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ABSTRACT

The recent scaling of test-time compute for LLMs has restricted the practical deployment
of models to those with strong capabilities that can generate high-quality outputs in an
inference-efficient manner. While current Transformer-based models are the standard,
their quadratic compute and linear memory bottlenecks have spurred the development
of sub-quadratic models with linear-scaling compute with constant memory requirements.
However, many recent linear-style models lack certain capabilities or lag behind in quality,
and even their linear-time inference is not hardware-efficient. Guided by an inference-first
perspective, we introduce three core methodological improvements inspired by the state-
space model viewpoint of linear models. We combine a: 1) more expressive recurrence, 2)
complex state update rule that enables richer state tracking, and 3) multi-input, multi-output
formulation together, resulting in a stronger model that better exploits hardware parallelism
during decoding. Together with architectural refinements, our Mamba-3 model achieves
significant gains across retrieval, state-tracking, and downstream language modeling tasks.
Our new architecture sets the Pareto-frontier for performance under a fixed inference
budget and outperforms strong baselines in a head-to-head comparison.

1 INTRODUCTION

Test-time compute has emerged as a key driver of progress in AI, with techniques like chain-of-thought
reasoning and iterative refinement demonstrating that inference-time scaling can unlock new capabilities (Wu
et al., 2025; Snell et al., 2024). This paradigm shift makes inference efficiency (Kwon et al., 2023; Li
et al., 2024) paramount, as the practical impact of AI systems now depends critically on their ability to
perform large-scale inference during deployment. Model architecture design plays a fundamental role in
determining inference efficiency, as architectural choices directly dictate the computational and memory
requirements during generation. While Transformer-based models (Vaswani et al., 2017) are the current
industry standard, they are fundamentally bottlenecked by linearly increasing memory demands through the
KV cache and quadratically increasing compute requirements through the self-attention mechanism. These
drawbacks have motivated recent lines of work on sub-quadratic models, e.g., state-space models (SSMs),
which, despite utilizing only constant memory and linear compute, have comparable or better performance
than their Transformer counterparts. Models that benefit the most from this new scaling paradigm perform
well on the following three axes: (i) quality, (ii) capability, and (iii) inference efficiency.

Recent model architectures have tried to strike a balance between the three, but many fall short on at least
one of these three axes. In particular, Mamba-2 and Gated DeltaNet, which have gained significant traction
and adoption due to their inference efficiency, made architectural design choices that enable their linear
compute requirements but sacrifice quality and capabilities (Dao & Gu, 2024; Yang et al., 2025a). For
example, Mamba-2 was developed to improve training speed and simplicity over Mamba-1 (Gu & Dao,
2024), opting out of more expressive parameterizations of the underlying SSM and hindering the quality
of the model (Dao & Gu, 2024). Linear attention-style models (Katharopoulos et al., 2020) have also been
shown to lack certain capabilities, with poor state-tracking abilities, e.g., determining parity of bit sequences,
being one of the most notable (Grazzi et al., 2025; Sarrof et al., 2024). In addition, despite these sub-quadratic
models retaining linear inference, their inference itself is not hardware efficient. Because these algorithms
were developed from a training perspective, their decoding phase has low arithmetic intensity (the ratio
of FLOPs to memory traffic), resulting in large portions of hardware remaining idle.

To develop more performant models from an inference-first paradigm, in this paper we introduce three
core methodological changes, influenced by a SSM-centric viewpoint of sub-quadratic models, on top of
Mamba-2. While many recent models fall into the linear attention framework (Dao & Gu, 2024; Yang et al.,
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2025a; Sun et al., 2023), we find that the classical SSM toolbox (Kalman, 1960; Gopal, 1993) leads to natural
interpretations and improvements on modeling.

Trapezoidal Discretization. We discretize the underlying continuous-time dynamical system with a
trapezoidal methodology. The final recurrence is a more expressive superset of Mamba-2’s recurrence
and can be viewed as a convolution. We combine this new discretization with applied biases on the B,C,
inspired by Yu & Erichson (2025), and find that their synergy is able to empirically replace the short causal
convolution in language modeling.

Complexified State-Space Model. By viewing the underlying SSM of Mamba-3 as complex-valued, we
enable a more expressive state update compared to Mamba-2. This change in update rule, designed to be
lightweight for training and inference, overcomes the lack of state-tracking ability common for many current
linear models. We highlight that our complex-valued update rule is equivalent to a data-dependent rotary
embedding and thus can be calculated efficiently (Su et al., 2023).

Multi-Input, Multi-Output SSM. To improve FLOP-efficiency during decoding, we shift from
outer-product-based state update to matrix-multiplication-based state update. In view of the signal processing
foundations of SSMs, such a transition exactly coincides with the generalization from a single-input
single-output (SISO) sequence dynamic to a multiple-input multiple-output (MIMO) one. Here, we found
that MIMO is particularly suitable for inference, as the extra expressivity allows for more compute during
state update, without increasing the state size and hence compromising speed.

These three SSM-centric methodological changes are core to our Mamba-3 mixer primative. We also make
adjustments to the overall architecture to ensure more similarity to the baseline Transformer architecture.
Mamba-3 swaps the pre-output projection norm with the more common QK-normalization (Team et al.,
2025; OLMo et al., 2025) and makes the short convolution, a common component found in many other
sub-quadratic models (Gu & Dao, 2024; Yang et al., 2025a; von Oswald et al., 2025), optional.

We empirically validate our new model on a suite of synthetic and language-modeling tasks.

• Better Quality. Mamba-3 matches or outperforms Mamba-2 and other open-source architectures on
standard downstream language modeling evaluations. For example, Mamba-3-1.5B’s average accuracy
on all downstream tasks is better than that of its Transformer, Mamba-2, and Gated DeltaNet counterparts.

• Better Capability. Mamba-3’s complexification of the SSM state enables the model to solve synthetic
state-tracking tasks that Mamba-2 cannot. We empirically demonstrate that the efficient RoPE-like
calculation is able to near perfectly solve arithmetic tasks, while Mamba-3 without RoPE and Mamba-2
perform not better than random guessing.

• Better Inference Efficiency. Mamba-3’s MIMO variant retains the same state size while enabling better
hardware utilization compared to standard Mamba-3 and other models. Its improved performance without
increasing memory requirements pushes the pareto-frontier of inference efficiency.

2 PRELIMINARIES

2.1 NOTATION

Scalars are denoted by plain-text letters (e.g., x,y). Tensors, including vectors and matrices, are denoted
by bold letters (e.g., h,C). The shape of the tensor can be inferred from the context. We denote the input
sequence length as T , the model dimension as D, and the SSM state size as N . For time indices, we use
subscripts (e.g., xt for the input at time t). The Hadamard product between two tensors is denoted by ⊙.
For a vector of size v∈Rd, we denote Diag(v)∈Rd×d as the diagonal matrix with the vector v as the
diagonal, and for products of scalars across time steps, we use the notation αt···s=α×

t:s=
∏t

i=sαi.

2.2 SSM PRELIMINARIES

State Space Models (SSMs) describe continuous-time linear dynamics via

ḣ(t)=A(t)h(t)+B(t)x(t), y(t)=C(t)⊤h(t),

where h(t)∈RN is the hidden state, x(t)∈R the input, and A(t)∈RN×N , B(t),C(t)∈RN . For discrete
sequences with step size ∆t, Euler’s discretization gives the recurrence

ht=e∆tAtht−1+∆tBtxt, yt=C⊤
t ht.
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Figure 1: Left: The structured mask induced by the generalized trapezoid rule is a product of the decay and
convolutional mask. Right: Euler (hold endpoint) vs trapezoidal rule (average endpoints).

