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Abstract

In this reproducibility study,we present our results and experience during replicating the
paper, titled CUDA: Curriculum of Data Augmentation for Long-Tailed Recognition(Ahn
et al., 2023).Traditional datasets used in image recognition, such as ImageNet,are often
synthetically balanced,meaning each class has an equal number of samples.In practical sce-
narios,datasets frequently exhibit significant class imbalances,with certain classes having a
disproportionately larger number of samples compared to others.This discrepancy poses a
challenge for traditional image recognition models, as they tend to favor classes with larger
sample sizes, leading to poor performance on minority classes.CUDA proposes a class-wise
data augmentation technique which can be used over any existing model to improve the
accuracy for LTR:Long Tailed Recognition.We successfully replicated a substantial portion
of the results pertaining to the long-tailed CIFAR-100-LT dataset and extended our analysis
to provide deeper insights into how CUDA efficiently tackles class imbalance.

1 Introduction

Long-tailed recognition presents one of the most formidable challenges in visual recognition.This problem
revolves around training highly effective models from datasets characterized by a large number of images
distributed along a long-tailed class distribution.In datasets characterized by class imbalance,a notable skew
exists in the distribution of samples across different classes,resulting in certain classes being vastly over-
represented (Head classes) while others are significantly under-represented (Tail classes).To elucidate this
phenomenon, consider a practical example in the domain of disease screening tests:the head classes pri-
marily comprise instances of non-patients,whereas the tail classes represent the minority of patients.In such
scenarios,the performance of deep learning models tends to be disproportionately influenced by the Head
classes,while the learning of Tail classes is often inadequately developed.

Solutions to Long Tailed recognition primary involves three methods: (1) Resampling (Buda et al., 2018):up-
sampling minority classes and Down-sampling majority classes.(2) Reweighting (Cao et al., 2019):rebalancing
the loss to give more weights to minority classes.(3) Transfer learning(Kim et al., 2020):enriching the in-
formation of minority classes by transferring information gathered from majority classes to the minority
classes.While numerous strategies have been suggested to leverage data augmentation techniques for gener-
ating diverse representations of minority samples, scant attention has been given to assessing the impact of
varying augmentation degrees across different classes on addressing class imbalance issues.

The original authors propose that applying an algorithm to determine class-wise augmentation strength can
potentially address the imbalance problem in long-tailed visual recognition tasks.This data augmentation
technique called CUDA is designed to complement existing Long-Tailed Recognition (LTR) models.The other
key finding,as highlighted in the original paper,is that after training when we examine the class-wise strength
of augmentation the majority classes have a stronger degree of augmentation and the minority classes have
a weaker degree of augmentation.This finding is counter-intuitive,as one would typically anticipate that
the minority class, with fewer samples, would undergo strong augmentation,while the majority class, with
more samples, would undergo weaker augmentation.The original authors utilized two metrics, weight L1-
norm and feature alignment gain, to demonstrate the effectiveness of CUDA in mitigating the imbalance
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problem.However, the original authors did not elaborate on how these two metrics are linked to the feature
representation of imbalanced datasets or elucidate how CUDA influences the feature representation space.

The motivation behind this reproducibility study is threefold: (1) To validate the assertion made by the
original authors that employing class-wise augmentation strength can enhance performance of existing LTR
models. (2) To confirm the counter-intuitive observation from the original paper that employing stronger
augmentation on majority classes and milder augmentation on minority classes yields superior model per-
formance compared to the opposite strategy. (3) To delve deeper into how CUDA effectively addresses
the imbalance problem by leveraging insights from prior research on feature representations in long-tailed
datasets, a dimension not explored in the original paper.

2 Scope of Reproducibility

To address our threefold motivation behind this paper and to reproduce the results of the original paper, we
perform the following experiments over the CIFAR-100-LT dataset:

1. For our first motivation, we examine the performance of CUDA across LTR models like CE (Cross
Entropy), CE-DRW (Cross entropy Dynamic reweighting) , LDAM-DRW (label-distribution-aware
margin loss) , BS (balanced softmax) and RIDE(Figure 3).

2. For our second motivation, we investigate the LOL (Learning Objective Level) score, representing
the augmentation strength of each class after training with CUDA(Figure 4).

3. We examine how accuracy changes with the three hyper-parameters augmentation probability, num-
ber of test samples, and acceptance rate to reproduce the result that both excessive and insufficient
augmentation adversely affect performance(Figure 7).

