models to those with strong capabilities that can generate high-quality
outputs in an inference-efficient manner. While current Transformer-based mod-
els are the standard, their quadratic compute and linear memory bottlenecks have
spurred the development of sub-quadratic models with linear-scaling compute
with constant memory requirements. However, many recent linear-style models
lack certain capabilities or lag behind in quality, and even their linear-time infer-
ence is not hardware-efficient. Guided by an inference-first perspective, we intro-
duce three core methodological improvements inspired by the state-space model
viewpoint of linear models. We combine a: 1) more expressive recurrence derived
from discretization , 2) complex-valued state update rule that enables richer
state tracking, and 3) multi-input, multi-output formulation together, resulting
in a stronger model. Together with architectural refinements, our Mamba-3
model achieves significant gains across retrieval, state-tracking, and downstream
language modeling tasks. Our new architecture sets the Pareto-frontier for per-
formance under a fixed inference budget and outperforms strong baselines in a
head-to-head comparison.

1 INTRODUCTION

Test-time compute has emerged as a key driver of progress in AI, with techniques like chain-of-
thought reasoning and iterative refinement demonstrating that inference-time scaling can unlock
new capabilities (Wu et al., 2025; Snell et al., 2024). This paradigm shift makes inference effi-
ciency (Kwon et al., 2023; Li et al., 2024) paramount, as the practical impact of AI systems now
depends critically on their ability to perform large-scale inference during deployment. Model archi-
tecture design plays a fundamental role in determining inference efficiency, as architectural choices
directly dictate the computational and memory requirements during generation. While Transformer-
based models (Vaswani et al., 2017) are the current industry standard, they are fundamentally bottle-
necked by linearly increasing memory demands through the KV cache and quadratically increasing
compute requirements through the self-attention mechanism. These drawbacks have motivated re-
cent lines of work on sub-quadratic models, e.g., state-space models (SSMs), which, despite utilizing
only constant memory and linear compute, have comparable or better performance than their Trans-
former counterparts. Models that benefit the most from this new scaling paradigm perform well on
the following three axes: (i) quality, (ii) capability, and (iii) inference efficiency.

Recent model architectures have tried to strike a balance between the three, but many fall short on
at least one of these three axes. In particular, Mamba-2 and Gated DeltaNet (GDN), which have
gained significant traction and adoption due to their inference efficiency, made architectural design
choices that enable their linear compute requirements but sacrifice quality and capabilities (Dao &
Gu, 2024; Yang et al., 2025a). For example, Mamba-2 was developed to improve training speed
and simplicity over Mamba-1 (Gu & Dao, 2024), opting out of more expressive parameterizations
of the underlying SSM and hindering the quality of the model (Dao & Gu, 2024). Linear attention-
style models (Katharopoulos et al., 2020) have also been shown to lack certain capabilities, with
poor state-tracking abilities, e.g., determining parity of bit sequences, being one of the most no-
table (Grazzi et al., 2025; Sarrof et al., 2024). In addition, despite these sub-quadratic models being
prized for theoretically efficient inference, these inference algorithms are not hardware efficient. In
particular, because these algorithms were developed from a training perspective, their decoding
phase has low arithmetic intensity (the ratio of FLOPs to memory traffic), resulting in large portions
of hardware remaining idle.
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To develop more performant models from an inference-first paradigm, we introduce three core
methodological changes on top of Mamba-2, influenced by a SSM-centric viewpoint of sub-
quadratic models. While many recent models fall into the linear attention framework (Dao &
Gu, 2024; Yang et al., 2025a; Sun et al., 2023), we find that the classical SSM toolbox (Kalman,
1960; Gopal, 1993) leads to natural interpretations and improvements on modeling.

Trapezoidal Discretization. We discretize the underlying continuous-time dynamical system with
a trapezoidal methodology. The final recurrence is a more expressive superset of Mamba-2’s recur-
rence and can be viewed as a convolution. We combine this new discretization with applied biases
on the B,C, inspired by Yu & Erichson (2025), and find that their synergy is able to empirically
replace the short causal convolution in language modeling which was previously hypothesized to be
essential for recurrent models.

Complex-valued State-Space Model. By viewing the underlying SSM of Mamba-3 as complex-
valued, we enable a more expressive state update than Mamba-2’s. This change in update rule,
designed to be lightweight for training and inference, overcomes the lack of state-tracking ability
common in many current linear models. We emphasize that our complex-valued update rule is equiv-
alent to a data-dependent rotary embedding and can be efficiently computed (Su et al., 2023).

Multi-Input, Multi-Output SSM. To improve FLOP-efficiency during decoding, we shift from
outer-product-based state update to matrix-multiplication-based state update . In view of the signal
processing foundations of SSMs, such a transition exactly coincides with the generalization from
a single-input single-output (SISO) sequence dynamic to a multiple-input multiple-output (MIMO)
one. Here, we found that MIMO is particularly suitable for inference, as the extra expressivity allows
for more compute during state update, without increasing the state size and hence compromising
speed.

These three SSM-centric methodological changes are core to our Mamba-3 mixer primitive. We
also make adjustments to the overall architecture to ensure more similarity to the baseline Trans-
former architecture. Mamba-3 swaps the pre-output projection norm with the more common QK-
normalization (Team et al., 2025; OLMo et al., 2025) and makes the short convolution, a common
component found in many other sub-quadratic models (Gu & Dao, 2024; Yang et al., 2025a; von
Oswald et al., 2025), optional.

We empirically validate our new model on a suite of synthetic and language-modeling tasks.

• Better Quality. Mamba-3 matches or outperforms Mamba-2 and other open-source architectures
on standard downstream language modeling evaluations. For example, Mamba-3-1.5B’s average
accuracy on all downstream tasks is better than that of its Transformer, Mamba-2, and Gated
DeltaNet counterparts.

• New Capabilities. Mamba-3’s complexification of the SSM state enables the model to solve
synthetic state-tracking tasks that Mamba-2 cannot. We empirically demonstrate that the efficient
RoPE-like calculation is able to near perfectly solve arithmetic tasks, while Mamba-3 without
RoPE and Mamba-2 perform not better than random guessing.

• Stronger Inference Efficiency. Mamba-3’s MIMO variant retains the same state size while en-
abling better hardware utilization compared to standard Mamba-3 and other models. Its improved
performance without increased memory requirements pushes the pareto-frontier of inference ef-
ficiency.

2 PRELIMINARIES

2.1 NOTATION

Scalars are denoted by plain-text letters (e.g., x, y). Tensors, including vectors and matrices, are
denoted by bold letters (e.g., h,C). The shape of the tensor can be inferred from the context. We
denote the input sequence length as T , the model dimension as D, and the SSM state size as N . For
time indices, we use subscripts (e.g., xt for the input at time t). The Hadamard product between two
tensors is denoted by ⊙. For a vector of size v ∈ Rd, we denote Diag(v) ∈ Rd×d as the diagonal
matrix with the vector v as the diagonal, and for products of scalars across time steps, we use the
notation αt···s = α×

t:s =
∏t

i=s αi.
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2.2 SSM PRELIMINARIES

State Space Models (SSMs) describe continuous-time linear dynamics via

ḣ(t) = A(t)h(t) +B(t)x(t), y(t) = C(t)⊤h(t),

where h(t)∈RN is the hidden state, x(t)∈R the input, and A(t)∈RN×N , B(t),C(t)∈RN . For
discrete sequences with step size ∆t, Euler’s discretization gives the recurrence

ht = e∆tAt ht−1 +∆t Bt xt, yt = C⊤
t ht.

Mamba-2’s parameterization. Mamba-2 (Dao & Gu, 2024) makes the SSM data-dependent and
hardware-efficient by (i) projecting A = A ∈ R<0, and B,C ∈ RN from the current token and (ii)
choosing transition matrix A = A as a data-dependent scalar. Writing αt := e∆tAt ∈ (0, 1) and
γt := ∆t, the update becomes

ht = αt ht−1 + γt Bt xt, yt = C⊤
t ht.

The scalar At < 0 is an input-dependent forget-gate (decay) αt, and the parameter selectivity ∆t

jointly controls the forget-gate (αt = exp(∆tAt)) and the input-gate (γt = ∆t): larger ∆t forgets
faster and up-weights the current token more strongly, while smaller ∆t retains the hidden state with
minimal contributions from the current token.

2.3 STRUCTURED MASKED REPRESENTATION AND STATE SPACE DUALITY

Dao & Gu (2024) show that a large class of SSMs admit a matrix form that vectorizes the time-step
recurrence. For instance, Mamba-2’s recurrence can be vectorized as a masked matrix multiplica-
tion,

Y = (L⊙CB̄⊤)X =




1
α1 1
...