Mamba-2’s parameterization. Mamba-2 (Dao & Gu, 2024) makes the SSM data-dependent and hardware-
efficient by (i) projectingA=A∈R<0, andB,C∈RN from the current token and (ii) choosing transition ma-
trix A=A as a data-dependent scalar. Writing αt :=e∆tAt∈(0,1) and γt :=∆t, the update becomes

ht=αtht−1+γtBtxt, yt=C⊤
t ht.

The scalar At<0 is an input-dependent forget-gate (decay) αt, and the parameter selectivity ∆t jointly
controls the forget-gate (αt = exp(∆tAt)) and the input-gate (γt = ∆t): larger ∆t forgets faster and
up-weights the current token more strongly, while smaller ∆t retains the hidden state with minimal
contributions from the current token.

2.3 STRUCTURED MASKED REPRESENTATION AND STATE SPACE DUALITY

Dao & Gu (2024) show that a large class of SSMs admit a matrix form that vectorizes the time-step recurrence.
For instance, Mamba-2’s recurrence can be vectorized as a masked matrix multiplication,

Y=(L⊙CB̄⊤)X=




1
α1 1
...

. . .
αT...1 ··· αT 1

⊙CB⊤

X, (1)

where L∈RT×T is the structured mask, B,C∈RT×N , X∈RT×D is the input to the SSM and Y∈RT×D

is its output. Within this form, Mamba-2 can be viewed as a type of linear attention by setting Q=C, K=B,
V=X and viewing L as a causal, data-dependent mask. When all α=1, the expression reduces to (causal)
linear attention (Katharopoulos et al., 2020). A more detailed coverage of related linear-time sequence mixers
can be found at Appendix A.

3 MODEL DESIGN FROM A STATE-SPACE VIEWPOINT

We introduce Mamba-3, with three new innovations rooted in classical state-space theory: trapezoidal
discretization for more expressive dynamics, complex-valued state spaces for state-tracking, and multi-input
multi-output (MIMO) to improve hardware utilization. These advances address the quality, capability, and
efficiency limitations of current sub-quadratic architectures.

3.1 TRAPEZOIDAL DISCRETIZATION

Structured SSMs are naturally defined as continuous-time dynamical systems that map input functions, x(t)∈
R, to output functions, y(t)∈R, for time t>0. In sequence modeling, however, the data is only observed at
discrete time steps, which then requires applying a discretization step to the SSM to transform its continuous-
time dynamics into a discrete recurrence. The preliminary step in deriving Mamba-3’s discretization is to apply
the Variation of Constants formula (Proposition 5), which decomposes the hidden state into an exponentially
decay term and a state update term ‘information’ term dependent on the most recent inputs.

The first step in deriving the discretized recurrence is to approximate the “state-update” integral in equation 10.
A straightforward choice, used in Mamba-2, is applying Euler’s rule (Süli & Mayers, 2003), which
approximates the integral by holding the (right) endpoint constant throughout the interval (Fig. 1). This
yields Mamba-2’s recurrence,

ht = e∆tAtht−1+(τt−τt−1)e
(τt−τt)AtBtxt

≈ e∆tAtht−1+∆tBtxt. (2)
However, Euler’s rule provides only a first-order approximation to the “state-update” integral: local truncation
error is O(∆2

t ), which accumulates across steps to yield a global error of O(∆t) over the sequence. In
contrast, we adopt a generalized trapezoidal rule, which provides a second-order accurate approximation
of the integral, offering improved accuracy over the Euler’s rule. Specifically, it approximates the integral with
a data-dependent, convex combination of both interval endpoints. This generalization extends the classical
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trapezoidal rule (Süli & Mayers, 2003), which simply averages the interval endpoints, by allowing for a
data-dependent convex combination (Fig. 1).

Proposition 1 (Generalized Trapezoidal Discretization). Approximating the state-update integral
in equation 10 by the general trapezoidal rule yields the recurrence,

ht = e∆tAtht−1+(1−λt)∆te
∆tAtBt−1xt−1+λt∆tBtxt, (3)

:= αtht−1+βtBt−1xt−1+γtBtxt, (4)
where λt∈ [0,1] is a data-dependent scalar, αt :=e∆tAt , βt :=(1−λt)∆te

∆tAt , γt :=λt∆t.

Remark 1 (Expressivity). Our scheme is a generalization of a) The classical trapezoid rule which is recovered
when λt=

1
2 . b) Mamba-2’s Euler’s rule, which is recovered when λt=1.

Remark 2 (Error Rate). This is a second-order discretization with local truncation error O(∆3
t ) and global

error O(∆2
t ) over the sequence under standard stability assumptions.

3.1.1 TRAPEZOIDAL DISCRETIZATION IS A CONVOLUTIONAL MASK

We can view the generalized trapezoidal discretization as applying a data-dependent convolution of size
two on the projected input, Btxt, to the SSM. We now show that a similar vectorization to Equation (1)
holds with the generalized trapezoidal discretization. Unrolling the recurrence starting from h0=γ0B0x0
results in hT =αT ···2(γ0α1+β1)B0x0+···+γTBTxT .

Unrolling these rows shows that the mask induced by the trapezoidal update is no longer a fixed averaging
of endpoints (as in the classical trapezoidal rule), but a data-dependent convex combination of the two interval
endpoints. In the SSD representation, this corresponds to a mask L:

γ0
(γ0α1+β1)

α2(γ0α1+β1) γ2
...

. . .
αT ···2(γ0α1+β1) ··· γT

=


1
α1 1

α2α1

...
. . .

αT ···1 ··· 1



γ0
β1
0 γ2
...

. . .
0 ··· γT

. (5)

Here, the first factor is precisely the lower-triangular decay mask from Mamba-2, while the second factor
encodes the size two convolution induced by the trapezoidal rule through the coefficients (βt,γt). We provide
a rigorous proof for this decomposition in Appendix B.2.

3.2 COMPLEX-VALUED SSMS

Modern SSMs are designed with efficiency as the central goal, motivated by the need to scale to larger models
and longer sequences. For instance, successive architectures have progressively simplified the state transition
matrix: S4 (Gu et al., 2022a) used complex-valued Normal plus Low Rank (NPLR) matrices, Mamba (Gu
& Dao, 2024) reduced this to a diagonal of reals, and Mamba-2 (Dao & Gu, 2024) further simplified it
to a single scalar. Although these simplifications largely maintain language modeling performance, recent
works (Merrill et al., 2025; Sarrof et al., 2024; Grazzi et al., 2025) have shown that they degrade the
capabilities of the model on simple state-tracking tasks such as parity and modular arithmetic, which can
be solved by a one-layer LSTM.

This limitation, formalized in Theorem-1 of (Grazzi et al., 2024), arises from restricting the eigenvalues
of the transition matrix to real numbers, which cannot represent “rotational” hidden state dynamics. For
instance, consider the parity function on binary inputs {0,1}, defined as

∑
txt mod 2. This task can be

performed using update: ht=R(πxt)ht−1, where R(·) is a 2-D rotation matrix. Such rotational dynamics
cannot be expressed with real eigenvalues.