4. We examine the metrics variance of weight L1-norm and feature alignment gain to reproduce the
result that CUDA leads to a decrease in weight L1-norm and a positive feature alignment gain(Figure
5 and Figure 6).

5. We evaluate the contribution of curriculum learning and class-wise score on the performance of
CUDA to reproduce the result that both curriculum learning and class-wise score are important to
the performance of CUDA(Figure 8).

6. We compare the performance of CUDA with other augmentation methods to validate the result that
CUDA outperforms all existing augmentation techniques(Figure 8).

7. We conduct the performance analysis across three different imbalance ratios (100, 50, 10) to examine
how CUDA performance varies with dataset imbalance ratios(Figure 10).

8. For our third motivation, we compare the feature representation space of the vanilla and CUDA
versions, examining metrics such as inter-class distance and intra-class distance(Figure 9).

3 Methodology

3.1 Model descriptions

We use Resnet-32 as our backbone model for all 5 models CE, CE-DRW, BS, LDAM-DRW, and
RIDE.However RIDE uses modified version of Resnet-32 implemented according to the original paper.We
use the data augmentation technique CUDA over these existing 5 models.The core philosophy of CUDA is to
“generate an augmented sample that becomes the most difficult sample without losing its original informa-
tion”.CUDA uses two main parts to achieve this:(1)Strength-based augmentation(2)Using Level-of-Learning
(LOL) score.In following sections 3.1.1 and 3.1.2 we explain the methodology of CUDA as outlined in the
original paper.
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Figure 1: Schematic of CUDA.The left part depicts the strength based augmentation and the right part
depicts how the Level-of-Learning(LOL) score is updated in a given epoch

3.1.1 Strength-based augmentation

We need to define a metric to quantify the degree of augmentation we are applying on an image.Let us assume
that there exists K predefined augmentation operations indexed as k ∈ {1, . . . , K}, for example gaussian
blur,rotation,horizontal flip etc.Each augmentation operation O

mk(s)
k has its own predefined augmentation

magnitude function mk(s) with the strength parameter s ∈ {0, . . . , S}.Given an augmentation strength
parameter s and an input image x, we model a sequence of augmentation operations O(x; s) as follows:

O(x; s) = Omks (s)
ks

◦ O
mks−1 (s)
ks−1

◦ · · · ◦ Omk1 (s)
k1

(x), ki ∼ Cat(K, U(K)) ∀i = {1, . . . , s}

The sequential augmentation operation O(x; s) involves sampling s operations from a categorical distribution,
where each operation is chosen from a uniform distribution among K possible operations.In essence,out
of the K possible operations,only s operations are selected,each with a magnitude m(3).For example,let’s
consider s = 3.Suppose the selected augmentation operations k1,k2,k3 correspond to brightness adjustment,x-
shift, and y-shift, respectively.In this case, O(x; 3)outputs an image where the brightness is increased by
mbright(3),shifted by mx−shift(3) on the x-axis and shifted by my−shift(3) on the y-axis.As s increases,both
the number of augmentation operations applied to each image and the magnitude of each of these operations
increase consequently,the complexity of the augmentation process increases.Appendix-A on augmentation
preset describes how mk(s) the magnitude function of each data augmentation operation is defined.

3.1.2 Updating Level of Learning Score

To control the strength of augmentation properly,we need to check whether the model can correctly predict
augmented versions without losing the original information.To enable this, we define the LOL for each class
c at epoch e, i.e., Le

c which is adaptively updated as the training continues as follows:

• Initialization: At the start of training, set Le
c to zero for all classes. For clarity, let’s consider that

two epochs have already passed, and we begin at the third epoch. Let’s assume L2
1 the LOL score

for a specific class 1 after the second iteration is 2.

• Update Mechanism: The LOL value for each class is updated using the function Vlol, which takes
inputs such as the images Dc belonging to class c, the previous LOL value Le−1

c , the model fθ used
for prediction, and hyper parameters γ and T.

Le
c = VLoL

(
Dc, Le−1

c , fθ, γ, T
)

• Sampling : Within Vlol we iterate over all values of l less than L2
1 = 2. For each l (0, 1, 2 in this

case), randomly sample T (l + 1) samples from Dc to form D
′

c, ensuring |D′

c| = T (l + 1).Instead of
utilizing all samples in set Dc for prediction, we opt for a subset of images denoted as D

′

c. The
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Figure 2: Algorithm of CUDA (Ahn et al., 2023)

size of this subset is determined by the first hyper parameter, denoted as T , which represents the
number of test samples.