. . .
αT...1 · · · αT 1

⊙CB⊤

X, (1)

where L ∈ RT×T is the structured mask, B,C ∈ RT×N , X ∈ RT×D is the input to the SSM and
Y ∈ RT×D is its output. Within this form, Mamba-2 can be viewed as a type of linear attention by
setting Q= C, K= B, V= X and viewing L as a causal, data-dependent mask. When all α = 1,
the expression reduces to (causal) linear attention (Katharopoulos et al., 2020). A more detailed
coverage of related linear-time sequence mixers can be found at Appendix A.

3 MODEL DESIGN FROM A STATE-SPACE VIEWPOINT

We introduce Mamba-3, with three new innovations rooted in classical state-space theory: trape-
zoidal discretization for more expressive dynamics, complex-valued state spaces for state-tracking,
and multi-input multi-output (MIMO) to improve hardware utilization. These advances address the
quality, capability, and efficiency limitations of current sub-quadratic architectures.

3.1 TRAPEZOIDAL DISCRETIZATION

Structured SSMs are naturally defined as continuous-time dynamical systems that map input func-
tions, x(t) ∈ R, to output functions, y(t) ∈ R, for time t > 0. In sequence modeling, however,
the data is only observed at discrete time steps, which then requires applying a discretization step
to the SSM to transform its continuous-time dynamics into a discrete recurrence. The preliminary
step in deriving Mamba-3’s discretization is to apply the Variation of Constants formula (Proposi-
tion 5), which decomposes the hidden state into an exponentially decay term and a state update term
“information” term dependent on the most recent inputs.

The first step in deriving the discretized recurrence is to approximate the “state-update” integral in
equation 10. A straightforward choice, used in Mamba-2, is applying Euler’s rule (Süli & Mayers,
2003), which approximates the integral by holding the (right) endpoint constant throughout the
interval (Fig. 1). This yields Mamba-2’s recurrence,

ht = e∆tAt ht−1 + (τt − τt−1)e
(τt−τt)At Bt xt

≈ e∆tAt ht−1 + ∆t Bt xt. (2)
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Figure 1: Left: The structured mask induced by the generalized trapezoid rule is a product of the
decay and convolutional mask. Right: Euler (hold endpoint) vs trapezoidal rule (average endpoints).

However, Euler’s rule provides only a first-order approximation to the “state-update” integral: local
truncation error is O(∆2

t ), which accumulates across steps to yield a global error of O(∆t) over the
sequence. In contrast, we adopt a generalized trapezoidal rule, which provides a second-order ac-
curate approximation of the integral, offering improved accuracy over the Euler’s rule. Specifically,
it approximates the integral with a data-dependent, convex combination of both interval endpoints.
This generalization extends the classical trapezoidal rule (Süli & Mayers, 2003), which simply aver-
ages the interval endpoints, by allowing for a data-dependent convex combination (Fig. 1).

Proposition 1 (Generalized Trapezoidal Discretization). Approximating the state-update integral
in equation 10 by the general trapezoidal rule yields the recurrence,

ht = e∆tAtht−1 + (1− λt)∆te
∆tAtBt−1xt−1 + λt∆tBtxt, (3)

:= αtht−1 + βtBt−1xt−1 + γtBtxt, (4)

where λt ∈ [0, 1] is a data-dependent scalar, αt := e∆tAt , βt := (1− λt)∆te
∆tAt , γt := λt∆t.

Remark 1 (Expressivity). Our scheme is a generalization of a) The classical trapezoid rule which is
recovered when λt =

1
2 . b) Mamba-2’s Euler’s rule, which is recovered when λt = 1.

Remark 2 (Error Rate). This is a second-order discretization with local truncation error O(∆3
t )

and global error O(∆2
t ) over the sequence under standard stability assumptions, provided that the

trapezoidal parameter satisfies λt =
1
2 +O(∆t). However, our ablations indicate that not enforcing

this constraint is the best for empirical performance. See Appendix B.2,B.3 for details.
3.1.1 TRAPEZOIDAL DISCRETIZATION IS A CONVOLUTIONAL MASK

We can view the generalized trapezoidal discretization as applying a data-dependent convolution
of size two on the projected input, Btxt, to the SSM. We now show that a similar vectorization to
Equation (1) holds with the generalized trapezoidal discretization. Unrolling the recurrence starting
from h0 = γ0B0x0 results in hT = αT ···2(γ0α1 + β1)B0x0 + · · ·+ γTBTxT .

Unrolling these rows shows that the mask induced by the trapezoidal update is no longer a fixed av-
eraging of endpoints (as in the classical trapezoidal rule), but a data-dependent convex combination
of the two interval endpoints. In the SSD representation, this corresponds to a mask L:

γ0
(γ0α1 + β1)

α2(γ0α1 + β1) γ2
...

. . .
αT ···2(γ0α1 + β1) · · · γT

 =


1
α1 1

α2α1

...
. . .

αT ···1 · · · 1



γ0
β1

0 γ2
...

. . .
0 · · · γT

 . (5)

Here, the first factor is precisely the lower-triangular decay mask from Mamba-2, while the second
factor encodes the size two convolution induced by the trapezoidal rule through the coefficients
(βt, γt). We provide a rigorous proof for this decomposition in Appendix B.1.
3.2 COMPLEX-VALUED SSMS

Modern SSMs are designed with efficiency as the central goal, motivated by the need to scale to
larger models and longer sequences. For instance, successive architectures have progressively sim-
plified the state transition matrix: S4 (Gu et al., 2022a) used complex-valued Normal plus Low Rank
(NPLR) matrices, Mamba (Gu & Dao, 2024) reduced this to a diagonal of reals, and Mamba-2 (Dao
& Gu, 2024) further simplified it to a single scalar. Although these simplifications largely maintain
language modeling performance, recent works (Merrill et al., 2025; Sarrof et al., 2024; Grazzi et al.,
2025) have shown that they degrade the capabilities of the model on simple state-tracking tasks such
as parity and modular arithmetic, which can be solved by a one-layer LSTM.
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This limitation, formalized in Theorem-1 of (Grazzi et al., 2024), arises from restricting the eigen-
values of the transition matrix to real numbers, which cannot represent “rotational” hidden state dy-
namics. For instance, consider the parity function on binary inputs {0, 1}, defined as

∑
t xt mod 2.

This task can be performed using update: ht = R(πxt)ht−1, where R(·) is a 2-D rotation matrix.
Such rotational dynamics cannot be expressed with real eigenvalues.

To recover this capability, we begin with complex SSMs (6), which are capable of representing
state-tracking dynamics. We show that, under discretization (Proposition 5), complex SSMs can
be formulated as a real SSMs with a block-diagonal transition matrix composed of 2 × 2 rotation
matrices (Proposition 2). We then show that this is equivalent to applying data-dependent rotary
embeddings on both the input and output projections B,C respectively. This result establishes a
theoretical connection between complex SSMs and data-dependent RoPE embeddings (Proposition
3). Finally, this allows for an efficient implementation of the complex-valued SSM via the “RoPE
trick”, enabling efficient complex-valued state transition matrix with minimal computational over-
head over real-valued SSMs.

Proposition 2 (Complex-to-Real SSM Equivalence). Consider a complex-valued SSM

ḣ(t) = Diag
(
A(t) + iθ(t)

)
h(t) +

(
B(t) + iB̂(t)

)
x(t), (6)

y(t) = Re
((

C(t) + iĈ(t)
)⊤

h(t)
)
,

where h(t) ∈ CN/2, θ(t),B(t), B̂(t),C(t), Ĉ(t) ∈ RN/2, and x(t), A(t) ∈ R. Under Euler
discretization, this system is equivalent to a real-valued SSM

ht = e∆tAt Rt ht−1 +∆tBtxt, (7)

yt = C⊤
t ht,

with state ht ∈ RN , projections

Bt =

[
Bt

B̂t

]
∈ RN , Ct =

[
Ct

−Ĉt

]
∈ RN ,

and a transition matrix

Rt = Block
(
{R(∆tθt[i])}N/2

i=1

)
∈ RN×N , R(Θ) =

[
cos(Θ) − sin(Θ)
sin(Θ) cos(Θ)

]
.

The proof is in Appendix C.1.

Proposition 2 shows that the discretized complex SSM has an equivalent real SSM with doubled
state dimension (N ), and a block-diagonal transition matrix multiplied with a scalar decay, where
each 2× 2 block is a data-dependent rotation matrix (e∆tA

t Rt). We now show that the rotations can
equivalently be absorbed into the input and output projections Bt,Ct, yielding an equivalent view
that complex SSMs are real SSMs equipped with data-dependent rotary embeddings (RoPE).