To recover this capability, we begin with complex SSMs (6), which are capable of representing state-tracking
dynamics. We show that, under discretization (Proposition 5), complex SSMs can be formulated as a real SSMs
with a block-diagonal transition matrix composed of 2×2 rotation matrices (Proposition 2). We then show that
this is equivalent to applying data-dependent rotary embeddings on both the input and output projections B,C
respectively. This result establishes a theoretical connection between complex SSMs and data-dependent RoPE
embeddings (Proposition 3). Finally, this allows for an efficient implementation of the SSM via “RoPE trick”,
enabling efficient complex-valued state transition matrix with minimal overhead over real SSMs.

Proposition 2 (Complex-to-Real SSM Equivalence). Consider a complex-valued SSM
ḣ(t)=Diag

(
A(t)+iθ(t)

)
h(t)+

(
B(t)+iB̂(t)

)
x(t), (6)

y(t)=Re
((

C(t)+iĈ(t)
)⊤

h(t)
)
,
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where h(t)∈CN/2, θ(t),B(t),B̂(t),C(t),Ĉ(t)∈RN/2, and x(t),A(t)∈R. Under Euler discretization,
this system is equivalent to a real-valued SSM

ht=e∆tAtRtht−1+∆tBtxt, (7)

yt=C⊤
t ht,

with state ht∈RN , projections

Bt=

[
Bt

B̂t

]
∈RN , Ct=

[
Ct

−Ĉt

]
∈RN ,

and a transition matrix

Rt = Block
(
{R(∆tθt[i])}N/2

i=1

)
∈RN×N , R(Θ)=

[
cos(Θ) −sin(Θ)
sin(Θ) cos(Θ)

]
.

The proof is in Appendix C.1.

Proposition 2 shows that the discretized complex SSM has an equivalent real SSM with doubled state
dimension (N), and a block-diagonal transition matrix multiplied with a scalar decay, where each 2×2
block is a data-dependent rotation matrix (e∆tA

t Rt). We now show that the rotations can equivalently be
absorbed into the input and output projections Bt,Ct, yielding an equivalent view that complex SSMs are
real SSMs equipped with data-dependent rotary embeddings (RoPE).

Proposition 3 (Complex SSM, Data-Dependent RoPE Equivalence). Under the notation established in
Proposition 2, consider the real SSM defined in Eq. 7 unrolled for T time-steps. The output of the above
SSM is equivalent to that of a vanilla scalar transition matrix-based SSM (Eq. 2) with a data-dependent
rotary embedding applied on the B,C components of the SSM defined as:

ht=e∆tAtht−1+(

t∏
i=0

R⊤
i )Btxt, yt=

(
(

t∏
i=0

R⊤
i )Ct

)⊤

ht (8)

where the matrix production represents right matrix multiplication, e.g.,
∏1

i=0Ri =R0R1. We denote
employing the vanilla SSM to compute the Complex SSM as “RoPE trick”.

The proof is in Appendix C.2.

To observe the connection of complex SSMs to RoPE embeddings, note that in the above proposition,
the data-dependent rotations Ri are aggregated across time-steps and applied to C,B, which, by the State
Space Duality of Dao & Gu (2024), correspond to the Query (Q) and Key (K) components of Attention.
Analogously, vanilla RoPE (Su et al., 2023) applies data-independent rotation matrices, where the rotation
angles follow a fixed frequency schedule θ[i]=10000−2i/N .

Remark 3 (Generality). Proposition 3 extends to the fully general case where the transition is given by any
complex matrix. By the complex diagonalization theorem, such a matrix is unitarily equivalent to a complex
diagonal matrix, Diag

(
A(t)+iθ(t)

)
with A(t)∈RN . However, in practice, we restrict A(t) to a scalar,

mirroring the simplification from Mamba to Mamba-2, to enable faster implementation by avoiding GPU
memory bottlenecks.

Proposition 4 (Rotary Embedding Equivalence with Trapezoidal Discretization). Discretizing a complex
SSM with the trapezoidal rule (Proposition 1) yields the recurrence

ht=αtht−1+βt

(t−1∏
i=0

R⊤
i

)
Bt−1xt−1+γt

( t∏
i=0

R⊤
i

)
Btxt,

yt=
(( t∏

i=0

R⊤
i

)
Ct

)⊤
ht. (9)

Here Rt is the block-diagonal rotation matrix defined in Proposition 3.

The proof is in Appendix C.5.

Remark 4 (RoPE Trick). Complex SSMs discretized with the general trapezoidal rule of a complex SSM
naturally admit the RoPE trick we established for SSMs discretized with Euler’s rule.
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3.3 MULTI-INPUT, MULTI-OUTPUT

During the decoding phase of autoregressive inference, outputs are generated one token at a time, and
performance is typically measured using in Tokens generated Per Second (TPS). In this metric, sub-quadratic
models, such as Mamba-2 (Dao & Gu, 2024), have a significant advantage over standard Transformer-style
attention, since they feature a fixed-size hidden state (Equation (2)) rather than maintaining a key–value
(KV) cache that grows linearly with the sequence length.

TPS, however, does not explicitly factor in hardware efficiency, where we aim to be in a compute-bound
regime (as opposed to memory-bound) in order to fully utilize on-chip accelerators. To better characterize
hardware efficiency, we would need to consider the arithmetic intensity of token generation. Recall that
arithmetic intensity is defined as FLOPs divided by the number of input-output bytes, for a given op. In order
to fully utilize both the accelerators and the bandwidth, we would like the arithmetic intensity to match the
ops:byte ratio of the hardware, which in the case of NVIDIA H100-SXM5, is 295.2 bfloat16 ops per second
with respect to the DRAM, and 31.9 bfloat16 ops per second with respect to the SRAM [Fleetwood].

Table 2(a) shows the arithmetic intensity for a single generation in the SSM component of Mamba (with
respect to 2-byte data). We see that it falls far short of a compute-bound regime, and moreover it is not clear
how one can adjust the existing parameters in Mamba to mitigate the lack of hardware efficiency. We note
that this observation applies generally to other sub-quadratic models, such as causal linear attention.

Input Output FLOPs Arithmetic
Intensity

Ht :(n,p)

xt :(p)

at :(1)

bt :(n)

ct :(n)

yt :(p) 5pn
5pn

2(1+2n+p+np)
≈2.5=Θ(1)

(a) SISO (2-byte data).

Input Output FLOPs Arithmetic
Intensity

Ht :(n,p)

xt :(p,r)

at :(1)

bt :(n,r)

ct :(n,r)

yt :(p,r) 4nrp+
2np

p(4nr+2n)

2(1+2nr+pr+np)
≈2r=Θ(r)

(b) MIMO (2-byte data).

Figure 2: Arithmetic Intensity for (a) SISO, (b) MIMO. Batch and head dimensions cancel out.