• Calculation of Vcorrect: This involves summing the indicator function 1fθ(O(x;l))=c for all samples in
D

′
c, where O(x; l) represents the application of augmentation strength l to sample x. If the model

correctly predicts class c (c=1 in this case), the function evaluates to 1. In essence, Vcorrect quantifies
the number of correct predictions among the T (l + 1) samples in D

′

c.

VCorrect (Dc, l, fθ, T ) =
∑

x∈D′
c

1{fθ(O(x;l))=c} where D′
c ⊂ Dc

• Adjustment: If the number of correct predictions exceeds the threshold γ · T (l + 1), where l takes
values from 0 to 2, it signifies that the ratio of correct predictions to total samples surpasses the
second hyper parameter γ, representing the acceptance rate. In this scenario, the value of the LOL
score for the next epoch, denoted as L3

1, is incremented by 1 compared to the current value of
L2

1 (L3
1 = L2

1 + 1 = 3). If the condition is not met, the value of LOL score is decremented by 1
(L3

1 = L2
1 − 1 = 1)

VLoL
(
Dc, Le−1

c , fθ, γ, T
)

=
{

Le−1
c + 1 if VCorrect (Dc, l, fθ, T ) ≥ γT (l + 1) ∀l ∈

{
0, . . . , Le−1

c

}
Le−1

c − 1 otherwise

• Augmentation Sequence: By applying Vlol for all classes we could then define a sequence of aug-
mentation operations O(xi, Le

yi
) with their strengths defined by the respective Le

yi
where each yi is

a class.

• Augmentation Probability: Instead of completely replacing the training dataset D with augmented
images, we apply a sequence of augmentation operations with a probability specified by a third
hyper parameter, ρ, representing the augmentation probability. This results in the creation of a new
dataset DCUDA.

• LTR algorithm: Execute any Learning to Rank (LTR) algorithm utilizing the dataset DCUDA,
comprising both augmented and original images.

3.2 Dataset and Hyper Parameters

The reproduction study is done on the dataset CIFAR-100-LT as mentioned in the previous works(Cao
et al., 2019).The CIFAR-100 dataset (Canadian Institute for Advanced Research, 100 classes) is a subset
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of the Tiny Images dataset and consists of 60000 32x32 color images.Three different datasets are derived
from CIFAR-100 dataset with imbalance ratio 100,50 and 10,where an imbalance ratio is defined as |D1|
/|D100| =Nmax/Nmin.|Dk| between |D1| = Nmax and |D100| = Nmin follows an linear decay.The hyper-
parameters augmentation probability,number of test samples and acceptance rate are used as mentioned in
the original paper.The values used are 0.6 for augmentation probability,10 for number of test samples and
0.5 for Acceptance rate.The hyper parameter sensitivity analysis done on Section 4.1.5 for the three hyper
parameters further substantiated the values used.

3.3 Experimental setup and code

We have conducted all experiments for the dataset CIFAR-100-LT by using the official repository, which is
implemented in PyTorch .The code from the repository was reorganized into a Jupyter notebook to enhance
portability and offer better control over the environment.The dependencies were not explicitly provided,
and the versions of different libraries were determined through trial and error.Deprecated elements within
the code were replaced with suitable, up-to-date alternatives.For training the model, parameters were set
based on the specifications outlined in the paper.Any parameters not explicitly mentioned in the paper were
assumed to use default values.The code for conducting component analysis on curriculum learning,class-wise
score measurement and measuring the standard deviation in weight L1 norm were re-implemented based on
the specifications provided in the paper.The code and the readings are available here.

3.4 Computational requirements

We trained the model in kaggle with 1 NVIDIA Tesla P100 as the GPU accelerator.The average training
time of the model was approximately 40 minutes with a batch size of 128 for 200 epochs and the overall
budget of the reproduction study was 250 GPU hours.

4 Results

4.1 Results reproducing original paper

Section 4.1.1 delves into the findings related to the first motivation of validating the assertion made by the
original authors that employing class-wise augmentation strength can enhance performance of existing LTR
models.Section 4.1.2 delves into the findings related to the second motivation of confirming the counter-
intuitive observation from the original paper that employing stronger augmentation on majority classes
and milder augmentation on minority classes yields superior model performance compared to the opposite
strategy.Section 4.1.3 and section 4.1.4 provides additional insights on the original study on weight L1 norm
and feature alignment gain that also justifies our third motivation of investigating feature representations
in long-tailed datasets.The subsequent sections in 4.1 encompass the results obtained from our reproduction
of various analytical studies conducted in the original paper, aiming to further validate and understand the
efficacy and implications of employing CUDA.