Proposition 3 (Complex SSM, Data-Dependent RoPE Equivalence). Under the notation established
in Proposition 2, consider the real SSM defined in Eq. 7 unrolled for T time-steps. The output of
the above SSM is equivalent to that of a vanilla scalar transition matrix-based SSM (Eq. 2) with a
data-dependent rotary embedding applied on the B,C components of the SSM defined as:

ht = e∆tAtht−1 + (

t∏
i=0

R⊤
i )Btxt, yt =

(
(

t∏
i=0

R⊤
i )Ct

)⊤

ht (8)

where the matrix production represents right matrix multiplication, e.g.,
∏1

i=0 Ri = R0R1. We
denote employing the vanilla SSM to compute the Complex SSM as “RoPE trick”.

The proof is in Appendix C.2.

To observe the connection of complex SSMs to RoPE embeddings, note that in the above proposi-
tion, the data-dependent rotations Ri are aggregated across time-steps and applied to C,B, which,
by the State Space Duality of Dao & Gu (2024), correspond to the Query (Q) and Key (K) compo-
nents of Attention. Analogously, vanilla RoPE (Su et al., 2023) applies data-independent rotation
matrices, where the rotation angles follow a fixed frequency schedule θ[i] = 10000−2i/N .

5
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Remark 3 (Generality). Proposition 3 extends to the fully general case where the transition is given
by any complex matrix. By the complex diagonalization theorem, such a matrix is unitarily equiv-
alent to a complex diagonal matrix, Diag

(
A(t) + iθ(t)

)
with A(t) ∈ RN . However, in practice,

we restrict A(t) to a scalar, mirroring the simplification from Mamba to Mamba-2, to enable faster
implementation by avoiding GPU memory bottlenecks.

Proposition 4 (Rotary Embedding Equivalence with Trapezoidal Discretization). Discretizing a
complex SSM with the trapezoidal rule (Proposition 1) yields the recurrence

ht = αtht−1 + βt

(
t−1∏
i=0

R⊤
i

)
Bt−1xt−1 + γt

(
t∏

i=0

R⊤
i

)
Btxt,

yt =

(( t∏
i=0

R⊤
i )Ct

)⊤

ht. (9)

Here Rt is the block-diagonal rotation matrix defined in Proposition 3.

The proof is in Appendix C.3.

Remark 4 (RoPE Trick). Complex SSMs discretized with the general trapezoidal rule of a complex
SSM naturally admit the RoPE trick we established for SSMs discretized with Euler’s rule.
3.3 MULTI-INPUT, MULTI-OUTPUT

During the decoding phase of autoregressive inference, outputs are generated one token at a time, and
performance is typically measured using in Tokens generated Per Second (TPS). In this metric, sub-
quadratic models, such as Mamba-2 (Dao & Gu, 2024), have a significant advantage over standard
Transformer-style attention, since they feature a fixed-size hidden state (Equation (2)) rather than
maintaining a key–value (KV) cache that grows linearly with the sequence length.

TPS, however, does not explicitly factor in hardware efficiency, where we aim to be in a compute-
bound regime (as opposed to memory-bound) in order to fully utilize on-chip accelerators. To
better characterize hardware efficiency, we would need to consider the arithmetic intensity of token
generation. Recall that arithmetic intensity is defined as FLOPs divided by the number of input-
output bytes, for a given op. In order to fully utilize both the accelerators and the bandwidth, we
would like the arithmetic intensity to match the ops:byte ratio of the hardware, which in the case
of NVIDIA H100-SXM5, is 295.2 bfloat16 ops per second with respect to the DRAM, and 31.9
bfloat16 ops per second with respect to the SRAM [Fleetwood].

Table 2(a) shows the arithmetic intensity for a single generation in the SSM component of Mamba
(with respect to 2-byte data). We see that it falls far short of a compute-bound regime, and moreover
it is not clear how one can adjust the existing parameters in Mamba to mitigate the lack of hardware
efficiency. We note that this observation applies generally to other sub-quadratic models, such as
causal linear attention.

Input Output FLOPs Arithmetic
Intensity

Ht : (n, p)

xt : (p)

at : (1)

bt : (n)

ct : (n)

yt : (p) 5pn
5pn

2(1 + 2n+ p+ np)
≈ 2.5 = Θ(1)

(a) SISO (2-byte data).

Input Output FLOPs Arithmetic
Intensity

Ht : (n, p)

xt : (p, r)

at : (1)

bt : (n, r)

ct : (n, r)

yt :
(p, r)

4nrp+
2np

p(4nr + 2n)

2(1 + 2nr + pr + np)
≈ 2r = Θ(r)

(b) MIMO (2-byte data).

Figure 2: Arithmetic Intensity for (a) SISO, (b) MIMO. Batch and head dimensions cancel out.

In light of this, we made the following simple adjustment to our recurrent relation: instead of trans-
forming the input xt ∈ Rp to state Ht ∈ Rn×p via an outer product, i.e., Ht ← atHt−1+bt⊗xt, we
made such a transformation via a matrix product, i.e., Ht ← atHt−1 +BtX

⊤
t , where Bt ∈ Rn×r

and Xt ∈ Rp×r are now matrices with an additional rank r. The emission from state to output
similarly acquire an extra rank r, i.e., Yt ∈ Rr×p ← C⊤

t Ht, where Ct ∈ Rn×r,Ht ∈ Rn×p.
This simple change increases the arithmetic intensity of recurrence, which now scales with the rank

6
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r (Figure 2(b)). Hence, by increasing r, arithmetic intensity improves and shifts decode generation
towards a more compute-bound regime. This increase in FLOPs during decode does not compromise
runtime, as the operation is bounded by the I/O of state Ht ∈ Rn×p.

Moreover, moving from outer-product-based state update to matrix-product-based coincides exactly
with generalizing from SISO to MIMO SSM, with the rank r being the MIMO rank. Such a gen-
eralization recovers a key expressive feature of SSMs in classical literature; indeed, there has been
previous work, namely Smith et al. (2023), that explored MIMO SSM as a drop-in replacement of
attention, albeit not in the context of Mamba and not necessarily with inference in view. We note
that training and prefilling is generally compute bound, resulting in MIMO incurring increased costs
during these stages, while decoding, a memory-bound operation, sees very little increase in latency
when utilizing MIMO over SISO.

Details of the MIMO formulation for Mamba-3 are provided in Appendix D.

3.4 MAMBA-3 ARCHITECTURE

The Mamba-3 block retains the overall layout of its predecessor while introducing several key modi-
fications. Most notably, the SSD layer is replaced with the more expressive trapezoidal SSM defined
in Proposition 4. The extra normalization layer, first introduced between Mamba-1 and Mamba-2 for
training stability, is repositioned to follow the B,C projection, mirroring the QK-Norm commonly
used in modern Transformers (Henry et al., 2020; Wortsman et al., 2023). Inspired by the findings
of Yu & Erichson (2025), which prove adding channel-specific bias to B in a blockwise variant
of Mamba-1 grants universal approximation capabilities, Mamba-3 incorporates a head-specific,
channel-wise bias into both the B and C components after its normalization. These learnable bi-
ases are data-independent parameters that are initialized to all ones and independent across B and
C (ablations for bias parameterization can be found in Appendix G). Our trapezoidal discretization
complements this bias, empirically eliminating the need for the original short causal convolution and
its accompanying activation function (Section 4.3). Mamba-3 employs the SISO SSM by default,
though we view its MIMO variant as a flexible option that can be toggled depending on inference
requirements. The overall architecture follows the Llama design (Grattafiori et al., 2024), alternating
Mamba-3 and SwiGLU blocks with pre-normalization.

4 EMPIRICAL VALIDATION

We empirically validate our SSM-centric methodological changes through the Mamba-3 model on
a host of synthetic and real world tasks. Section 4.1 compares our SISO-variant of Mamba-3 on
language modeling and retrieval-based tasks, while Section 4.2 demonstrates inference efficiency of
Mamba-3 and MIMO Mamba-3’s benefits over SISO Mamba-3 under fixed inference compute. We
ablate the impact of our new discretization and BC bias on performance and show that complexifica-
tion of the SSM leads capabilities that prior SSMs such as Mamba-2 lacked in Section 4.3.

4.1 LANGUAGE MODELING

All models are pretrained with 100B tokens of the FineWeb-Edu dataset (Penedo et al., 2024) with
the Llama-3.1 tokenizer (Grattafiori et al., 2024) at a 2K context length with the same standard
training protocol. Training and evaluation details can be found in Appendix E.

Across all four model scales, Mamba-3 outperforms popular baselines at various downstream tasks
(Table 1). We highlight that Mamba-3 does not utilize the short convolution that has been empirically
identified as an important component in many performant linear models (Allen-Zhu, 2025).