In light of this, we made the following simple adjustment to our recurrent relation: instead of transforming
the input xt∈Rp to state Ht∈Rn×p via an outer product, i.e., Ht←atHt−1+bt⊗xt, we made such
a transformation via a matrix product, i.e., Ht←atHt−1+BtX

⊤
t , where Bt∈Rn×r and Xt∈Rp×r are

now matrices with an addition rank r. The emission from state to output similarly acquire an extra rank r, i.e.,
Yt∈Rr×p←C⊤

t Ht, where Ct∈Rn×r,Ht∈Rn×p. This simple change increases the arithmetic intensity
of recurrence, which now scales with the rank r (Figure 2(b)). Hence, by increasing r, arithmetic intensity
improves and shifts decode generation towards a more compute-bound regime. This increase in FLOPs during
decode does not compromise runtime, as the operation is bounded by the I/O of state Ht∈Rn×p.

Moreover, moving from outer-product-based state update to matrix-product-based coincides exactly with
generalizing from SISO to MIMO SSM, with the rank r being the MIMO rank. Such a generalization
recovers a key expressive feature of SSMs in classical literature; indeed, there has been previous work,
namely Smith et al. (2023), that explored MIMO SSM as a drop-in replacement of attention, albeit not in
the context of Mamba and not necessarily with inference in view.

Details of the MIMO formulation for Mamba-3 are provided in Appendix D.

3.4 MAMBA-3 ARCHITECTURE

The Mamba-3 block retains the overall layout of its predecessor while introducing several key modifications.
Most notably, the SSD layer is replaced with the more expressive trapezoidal SSM defined in Proposition 4.
The extra normalization layer, first introduced between Mamba-1 and Mamba-2 for training stability,
is repositioned to follow the B,C projection, mirroring the QK-Norm commonly used in modern
Transformers (Henry et al., 2020; Wortsman et al., 2023). Building on the findings of Yu & Erichson
(2025), which prove adding channel-specific bias to B in a blockwise variant of Mamba-1 grants universal
approximation capabilities, Mamba-3 incorporates a head-specific, channel-wise bias into both the B and C
components after its normalization. Our trapezoidal discretization complements this bias, eliminating the need
for the original short causal convolution and its accompanying activation function (Section 4.3). Mamba-3
employs the SISO SSM by default, though we view its MIMO variant as a flexible option that can be toggled

6
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Table 1: Downstream language modeling evaluations on models trained with 100B FineWeb-Edu tokens.
Best results for each size are bolded, and second best are underlined. All models are trained with the same
procedure. Mamba-3 outperforms Mamba-2 and others at every model scale.

Model FW-Edu LAMB. LAMB. HellaS. PIQA Arc-E Arc-C WinoGr. OBQA Average
ppl ↓ ppl ↓ acc ↑ acc n ↑ acc ↑ acc ↑ acc n ↑ acc ↑ acc n ↑ acc ↑

Transformer-180M 16.89 45.0 32.5 39.0 67.1 59.8 27.9 51.2 21.8 42.8
Gated DeltaNet-180M 16.61 35.9 33.7 40.2 66.8 59.6 28.5 51.2 21.6 43.1
Mamba-2-180M 16.76 41.8 30.9 40.1 66.8 60.1 27.3 52.0 23.2 42.9
Mamba-3-180M 16.59 37.7 32.5 40.8 66.1 61.5 27.9 52.0 22.8 43.4

Transformer-440M 13.03 21.2 41.7 50.5 69.9 67.6 34.6 56.7 26.0 49.6
Gated DeltaNet-440M 13.12 19.0 40.4 50.5 70.5 67.5 34.0 55.3 25.8 49.1
Mamba-2-440M 13.00 19.6 40.8 51.7 70.6 68.8 35.0 54.1 26.0 49.6
Mamba-3-440M 12.87 19.6 40.2 51.7 71.9 68.9 34.4 55.8 26.0 49.8

Transformer-820M 11.42 15.0 44.7 57.2 72.6 71.6 39.2 57.7 26.8 52.8
Gated DeltaNet-820M 11.39 12.7 47.1 57.5 72.6 72.5 38.8 57.9 30.6 53.9
Mamba-2-820M 11.35 13.8 45.0 58.1 72.5 72.3 38.7 56.8 30.2 53.4
Mamba-3-820M 11.23 12.9 47.2 58.8 73.6 72.7 40.2 58.4 30.0 54.4

Transformer-1.5B 10.51 11.1 50.3 60.6 73.8 74.0 40.4 58.7 29.6 55.4
Gated DeltaNet-1.5B 10.51 10.8 49.9 60.5 74.3 73.3 40.4 61.5 30.4 55.7
Mamba-2-1.5B 10.47 12.0 47.8 61.4 73.6 75.3 41.8 57.5 32.6 55.7
Mamba-3-1.5B 10.35 10.9 49.4 61.9 73.6 75.9 42.7 59.4 32.0 56.4

depending on inference requirements. The overall architecture follows the Llama design (Grattafiori et al.,
2024), alternating Mamba-3 and SwiGLU blocks with pre-normalization.

4 EMPIRICAL VALIDATION

We empirically validate our SSM-centric methodological changes through the overall Mamba-3 model on
a host of synthetic and real world tasks. Section 4.1 compares our SISO-variant of Mamba-3 on language
modeling and retrieval-based tasks, while Section 4.2 demonstrates inference efficiency of Mamba-3, and
MIMO Mamba-3’s benefits over SISO Mamba-3 under fixed inference compute. We ablate the impact
of our new discretization and BC bias on performance and show that complexification of the SSM leads
to previously out-of-reach capabilities in Section 4.3.

4.1 LANGUAGE MODELING

All models are pretrained with 100B tokens of the FineWeb-Edu dataset (Penedo et al., 2024) with the
Llama-3.1 tokenizer (Grattafiori et al., 2024) at a 2K context length with the same standard training protocol.
Training and evaluation details can be found in Appendix E.

Across all four model scales, Mamba-3 outperforms popular baselines at various downstream tasks (Table 1).
We highlight that Mamba-3 does not utilize the short convolution that has been empirically identified as
an important component in many performant linear models (Allen-Zhu, 2025).

4.1.1 RETRIEVAL CAPABILITIES

Beyond standard language modeling, an important measure for linear models is their retrieval ability — how
well they can recall information from earlier in the sequence (Arora et al., 2025a;b). Unlike attention models,
which can freely revisit past context with the growing KV cache, linear models must compress context into a
fixed-size state. This trade-off is reflected in the Transformer baseline’s substantially stronger retrieval scores.
To evaluate Mamba-3 under this lens, Table 2 compares it against baselines on both real-world and synthetic
needle-in-a-haystack (NIAH) tasks (Hsieh et al., 2024), using our pretrained 1.5B models from Section 4.1. We
restrict the task sequence length to 2K tokens to match the training setup and adopt the cloze-style format for
our real-world tasks to mirror the next-token-prediction objective, following Arora et al. (2025b; 2024).

Mamba-3 is competitive on real-world associative recall and question-answering but struggles when extracting
information from semi-structured or unstructured data. On synthetic NIAH tasks, however, Mamba-3
surpasses or matches baselines on most cases and notably demonstrates markedly better out-of-distribution
retrieval abilities than its Mamba-2 predecessor.

4.2 INFERENCE EFFICIENCY

In this section, we investigate our methodological changes in the context of inference performance. We first
present our inference benchmark in Section 4.2.1; we then establish a framework for comparing the inference
performance in Section 4.2.2. Finally, we focus on the effectiveness of MIMO in Section 4.2.3.
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Table 2: Retrieval capabilities measured by a mixture of real-world and synthetic retrieval tasks. Real-world retrieval tasks
utilize cloze variants of the original datasets and are truncated to 2K length. Mamba-3 demonstrates strong associative
recall and question-answering but suffers with information extraction of semi-structured and unstructured data. Mamba-3
has strong needle-in-a-haystack (NIAH) accuracy and generalizes outside its trained context.