4.1.1 Comparison of validation accuracy

We measure the validation accuracy of CUDA when used with CE(Cross Entropy), CE-DRW (Cross en-
tropy Dynamic reweighting)(Cao et al., 2019),LDAM-DRW (label-distribution-aware margin loss)(Cao et al.,
2019),BS (balanced soft-max)(Ren et al., 2020) and RIDE(Wang et al., 2021) for the CIFAR-100-LT dataset
following the general settings outlined in Cao et al. (2019).Specifically, we use ResNet-32 (He & Garcia,
2009)as the backbone network.The network is trained using stochastic gradient descent (SGD) with a mo-
mentum of 0.9 and a weight decay of 0.0002.The initial learning rate is set to 0.1 and a linear learning rate
warm-up is applied during the first 5 epochs to reach the initial learning rate.The training process spans
over 200 epochs, during which the learning rate is decayed at the 160th and 180th epochs by a factor of
0.01.The hyper parameters: acceptance rate, augmentation probability and Number of test samples were
0.6,0.5 and 10 respectively.The anticipated outcome was a consistent rise in validation accuracy across all
five models and three imbalance ratios upon employing CUDA.In our reproduction of this study we were
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Figure 3: Validation accuracy on CIFAR-100-LT dataset. † are from Park et al. (2022) and ‡,* are from
the original papers (Kim et al. (2020); Zhu et al. (2022)).Other results are from our implementation.We
report the average results of three random trials on each combination of model and imbalance ratio.The first
three column represents the overall accuracy for each imbalance ratio.The subsequent three groups of three
columns represent the accuracy of the three groups of classes split as Many(the majority classes),few(the
minority classes) and Med(the intermediate classes). The rows highlighted in green refer to the versions where
CUDA is used.We can observe an increase in accuracy when we compare similar models with and without
CUDA.For example vanilla CE+CMO for imbalance ratio 100 has accuracy 42.08 whereas CE+CMO+CUDA
has accuracy of 43.01.

able to reproduce the accuracy values with a maximum deviation of 2.4%.Further we can observe from figure
3 a consistent increase in accuracy across all 5 models for the imbalance ratios 100 and 50 when paired with
CUDA compared to the Vanilla edition.However for the imbalance ratio 10 we see a minor improvement in
accuracy for all models except when CUDA is paired with CE+CMO.

4.1.2 Dynamics of LoL Score

We plot the progression of LOL scores (the strength of augmentation) for various classes across five mod-
els: CE, CE-DRW, BS, LDAM-DRW, and RIDE.The anticipated outcome was a stark difference between
the LOL scores of majority class(0-49) and minority class(50-99) with LOL score of majority class being
greater.In our reproduction of this study while there isn’t a linear drop in augmentation strength as we
move along the y-axis, there’s a clear trend of higher average augmentation strength for the majority classes
(0-49) compared to minority classes (50-99).The heat maps presented in Figure 4 validate the assertion that
"Stronger augmentation on majority classes and weaker augmentation on minority classes yields better per-
formance".In addition to this we observe a notable surge in LOL scores across most classes occurs after the
160th epoch, likely attributable to the decay in learning rate beyond this epoch.

4.1.3 Variance of Weight L1-norm

Image recognition can be considered to be a coupling of two tasks:feature learning where we extract features
from the images and embed it into a feature space and classifier learning where we train a classifier over
the learned features(Kang et al., 2020).The long-tailed data distribution can corrupt the representation
space, where the distance between head and tail categories is much larger than the distance between two
tail categories (Fu et al., 2023).A naively trained model on long-tailed class distributed data tends to have
“artificially” large weights for the head classes.This yields a wider classification boundary in feature space
for the head classes, allowing the classifier to have much higher accuracy on head classes, but hurting the
performance of the tail classes (Kang et al., 2020).
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Figure 4: Evolution of LOL score in the order CE,CE-DRW,LDAM-DRW,BS,RIDE over the epochs.The
x-axis represents the epochs, with the 200th epoch positioned on the rightmost side of each graph. The y-
axis will display the classes, arranged in descending order based on the number of samples in each class.The
intensity of the color of the heatmap represents the strength of augmentation.It is evident that during training
the majority classes(0-49) have a stronger augmentation compared to the minority classes(50-99).