4.1.1 RETRIEVAL CAPABILITIES

Beyond standard language modeling, an important measure for linear models is their retrieval ability
— how well they can recall information from earlier in the sequence (Arora et al., 2025a;b). Unlike
attention models, which can freely revisit past context with the growing KV cache, linear models
must compress context into a fixed-size state. This trade-off is reflected in the Transformer baseline’s
substantially stronger retrieval scores. To evaluate Mamba-3 under this lens, Table 2 compares it
against baselines on both real-world and synthetic needle-in-a-haystack (NIAH) tasks (Hsieh et al.,
2024), using our pretrained 1.5B models from Section 4.1. We restrict the task sequence length to
2K tokens to match the training setup and adopt the cloze-style format for our real-world tasks to
mirror the next-token-prediction objective, following Arora et al. (2025b; 2024).

Mamba-3 is competitive on real-world associative recall and question-answering but struggles when
extracting information from semi-structured or unstructured data. On synthetic NIAH tasks, how-
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Table 1: Downstream language modeling evaluations on models trained with 100B FineWeb-Edu
tokens. Best results for each size are bolded, and second best are underlined. All models are trained
with the same procedure. Mamba-3 outperforms Mamba-2 and others at every model scale.

Model FW-Edu LAMB. LAMB. HellaS. PIQA Arc-E Arc-C WinoGr. OBQA Average
ppl ↓ ppl ↓ acc ↑ acc n ↑ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ acc ↑

Transformer-180M 16.89 45.0 32.5 39.0 67.1 59.8 27.9 51.2 21.8 42.8
Gated DeltaNet-180M 16.61 35.9 33.7 40.2 66.8 59.6 28.5 51.2 21.6 43.1
Mamba-2-180M 16.76 41.8 30.9 40.1 66.8 60.1 27.3 52.0 23.2 42.9
Mamba-3-180M (SISO) 16.59 37.7 32.5 40.8 66.1 61.5 27.9 52.0 22.8 43.4

Transformer-440M 13.03 21.2 41.7 50.5 69.9 67.6 34.6 56.7 26.0 49.6
Gated DeltaNet-440M 13.12 19.0 40.4 50.5 70.5 67.5 34.0 55.3 25.8 49.1
Mamba-2-440M 13.00 19.6 40.8 51.7 70.6 68.8 35.0 54.1 26.0 49.6
Mamba-3-440M (SISO) 12.87 19.6 40.2 51.7 71.9 68.9 34.4 55.8 26.0 49.8

Transformer-880M 11.42 15.0 44.7 57.2 72.6 71.6 39.2 57.7 26.8 52.8
Gated DeltaNet-880M 11.39 12.7 47.1 57.5 72.6 72.5 38.8 57.9 30.6 53.9
Mamba-2-880M 11.35 13.8 45.0 58.1 72.5 72.3 38.7 56.8 30.2 53.4
Mamba-3-880M (SISO) 11.23 12.9 47.2 58.8 73.6 72.7 40.2 58.4 30.0 54.4

Transformer-1.5B 10.51 11.1 50.3 60.6 73.8 74.0 40.4 58.7 29.6 55.4
Gated DeltaNet-1.5B 10.51 10.8 49.9 60.5 74.3 73.3 40.4 61.5 30.4 55.7
Mamba-2-1.5B 10.47 12.0 47.8 61.4 73.6 75.3 41.8 57.5 32.6 55.7
Mamba-3-1.5B (SISO) 10.35 10.9 49.4 61.9 73.6 75.9 42.7 59.4 32.0 56.4

Table 2: Retrieval capabilities measured by a mixture of real-world and synthetic retrieval tasks. Real-world re-
trieval tasks utilize cloze variants of the original datasets and are truncated to 2K length. Mamba-3 demonstrates
strong associative recall and question-answering but suffers with information extraction of semi-structured and
unstructured data. Mamba-3 has strong needle-in-a-haystack (NIAH) accuracy and generalizes outside its
trained context.

Model (1.5B) SWDE SQUAD FDA TQA NQ Drop NIAH-Single-1 NIAH-Single-2 NIAH-Single-3

Context Length 2048 1024 2048 4096 1024 2048 4096 1024 2048 4096

Transformer 48.9 46.6 58.4 67.5 31.7 26.4 100.0 100.0 0.0 92.2 100.0 0.0 98.6 99.4 0.0

Gated DeltaNet 32.7 40.0 28.3 63.5 25.7 24.5 100.0 100.0 99.8 100.0 93.8 49.8 83.8 68.4 34.2
Mamba-2 30.7 39.1 23.7 64.3 25.1 28.5 100.0 99.6 62.0 100.0 53.8 11.8 95.8 87.4 13.4
Mamba-3 (SISO) 28.5 40.1 23.4 64.5 26.5 27.4 100.0 100.0 88.2 100.0 95.4 50.6 92.4 81.4 34.2

ever, Mamba-3 surpasses or matches baselines on most cases and notably demonstrates markedly
better out-of-distribution retrieval abilities than its Mamba-2 predecessor.

4.2 INFERENCE EFFICIENCY

In this section, we investigate our methodological changes in the context of inference performance.
We first present our inference benchmark in Section 4.2.1; we then establish a framework for com-
paring the inference performance in Section 4.2.2. Finally, we focus on the effectiveness of MIMO
in Section 4.2.3.

4.2.1 FAST MAMBA-3 KERNELS

We complement Mamba-3’s methodological advances with optimized kernels that deliver fast infer-
ence in practical settings. Specifically, we implement a new series of inference kernels for Mamba-
3—using Triton for the forward (prefill) path and CuTe-DSL for decode—and compare their per-
token decode latency against the released Triton kernels for Mamba-2 and Gated DeltaNet (GDN)1

in Table 3. The evaluation uses the setting: a decode step at batch size 128 on a single H100 for
1.5B-parameter models with model dimension 2048, state dimension ∈ {64, 128} in both FP32 and
BF16 datatypes. Across all configurations, SISO achieves the lowest latency amongst baselines,
while MIMO incurs only a minor overhead relative to SISO. This indicates that our CuTe-DSL de-
code implementation is competitive and that the additional components of Mamba-3 (trapezoidal
update, complex-valued state, and MIMO projections) are lightweight. This supports our overall
inference-first perspective: the Mamba-3 admits simple, low-latency implementation while pro-
viding strong empirical performance. A thorough analysis, including prefill and prefill with decode
results are provided in Appendix H.
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Model FP32 BF16
dstate = 64 dstate = 128 dstate = 64 dstate = 128

Mamba-2 0.295 0.409 0.127 0.203
Gated DeltaNet 0.344 0.423 0.176 0.257
Mamba-3 (SISO) 0.261 0.356 0.106 0.152
Mamba-3 (MIMO) 0.285 0.392 0.136 0.185

Table 3: Latency (in milliseconds) compari-
son across models, precision, and dstate val-
ues. Both Mamba-3 SISO and MIMO are
faster than the Mamba-2 and Gated DeltaNet
at the commonly used bf16, dstate = 128 set-
ting.
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Figure 3: Exploration of state size (inference
speed proxy) versus pretraining perplexity (per-
formance proxy) across different Mamba variants.
Mamba-3 MIMO drives the-Pareto frontier with-
out increasing state size.

4.2.2 PARETO FRONTIER FOR INFERENCE EFFICIENCY

For Mamba and many variants of sub-quadratic models, the generation of tokens during decoding is
heavily dominated by memory I/O due to the low arithmetic intensity of computing the recurrent up-
date (c.f. Section 3.3). Furthermore, among the data being transferred, the latent state Ht dominates
in terms of size. Indeed, from Table 3, we see that the runtime scales with dstate, which configures
the size of the hidden state.

As dstate dominates the decode runtime for the subquadratic models considered in this paper, we
opt to use it as a proxy for inference speed. By plotting the validation perplexity (itself a proxy
for model performance) as a function of dstate, we aim to formulate a holistic picture about how the
subquadratic models can trade off performance with inference speed.

Figure 3 shows such a Pareto front for the Mamba variants models considered in this paper. For each
data point, we train a 440M parameter model to 2× Chinchilla optimal tokens on the Fineweb-Edu
dataset, where the model is configured with a dstate of {16, 32, 64, 128}. As expected, we observe
an inverse correlation between validation loss and dstate; moreover, we noticed a general downward
shift on the Pareto front moving from Mamba-2 to Mamba-3. A further downward shift is observed
when moving from the SISO variant of Mamba-3 to the MIMO variant of Mamba-3 (where we set
the Mimo rank r = 4 and decrease our MLP inner dimension to parameter match the SISO variants).
We expand the comparison to include the Gated DeltaNet baseline in Figure 7. The results highlight
both the expressivity gain coming our methodology change as well as the effectiveness of the MIMO
mechanism in improving decoding efficiency.