Model (1.5B) SWDE SQUAD FDA TQA NQ Drop NIAH-Single-1 NIAH-Single-2 NIAH-Single-3

Context Length 2048 1024 2048 4096 1024 2048 4096 1024 2048 4096

Transformer 48.9 46.6 58.4 67.5 31.7 26.4 100.0 100.0 0.0 92.2 100.0 0.0 98.6 99.4 0

Gated DeltaNet 32.7 40.0 28.3 63.5 25.7 24.5 100.0 100.0 99.8 100.0 93.8 49.8 83.8 68.4 34.2
Mamba-2 30.7 39.1 23.7 64.3 25.1 28.5 100.0 99.6 62.0 100.0 53.8 11.8 95.8 87.4 13.4
Mamba-3 28.5 40.1 23.4 64.5 26.5 27.4 100.0 100.0 88.2 100.0 95.4 50.6 92.4 81.4 34.2

Model FP32 BF16
dstate=64 dstate=128 dstate=64 dstate=128

Mamba-2 0.295 0.409 0.127 0.203
Gated DeltaNet 0.344 0.423 0.176 0.257
Mamba-3 (SISO) 0.261 0.356 0.106 0.152
Mamba-3 (MIMO) 0.285 0.392 0.136 0.185

Table 3: Latency (in milliseconds) comparison
across models, precision, and dstate values. Both
Mamba-3 SISO and MIMO are faster than the
Mamba-2 and Gated DeltaNet at the commonly
used bf16, dstate=128 setting.
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Figure 3: Exploration of state size (inference speed
proxy) versus pretraining perplexity (performance
proxy). Mamba-3 MIMO drives the-Pareto frontier
without increasing state size.

4.2.1 MAMBA-3 IS FAST AT INFERENCE

We benchmarked the wallclock time for a single decoding step, and in a single sequence mixing layer, for
each subquadratic model we consider in this paper. We adopted the standard reference code for Mamba-2 and
GDN, while writing our own custom kernels for the Mamba-3 step function. The result is recorded in Table
3. We observe that, despite having a more sophisticated SSM structure, Mamba-3 is in fact noticeably faster
when compared to Mamba-2, which in turn is faster than GDN, illustrating the viability of our inference-first
approach.

4.2.2 A PARETO FRONT FOR INFERENCE EFFICIENCY

For Mamba and many variants of sub-quadratic models, the generation of tokens during decoding is heavily
dominated by memory I/O due to the low arithmetic intensity of computing the recurrent update (c.f. Section
3.3). Furthermore, among the data being transferred, the latent state Ht dominates in terms of size. Indeed,
from Table 3, we see that the runtime scales with dstate, which configures the size of the hidden state.

As dstate dominates the decode runtime for the subquadratic models considered in this paper, we opt to use
it as a proxy for inference speed. By plotting the validation perplexity (itself a proxy for model performance)
as a function of dstate, we aim to formulate a holistic picture about how the subquadratic models can trade
off performance with inference speed.

Figure 31 shows such a Pareto front for the subquadratic models considered in this paper. For each data
point, we train a 440M parameter model to 17.8 billion tokens on the Fineweb-Edu dataset, where the model
is configured with a dstate of {32,64,128}. As expected, we observe an inverse correlation between validation
loss and dstate; moreover, we noticed a general downward shift on the Pareto front moving from Mamba-2
to Mamba-3. A further downward shift is observed when moving from the SISO variant of Mamba-3 to
the MIMO variant of Mamba-3 (where we set the Mimo rank r=4 and decrease our MLP inner dimension
to match the parameter count). This highlights both the expressivity gain coming our methodology change
as well as the effectiveness of the MIMO mechanism in improving decoding efficiency.

1The dstate=32 Mamba-3 MIMO did not finish training at time of submission.
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Table 4: Left: Ablations on core modeling components of Mamba-3, results on test split of dataset. A combination of
our BC bias and trapezoidal discretization makes the convolution optional. Right: Formal language evaluation (scaled
accuracy, %). Higher is better. Models are trained on short sequences and evaluated on longer lengths to test length
generalization. For Gated DeltaNet we report the variant with eigenvalue range [−1,1].

Model Variant ppl ↓
Mamba-3 − bias − trap 16.68
Mamba-3 − bias 16.49
Mamba-3 15.72
Mamba-3 + conv 15.85

(a) Component ablation (350M).

Model Parity ↑ Arith. w/o ↑
brackets

Arith. w/ ↑
brackets

Mamba-3 100.00 98.51 87.75
Mamba-3 (w/o RoPE) 2.27 1.49 0.72
Mamba-2 0.90 47.81 0.88
Gated DeltaNet [-1,1] 100.00 99.25 93.50

(b) Performance comparison of various models on formal language
tasks. Results show that unlike Mamba-2, Mamba-3 features state
tracking ability stemming from data-dependent RoPE embeddings.

4.2.3 MIMO ENHANCES INFERENCE EFFICIENCY

With higher arithmetic intensity, MIMO increases the decoding FLOPs. Moreover, from Table 3, we observe
that the additional FLOPs does not have a drastic impact on the decode runtime.2 The implication is that
any performance gain from MIMO translates to efficiency gain in decoding, and this is in fact supported
by the downward shift of the MIMO Pareto curve we observed in Section 4.2.2.

We aim to further verify the gain from MIMO by investigating its language-modeling capabilities. To that
end, we train a 440M parameter MIMO model with MIMO rank r=4 on 100B tokens on Fineweb-Edu
(i.e., same setting as the 440M parameter run in Section 4.1; we did not train 820M or 1.5B model due
to compute constraints). To ensure the total parameter count equals SISO, we decrease the inner dimension
of the MLP layers to compensate for the increase due to the MIMO projections.

On both validation perplexity and our suite of language evaluation tasks (Table 5), we see significant gain when
moving from SISO to MIMO. Namely, we attain a perplexity gain of 0.16 on the 100B tokens run, and Figure 3
illustrates the downward shift in our validation loss. On the language evaluation front, we see significant gain on
most tasks when compared to SISO, resulting in an overall gain of 1.2 point over SISO. This strongly supports
MIMO as a SSM-centric technique to improve model quality without compromising decoding speed.

4.3 SSM-CENTRIC METHODOLOGICAL ABLATIONS

Table 4a ablates the changes made to the core SSM component, mainly the introduction of BC bias and
trapezoidal discretization. We report the pretraining test perplexity on models at the 440M scale, trained
for Chinchilla optimal tokens. We find that the bias and trapezoidal SSM synergize well and make the short
convolution utilized by many current linear models redundant.

We empirically demonstrate that data-dependent RoPE in Mamba-3 enables state tracking. Following
Grazzi et al. (2025), we evaluate on tasks from the Chomsky hierarchy—Parity, Modular Arithmetic
(without brackets), and Modular Arithmetic (with brackets)—and report scaled accuracies in Table 4b.
Mamba-3 solves Parity and Modular Arithmetic (without brackets), and nearly closes the accuracy gap
on Modular Arithmetic (with brackets). In contrast, Mamba-3 without RoPE and Mamba-2 fail to learn
these tasks. We use the state-tracking–enabled Gated DeltaNet variant of Grazzi et al. (2025) and observe
that Mamba-3 is competitive—matching parity and approaching its performance on both modular-arithmetic
tasks. Experimental settings are covered in Appendix E.