Figure 5: Variation Of weight-L1 norm in the order CE,CE-DRW,LDAM-DRW,BS over the epochs.The
value of variance at epoch 200 represents the final value of variance of weight-L1 norm after training.It is
evident that CUDA (indicated by the blue line) exhibits lower variance of weight-L1 Norm compared to the
vanilla version (depicted by the red line).

Figure 6: Feature alignment gain in the order CE,CE-DRW,LDAM-DRW,BS. Feature alignment gain is the
increase in the average feature cosine similarity between feature vectors belonging to the same class.The x
axis represents the classes and y axis represents the feature alignment gain for that class.It is evident that
CUDA exhibits a positive feature alignment gain(indicated by the blue line) for most of the classes across
all 4 models.
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Figure 7: Hyper parameter Analysis of CUDA when paired with the model LDAM-DRW.The left most graph
represents the sensitivity of accuracy with Augmentation probability.We see a concavity in performance when
value of Prob Aug is changed between 0.3 to 0.7.The middle graph represents the sensitivity of accuracy with
Number of test samples.We see a slight change in accuracy when value of Num Test is changed.The rightmost
graph represents the sensitivity of accuracy with Acceptance rate.We see a concavity in performance when
value of Accept rate is changed between 0.1 to 0.9.

The variance of classifier weight norm is usually used to measure how balanced the classifier is considering
the input from a class-wise perspective(Kang et al., 2021).A lower variance in weight L1 norm indicates that
the classifier assigns similar importance to all classes.We analyze how CUDA affects standard deviation of
weight L1 norm across the 4 models over the epochs.The anticipated result was a consistent reduction in the
value of variance of weight L1 norm on using CUDA across all 4 models.In our reproduction of this study we
observe that there is a significant decrease in the standard deviation of weight L1 norm when we use CUDA
compared to the vanilla version from Figure 5 validating the results of the original study.

We can say any enhancements in performance can be attributed to either improved feature representation
or a more effective classifier.In this case,since the classifier remains constant for each case,the improvements
are likely due to CUDA optimizing the feature representation space.The variance in weight norm decreases
implying a reduction in distinction between different classification boundaries( between two head classes or
between two tail classes or between a head and a tail class).Specifically we can infer that CUDA is able to
make the feature representation more balanced in terms of inter class distances (Song et al., 2015).

4.1.4 Feature Alignment Gain

Continuing from the discussion of a imbalanced feature space representation in subsection 4.1.3, another
significant impact of class imbalance on the feature representation space is the vulnerability of a cluster
containing instances of a tail class(Huang et al., 2016).Due to their sparse nature, these clusters which are
expected to contain instances of the same class are more prone to invasion by imposter feature vectors from
other classes present in neighbourhood.

Feature alignment gain serves as a metric to quantify the effectiveness of a feature extractor in embedding
features into the feature space.Specifically,it measures the improvement in feature alignment, which is the
sum of cosine similarities between pairs of feature vectors within a given class when CUDA is used.We
analyze how CUDA affects feature alignment gain of each class across the 4 models over the epochs for
the validation dataset.The anticipated result was a mostly positive feature alignment gain on using CUDA
across all 4 models.In our reproduction of this study we observe from Figure 6 that feature alignment gain
is positive for most of the classes when we use CUDA.

When feature vectors within a class exhibit high similarity, they tend to cluster closely together within
the feature representation space.This closeness results in reduced intra class distance(Song et al., 2015),
meaning that feature vectors belonging to the same class are positioned closer to each other.Consequently,
the likelihood of intrusions from feature vectors of a foreign class is diminished.
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4.1.5 Hyper-Parameter Analysis

The paper proposed training on RIDE but we went with LDAM-DRW as LDAM-DRW showed a higher
increase in performance when paired with CUDA which means that the magnitude of change in perfor-
mance with change in hyper parameter will be higher.For Acceptance-Rate we train the model LDAM-DRW
with CUDA for 5 equally spaced values from 0.1 to 0.9.Accept rate of 0.1 means that threshold for ac-
cepting the augmented samples is low leading to higher augmentation strength.Accept rate of 0.9 means
that threshold for accepting the augmented samples is high leading to lower augmentation strength.For
Probability-augmentation we train the model LDAM-DRW with CUDA for 5 equally spaced values from
0.3 to 0.7.Probability-augmentation of 0.3 means that most of the original images is retained when form-
ing the data-loader.Probability-augmentation of 0.7 means that most of the original images is replaced by
the augmented images when forming the data-loader.The anticipated result was a concavity in the value
of validation accuracy when values of Acceptance-Rate and Probability-augmentation are increased.In our
reproduction of the hyper parameter analysis studies from Figure 7 we can observe that Acceptance-Rate
and Probability-augmentation shows a concavity in the performance.For the hyper parameter number of test
samples we train the model LDAM-DRW with CUDA for three different values of 1,10,100.The anticipated
result was a steep increase in accuracy between 1 to 10 values of T and a slight increase between 10 to 100
values of T.In our reproduction of the hyper parameter analysis we can see that the performance increases
slightly with increase in Number of Test samples from Figure 7.