4.2.3 MIMO ENHANCES INFERENCE EFFICIENCY

MIMO, with its higher arithmetic intensity, increases the decoding FLOPs without significantly
increasing decode runtime (Table 3)2 The implication is that any performance gain from MIMO
translates into efficiency gain in decoding: a conclusion supported by the downward shift of the
MIMO pareto curve we observed in Section 4.2.2.

We aim to further verify the gain from MIMO by investigating its language-modeling capabilities.
To that end, we train a 440M and 820M parameter MIMO models with MIMO rank r = 4 on 100B
tokens on Fineweb-Edu (i.e., same setting as the 440M parameter run in Section 4.1; we are currently
training the 1.5B model). To ensure the total parameter count equals SISO, we decrease the inner
dimension of the MLP layers to compensate for the increase due to the MIMO projections.

On both validation perplexity and our suite of language evaluation tasks (Table 6), we see significant
gain when moving from SISO to MIMO. Namely, we attain a perplexity gain of 0.16 on the 100B
tokens run, and Figure 3 illustrates the downward shift in our validation loss. On the language
evaluation front, we see significant gain on most tasks when compared to SISO, resulting in an
overall gain of 1.2 point over SISO. This strongly supports MIMO as a SSM-centric technique to
improve model quality without compromising decoding speed.

1Details on each kernel DSL and the exact kernel fusion structure is provided in Appendix H.
2The kernel for MIMO Mamba-3 in fact fuses the MIMO projection, and so the reported wall clock time is

actually an overestimate for the pure SSM update.
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Table 4: Left: Ablations on core modeling components of Mamba-3, results on test split of dataset. A
combination of our BC bias and trapezoidal discretization makes the convolution optional. Right: Formal
language evaluation (scaled accuracy, %). Higher is better. Models are trained on short sequences and evaluated
on longer lengths to test length generalization. For Gated DeltaNet we report the variant with eigenvalue range
[−1, 1].

Model Variant (SISO) ppl ↓
Mamba-3 − bias − trap 16.68
Mamba-3 − bias 16.49
Mamba-3 15.72
Mamba-3 + conv 15.85

(a) Component ablation (350M).

Model Parity ↑ Arith. w/o ↑
brackets

Arith. w/ ↑
brackets

Mamba-3 100.00 98.51 87.75
Mamba-3 (w/o RoPE) 2.27 1.49 0.72
Mamba-3 (w/ Std. RoPE) 1.56 20.70 2.62
Mamba-2 0.90 47.81 0.88
Gated DeltaNet [-1,1] 100.00 99.25 93.50

(b) Performance comparison on formal language tasks. Re-
sults show that unlike Mamba-2, Mamba-3 features state
tracking ability stemming from data-dependent RoPE em-
beddings. We used Mamba-3 (SISO) for these ablations.

4.3 SSM-CENTRIC METHODOLOGICAL ABLATIONS

Table 4a ablates the changes made to the core SSM component, mainly the introduction of BC bias
and trapezoidal discretization. We report the pretraining test perplexity on models at the 440M scale,
trained for Chinchilla optimal tokens. We find that the bias and trapezoidal SSM synergize well and
make the short convolution utilized by many current linear models redundant.

We empirically demonstrate that data-dependent RoPE in Mamba-3 enables state tracking. Follow-
ing Grazzi et al. (2025), we evaluate on tasks from the Chomsky hierarchy—Parity, Modular Arith-
metic (without brackets), and Modular Arithmetic (with brackets)—and report scaled accuracies in
Table 4b. Mamba-3 solves Parity and Modular Arithmetic (without brackets), and nearly closes the
accuracy gap on Modular Arithmetic (with brackets). In contrast, Mamba-3 without RoPE, Mamba-
3 with standard RoPE (Su et al., 2023), and Mamba-2 fail to learn these tasks. We use the state-
tracking–enabled Gated DeltaNet variant of and observe that Mamba-3 is competitive—matching
parity and approaching its performance on both modular-arithmetic tasks. Experimental settings are
covered in Appendix E.

5 CONCLUSION AND FUTURE WORK

We introduce Mamba-3, an SSM model with three axes of improvement rooted in SSM princi-
ples: (i) improved quality, via trapezoidal discretization; (ii) new capabilities, through complex
SSMs that recover state-tracking; and (iii) higher inference efficiency, with a MIMO formulation
that raises arithmetic intensity. Mamba-3 delivers strong language modeling results and establishes
a new Pareto frontier on the performance-efficiency axes with respect to strong baseline models. A
limitation remains in retrieval, where fixed-state architectures lags attention-based models. We see
hybrid Mamba-3 architectures that integrate retrieval mechanisms as a promising path, alongside
broader application of our design principles to linear-time sequence models.
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LLM Usage. We utilized Large Language Models to polish the writing in our submission as well as
generate latex code for formatting tables and figures.

A RELATED WORK

Linear-time sequence mixers. State-space models (SSMs) provide linear-time sequence mixing
through explicit dynamical states and efficient scan/convolution implementations, offering signifi-
cant computational advantages over quadratic-time attention mechanisms (Gu et al., 2022a; Smith
et al., 2023; Gupta et al., 2022). Mamba-1 (Gu & Dao, 2024) introduced input-dependent selectivity
to SSMs, while Mamba-2 (Dao & Gu, 2024) formalized the connection between SSMs and attention
via structured state-space duality (SSD) (Katharopoulos et al., 2020; Choromanski et al., 2022). De-
spite matching transformers on standard language understanding benchmarks, these recurrent mod-
els exhibit limitations on tasks requiring precise algorithmic reasoning. Recent evaluations identified
gaps in capabilities such as associative retrieval (Bick et al., 2025b; Arora et al., 2025a), exact copy-
ing (Jelassi et al., 2024), and in-context learning (Park et al., 2024; Grazzi et al., 2024). To address
these limitations, DeltaNet enhances linear attention by replacing additive updates with delta-rule
recurrence (Schlag et al., 2021), with recent work developing hardware-efficient, sequence-parallel
training algorithms for this architecture (Yang et al., 2025b). This has catalyzed a broader effort
to improve the algorithmic capabilities of linear-time models through architectural innovations in-
cluding gating mechanisms, improved state transition dynamics, and hybrid approaches (Peng et al.,
2025; Siems et al., 2025; Yang et al., 2025a; Paliotta et al., 2025; Bick et al., 2025a).

Expressivity and state tracking in recurrent mixers. Recent work characterizes the types of
state that recurrent, constant-memory mixers can maintain, revealing algorithmic deficiencies in
previous SSM-based models. Merrill et al. (2025) show that under finite precision, practical SSMs
collapse to TC0, leading to failures on tasks like permutation composition over S5 unless the primi-
tive is extended. Similarly, Yu & Erichson (2025) prove that a single-layer Mamba is not a universal
approximator. Several modifications have been proposed to improve expressivity. For instance,
the same work shows that a block-biased variant regains the universal approximation property with
only minor changes, either through block decomposition or a channel-specific bias. Allowing nega-
tive eigenvalues or non-triangular transitions enables linear RNNs—including diagonal and House-
holder/DeltaNet forms—to capture parity and, under mild assumptions, regular languages (Grazzi
et al., 2025). Complex-valued parameterizations provide another avenue for enhanced expressivity.
Diagonal LTI SSMs demonstrate effectiveness for language modeling (Gu et al., 2022b; Orvieto
et al., 2023), with complex variants achieving equivalent functions using smaller, well-conditioned
parameters (Ran-Milo et al., 2024). However, the introduction of selectivity—the central innovation
of modern SSMs (Gu & Dao, 2024)—narrowed the performance gap with Transformers by enabling
input-dependent dynamics and achieving state-of-the-art results on language modeling benchmarks,
leading practitioners to abandon complex states in favor of simpler real-valued architectures. We
extend this line of work by reintroducing complex-valued state evolution that yields a real SSM with
doubled dimensionality and block-diagonal rotations applied to the update rule—analogous through
SSD (Dao & Gu, 2024) to how RoPE (Su et al., 2023) applies complex rotations to queries and
keys in attention. The resulting data-dependent rotational structure expands stable dynamics to in-
clude oscillatory modes, enabling richer states while maintaining constant memory and linear-time
complexity.