5 CONCLUSION AND FUTURE WORK

We introduce Mamba-3, an SSM model with three axes of improvement rooted in SSM principles: (i) improved
quality, via trapezoidal discretization; (ii) new capabilities, through complex SSMs that recover state-tracking;
and (iii) higher inference efficiency, with a MIMO formulation that raises arithmetic intensity. Mamba-3
delivers strong language modeling results and establishes a new Pareto frontier on the performance-efficiency
axes with respect to strong baseline models. A limitation remains in retrieval, where fixed-state architectures
lags attention-based models. We see hybrid Mamba-3 architectures that integrate retrieval mechanisms as a
promising path, alongside broader application of our design principles to linear-time sequence models.

2The kernel for MIMO Mamba-3 in fact fuses the MIMO projection, and so the reported wallclock time is actually an
overestimate for the pure SSM update.
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LLM Usage. We utilized Large Language Models to polish the writing in our submission as well as generate
latex code for formatting tables and figures.

A RELATED WORK

Linear-time sequence mixers. State-space models (SSMs) provide linear-time sequence mixing through
explicit dynamical states and efficient scan/convolution implementations, offering significant computational
advantages over quadratic-time attention mechanisms (Gu et al., 2022a; Smith et al., 2023; Gupta et al.,
2022). Mamba-1 (Gu & Dao, 2024) introduced input-dependent selectivity to SSMs, while Mamba-2 (Dao
& Gu, 2024) formalized the connection between SSMs and attention via structured state-space duality (SSD)
(Katharopoulos et al., 2020; Choromanski et al., 2022). Despite matching transformers on standard language
understanding benchmarks, these recurrent models exhibit limitations on tasks requiring precise algorithmic
reasoning. Recent evaluations identified gaps in capabilities such as associative retrieval (Bick et al., 2025b;
Arora et al., 2025a), exact copying (Jelassi et al., 2024), and in-context learning (Park et al., 2024; Grazzi et al.,
2024). To address these limitations, DeltaNet enhances linear attention by replacing additive updates with
delta-rule recurrence (Schlag et al., 2021), with recent work developing hardware-efficient, sequence-parallel
training algorithms for this architecture (Yang et al., 2025b). This has catalyzed a broader effort to improve the
algorithmic capabilities of linear-time models through architectural innovations including gating mechanisms,
improved state transition dynamics, and hybrid approaches (Peng et al., 2025; Siems et al., 2025; Yang et al.,
2025a; Paliotta et al., 2025; Bick et al., 2025a).

Expressivity and state tracking in recurrent mixers. Recent work characterizes the types of state that recur-
rent, constant-memory mixers can maintain, revealing algorithmic deficiencies in previous SSM-based models.
Merrill et al. (2025) show that under finite precision, practical SSMs collapse to TC0, leading to failures on
tasks like permutation composition over S5 unless the primitive is extended. Similarly, Yu & Erichson (2025)
prove that a single-layer Mamba is not a universal approximator. Several modifications have been proposed
to improve expressivity. For instance, the same work shows that a block-biased variant regains the universal
approximation property with only minor changes, either through block decomposition or a channel-specific
bias. Allowing negative eigenvalues or non-triangular transitions enables linear RNNs—including diagonal
and Householder/DeltaNet forms—to capture parity and, under mild assumptions, regular languages (Grazzi
et al., 2025). Complex-valued parameterizations provide another avenue for enhanced expressivity. Diagonal
LTI SSMs demonstrate effectiveness for language modeling (Gu et al., 2022b; Orvieto et al., 2023), with
complex variants achieving equivalent functions using smaller, well-conditioned parameters (Ran-Milo et al.,
2024). However, the introduction of selectivity—the central innovation of modern SSMs (Gu & Dao, 2024)—
narrowed the performance gap with Transformers by enabling input-dependent dynamics and achieving state-
of-the-art results on language modeling benchmarks, leading practitioners to abandon complex states in favor of
simpler real-valued architectures. We extend this line of work by reintroducing complex-valued state evolution
that yields a real SSM with doubled dimensionality and block-diagonal rotations applied to the update rule—
analogous through SSD (Dao & Gu, 2024) to how RoPE (Su et al., 2023) applies complex rotations to queries
and keys in attention. The resulting data-dependent rotational structure expands stable dynamics to include os-
cillatory modes, enabling richer states while maintaining constant memory and linear-time complexity.

B TRAPEZOIDAL DISCRETIZATION PROOFS

B.1 PROOF OF PROPOSITION 5

Proposition 5 (Variation of Constants (Tenenbaum & Pollard, 1985)). Consider the linear SSM,

ḣ(t) =A(t)h(t)+B(t)x(t),

where h(t)∈RN is the hidden state, A(t)∈R is the scalar state transition matrix and B(t)x(t)∈RN is
the input projection. For a time grid τt=τt−1+∆t, the hidden state satisfies,

ht ≈ e∆tAtht−1+

∫ τt

τt−1

e(τt−τ)AtB(τ)x(τ)dτ︸ ︷︷ ︸
state-update

, (10)

Proof. Let Φ(t, s) be the fundamental solution of the homogeneous system ḣ(t) = A(t)h(t), i.e.,
∂tΦ(t,s)=A(t)Φ(t,s) and Φ(s,s)=1 (since A is scalar). By variation of constants,

h(t)=Φ(t,s)h(s)+

∫ t

s

Φ(t,τ)B(τ)x(τ)dτ.
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Choosing (s,t)=(tk−1,tk) gives the exact one–step relation

hk=Φ(tk,tk−1)hk−1+

∫ tk

tk−1

Φ(tk,τ)B(τ)x(τ)dτ.

On the step [tk−1, tk], apply zero–order hold to A(·): A(τ) ≈ Ak. Then Φ(tk, τ) ≈ e(tk−τ)Ak and
Φ(tk,tk−1)≈e∆kAk , yielding

hk ≈ e∆kAkhk−1+

∫ tk

tk−1

e(tk−τ)AkB(τ)x(τ)dτ,

which is equation 10.

B.2 TRAPEZOID DISCRETIZATION’ MASK MATRIX

Proof. When viewing the tensor contraction form, let us call C=(T,N),B=(S,N),L=(T,S),X=(S,P)
based on the Mamba-2 paper. With this decomposition of our mask, we can view L=contract(TZ,ZS→
TS)(L1,L2).

The original contraction can be seen as
contract(TN,SN,TS,SP→TP)(C,B,L,X)

We can now view it as
contract(TN,SN,TJ,JS,SP→TP)(C,B,L1,L2,X)

This can be broken into the following:
Z=contract(SN,SP→SNP)(B,X)

Z′=contract(JS,SNP→JNP)(L2,Z)

H=contract(TJ,JNP→TNP)(L1,Z
′)

Y =contract(TN,TNP→TP)(C,H)
Thus, we can view this step: contract(ZS,SNP→ZNP)(L2,Z) as a conv of size two applied on Bx with
the traditional SSD L=L1 matrix.