4.1.6 Curriculum Learning

Curriculum Learning (CL) is a training strategy designed to enhance machine learning models by progres-
sively exposing them to increasingly complex or challenging data during training.Previous works (Zhou et al.,
2020) have shown that curriculum learning can improve accuracy of LTR models.In the context of the CUDA
algorithm,the LOL (Learning Objective Level) scores for each class initially start at zero and are iteratively
updated at the end of each epoch based on the model’s performance with augmented images.After 200
epochs,an optimal combination of LOL scores is achieved,leading to the final model performance.To assess
the impact of curriculum learning on accuracy,a two-step approach is employed.In the first step,a model is
trained using the standard CUDA procedure.Subsequently,the LOL scores obtained from this initial training
run are extracted and utilized as fixed scores in a subsequent run.In this second run, the model is trained
without updating the LOL scores.The anticipated result was a reduction in accuracy on the second run when
CUDA is trained without curriculum learning.In our reproduction of this component analysis we can observe
from Figure 8 that there is an decrease in performance across all 5 models when CUDA is trained without
curriculum learning.

4.1.7 Classwise-Score

To examine the validity of class-wise augmentation of CUDA, we apply CUDA with the same strength of DA
for all classes.Instead of computing LOL score class-wisely,we computed only one LOL score for the entire
dataset by uniformly random sampling instances in the training dataset regardless of class.The anticipated
result was a reduction in accuracy when CUDA is trained without classwise score.In our reproduction of this
component analysis we can observe from Figure 8 a significant performance degradation of CUDA across all
5 models without class-wise score compared to CUDA.

4.1.8 Comparison with other Augmentation techniques

We compare the performance of CUDA with other augmentation techniques:Auto-
Augmentation(CIFAR,ImageNet and SVHN policy)(Cubuk et al., 2019),Fast Auto-
Augmentation(CIFAR,ImageNet and SVHN policy)(Lim et al., 2019),DADA (Li et al., 2020) and
Rand-Augmentation(m=1,n=2) (Cubuk et al., 2020)for the model LDAM-drw.The anticipated result
was that CUDA outperforms all other existing data augmentation techniques.In our reproduction of this
comparison ,figure 8 reveals that CUDA consistently outperforms all other augmentation techniques.
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Figure 8: Component analysis on Classwise Score and Curriculum Learning,Comparison of accuracy on differ-
ent augmentation techniques.The leftmost graph illustrates the comparison of accuracy among Vanilla,Cuda
without Classwise Score and the original Cuda version with Classwise Score.The middle graph demon-
strates the comparison of accuracy between Cuda without Curriculum Learning and the original Cuda
version with Curriculum Learning.The rightmost graph represents the comparison of accuracy for 9 dif-
ferent augmentation methods Cuda,Auto Augmentation-CIFAR policy,Auto Augmentation-ImageNet pol-
icy,Auto Augmentation-SVHN policy,Dada-CIFAR,Dada-ImageNet,Fast Auto Augmentation-CIFAR,Fast
Auto Augmentation-ImageNet policy and Random Augmentation.We observe that the original iteration
of CUDA (represented by the green bar) consistently outperforms its competitors across all three studies.

Figure 9: Leftmost-Feature representation of vanilla CE,inter class distances for vanilla CE,Feature repre-
sentation of CE+CUDA,rightmost-inter class distances for CE+CUDA.In the feature representation space
the red,purple and brown instances represent three tail classes(97,98,99) and the green,yellow and blue in-
stances represent three head classes(1,2,3).The dotted line is connecting means of two heads and the solid
line is connecting means of two tail classes.The distances in the table are measured between the means of
the classes.It evident that after using CUDA the difference between average head to head distance(h2h) and
average tail to tail distance(t2t) has diminished.