B TRAPEZOIDAL DISCRETIZATION

Proposition 5 (Variation of Constants (Tenenbaum & Pollard, 1985)). Consider the linear SSM

ḣ(t) = A(t)h(t) +B(t)x(t),

where h(t) ∈ RN , A(t) ∈ R is a scalar decay, and B(t)x(t) ∈ RN . For ∆t discretized time grid
τt = τt−1 +∆t, the hidden state satisfies

ht ≈ e∆tAt ht−1 +

∫ τt

τt−1

e(τt−τ)At B(τ)x(τ) dτ. (10)

Proof. Since A(t) is scalar, the homogeneous system ḣ(t) = A(t)h(t) has solution

h(t) = ϕ(t, s)h(s), ϕ(t, s) = exp

(∫ t

s

A(ξ) dξ

)
.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The Variation of Constants formula gives us,

h(t) = ϕ(t, s)h(s) +

∫ t

s

ϕ(t, τ)B(τ)x(τ) dτ.

Setting (s, t) = (tk−1, tk) yields the exact ht given ht−1. We approximate
∫ t

s
A(ξ) dξ by setting

A(τ) ≈ Ak over [tk−1, tk], which gives us,

ϕ(tk, tk−1) = exp

(∫ t

s

A(ξ) dξ

)
≈ exp

(∫ t

s

Ak dξ

)
= e∆kAk ,

Substituting these approximations in the Variation of Constants integral, we get the approximation

ht ≈ e∆tAt ht−1 +

∫ τt

τt−1

e(τt−τ)At B(τ)x(τ) dτ.

B.1 TRAPEZOID DISCRETIZATION’S MASK MATRIX

Proof. When viewing the tensor contraction form, let us call C = (T,N), B = (S,N), L =
(T, S), X = (S, P ) based on the Mamba-2 paper. With this decomposition of our mask, we can
view L = contract(TZ,ZS → TS)(L1, L2).

The original contraction can be seen as

contract(TN, SN, TS, SP → TP )(C,B,L,X)

We can now view it as

contract(TN, SN, TJ, JS, SP → TP )(C,B,L1, L2, X)

This can be broken into the following:

Z = contract(SN, SP → SNP )(B,X)

Z ′ = contract(JS, SNP → JNP )(L2, Z)

H = contract(TJ, JNP → TNP )(L1, Z
′)

Y = contract(TN, TNP → TP )(C,H)

Thus, we can view this step: contract(ZS, SNP → ZNP )(L2, Z) as a conv of size two applied on
Bx with the traditional SSD L = L1 matrix.

B.2 TRAPEZOIDAL DISCRETIZATION ERROR RATE

Standard assumptions. We assume that: A(t),B(t), x(t) are bounded and C2 on each timestep,
so that g(τ) has two bounded derivatives; the map h 7→ A(t)h+B(t)x(t) is Lipschitz in h which
is true for linear systems; λt lies in a bounded interval so that the update is zero-stable.

Proof. Let g(τ) := e(tk−τ)Ak B(τ)x(τ) denote the integrand in the second term of Proposition 5.
Since A(t),B(t), x(t) are C2 on [tk−1, tk], the function g has two bounded derivatives. A second-
order Taylor expansion of g around tk−1 gives us,∫ tk

tk−1

g(τ) dτ = ∆t g(tk−1) +
∆2

t

2
g′(tk−1) +

∆3
t

6
g′′(tk−1) +O(∆4

t ).

Recall that the trapezoidal approximation to this integral is given by,

Qλ = ∆t

[
(1− λt) g(tk−1) + λt g(tk)

]
.

Expanding g(tk) using Taylor expansion: g(tk) = g(tk−1) +∆tg
′(tk−1) +

∆2
t

2 g′′(tk−1) +O(∆3
t ).

Substituting this into Qλ,

Qλ = ∆t

[
(1− λt)g(tk−1) + λtg(tk)

]
= ∆tg(tk−1) + λt∆

2
t g

′(tk−1) + λt
∆3

t

2
g′′(tk−1) +O(∆4

t ).
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Hence, the error is given by:∫ tk

tk−1

g(τ) dτ −Qλ =
(

1
2 − λt

)
∆2

t g
′(tk−1) +

(
1
6 −

λt

2

)
∆3

t g
′′(tk−1) +O(∆4

t ).

Under the assumption that λt =
1
2 + ct∆t, where ct = O(1), then 1

2 − λt = −ct∆t = O(∆t) and
thus the ∆2

t term is O(∆3
t ). Therefore,∫ tk

tk−1

g(τ) dτ −Qλ = O(∆3
t ),

which yields an O(∆3
t ) local truncation error. Since the update hk = e∆tAkhk−1 + Qλ is linear

and zero–stable for bounded λt, standard numerical ODE results imply an O(∆2
t ) global error.

B.3 TRAPEZOIDAL PARAMETERIZATION

Parameterization Form of λt ppl ↓
Default σ(ut) 15.72

Fixed 1/2 1
2

15.76

No trapezoid (Euler) 1 15.81

Table 5: Ablations on λt parameterization in the trapezoidal update.

Setting: All runs use the Mamba-3 (SISO) 440M model trained at Chinchilla scale, with the other
architectural and optimization hyperparameters being the same as in Table 1.

The default model uses a data-dependent gate λt = σ(ut), where ut is a learned projection of the
current input token. In Table 5, we try different parameterizations for λt and find that the default pa-
rameterization empirically performs the best. Hence we choose the simpler default parameterization
that does not enforce the O( 12 +∆t).

C COMPLEX SSM PROOFS

C.1 PROOF OF PROPOSITION 2

Proposition 2 (Complex-to-Real SSM Equivalence). Consider a complex-valued SSM

ḣ(t) = Diag
(
A(t) + iθ(t)

)
h(t) +

(
B(t) + iB̂(t)

)
x(t), (6)

y(t) = Re
((

C(t) + iĈ(t)
)⊤

h(t)
)
,

where h(t) ∈ CN/2, θ(t),B(t), B̂(t),C(t), Ĉ(t) ∈ RN/2, and x(t), A(t) ∈ R. Under Euler
discretization, this system is equivalent to a real-valued SSM

ht = e∆tAt Rt ht−1 +∆tBtxt, (7)

yt = C⊤
t ht,

with state ht ∈ RN , projections

Bt =

[
Bt

B̂t

]
∈ RN , Ct =

[
Ct

−Ĉt

]
∈ RN ,

and a transition matrix

Rt = Block
(
{R(∆tθt[i])}N/2

i=1

)
∈ RN×N , R(Θ) =

[
cos(Θ) − sin(Θ)
sin(Θ) cos(Θ)

]
.

Proof. We first present the derivation for N = 2; the block-diagonal structure for general even N
follows by grouping pairs of coordinates.

Let ht+iĥt denote the complexified hidden state, with parameters A(t)+iθ(t) and B(t)+iB̂(t) for
the transition and input, respectively. By the variation of constants formula (Proposition 5), applying
zero–order hold and Euler’s rule over a step [tk−1, tk] gives

hk + iĥk = e∆t(At+iθt)(hk−1 + iĥk−1) + ∆t(Bt + iB̂t)xt.
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Expanding the exponential,

e∆t(At+iθt) = e∆tAt

(
cos(∆tθt) + i sin(∆tθt)

)
,

so in real coordinates ht =

[
ht

ĥt

]
∈ R2 the recurrence becomes

ht = e∆tAt

[
cos(∆tθt) − sin(∆tθt)
sin(∆tθt) cos(∆tθt)

]
︸ ︷︷ ︸

R(∆tθt)

ht−1 +∆t

[
Bt

B̂t

]
xt.

Stacking across N/2 such pairs yields the block-diagonal transition

ht = e∆tAt Block
(
{R(∆tθt[i])}N/2

i=1

)
ht−1 +∆t

[
Bt

B̂t

]
xt.

For the output,

yt = Re
(
(Ct + iĈt)

⊤(ht + iĥt)
)
=

[
Ct

−Ĉt

]⊤
ht,

which defines the real projection Ct ∈ RN in the proposition. This proves the equivalence between
complex SSM and the real block-diagonal system with rotations.

C.2 PROOF OF PROPOSITION 3

Proposition 3 (Complex SSM, Data-Dependent RoPE Equivalence). Under the notation established
in Proposition 2, consider the real SSM defined in Eq. 7 unrolled for T time-steps. The output of
the above SSM is equivalent to that of a vanilla scalar transition matrix-based SSM (Eq. 2) with a
data-dependent rotary embedding applied on the B,C components of the SSM defined as:

ht = e∆tAtht−1 + (

t∏
i=0

R⊤
i )Btxt, yt =

(
(

t∏
i=0

R⊤
i )Ct

)⊤

ht (8)

where the matrix production represents right matrix multiplication, e.g.,
∏1

i=0 Ri = R0R1. We
denote employing the vanilla SSM to compute the Complex SSM as “RoPE trick”.