C COMPLEX SSM PROOFS

C.1 PROOF OF PROPOSITION 2

Proposition 2 (Complex-to-Real SSM Equivalence). Consider a complex-valued SSM
ḣ(t)=Diag

(
A(t)+iθ(t)

)
h(t)+

(
B(t)+iB̂(t)

)
x(t), (6)

y(t)=Re
((

C(t)+iĈ(t)
)⊤

h(t)
)
,

where h(t)∈CN/2, θ(t),B(t),B̂(t),C(t),Ĉ(t)∈RN/2, and x(t),A(t)∈R. Under Euler discretization,
this system is equivalent to a real-valued SSM

ht=e∆tAtRtht−1+∆tBtxt, (7)

yt=C⊤
t ht,

with state ht∈RN , projections

Bt=

[
Bt

B̂t

]
∈RN , Ct=

[
Ct

−Ĉt

]
∈RN ,

and a transition matrix

Rt = Block
(
{R(∆tθt[i])}N/2

i=1

)
∈RN×N , R(Θ)=

[
cos(Θ) −sin(Θ)
sin(Θ) cos(Θ)

]
.

Proof. We first present the derivation for N=2; the block-diagonal structure for general even N follows
by grouping pairs of coordinates.

Let ht+iĥt denote the complexified hidden state, with parameters A(t)+iθ(t) and B(t)+iB̂(t) for the
transition and input, respectively. By the variation of constants formula (Proposition 5), applying zero–order
hold and Euler’s rule over a step [tk−1,tk] gives

hk+iĥk=e∆t(At+iθt)(hk−1+iĥk−1)+∆t(Bt+iB̂t)xt.

Expanding the exponential,

e∆t(At+iθt)=e∆tAt

(
cos(∆tθt)+isin(∆tθt)

)
,
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so in real coordinates ht=

[
ht
ĥt

]
∈R2 the recurrence becomes

ht=e∆tAt

[
cos(∆tθt) −sin(∆tθt)
sin(∆tθt) cos(∆tθt)

]
︸ ︷︷ ︸

R(∆tθt)

ht−1+∆t

[
Bt

B̂t

]
xt.

Stacking across N/2 such pairs yields the block-diagonal transition

ht=e∆tAtBlock
(
{R(∆tθt[i])}N/2

i=1

)
ht−1+∆t

[
Bt

B̂t

]
xt.

For the output,

yt=Re
(
(Ct+iĈt)

⊤(ht+iĥt)
)
=

[
Ct

−Ĉt

]⊤
ht,

which defines the real projection Ct∈RN in the proposition. This proves the equivalence between complex
SSM and the real block-diagonal system with rotations.

C.2 PROOF OF PROPOSITION 3

Proposition 3 (Complex SSM, Data-Dependent RoPE Equivalence). Under the notation established in
Proposition 2, consider the real SSM defined in Eq. 7 unrolled for T time-steps. The output of the above
SSM is equivalent to that of a vanilla scalar transition matrix-based SSM (Eq. 2) with a data-dependent
rotary embedding applied on the B,C components of the SSM defined as:

ht=e∆tAtht−1+(

t∏
i=0

R⊤
i )Btxt, yt=

(
(

t∏
i=0

R⊤
i )Ct

)⊤

ht (8)

where the matrix production represents right matrix multiplication, e.g.,
∏1

i=0Ri =R0R1. We denote
employing the vanilla SSM to compute the Complex SSM as “RoPE trick”.

Proof. Consider the SSM
ht = e∆tAtRtht−1+Btxt, yt =C⊤

t ht, (11)
where (as in Proposition 3) At∈R is a scalar (so that e∆tAt is a scalar and commutes with rotations), and
Rt is block-diagonal orthogonal/unitary, hence R−1

t =R⊤
t .

Unrolling the recurrence with the convention that an empty product is the identity,

ht =

t∑
i=0

( t∏
s=i+1

e∆sAsRs

)
Bixi. (12)

Thus

yt =C⊤
t ht =

t∑
i=0

C⊤
t

( t∏
s=i+1

e∆sAsRs

)
Bixi. (13)

Using unitarity property,
t∏

s=i+1

Rs=
( t∏
s=0

Rs

)( i∏
s=0

Rs

)−1
=
( t∏
s=0

Rs

)( i∏
s=0

R⊤
s

)
.

Since e∆sAs are scalars, they commute with rotations; hence

yt=

t∑
i=0

C⊤
t

( t∏
s=0

Rs

)( t∏
s=i+1

e∆sAs

)( i∏
s=0

R⊤
s

)
Bixi (14)

=

(( t∏
s=0

R⊤
s

)
Ct

)⊤ t∑
i=0

( t∏
s=i+1

e∆sAs

)( i∏
s=0

R⊤
s

)
Bixi. (15)

Define the rotated parameters C̄t :=
(∏t

s=0R
⊤
s

)
Ct and B̄i :=

(∏i
s=0R

⊤
s

)
Bi. Then

yt = C̄⊤
t

t∑
i=0

( t∏
s=i+1

e∆sAs

)
B̄ixi. (16)

Equivalently, introducing the rotated state h̃t :=
(∏t

s=0R
⊤
s

)
ht,

h̃t = e∆tAth̃t−1+ B̄txt, yt = C̄⊤
t h̃t, (17)
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C.3 PROOF OF PROPOSITION 4

Proposition 4 (Rotary Embedding Equivalence with Trapezoidal Discretization). Discretizing a complex
SSM with the trapezoidal rule (Proposition 1) yields the recurrence

ht=αtht−1+βt

(t−1∏
i=0

R⊤
i

)
Bt−1xt−1+γt

( t∏
i=0

R⊤
i

)
Btxt,

yt=
(( t∏

i=0

R⊤
i

)
Ct

)⊤
ht. (9)

Here Rt is the block-diagonal rotation matrix defined in Proposition 3.

C.4 PROOF OF PROPOSITION 4

Proposition 4 (Rotary Embedding Equivalence with Trapezoidal Discretization). Discretizing a complex
SSM with the trapezoidal rule (Proposition 1) yields the recurrence

ht=αtht−1+βt

(t−1∏
i=0

R⊤
i

)
Bt−1xt−1+γt

( t∏
i=0

R⊤
i

)
Btxt,

yt=
(( t∏

i=0

R⊤
i

)
Ct

)⊤
ht. (9)

Here Rt is the block-diagonal rotation matrix defined in Proposition 3.

C.5 PROOF OF PROPOSITION 4

Proposition 4 (Rotary Embedding Equivalence with Trapezoidal Discretization). Discretizing a complex
SSM with the trapezoidal rule (Proposition 1) yields the recurrence

ht=αtht−1+βt

(t−1∏
i=0

R⊤
i

)
Bt−1xt−1+γt

( t∏
i=0

R⊤
i

)
Btxt,

yt=
(( t∏

i=0

R⊤
i

)
Ct

)⊤
ht. (9)

Here Rt is the block-diagonal rotation matrix defined in Proposition 3.

Proof. We begin from the complex SSM (as in Prop. 2)
ḣ(t)=Diag

(
A(t)+iθ(t)

)
h(t)+

(
B(t)+iB̂(t)

)
x(t),

y(t)=Re
(
(C(t)+iĈ(t))⊤h(t)

)
,

where A(t)∈R is a scalar and θ(t),B(t),B̂(t),C(t),Ĉ(t)∈RN/2.