4.2 Results beyond original paper

Section 4.2.1 delves into findings related to our third motivation of exploring the changes in feature repre-
sentation space after using CUDA.The section 4.2.2 consists of a analysis on the performance of CUDA for
the augmentation operation cutout which was implemented in the original code but not explicitly stated to
be used in the paper.Section 4.2.3 consists of a analysis on accuracy gain when CUDA is used across three
different imbalance ratios.

4.2.1 Quantitative and Qualitative analysis of feature embedding

We conducted an analysis of the feature embedding derived from the validation dataset of the imbalanced
CIFAR-100-LT dataset, building upon prior methodologies (Huang et al., 2016),(Song et al., 2015) aimed
at addressing class imbalance through enhanced feature representation.Specifically, we visualized the 2-
dimensional feature representations of three head classes (1, 2, 3) and three tail classes (97, 98, 99) using
t-SNE.
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Figure 10: The left image represents the comparison of accuracy of CUDA when paired with cutout,when
not paired with cutout and the vanilla version.The right image represents the analysis of gain in accuracy
with 3 different versions of CIFAR-100-LT with imbalance ratio:10.50 and 100.

The quantitative aspect we examined was the variance in inter-class distances, as detailed in section 4.1.3.This
variance can be quantified by the difference between the average distance within head classes and that within
tail classes.Notably,we observed a diminished difference from the tables in Figure9 when employing CUDA
compared to the vanilla version,indicating an improvement in handling class imbalance.

The qualitative aspect we examined was the representation of the tail class clusters in the feature
space.Following the adoption of CUDA, we noted that the clusters corresponding to tail classes exhibited
greater coherence from figure Figure9.There was a reduction in the intrusion of imposter vectors into these
clusters, signifying enhanced separability.We also observe a slight increase in the average distance of means
of tail classes denoting a wider classification boundary than before between tail classes.

4.2.2 Cutout

The usage of the augmentation operation Cutout was not explicitly mentioned in the original paper.However
the official implementation of CUDA also had an argument to either use or not use the cutout operation.
Cutout has proved to improve generalization performance of CNNs (DeVries & Taylor, 2017).Our analysis
focused on investigating how Cutout affects the performance of CUDA for the CE (cross-entropy) model to
validate the fact that original authors used cutout during training for all models.Our findings in Figure10
suggest that incorporating cutout during training is crucial for achieving the reported accuracy levels stated
in the original paper for all models.

4.2.3 Gain in accuracy for imbalance ratio

We conducted a comparative analysis of the gain in accuracy among five models when paired with CUDA
across three different imbalance ratios: 100, 50, and 10.Imbalance ratios reflect the disparity in class distri-
bution within the dataset, with higher ratios indicating more pronounced class imbalances.Our findings in
Figure 10 reveal a general trend where the gain in accuracy diminishes as the imbalance ratio decreases.We
can infer that CUDA performs better when the imbalance ration of the dataset is higher.

5 Discussion

The experimental results presented in the paper effectively supports the first claim of the original pa-
per,demonstrating that applying an algorithm to find classwise augmentation strength can show improve-
ments in validation accuracy (section 4.1.1).However,the performance of CUDA with model BCL couldn’t
be fully evaluated due to inadequate time. Nevertheless,we can still validate the first claim based on the
available data.The heatmaps depicted in Figure 4 illustrate the progression of augmentation strength over
the epochs, serving to validate the second assertion of the original paper. Initially, there exists a contrast
in the LOL scores between the majority classes (0-49) and minority classes (50-100) before the 160th epoch.
However, after training for 200 epochs, this contrast diminishes significantly.A holistic view of the evolution
of LOL scores across epochs (section 4.1.2) still corroborates the second claim of the original paper, that
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employing stronger augmentation on majority classes and milder augmentation on minority classes yields
superior model performance compared to the opposite strategy.

By analyzing the variance of weight L1-norm(section 4.1.3 ),the reproduction study showcases how CUDA
effectively addresses the imbalance problem reducing the variance leading the model to assign equal impor-
tance to each class as claimed in the original paper.Through our analysis, we inferred that CUDA enhances
the balance of feature representation in terms of inter-class distances.Additionally, we reproduced the ex-
amination of feature alignment gain (section 4.1.4), further affirming CUDA’s efficacy in addressing the
imbalance problem by increasing the feature alignment as claimed in the original paper.Through our analy-
sis,we inferred that CUDA reduces the intra-class distances between instances of the same class specifically
the tail classes.To validate these two deductions regarding balanced inter-class distances and reduced intra-
class distances, we compared the feature representation space of the vanilla and CUDA versions (section
4.2.1).Our analysis confirmed both inferences, indicating that CUDA enhances feature representation by
promoting balance in inter-class distances and diminishing the intrusion of foreign instances by reducing
intra-class distances.