Proof. Consider the SSM

ht = e∆tAt Rt ht−1 + Btxt, yt = C⊤
t ht, (11)

where (as in Proposition 3) At ∈ R is a scalar (so that e∆tAt is a scalar and commutes with rota-
tions), and Rt is block-diagonal orthogonal/unitary, hence R−1

t = R⊤
t .

Unrolling the recurrence with the convention that an empty product is the identity,

ht =

t∑
i=0

( t∏
s=i+1

e∆sAsRs

)
Bixi. (12)

Thus

yt = C⊤
t ht =

t∑
i=0

C⊤
t

( t∏
s=i+1

e∆sAsRs

)
Bixi. (13)

Using unitarity property,

t∏
s=i+1

Rs =
( t∏
s=0

Rs

)( i∏
s=0

Rs

)−1
=
( t∏
s=0

Rs

)( i∏
s=0

R⊤
s

)
.
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Since e∆sAs are scalars, they commute with rotations; hence

yt =

t∑
i=0

C⊤
t

( t∏
s=0

Rs

)( t∏
s=i+1

e∆sAs

)( i∏
s=0

R⊤
s

)
Bixi (14)

=

(( t∏
s=0

R⊤
s

)
Ct

)⊤ t∑
i=0

( t∏
s=i+1

e∆sAs

)( i∏
s=0

R⊤
s

)
Bixi. (15)

Define the rotated parameters C̄t :=
(∏t

s=0 R
⊤
s

)
Ct and B̄i :=

(∏i
s=0 R

⊤
s

)
Bi. Then

yt = C̄⊤
t

t∑
i=0

( t∏
s=i+1

e∆sAs

)
B̄ixi. (16)

Equivalently, introducing the rotated state h̃t :=
(∏t

s=0 R
⊤
s

)
ht,

h̃t = e∆tAt h̃t−1 + B̄txt, yt = C̄⊤
t h̃t, (17)

C.3 PROOF OF PROPOSITION 4

Proposition 4 (Rotary Embedding Equivalence with Trapezoidal Discretization). Discretizing a
complex SSM with the trapezoidal rule (Proposition 1) yields the recurrence

ht = αtht−1 + βt

(
t−1∏
i=0

R⊤
i

)
Bt−1xt−1 + γt

(
t∏

i=0

R⊤
i

)
Btxt,

yt =

(( t∏
i=0

R⊤
i )Ct

)⊤

ht. (9)

Here Rt is the block-diagonal rotation matrix defined in Proposition 3.

Proof. We begin from the complex SSM (as in Prop. 2)

ḣ(t) = Diag
(
A(t) + iθ(t)

)
h(t) +

(
B(t) + iB̂(t)

)
x(t),

y(t) = Re
(
(C(t) + iĈ(t))⊤h(t)

)
,

where A(t) ∈ R is a scalar and θ(t),B(t), B̂(t),C(t), Ĉ(t) ∈ RN/2.

Recall from Prop. 5,

ht ≈ e∆t(At+iθt) ht−1 +

∫ τt

τt−1

e(τt−τ)(At+iθt)
(
B(τ) + iB̂(τ)

)
x(τ) dτ.

Applying Prop. 1 to the above integral, we get

ht = e∆t(At+iθt) ht−1 + βt e
i∆tθt

(
Bt−1 + iB̂t−1

)
xt−1 + γt

(
Bt + iB̂t

)
xt, (18)

wherem
αt := e∆tAt , βt := (1− λt)∆te

∆tAt , γt := λt∆t,

Since e∆t(At+iθt) = αt e
i∆tθt and as shown in Prop. 2, multiplication by ei∆tθt is a block-diagonal

rotation in real coordinates, we get the real N -dimensional recurrence

ht = αt Rt ht−1 + βt Rt Bt−1 xt−1 + γt Bt xt, (19)

yt = C⊤
t ht,

where Rt = Block
(
{R(∆tθt[i])}N/2

i=1

)
where R(Θ) =

[
cosΘ − sinΘ
sinΘ cosΘ

]
, and projections

Bt =

[
Bt

B̂t

]
, Ct =

[
Ct

−Ĉt

]
. Note that Rt is orthogonal, so R−1

t = R⊤
t .
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Figure 4: Contrasting Mamba-2 and Mamba-3 Architectures: Key updates include trapezoidal dis-
cretization, data-dependent RoPE embeddings, MIMO projections, QK normalization, and learnable
biases.

We define the following,

h̃t :=
( t∏

s=0

R⊤
s

)
ht, B̄t :=

( t∏
s=0

R⊤
s

)
Bt, C̄t :=

( t∏
s=0

R⊤
s

)
Ct.

Left-multiplying equation 19 by
∏t

s=0 R
⊤
s and using R⊤

t Rt = I ,

h̃t = αt h̃t−1 + βt B̄t−1 xt−1 + γt B̄t xt,

yt = C̄⊤
t h̃t.

This is a vanilla scalar-transition SSM with data-dependent rotary embeddings absorbed into B,C
via cumulative products of R⊤

s .

D MIMO FOR MAMBA-3
With hindsight from Mamba and with inference in mind, we propose the following MIMO formu-
lation:

Mamba with MIMO. With a given batch, head, and sequence position t, consider the input
Ut ∈ RD. Also denote P,R ∈ N as the head dimension and MIMO rank, respectively. We
first obtain SSM parameters via a set of projections defined in terms of tensor contraction notation
as follows:

Bt = contract(DNR,D → NR)(WB,Ut) Ct = contract(DNR,D → NR)(WC,Ut),

X′
t = contract(PD,D → P )(WX′ ,Ut) Xt = contract(PR,P → PR)(WX,X′

t),

where WB,WC,WX′ ,WX are model parameters. Additionally, we obtain the residual term Zt

in the same manner as Xt with weights WZ′ and WZ. The state update and the SSM output is then
computed via the following MIMO SSM:

Ht = at Ht−1 + BtX
⊤
t ∈ RN×P , Yt = H⊤

t Ct ∈ RP×R.

The intermediate output Y′
t is obtained via some residual function ϕ, Y′

t ← ϕ(Yt,Zt). Finally,
the layer output Ot ∈ RD is computed via the following down projections:

O′
t = contract(PR,R→ P )(WO′ ,Y′

t) Ot = contract(P, PD → D)(WO,O′
t).
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This formulation enhances the existing Mamba3 architecture by providing a lightweight parame-
terization that transforms the set of independent SISO SSMs within each head into a set of MIMO
SSMs. Here, we note that the hardware-efficient chunking technique employed by Mamba2 for pre-
training can be applied with little change, as the MIMO dimension r is orthogonal to the sequence
dimension.

E EXPERIMENTAL DETAILS

Language Modeling. Our pretraining procedures follow that of Dao & Gu (2024)’s section D.2.
All models at each scale follow the same procedure and were trained with bfloat16. The Mamba
family of models were trained using the standard expand factor of 2 and a dstate of 128 and head
dimension of 64. The Transformer baselines follows Dao & Gu (2024), and the Gated DeltaNet
baselines follow (Yang et al., 2025a). We utilize the Llama-3.1 tokenizer (Grattafiori et al., 2024)
for all models.

We utilize LM Evaluation Harness (Gao et al., 2024) to test the zero-shot languag modeling ca-
pabilities of our pretrained model on LAMBADA (OpenAI version) (Paperno et al., 2016), Hel-
laSwag (Zellers et al., 2019), PIQA (Bisk et al., 2019), Arc-Easy/Arc-Challenge (Clark et al., 2018),
WinoGrande (Sakaguchi et al., 2019), and OpenBookQA(Mihaylov et al., 2018).

Real-World and Synthetic Retrieval. For our real-world retrieval tasks, we evaluate on the com-
mon suite consisting of SWDE (Arora et al., 2025b), SQUAD (Rajpurkar et al., 2018), FDA (Arora
et al., 2025b), TriviaQA (Joshi et al., 2017), NQ (Kwiatkowski et al., 2019), and DROP (Dua et al.,
2019). We utilize the cloze-formatted version of the aforementioned tasks provided by Arora et al.
(2025b; 2024), as the original datasets are in a question-answering format, making it challenge for
solely pretrained models. All tasks were truncated to match the training context length. The syn-
thetic NIAH tasks (Hsieh et al., 2024) were also run with LM Evaluation Harness.

State-Tracking Synthetics. Training follows a sequence length curriculum that progresses from 3
-40 to 160, evaluated at 256. Each curriculum runs for 104 steps with batch size 256. We use 1 layer
models for Parity and 3 layer models for Modular-arithmetic tasks. The state size is chosen to be
64, and we sweep dmodel ∈ {32, 64} and 8 learning rates logarithmically spaced between 10−4 and
10−2, reporting the best validation accuracy.