Recall from Prop. 5,

ht≈e∆t(At+iθt)ht−1+

∫ τt

τt−1

e(τt−τ)(At+iθt)
(
B(τ)+iB̂(τ)

)
x(τ)dτ.

Applying Prop. 1 to the above integral, we get
ht=e∆t(At+iθt)ht−1+βte

i∆tθt
(
Bt−1+iB̂t−1

)
xt−1+γt

(
Bt+iB̂t

)
xt, (18)

wherem
αt :=e∆tAt, βt :=(1−λt)∆te

∆tAt, γt :=λt∆t,

Since e∆t(At+iθt)=αte
i∆tθt and as shown in Prop. 2, multiplication by ei∆tθt is a block-diagonal rotation

in real coordinates, we get the real N-dimensional recurrence
ht=αtRtht−1+βtRtBt−1xt−1+γtBtxt, (19)

yt=C⊤
t ht,

where Rt=Block
(
{R(∆tθt[i])}N/2

i=1

)
where R(Θ)=

[
cosΘ −sinΘ
sinΘ cosΘ

]
, and projections

Bt=

[
Bt

B̂t

]
,Ct=

[
Ct

−Ĉt

]
. Note that Rt is orthogonal, so R−1

t =R⊤
t .
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Figure 4: Contrasting Mamba-2 and Mamba-3 Architectures: Key updates include trapezoidal discretization,
data-dependent RoPE embeddings, MIMO projections, QK normalization, and learnable biases.

We define the following,

h̃t :=
( t∏
s=0

R⊤
s

)
ht, B̄t :=

( t∏
s=0

R⊤
s

)
Bt, C̄t :=

( t∏
s=0

R⊤
s

)
Ct.

Left-multiplying equation 19 by
∏t

s=0R
⊤
s and using R⊤

t Rt=I,
h̃t=αth̃t−1+βtB̄t−1xt−1+γtB̄txt,

yt=C̄⊤
t h̃t.

This is a vanilla scalar-transition SSM with data-dependent rotary embeddings absorbed into B,C via
cumulative products of R⊤

s .

D MIMO FOR MAMBA-3
With hindsight from Mamba and with inference in mind, we propose the following MIMO formulation:

Mamba with MIMO With a given batch, head, and sequence position t, consider the input Ut∈RD.
Also denote P,R∈N as the head dimension and MIMO rank, respectively. We first obtain SSM parameters
via a set of projections defined in terms of tensor contraction notation as follows:

Bt=contract(DNR,D→NR)(WB,Ut) Ct=contract(DNR,D→NR)(WC,Ut),

X′
t=contract(PD,D→P)(WX′,Ut) Xt=contract(PR,P→PR)(WX,X

′
t),

where WB,WC,WX′,WX are model parameters. Additionally, we obtain the residual term Zt in the same
manner as Xt with weights WZ′ and WZ. The state update and the SSM output is then computed via the
following MIMO SSM:

Ht = atHt−1+BtX
⊤
t ∈RN×P , Yt =H⊤

t Ct∈RP×R.
The intermediate output Y′

t is obtained via some residual function ϕ, Y′
t←ϕ(Yt,Zt). Finally, the layer

output Ot∈RD is computed via the following down projections:
O′

t=contract(PR,R→P)(WO′,Y′
t) Ot=contract(P,PD→D)(WO,O

′
t).

This formulation enhances the existing Mamba3 architecture by providing a lightweight parameterization
that transforms the set of independent SISO SSMs within each head into a set of MIMO SSMs. Here, we
note that the hardware-efficient chunking technique employed by Mamba2 for pretraining can be applied
with little change, as the MIMO dimension r is orthogonal to the sequence dimension.
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E EXPERIMENTAL DETAILS

Language Modeling Our pretraining procedures follow that of Dao & Gu (2024)’s section D.2. All models
at each scale follow the same procedure and were trained with bfloat16. The Mamba family of models were
trained using the standard expand factor of 2 and a dstate of 128 and head dimension of 64. The Transformer
baselines follows Dao & Gu (2024), and the Gated DeltaNet baselines follow (Yang et al., 2025a). We
utilize the Llama-3.1 tokenizer (Grattafiori et al., 2024) for all models.

We utilize LM Evaluation Harness (Gao et al., 2024) to test the zero-shot languag modeling capabilities
of our pretrained model on LAMBADA (OpenAI version) (Paperno et al., 2016), HellaSwag (Zellers et al.,
2019), PIQA (Bisk et al., 2019), Arc-Easy/Arc-Challenge (Clark et al., 2018), WinoGrande (Sakaguchi
et al., 2019), and OpenBookQA(Mihaylov et al., 2018).

Real-World and Synthetic Retrieval For our real-world retrieval tasks, we evaluate on the common suite
consisting of SWDE (Arora et al., 2025b), SQUAD (Rajpurkar et al., 2018), FDA (Arora et al., 2025b),
TriviaQA (Joshi et al., 2017), NQ (Kwiatkowski et al., 2019), and DROP (Dua et al., 2019). We utilize
the cloze-formatted version of the aforementioned tasks provided by Arora et al. (2025b; 2024), as the
original datasets are in a question-answering format, making it challenge for solely pretrained models. All
tasks were truncated to match the training context length. The synthetic NIAH tasks (Hsieh et al., 2024)
were also run with LM Evaluation Harness.

State-Tracking Synthetics Training follows a sequence length curriculum that progresses from 3 -40 to
160, evaluated at 256. Each curriculum runs for 104 steps with batch size 256. We use 1 layer models for
Parity and 3 layer models for Modular-arithmetic tasks. The state size is chosen to be 64, and we sweep
dmodel∈{32,64} and 8 learning rates logarithmically spaced between 10−4 and 10−2, reporting the best
validation accuracy.

F ADDITIONAL EXPERIMENTAL RESULTS
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Figure 5: Pretrained 1.5B models’ performance on the held-out FineWeb-Edu test set at varying context
lengths. Mamba-3 exhibits strong length extrapolation while Mamba-2 falters at longer contexts.

Table 5: Downstream language modeling evaluations on parameter-matched pretrained models, including
Mamba-3 MIMO. Mamba-3 MIMO’s average accuracy on all tasks is more than 1 percentage point better
than the next best (Mamba-3 SISO).

Model FW-Edu LAMB. LAMB. HellaS. PIQA Arc-E Arc-C WinoGr. OBQA Average
ppl ↓ ppl ↓ acc ↑ acc n ↑ acc ↑ acc ↑ acc n ↑ acc ↑ acc n ↑ acc ↑

Transformer-440M 13.03 21.2 41.7 50.5 69.9 67.6 34.6 56.7 26.0 49.6
Gated DeltaNet-440M 13.12 19.0 40.4 50.5 70.5 67.5 34.0 55.3 25.8 49.1
Mamba-2-440M 13.00 19.6 40.8 51.7 70.6 68.8 35.0 54.1 26.0 49.6
Mamba-3-440M 12.87 19.6 40.2 51.7 71.9 68.9 34.4 55.8 26.0 49.8
Mamba-3-MIMO-440M 12.72 17.1 43.4 52.8 70.8 69.6 35.6 56.3 28.4 51.0
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Figure 6: Mamba-3 demonstrates superior performance compared to strong baselines like Mamba-2, Llama,
and Gated Deltanet. These are 440M models, evaluated on FineWeb-Edu and 100B tokens.
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