The Hyper-parameter sensitivity analysis for augmentation probability and Accept rate on validation accu-
racy reveals a concavity as claimed by the original paper(Figure 7).The impact of curriculum and classwise
score on the performance of CUDA is evident from our findings in (section 4.1.6 and section 4.1.7) validating
their importance in performance of CUDA as claimed by the original paper.We found that cutout augmenta-
tion plays a significant role in the accuracy gain observed when using CUDA, even more so than curriculum
learning or classwise score(section 4.2.3 ).We claim the original authors had used cutout during training
across all models but have not explicitly stated in the paper.The stated values of accuracy in the original
paper can only be attained when CUDA is used with cutout augmentation.Our analysis on the imbalance
ratio indicates that CUDA’s efficiency diminishes as we move towards datasets with lower imbalance(section
4.2.3 ).From this, we can also infer that CUDA does not provide significant improvements with balanced
datasets.

5.1 What was easy and what was difficult

The paper was really easy to follow. The section on the repository for CIFAR-100-LT was clearly written.The
description of the arguments that we pass during training was properly stated.The algorithm which makes
up CUDA was completely logical in its implementation.The lack of significant barriers in setting up the code
enhances its portability.The dependencies were not clearly mentioned by the author requiring additional
time to find the versions by trial and error.The original paper had also included performance comparison on
datasets ImageNet-LT and Inaturalist-18,the section of the original repository for ImageNet-LT and Inat-18
contains redundant code and uncleaned up code.The paper claims to deviate from the model recipes of BCL
and NCL to ensure a fair comparison.However, it fails to clearly state these deviations, making it difficult
to assess their performance in this study.

5.2 Communication with original authors

The initial attempts to contact the authors through the email IDs given in the paper was not success-
ful.We were able to contact the authors through linked-in in latter half of the study.The authors were
able to clarify our doubts on implementing the component analysis for curriculum learning and class-wise
score.Regrettably,the authors were unable to provide a clear recipe for BCL.
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Table 1: Operation Parameter Description
Operation Description
Flip On/Off Flip top and bottom
Mirror On/Off Flip left and right
Edge Enhancement On/Off Increasing the contrast of the pixels around the targeted

edges

Detail On/Off Utilize convolutional kernel

 0 −1 0
−1 10 −1
0 −1 0


Smooth On/Off Utilize convolutional kernel

1 1 1
1 5 1
1 1 1


AutoContrast On/Off Remove a specific percent of the lightest and darkest pixels
Equalize On/Off Apply non-linear mapping to make uniform distribution
Invert On/Off Negate the image
Gaussian Blur Blurring an image using Gaussian function with radius [0,2]
Resize Crop Resizing and center random cropping with scale [1,1.3]
Rotate Rotate the image with angle [0,30]
Posterize Reduce the number of bits for each channel in the range

[0,4]
Solarize Invert all pixel values above a threshold in the range [0,256]
SolarizeAdd Adding value and run solarize in the range [0,110]
Color Colorize gray scale values in the range [0.1, 1.9]
Contrast Adjust the distance between colors in the range [0.1,1.9]
Brightness Adjust image brightness in the range [0.1,1.9]
Sharpness Adjust image sharpness in the range [0.1,1.9]
Shear X Shearing X-axis in the range [0,0.3]
Shear Y Shearing Y-axis in the range [0,0.3]
Translate X Shift X-axis in the range [0,100]
Translate Y Shift Y-axis in the range [0,100]

Jianggang Zhu, Zheng Wang, Jingjing Chen, Yi-Ping Phoebe Chen, and Yu-Gang Jiang. Balanced contrastive
learning for long-tailed visual recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6908–6917, 2022.

A Augmentation preset

We use 22 different augmentation operations for CUDA each having their own parameter.The details of
each of these operation has been described in table 1.The magnitude parameter divides the augmentation
parameter into 30 values linearly.For example for Rotate max value is 30 and min value is 0,the magnitude
of parameter for rotate is defined by

mrotate (s) = (30 − 0)/30 ∗ s, thus mrotate (1) = 1 = (30 − 0)/30 ∗ 1
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Figure 11: The 22 augmentation operations we use for CUDA
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