F ADDITIONAL EXPERIMENTAL RESULTS
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Figure 5: Pretrained 1.5B models’ performance on the held-out FineWeb-Edu test set at varying
context lengths. Mamba-3 exhibits strong length extrapolation while Mamba-2 falters at longer
contexts.
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Table 6: Downstream language modeling evaluations on parameter-matched pretrained models, in-
cluding Mamba-3 MIMO. Mamba-3 MIMO’s average accuracy on all tasks is more than 1 percent-
age point better than the next best (Mamba-3 SISO).

Model FW-Edu LAMB. LAMB. HellaS. PIQA Arc-E Arc-C WinoGr. OBQA Average
ppl ↓ ppl ↓ acc ↑ acc n ↑ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ acc ↑

Transformer-440M 13.03 21.2 41.7 50.5 69.9 67.6 34.6 56.7 26.0 49.6
Gated DeltaNet-440M 13.12 19.0 40.4 50.5 70.5 67.5 34.0 55.3 25.8 49.1
Mamba-2-440M 13.00 19.6 40.8 51.7 70.6 68.8 35.0 54.1 26.0 49.6
Mamba-3-440M 12.87 19.6 40.2 51.7 71.9 68.9 34.4 55.8 26.0 49.8
Mamba-3-MIMO-440M 12.72 17.1 43.4 52.8 70.8 69.6 35.6 56.3 28.4 51.0

Transformer-880M 11.42 15.0 44.7 57.2 72.6 71.6 39.2 57.7 26.8 52.8
Gated DeltaNet-880M 11.39 12.7 47.1 57.5 72.6 72.5 38.8 57.9 30.6 53.9
Mamba-2-880M 11.35 13.8 45.0 58.1 72.5 72.3 38.7 56.8 30.2 53.4
Mamba-3-880M 11.23 12.9 47.2 58.8 73.6 72.7 40.2 58.4 30.0 54.4
Mamba-3-MIMO-880M 11.11 11.8 49.5 59.2 73.7 74.7 41.2 59.9 28.6 55.3
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Figure 6: Mamba-3 demonstrates superior performance compared to strong baselines like Mamba-2,
Llama, and Gated Deltanet. These are 440M models, trained and evaluated on FineWeb-Edu.

We also compare the effectiveness of state size usage of Mamba variants to a Gated DeltaNet base-
line in Figure 7. We highlight the difficulty of directly comparing GDN versus Mamba-style models
due to the differing head structure, multi-head compared to multi-value respectively. Our experi-
ments hold GDN’s v expand to 2 and decrease the head dimension accordingly to vary the relative
total state size. Similar to Figure 3, we train 440M models to 2× Chinchilla tokens and sweep
across dstate = {32, 64, 128} for the Mamba models and dhead dim = {32, 64, 128} for GDN. We
parameter match all models.
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Figure 7: Exploration of state size (inference speed proxy) versus pretraining perplexity (perfor-
mance proxy). Mamba-3 and Mamba-3 MIMO continue set the Pareto frontier.

G ARCHITECTURE ABLATIONS

We explore our model architecture’s ablation in this section. All models are trained at the 440M
scale to Chinchilla optimal number of tokens (20× tokens to parameters) with the same experimental
procedures as our pretrained models as covered in Appendix E unless otherwise stated.

B,C Bias Parameterization. The Mamba-3 model’s separate B and C biases are head-specific and
channel-wise and added to both B and C after the QK-Norm. While the biases in the final Mamba-3
model are trainable, data-independent parameters and initialized to all ones, we explore various bias
parameterizations in Table 7a. We find our models are not very sensitive to the initialization of the
biases as long as they are positive. We choose the all-ones initialization due to it’s simplicity.

We also explore the impact removing the B or C bias on performance in Table 7b (bias is initialized
with our default parameterization when utilized). Unlike in Yu & Erichson (2025), which finds that
B bias by itself is able to improve performance on Mamba-1, our experiments find that only having
B bias hurts performance slightly and that B and C biases have synergetic properties.

Bias Init. Trainable ppl ↓
1.0 ✓ 15.72
0.0 ✓ 16.57
1.0 × 15.80
U(0, 1) ✓ 15.76
U(−1, 1) ✓ 16.07

(a) Effect of parameterization of the B and C bias
on model performance, measured by pretraining
perplexity. We find our default initialization of all-
ones (first row) provides the best performance, but
performance is not sensitive as long as biases are
positive.

B Bias C Bias ppl ↓
× × 16.52
✓ × 16.68
× ✓ 15.98
✓ ✓ 15.69

(b) Applying a bias to both B and C leads to the
best performance. Only applying B bias (Block-
Biased (Yu & Erichson, 2025) Mamba-3 variant)
does not provide significant gains over the no-bias
baseline.

Table 7: Ablations on B,C bias initialization (left) and presence (right) for Mamba-3.

H INFERENCE KERNEL LATENCY ANALYSIS

H.1 KERNEL IMPLEMENTATIONS AND FUSION STRUCTURE

In Table 3, we detail the DSL (Triton, CuTe, PyTorch) and the fusion level of the kernels used in our
latency analysis. For Mamba-2 and Gated DeltaNet (GDN), we directly use the publicly released
Triton kernels from the respective authors. For Mamba-3, we implement new inference kernels with
a comparable fusion structure: the forward uses a Triton kernel fused with rotary position embed-
dings, while the decode path uses a CuTe kernel fused with gating and MIMO projection.

In Tables 8 and 9, we abbreviate IP = input projection, Conv = 1D convolution, Gate = gating, OP =
output projection. Colors indicate implementation backend (Torch, Triton, CuTe).
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Table 8: Kernel DSL and fusion structure for forward (prefill) kernels.

Model (Forward) Kernel DSL Fusion Level
Mamba-2 Triton IP, Conv, SSM, Gate+OP
Gated DeltaNet Triton IP, Conv, Chunked Delta, Gate+OP
Mamba-3 (SISO) Triton IP, SSM+Rotary, Gate+OP
Mamba-3 (MIMO) Triton IP, SSM+Rotary, Gate+OP

Table 9: Kernel DSL and fusion structure for decode kernels.

Model (Decode) Kernel DSL Fusion Level
Mamba-2 Triton IP, Conv, SSM, Gate+OP
Gated DeltaNet Triton IP, Conv, Recurrent Delta, Gate+OP
Mamba-3 (SISO) CuTe + Triton IP, Rotary, SSM+Gate+OP
Mamba-3 (MIMO) CuTe + Triton IP, Rotary, SSM+Gate+OP+MIMO

H.2 EXTENDED PREFILL AND PREFILL+DECODE LATENCY MEASUREMENTS

Models. We benchmark Mamba-3 1.5B (SISO), Mamba-2 1.5B, Gated DeltaNet (GDN) 1.5B, and
a strong Transformer baseline implemented via the vLLM engine (v0.11.0) with Llama-3.2 1B.3 All
recurrent models are trained at the 1.5B scale with dmodel = 2048 and 24 layers. For Mamba variants
we set state size as 128 and head dimension 64; for GDN we use QK head dimension as 128.

Setting. Sequence lengths were swept over L ∈ {512, 1024, 2048, 4096, 16384} for prefill, with
an equal number of tokens decoded. For sequence lengths {512, 1024, 2048, 4096}, we use batch
size of 128; for sequence lengths {16384}, we use batch size of 16. We use a single H100-SXM
80GB GPU and report wall-clock times (in seconds) over 3 repetitions.

Table 10: Prefill and Prefill+Decode latency across sequence lengths.

Model 512 tokens 1024 tokens 2048 tokens 4096 tokens 16384 tokens
Prefill Prefill+Dec Prefill Prefill+Dec Prefill Prefill+Dec Prefill Prefill+Dec Prefill Prefill+Dec

vLLM (Llama-3.2-1B) 0.26 4.45 0.52 9.60 1.08 20.37 2.08 58.64 1.52 122.06
Gated DeltaNet 0.48 4.52 0.95 9.04 1.90 18.07 3.79 36.14 1.91 71.66
Mamba-2 0.48 4.62 0.96 9.24 1.91 18.48 3.81 36.94 1.92 57.90
Mamba-3 (SISO) 0.48 4.33 0.95 8.64 1.90 17.29 3.80 34.57 1.91 53.97

We observe that (i) Mamba-3 adds minimal forward-pass cost showing that the trapezoidal update,
complex state tracking, and MIMO parameterization remain lightweight; (ii) decode latency is com-
petitive across recurrent models; and (iii) recurrent mixers scale more gently with context length
than vLLM Llama-3.2-1B, which grows much faster with L due to KV-cache overhead.

3https://huggingface.co/meta-llama/Llama-3.2-1B
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